Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
203
venv/Lib/site-packages/scipy/special/_spherical_bessel.py
Normal file
203
venv/Lib/site-packages/scipy/special/_spherical_bessel.py
Normal file
|
@ -0,0 +1,203 @@
|
|||
from ._ufuncs import (_spherical_jn, _spherical_yn, _spherical_in,
|
||||
_spherical_kn, _spherical_jn_d, _spherical_yn_d,
|
||||
_spherical_in_d, _spherical_kn_d)
|
||||
|
||||
def spherical_jn(n, z, derivative=False):
|
||||
r"""Spherical Bessel function of the first kind or its derivative.
|
||||
|
||||
Defined as [1]_,
|
||||
|
||||
.. math:: j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n + 1/2}(z),
|
||||
|
||||
where :math:`J_n` is the Bessel function of the first kind.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int, array_like
|
||||
Order of the Bessel function (n >= 0).
|
||||
z : complex or float, array_like
|
||||
Argument of the Bessel function.
|
||||
derivative : bool, optional
|
||||
If True, the value of the derivative (rather than the function
|
||||
itself) is returned.
|
||||
|
||||
Returns
|
||||
-------
|
||||
jn : ndarray
|
||||
|
||||
Notes
|
||||
-----
|
||||
For real arguments greater than the order, the function is computed
|
||||
using the ascending recurrence [2]_. For small real or complex
|
||||
arguments, the definitional relation to the cylindrical Bessel function
|
||||
of the first kind is used.
|
||||
|
||||
The derivative is computed using the relations [3]_,
|
||||
|
||||
.. math::
|
||||
j_n'(z) = j_{n-1}(z) - \frac{n + 1}{z} j_n(z).
|
||||
|
||||
j_0'(z) = -j_1(z)
|
||||
|
||||
|
||||
.. versionadded:: 0.18.0
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] https://dlmf.nist.gov/10.47.E3
|
||||
.. [2] https://dlmf.nist.gov/10.51.E1
|
||||
.. [3] https://dlmf.nist.gov/10.51.E2
|
||||
"""
|
||||
if derivative:
|
||||
return _spherical_jn_d(n, z)
|
||||
else:
|
||||
return _spherical_jn(n, z)
|
||||
|
||||
|
||||
def spherical_yn(n, z, derivative=False):
|
||||
r"""Spherical Bessel function of the second kind or its derivative.
|
||||
|
||||
Defined as [1]_,
|
||||
|
||||
.. math:: y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n + 1/2}(z),
|
||||
|
||||
where :math:`Y_n` is the Bessel function of the second kind.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int, array_like
|
||||
Order of the Bessel function (n >= 0).
|
||||
z : complex or float, array_like
|
||||
Argument of the Bessel function.
|
||||
derivative : bool, optional
|
||||
If True, the value of the derivative (rather than the function
|
||||
itself) is returned.
|
||||
|
||||
Returns
|
||||
-------
|
||||
yn : ndarray
|
||||
|
||||
Notes
|
||||
-----
|
||||
For real arguments, the function is computed using the ascending
|
||||
recurrence [2]_. For complex arguments, the definitional relation to
|
||||
the cylindrical Bessel function of the second kind is used.
|
||||
|
||||
The derivative is computed using the relations [3]_,
|
||||
|
||||
.. math::
|
||||
y_n' = y_{n-1} - \frac{n + 1}{z} y_n.
|
||||
|
||||
y_0' = -y_1
|
||||
|
||||
|
||||
.. versionadded:: 0.18.0
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] https://dlmf.nist.gov/10.47.E4
|
||||
.. [2] https://dlmf.nist.gov/10.51.E1
|
||||
.. [3] https://dlmf.nist.gov/10.51.E2
|
||||
"""
|
||||
if derivative:
|
||||
return _spherical_yn_d(n, z)
|
||||
else:
|
||||
return _spherical_yn(n, z)
|
||||
|
||||
|
||||
def spherical_in(n, z, derivative=False):
|
||||
r"""Modified spherical Bessel function of the first kind or its derivative.
|
||||
|
||||
Defined as [1]_,
|
||||
|
||||
.. math:: i_n(z) = \sqrt{\frac{\pi}{2z}} I_{n + 1/2}(z),
|
||||
|
||||
where :math:`I_n` is the modified Bessel function of the first kind.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int, array_like
|
||||
Order of the Bessel function (n >= 0).
|
||||
z : complex or float, array_like
|
||||
Argument of the Bessel function.
|
||||
derivative : bool, optional
|
||||
If True, the value of the derivative (rather than the function
|
||||
itself) is returned.
|
||||
|
||||
Returns
|
||||
-------
|
||||
in : ndarray
|
||||
|
||||
Notes
|
||||
-----
|
||||
The function is computed using its definitional relation to the
|
||||
modified cylindrical Bessel function of the first kind.
|
||||
|
||||
The derivative is computed using the relations [2]_,
|
||||
|
||||
.. math::
|
||||
i_n' = i_{n-1} - \frac{n + 1}{z} i_n.
|
||||
|
||||
i_1' = i_0
|
||||
|
||||
|
||||
.. versionadded:: 0.18.0
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] https://dlmf.nist.gov/10.47.E7
|
||||
.. [2] https://dlmf.nist.gov/10.51.E5
|
||||
"""
|
||||
if derivative:
|
||||
return _spherical_in_d(n, z)
|
||||
else:
|
||||
return _spherical_in(n, z)
|
||||
|
||||
|
||||
def spherical_kn(n, z, derivative=False):
|
||||
r"""Modified spherical Bessel function of the second kind or its derivative.
|
||||
|
||||
Defined as [1]_,
|
||||
|
||||
.. math:: k_n(z) = \sqrt{\frac{\pi}{2z}} K_{n + 1/2}(z),
|
||||
|
||||
where :math:`K_n` is the modified Bessel function of the second kind.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int, array_like
|
||||
Order of the Bessel function (n >= 0).
|
||||
z : complex or float, array_like
|
||||
Argument of the Bessel function.
|
||||
derivative : bool, optional
|
||||
If True, the value of the derivative (rather than the function
|
||||
itself) is returned.
|
||||
|
||||
Returns
|
||||
-------
|
||||
kn : ndarray
|
||||
|
||||
Notes
|
||||
-----
|
||||
The function is computed using its definitional relation to the
|
||||
modified cylindrical Bessel function of the second kind.
|
||||
|
||||
The derivative is computed using the relations [2]_,
|
||||
|
||||
.. math::
|
||||
k_n' = -k_{n-1} - \frac{n + 1}{z} k_n.
|
||||
|
||||
k_0' = -k_1
|
||||
|
||||
|
||||
.. versionadded:: 0.18.0
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] https://dlmf.nist.gov/10.47.E9
|
||||
.. [2] https://dlmf.nist.gov/10.51.E5
|
||||
"""
|
||||
if derivative:
|
||||
return _spherical_kn_d(n, z)
|
||||
else:
|
||||
return _spherical_kn(n, z)
|
Loading…
Add table
Add a link
Reference in a new issue