Fixed database typo and removed unnecessary class identifier.

This commit is contained in:
Batuhan Berk Başoğlu 2020-10-14 10:10:37 -04:00
parent 00ad49a143
commit 45fb349a7d
5098 changed files with 952558 additions and 85 deletions

View file

@ -0,0 +1,111 @@
"""
=============================================================
Spatial algorithms and data structures (:mod:`scipy.spatial`)
=============================================================
.. currentmodule:: scipy.spatial
Spatial transformations
=======================
These are contained in the `scipy.spatial.transform` submodule.
Nearest-neighbor queries
========================
.. autosummary::
:toctree: generated/
KDTree -- class for efficient nearest-neighbor queries
cKDTree -- class for efficient nearest-neighbor queries (faster implementation)
Rectangle
Distance metrics are contained in the :mod:`scipy.spatial.distance` submodule.
Delaunay triangulation, convex hulls, and Voronoi diagrams
==========================================================
.. autosummary::
:toctree: generated/
Delaunay -- compute Delaunay triangulation of input points
ConvexHull -- compute a convex hull for input points
Voronoi -- compute a Voronoi diagram hull from input points
SphericalVoronoi -- compute a Voronoi diagram from input points on the surface of a sphere
HalfspaceIntersection -- compute the intersection points of input halfspaces
Plotting helpers
================
.. autosummary::
:toctree: generated/
delaunay_plot_2d -- plot 2-D triangulation
convex_hull_plot_2d -- plot 2-D convex hull
voronoi_plot_2d -- plot 2-D Voronoi diagram
.. seealso:: :ref:`Tutorial <qhulltutorial>`
Simplex representation
======================
The simplices (triangles, tetrahedra, etc.) appearing in the Delaunay
tessellation (N-D simplices), convex hull facets, and Voronoi ridges
(N-1-D simplices) are represented in the following scheme::
tess = Delaunay(points)
hull = ConvexHull(points)
voro = Voronoi(points)
# coordinates of the jth vertex of the ith simplex
tess.points[tess.simplices[i, j], :] # tessellation element
hull.points[hull.simplices[i, j], :] # convex hull facet
voro.vertices[voro.ridge_vertices[i, j], :] # ridge between Voronoi cells
For Delaunay triangulations and convex hulls, the neighborhood
structure of the simplices satisfies the condition:
``tess.neighbors[i,j]`` is the neighboring simplex of the ith
simplex, opposite to the ``j``-vertex. It is -1 in case of no neighbor.
Convex hull facets also define a hyperplane equation::
(hull.equations[i,:-1] * coord).sum() + hull.equations[i,-1] == 0
Similar hyperplane equations for the Delaunay triangulation correspond
to the convex hull facets on the corresponding N+1-D
paraboloid.
The Delaunay triangulation objects offer a method for locating the
simplex containing a given point, and barycentric coordinate
computations.
Functions
---------
.. autosummary::
:toctree: generated/
tsearch
distance_matrix
minkowski_distance
minkowski_distance_p
procrustes
geometric_slerp
"""
from .kdtree import *
from .ckdtree import *
from .qhull import *
from ._spherical_voronoi import SphericalVoronoi
from ._plotutils import *
from ._procrustes import procrustes
from ._geometric_slerp import geometric_slerp
__all__ = [s for s in dir() if not s.startswith('_')]
__all__ += ['distance', 'transform']
from . import distance, transform
from scipy._lib._testutils import PytestTester
test = PytestTester(__name__)
del PytestTester

View file

@ -0,0 +1,227 @@
from __future__ import division, print_function, absolute_import
__all__ = ['geometric_slerp']
import warnings
import numpy as np
from scipy.spatial.distance import euclidean
def _geometric_slerp(start, end, t):
# create an orthogonal basis using QR decomposition
basis = np.vstack([start, end])
Q, R = np.linalg.qr(basis.T)
signs = 2 * (np.diag(R) >= 0) - 1
Q = Q.T * signs.T[:, np.newaxis]
R = R.T * signs.T[:, np.newaxis]
# calculate the angle between `start` and `end`
c = np.dot(start, end)
s = np.linalg.det(R)
omega = np.arctan2(s, c)
# interpolate
start, end = Q
s = np.sin(t * omega)
c = np.cos(t * omega)
return start * c[:, np.newaxis] + end * s[:, np.newaxis]
def geometric_slerp(start,
end,
t,
tol=1e-7):
"""
Geometric spherical linear interpolation.
The interpolation occurs along a unit-radius
great circle arc in arbitrary dimensional space.
Parameters
----------
start : (n_dimensions, ) array-like
Single n-dimensional input coordinate in a 1-D array-like
object. `n` must be greater than 1.
end : (n_dimensions, ) array-like
Single n-dimensional input coordinate in a 1-D array-like
object. `n` must be greater than 1.
t: float or (n_points,) array-like
A float or array-like of doubles representing interpolation
parameters, with values required in the inclusive interval
between 0 and 1. A common approach is to generate the array
with ``np.linspace(0, 1, n_pts)`` for linearly spaced points.
Ascending, descending, and scrambled orders are permitted.
tol: float
The absolute tolerance for determining if the start and end
coordinates are antipodes.
Returns
-------
result : (t.size, D)
An array of doubles containing the interpolated
spherical path and including start and
end when 0 and 1 t are used. The
interpolated values should correspond to the
same sort order provided in the t array. The result
may be 1-dimensional if ``t`` is a float.
Raises
------
ValueError
If ``start`` and ``end`` are antipodes, not on the
unit n-sphere, or for a variety of degenerate conditions.
Notes
-----
The implementation is based on the mathematical formula provided in [1]_,
and the first known presentation of this algorithm, derived from study of
4-D geometry, is credited to Glenn Davis in a footnote of the original
quaternion Slerp publication by Ken Shoemake [2]_.
.. versionadded:: 1.5.0
References
----------
.. [1] https://en.wikipedia.org/wiki/Slerp#Geometric_Slerp
.. [2] Ken Shoemake (1985) Animating rotation with quaternion curves.
ACM SIGGRAPH Computer Graphics, 19(3): 245-254.
See Also
--------
scipy.spatial.transform.Slerp : 3-D Slerp that works with quaternions
Examples
--------
Interpolate four linearly-spaced values on the circumference of
a circle spanning 90 degrees:
>>> from scipy.spatial import geometric_slerp
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> start = np.array([1, 0])
>>> end = np.array([0, 1])
>>> t_vals = np.linspace(0, 1, 4)
>>> result = geometric_slerp(start,
... end,
... t_vals)
The interpolated results should be at 30 degree intervals
recognizable on the unit circle:
>>> ax.scatter(result[...,0], result[...,1], c='k')
>>> circle = plt.Circle((0, 0), 1, color='grey')
>>> ax.add_artist(circle)
>>> ax.set_aspect('equal')
>>> plt.show()
Attempting to interpolate between antipodes on a circle is
ambiguous because there are two possible paths, and on a
sphere there are infinite possible paths on the geodesic surface.
Nonetheless, one of the ambiguous paths is returned along
with a warning:
>>> opposite_pole = np.array([-1, 0])
>>> with np.testing.suppress_warnings() as sup:
... sup.filter(UserWarning)
... geometric_slerp(start,
... opposite_pole,
... t_vals)
array([[ 1.00000000e+00, 0.00000000e+00],
[ 5.00000000e-01, 8.66025404e-01],
[-5.00000000e-01, 8.66025404e-01],
[-1.00000000e+00, 1.22464680e-16]])
Extend the original example to a sphere and plot interpolation
points in 3D:
>>> from mpl_toolkits.mplot3d import proj3d
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
Plot the unit sphere for reference (optional):
>>> u = np.linspace(0, 2 * np.pi, 100)
>>> v = np.linspace(0, np.pi, 100)
>>> x = np.outer(np.cos(u), np.sin(v))
>>> y = np.outer(np.sin(u), np.sin(v))
>>> z = np.outer(np.ones(np.size(u)), np.cos(v))
>>> ax.plot_surface(x, y, z, color='y', alpha=0.1)
Interpolating over a larger number of points
may provide the appearance of a smooth curve on
the surface of the sphere, which is also useful
for discretized integration calculations on a
sphere surface:
>>> start = np.array([1, 0, 0])
>>> end = np.array([0, 0, 1])
>>> t_vals = np.linspace(0, 1, 200)
>>> result = geometric_slerp(start,
... end,
... t_vals)
>>> ax.plot(result[...,0],
... result[...,1],
... result[...,2],
... c='k')
>>> plt.show()
"""
start = np.asarray(start, dtype=np.float64)
end = np.asarray(end, dtype=np.float64)
if start.ndim != 1 or end.ndim != 1:
raise ValueError("Start and end coordinates "
"must be one-dimensional")
if start.size != end.size:
raise ValueError("The dimensions of start and "
"end must match (have same size)")
if start.size < 2 or end.size < 2:
raise ValueError("The start and end coordinates must "
"both be in at least two-dimensional "
"space")
if np.array_equal(start, end):
return [start] * np.asarray(t).size
# for points that violate equation for n-sphere
for coord in [start, end]:
if not np.allclose(np.linalg.norm(coord), 1.0,
rtol=1e-9,
atol=0):
raise ValueError("start and end are not"
" on a unit n-sphere")
if not isinstance(tol, float):
raise ValueError("tol must be a float")
else:
tol = np.fabs(tol)
coord_dist = euclidean(start, end)
# diameter of 2 within tolerance means antipodes, which is a problem
# for all unit n-spheres (even the 0-sphere would have an ambiguous path)
if np.allclose(coord_dist, 2.0, rtol=0, atol=tol):
warnings.warn("start and end are antipodes"
" using the specified tolerance;"
" this may cause ambiguous slerp paths")
t = np.asarray(t, dtype=np.float64)
if t.size == 0:
return np.empty((0, start.size))
if t.min() < 0 or t.max() > 1:
raise ValueError("interpolation parameter must be in [0, 1]")
if t.ndim == 0:
return _geometric_slerp(start,
end,
np.atleast_1d(t)).ravel()
else:
return _geometric_slerp(start,
end,
t)

View file

@ -0,0 +1,262 @@
import numpy as np
from scipy._lib.decorator import decorator as _decorator
__all__ = ['delaunay_plot_2d', 'convex_hull_plot_2d', 'voronoi_plot_2d']
@_decorator
def _held_figure(func, obj, ax=None, **kw):
import matplotlib.pyplot as plt # type: ignore[import]
if ax is None:
fig = plt.figure()
ax = fig.gca()
return func(obj, ax=ax, **kw)
# As of matplotlib 2.0, the "hold" mechanism is deprecated.
# When matplotlib 1.x is no longer supported, this check can be removed.
was_held = getattr(ax, 'ishold', lambda: True)()
if was_held:
return func(obj, ax=ax, **kw)
try:
ax.hold(True)
return func(obj, ax=ax, **kw)
finally:
ax.hold(was_held)
def _adjust_bounds(ax, points):
margin = 0.1 * points.ptp(axis=0)
xy_min = points.min(axis=0) - margin
xy_max = points.max(axis=0) + margin
ax.set_xlim(xy_min[0], xy_max[0])
ax.set_ylim(xy_min[1], xy_max[1])
@_held_figure
def delaunay_plot_2d(tri, ax=None):
"""
Plot the given Delaunay triangulation in 2-D
Parameters
----------
tri : scipy.spatial.Delaunay instance
Triangulation to plot
ax : matplotlib.axes.Axes instance, optional
Axes to plot on
Returns
-------
fig : matplotlib.figure.Figure instance
Figure for the plot
See Also
--------
Delaunay
matplotlib.pyplot.triplot
Notes
-----
Requires Matplotlib.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import Delaunay, delaunay_plot_2d
The Delaunay triangulation of a set of random points:
>>> points = np.random.rand(30, 2)
>>> tri = Delaunay(points)
Plot it:
>>> _ = delaunay_plot_2d(tri)
>>> plt.show()
"""
if tri.points.shape[1] != 2:
raise ValueError("Delaunay triangulation is not 2-D")
x, y = tri.points.T
ax.plot(x, y, 'o')
ax.triplot(x, y, tri.simplices.copy())
_adjust_bounds(ax, tri.points)
return ax.figure
@_held_figure
def convex_hull_plot_2d(hull, ax=None):
"""
Plot the given convex hull diagram in 2-D
Parameters
----------
hull : scipy.spatial.ConvexHull instance
Convex hull to plot
ax : matplotlib.axes.Axes instance, optional
Axes to plot on
Returns
-------
fig : matplotlib.figure.Figure instance
Figure for the plot
See Also
--------
ConvexHull
Notes
-----
Requires Matplotlib.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import ConvexHull, convex_hull_plot_2d
The convex hull of a random set of points:
>>> points = np.random.rand(30, 2)
>>> hull = ConvexHull(points)
Plot it:
>>> _ = convex_hull_plot_2d(hull)
>>> plt.show()
"""
from matplotlib.collections import LineCollection # type: ignore[import]
if hull.points.shape[1] != 2:
raise ValueError("Convex hull is not 2-D")
ax.plot(hull.points[:,0], hull.points[:,1], 'o')
line_segments = [hull.points[simplex] for simplex in hull.simplices]
ax.add_collection(LineCollection(line_segments,
colors='k',
linestyle='solid'))
_adjust_bounds(ax, hull.points)
return ax.figure
@_held_figure
def voronoi_plot_2d(vor, ax=None, **kw):
"""
Plot the given Voronoi diagram in 2-D
Parameters
----------
vor : scipy.spatial.Voronoi instance
Diagram to plot
ax : matplotlib.axes.Axes instance, optional
Axes to plot on
show_points: bool, optional
Add the Voronoi points to the plot.
show_vertices : bool, optional
Add the Voronoi vertices to the plot.
line_colors : string, optional
Specifies the line color for polygon boundaries
line_width : float, optional
Specifies the line width for polygon boundaries
line_alpha: float, optional
Specifies the line alpha for polygon boundaries
point_size: float, optional
Specifies the size of points
Returns
-------
fig : matplotlib.figure.Figure instance
Figure for the plot
See Also
--------
Voronoi
Notes
-----
Requires Matplotlib.
Examples
--------
Set of point:
>>> import matplotlib.pyplot as plt
>>> points = np.random.rand(10,2) #random
Voronoi diagram of the points:
>>> from scipy.spatial import Voronoi, voronoi_plot_2d
>>> vor = Voronoi(points)
using `voronoi_plot_2d` for visualisation:
>>> fig = voronoi_plot_2d(vor)
using `voronoi_plot_2d` for visualisation with enhancements:
>>> fig = voronoi_plot_2d(vor, show_vertices=False, line_colors='orange',
... line_width=2, line_alpha=0.6, point_size=2)
>>> plt.show()
"""
from matplotlib.collections import LineCollection
if vor.points.shape[1] != 2:
raise ValueError("Voronoi diagram is not 2-D")
if kw.get('show_points', True):
point_size = kw.get('point_size', None)
ax.plot(vor.points[:,0], vor.points[:,1], '.', markersize=point_size)
if kw.get('show_vertices', True):
ax.plot(vor.vertices[:,0], vor.vertices[:,1], 'o')
line_colors = kw.get('line_colors', 'k')
line_width = kw.get('line_width', 1.0)
line_alpha = kw.get('line_alpha', 1.0)
center = vor.points.mean(axis=0)
ptp_bound = vor.points.ptp(axis=0)
finite_segments = []
infinite_segments = []
for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):
simplex = np.asarray(simplex)
if np.all(simplex >= 0):
finite_segments.append(vor.vertices[simplex])
else:
i = simplex[simplex >= 0][0] # finite end Voronoi vertex
t = vor.points[pointidx[1]] - vor.points[pointidx[0]] # tangent
t /= np.linalg.norm(t)
n = np.array([-t[1], t[0]]) # normal
midpoint = vor.points[pointidx].mean(axis=0)
direction = np.sign(np.dot(midpoint - center, n)) * n
if (vor.furthest_site):
direction = -direction
far_point = vor.vertices[i] + direction * ptp_bound.max()
infinite_segments.append([vor.vertices[i], far_point])
ax.add_collection(LineCollection(finite_segments,
colors=line_colors,
lw=line_width,
alpha=line_alpha,
linestyle='solid'))
ax.add_collection(LineCollection(infinite_segments,
colors=line_colors,
lw=line_width,
alpha=line_alpha,
linestyle='dashed'))
_adjust_bounds(ax, vor.points)
return ax.figure

View file

@ -0,0 +1,131 @@
"""
This module provides functions to perform full Procrustes analysis.
This code was originally written by Justin Kucynski and ported over from
scikit-bio by Yoshiki Vazquez-Baeza.
"""
import numpy as np
from scipy.linalg import orthogonal_procrustes
__all__ = ['procrustes']
def procrustes(data1, data2):
r"""Procrustes analysis, a similarity test for two data sets.
Each input matrix is a set of points or vectors (the rows of the matrix).
The dimension of the space is the number of columns of each matrix. Given
two identically sized matrices, procrustes standardizes both such that:
- :math:`tr(AA^{T}) = 1`.
- Both sets of points are centered around the origin.
Procrustes ([1]_, [2]_) then applies the optimal transform to the second
matrix (including scaling/dilation, rotations, and reflections) to minimize
:math:`M^{2}=\sum(data1-data2)^{2}`, or the sum of the squares of the
pointwise differences between the two input datasets.
This function was not designed to handle datasets with different numbers of
datapoints (rows). If two data sets have different dimensionality
(different number of columns), simply add columns of zeros to the smaller
of the two.
Parameters
----------
data1 : array_like
Matrix, n rows represent points in k (columns) space `data1` is the
reference data, after it is standardised, the data from `data2` will be
transformed to fit the pattern in `data1` (must have >1 unique points).
data2 : array_like
n rows of data in k space to be fit to `data1`. Must be the same
shape ``(numrows, numcols)`` as data1 (must have >1 unique points).
Returns
-------
mtx1 : array_like
A standardized version of `data1`.
mtx2 : array_like
The orientation of `data2` that best fits `data1`. Centered, but not
necessarily :math:`tr(AA^{T}) = 1`.
disparity : float
:math:`M^{2}` as defined above.
Raises
------
ValueError
If the input arrays are not two-dimensional.
If the shape of the input arrays is different.
If the input arrays have zero columns or zero rows.
See Also
--------
scipy.linalg.orthogonal_procrustes
scipy.spatial.distance.directed_hausdorff : Another similarity test
for two data sets
Notes
-----
- The disparity should not depend on the order of the input matrices, but
the output matrices will, as only the first output matrix is guaranteed
to be scaled such that :math:`tr(AA^{T}) = 1`.
- Duplicate data points are generally ok, duplicating a data point will
increase its effect on the procrustes fit.
- The disparity scales as the number of points per input matrix.
References
----------
.. [1] Krzanowski, W. J. (2000). "Principles of Multivariate analysis".
.. [2] Gower, J. C. (1975). "Generalized procrustes analysis".
Examples
--------
>>> from scipy.spatial import procrustes
The matrix ``b`` is a rotated, shifted, scaled and mirrored version of
``a`` here:
>>> a = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd')
>>> b = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd')
>>> mtx1, mtx2, disparity = procrustes(a, b)
>>> round(disparity)
0.0
"""
mtx1 = np.array(data1, dtype=np.double, copy=True)
mtx2 = np.array(data2, dtype=np.double, copy=True)
if mtx1.ndim != 2 or mtx2.ndim != 2:
raise ValueError("Input matrices must be two-dimensional")
if mtx1.shape != mtx2.shape:
raise ValueError("Input matrices must be of same shape")
if mtx1.size == 0:
raise ValueError("Input matrices must be >0 rows and >0 cols")
# translate all the data to the origin
mtx1 -= np.mean(mtx1, 0)
mtx2 -= np.mean(mtx2, 0)
norm1 = np.linalg.norm(mtx1)
norm2 = np.linalg.norm(mtx2)
if norm1 == 0 or norm2 == 0:
raise ValueError("Input matrices must contain >1 unique points")
# change scaling of data (in rows) such that trace(mtx*mtx') = 1
mtx1 /= norm1
mtx2 /= norm2
# transform mtx2 to minimize disparity
R, s = orthogonal_procrustes(mtx1, mtx2)
mtx2 = np.dot(mtx2, R.T) * s
# measure the dissimilarity between the two datasets
disparity = np.sum(np.square(mtx1 - mtx2))
return mtx1, mtx2, disparity

View file

@ -0,0 +1,345 @@
"""
Spherical Voronoi Code
.. versionadded:: 0.18.0
"""
#
# Copyright (C) Tyler Reddy, Ross Hemsley, Edd Edmondson,
# Nikolai Nowaczyk, Joe Pitt-Francis, 2015.
#
# Distributed under the same BSD license as SciPy.
#
import warnings
import numpy as np
import scipy
from . import _voronoi
from scipy.spatial import cKDTree
__all__ = ['SphericalVoronoi']
def calculate_solid_angles(R):
"""Calculates the solid angles of plane triangles. Implements the method of
Van Oosterom and Strackee [VanOosterom]_ with some modifications. Assumes
that input points have unit norm."""
# Original method uses a triple product `R1 . (R2 x R3)` for the numerator.
# This is equal to the determinant of the matrix [R1 R2 R3], which can be
# computed with better stability.
numerator = np.linalg.det(R)
denominator = 1 + (np.einsum('ij,ij->i', R[:, 0], R[:, 1]) +
np.einsum('ij,ij->i', R[:, 1], R[:, 2]) +
np.einsum('ij,ij->i', R[:, 2], R[:, 0]))
return np.abs(2 * np.arctan2(numerator, denominator))
class SphericalVoronoi:
""" Voronoi diagrams on the surface of a sphere.
.. versionadded:: 0.18.0
Parameters
----------
points : ndarray of floats, shape (npoints, ndim)
Coordinates of points from which to construct a spherical
Voronoi diagram.
radius : float, optional
Radius of the sphere (Default: 1)
center : ndarray of floats, shape (ndim,)
Center of sphere (Default: origin)
threshold : float
Threshold for detecting duplicate points and
mismatches between points and sphere parameters.
(Default: 1e-06)
Attributes
----------
points : double array of shape (npoints, ndim)
the points in `ndim` dimensions to generate the Voronoi diagram from
radius : double
radius of the sphere
center : double array of shape (ndim,)
center of the sphere
vertices : double array of shape (nvertices, ndim)
Voronoi vertices corresponding to points
regions : list of list of integers of shape (npoints, _ )
the n-th entry is a list consisting of the indices
of the vertices belonging to the n-th point in points
Methods
----------
calculate_areas
Calculates the areas of the Voronoi regions. For 2D point sets, the
regions are circular arcs. The sum of the areas is `2 * pi * radius`.
For 3D point sets, the regions are spherical polygons. The sum of the
areas is `4 * pi * radius**2`.
Raises
------
ValueError
If there are duplicates in `points`.
If the provided `radius` is not consistent with `points`.
Notes
-----
The spherical Voronoi diagram algorithm proceeds as follows. The Convex
Hull of the input points (generators) is calculated, and is equivalent to
their Delaunay triangulation on the surface of the sphere [Caroli]_.
The Convex Hull neighbour information is then used to
order the Voronoi region vertices around each generator. The latter
approach is substantially less sensitive to floating point issues than
angle-based methods of Voronoi region vertex sorting.
Empirical assessment of spherical Voronoi algorithm performance suggests
quadratic time complexity (loglinear is optimal, but algorithms are more
challenging to implement).
References
----------
.. [Caroli] Caroli et al. Robust and Efficient Delaunay triangulations of
points on or close to a sphere. Research Report RR-7004, 2009.
.. [VanOosterom] Van Oosterom and Strackee. The solid angle of a plane
triangle. IEEE Transactions on Biomedical Engineering,
2, 1983, pp 125--126.
See Also
--------
Voronoi : Conventional Voronoi diagrams in N dimensions.
Examples
--------
Do some imports and take some points on a cube:
>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import SphericalVoronoi, geometric_slerp
>>> from mpl_toolkits.mplot3d import proj3d
>>> # set input data
>>> points = np.array([[0, 0, 1], [0, 0, -1], [1, 0, 0],
... [0, 1, 0], [0, -1, 0], [-1, 0, 0], ])
Calculate the spherical Voronoi diagram:
>>> radius = 1
>>> center = np.array([0, 0, 0])
>>> sv = SphericalVoronoi(points, radius, center)
Generate plot:
>>> # sort vertices (optional, helpful for plotting)
>>> sv.sort_vertices_of_regions()
>>> t_vals = np.linspace(0, 1, 2000)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
>>> # plot the unit sphere for reference (optional)
>>> u = np.linspace(0, 2 * np.pi, 100)
>>> v = np.linspace(0, np.pi, 100)
>>> x = np.outer(np.cos(u), np.sin(v))
>>> y = np.outer(np.sin(u), np.sin(v))
>>> z = np.outer(np.ones(np.size(u)), np.cos(v))
>>> ax.plot_surface(x, y, z, color='y', alpha=0.1)
>>> # plot generator points
>>> ax.scatter(points[:, 0], points[:, 1], points[:, 2], c='b')
>>> # plot Voronoi vertices
>>> ax.scatter(sv.vertices[:, 0], sv.vertices[:, 1], sv.vertices[:, 2],
... c='g')
>>> # indicate Voronoi regions (as Euclidean polygons)
>>> for region in sv.regions:
... n = len(region)
... for i in range(n):
... start = sv.vertices[region][i]
... end = sv.vertices[region][(i + 1) % n]
... result = geometric_slerp(start, end, t_vals)
... ax.plot(result[..., 0],
... result[..., 1],
... result[..., 2],
... c='k')
>>> ax.azim = 10
>>> ax.elev = 40
>>> _ = ax.set_xticks([])
>>> _ = ax.set_yticks([])
>>> _ = ax.set_zticks([])
>>> fig.set_size_inches(4, 4)
>>> plt.show()
"""
def __init__(self, points, radius=1, center=None, threshold=1e-06):
if radius is None:
radius = 1.
warnings.warn('`radius` is `None`. '
'This will raise an error in a future version. '
'Please provide a floating point number '
'(i.e. `radius=1`).',
DeprecationWarning)
self.radius = float(radius)
self.points = np.array(points).astype(np.double)
self._dim = len(points[0])
if center is None:
self.center = np.zeros(self._dim)
else:
self.center = np.array(center, dtype=float)
# test degenerate input
self._rank = np.linalg.matrix_rank(self.points - self.points[0],
tol=threshold * self.radius)
if self._rank < self._dim:
raise ValueError("Rank of input points must be at least {0}".format(self._dim))
if cKDTree(self.points).query_pairs(threshold * self.radius):
raise ValueError("Duplicate generators present.")
radii = np.linalg.norm(self.points - self.center, axis=1)
max_discrepancy = np.abs(radii - self.radius).max()
if max_discrepancy >= threshold * self.radius:
raise ValueError("Radius inconsistent with generators.")
self._calc_vertices_regions()
def _calc_vertices_regions(self):
"""
Calculates the Voronoi vertices and regions of the generators stored
in self.points. The vertices will be stored in self.vertices and the
regions in self.regions.
This algorithm was discussed at PyData London 2015 by
Tyler Reddy, Ross Hemsley and Nikolai Nowaczyk
"""
# get Convex Hull
conv = scipy.spatial.ConvexHull(self.points)
# get circumcenters of Convex Hull triangles from facet equations
# for 3D input circumcenters will have shape: (2N-4, 3)
self.vertices = self.radius * conv.equations[:, :-1] + self.center
self._simplices = conv.simplices
# calculate regions from triangulation
# for 3D input simplex_indices will have shape: (2N-4,)
simplex_indices = np.arange(len(self._simplices))
# for 3D input tri_indices will have shape: (6N-12,)
tri_indices = np.column_stack([simplex_indices] * self._dim).ravel()
# for 3D input point_indices will have shape: (6N-12,)
point_indices = self._simplices.ravel()
# for 3D input indices will have shape: (6N-12,)
indices = np.argsort(point_indices, kind='mergesort')
# for 3D input flattened_groups will have shape: (6N-12,)
flattened_groups = tri_indices[indices].astype(np.intp)
# intervals will have shape: (N+1,)
intervals = np.cumsum(np.bincount(point_indices + 1))
# split flattened groups to get nested list of unsorted regions
groups = [list(flattened_groups[intervals[i]:intervals[i + 1]])
for i in range(len(intervals) - 1)]
self.regions = groups
def sort_vertices_of_regions(self):
"""Sort indices of the vertices to be (counter-)clockwise ordered.
Raises
------
TypeError
If the points are not three-dimensional.
Notes
-----
For each region in regions, it sorts the indices of the Voronoi
vertices such that the resulting points are in a clockwise or
counterclockwise order around the generator point.
This is done as follows: Recall that the n-th region in regions
surrounds the n-th generator in points and that the k-th
Voronoi vertex in vertices is the circumcenter of the k-th triangle
in self._simplices. For each region n, we choose the first triangle
(=Voronoi vertex) in self._simplices and a vertex of that triangle
not equal to the center n. These determine a unique neighbor of that
triangle, which is then chosen as the second triangle. The second
triangle will have a unique vertex not equal to the current vertex or
the center. This determines a unique neighbor of the second triangle,
which is then chosen as the third triangle and so forth. We proceed
through all the triangles (=Voronoi vertices) belonging to the
generator in points and obtain a sorted version of the vertices
of its surrounding region.
"""
if self._dim != 3:
raise TypeError("Only supported for three-dimensional point sets")
_voronoi.sort_vertices_of_regions(self._simplices, self.regions)
def _calculate_areas_3d(self):
self.sort_vertices_of_regions()
sizes = [len(region) for region in self.regions]
csizes = np.cumsum(sizes)
num_regions = csizes[-1]
# We create a set of triangles consisting of one point and two Voronoi
# vertices. The vertices of each triangle are adjacent in the sorted
# regions list.
point_indices = [i for i, size in enumerate(sizes)
for j in range(size)]
nbrs1 = np.array([r for region in self.regions for r in region])
# The calculation of nbrs2 is a vectorized version of:
# np.array([r for region in self.regions for r in np.roll(region, 1)])
nbrs2 = np.roll(nbrs1, 1)
indices = np.roll(csizes, 1)
indices[0] = 0
nbrs2[indices] = nbrs1[csizes - 1]
# Normalize points and vertices.
pnormalized = (self.points - self.center) / self.radius
vnormalized = (self.vertices - self.center) / self.radius
# Create the complete set of triangles and calculate their solid angles
triangles = np.hstack([pnormalized[point_indices],
vnormalized[nbrs1],
vnormalized[nbrs2]
]).reshape((num_regions, 3, 3))
triangle_solid_angles = calculate_solid_angles(triangles)
# Sum the solid angles of the triangles in each region
solid_angles = np.cumsum(triangle_solid_angles)[csizes - 1]
solid_angles[1:] -= solid_angles[:-1]
# Get polygon areas using A = omega * r**2
return solid_angles * self.radius**2
def _calculate_areas_2d(self):
# Find start and end points of arcs
arcs = self.points[self._simplices] - self.center
# Calculate the angle subtended by arcs
cosine = np.einsum('ij,ij->i', arcs[:, 0], arcs[:, 1])
sine = np.abs(np.linalg.det(arcs))
theta = np.arctan2(sine, cosine)
# Get areas using A = r * theta
areas = self.radius * theta
# Correct arcs which go the wrong way (single-hemisphere inputs)
signs = np.sign(np.einsum('ij,ij->i', arcs[:, 0],
self.vertices - self.center))
indices = np.where(signs < 0)
areas[indices] = 2 * np.pi * self.radius - areas[indices]
return areas
def calculate_areas(self):
"""Calculates the areas of the Voronoi regions.
For 2D point sets, the regions are circular arcs. The sum of the areas
is `2 * pi * radius`.
For 3D point sets, the regions are spherical polygons. The sum of the
areas is `4 * pi * radius**2`.
.. versionadded:: 1.5.0
Returns
-------
areas : double array of shape (npoints,)
The areas of the Voronoi regions.
"""
if self._dim == 2:
return self._calculate_areas_2d()
elif self._dim == 3:
return self._calculate_areas_3d()
else:
raise TypeError("Only supported for 2D and 3D point sets")

View file

@ -0,0 +1,5 @@
from typing import List
import numpy as np
def sort_vertices_of_regions(simplices: np.ndarray, regions: List[List[int]]) -> None: ...

View file

@ -0,0 +1 @@
class cKDTree: ...

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,999 @@
# Copyright Anne M. Archibald 2008
# Released under the scipy license
import numpy as np
from heapq import heappush, heappop
import scipy.sparse
__all__ = ['minkowski_distance_p', 'minkowski_distance',
'distance_matrix',
'Rectangle', 'KDTree']
def minkowski_distance_p(x, y, p=2):
"""
Compute the pth power of the L**p distance between two arrays.
For efficiency, this function computes the L**p distance but does
not extract the pth root. If `p` is 1 or infinity, this is equal to
the actual L**p distance.
Parameters
----------
x : (M, K) array_like
Input array.
y : (N, K) array_like
Input array.
p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.
Examples
--------
>>> from scipy.spatial import minkowski_distance_p
>>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]])
array([2, 1])
"""
x = np.asarray(x)
y = np.asarray(y)
# Find smallest common datatype with float64 (return type of this function) - addresses #10262.
# Don't just cast to float64 for complex input case.
common_datatype = np.promote_types(np.promote_types(x.dtype, y.dtype), 'float64')
# Make sure x and y are NumPy arrays of correct datatype.
x = x.astype(common_datatype)
y = y.astype(common_datatype)
if p == np.inf:
return np.amax(np.abs(y-x), axis=-1)
elif p == 1:
return np.sum(np.abs(y-x), axis=-1)
else:
return np.sum(np.abs(y-x)**p, axis=-1)
def minkowski_distance(x, y, p=2):
"""
Compute the L**p distance between two arrays.
Parameters
----------
x : (M, K) array_like
Input array.
y : (N, K) array_like
Input array.
p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.
Examples
--------
>>> from scipy.spatial import minkowski_distance
>>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]])
array([ 1.41421356, 1. ])
"""
x = np.asarray(x)
y = np.asarray(y)
if p == np.inf or p == 1:
return minkowski_distance_p(x, y, p)
else:
return minkowski_distance_p(x, y, p)**(1./p)
class Rectangle(object):
"""Hyperrectangle class.
Represents a Cartesian product of intervals.
"""
def __init__(self, maxes, mins):
"""Construct a hyperrectangle."""
self.maxes = np.maximum(maxes,mins).astype(float)
self.mins = np.minimum(maxes,mins).astype(float)
self.m, = self.maxes.shape
def __repr__(self):
return "<Rectangle %s>" % list(zip(self.mins, self.maxes))
def volume(self):
"""Total volume."""
return np.prod(self.maxes-self.mins)
def split(self, d, split):
"""
Produce two hyperrectangles by splitting.
In general, if you need to compute maximum and minimum
distances to the children, it can be done more efficiently
by updating the maximum and minimum distances to the parent.
Parameters
----------
d : int
Axis to split hyperrectangle along.
split : float
Position along axis `d` to split at.
"""
mid = np.copy(self.maxes)
mid[d] = split
less = Rectangle(self.mins, mid)
mid = np.copy(self.mins)
mid[d] = split
greater = Rectangle(mid, self.maxes)
return less, greater
def min_distance_point(self, x, p=2.):
"""
Return the minimum distance between input and points in the hyperrectangle.
Parameters
----------
x : array_like
Input.
p : float, optional
Input.
"""
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-x,x-self.maxes)),p)
def max_distance_point(self, x, p=2.):
"""
Return the maximum distance between input and points in the hyperrectangle.
Parameters
----------
x : array_like
Input array.
p : float, optional
Input.
"""
return minkowski_distance(0, np.maximum(self.maxes-x,x-self.mins),p)
def min_distance_rectangle(self, other, p=2.):
"""
Compute the minimum distance between points in the two hyperrectangles.
Parameters
----------
other : hyperrectangle
Input.
p : float
Input.
"""
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-other.maxes,other.mins-self.maxes)),p)
def max_distance_rectangle(self, other, p=2.):
"""
Compute the maximum distance between points in the two hyperrectangles.
Parameters
----------
other : hyperrectangle
Input.
p : float, optional
Input.
"""
return minkowski_distance(0, np.maximum(self.maxes-other.mins,other.maxes-self.mins),p)
class KDTree(object):
"""
kd-tree for quick nearest-neighbor lookup
This class provides an index into a set of k-D points which
can be used to rapidly look up the nearest neighbors of any point.
Parameters
----------
data : (N,K) array_like
The data points to be indexed. This array is not copied, and
so modifying this data will result in bogus results.
leafsize : int, optional
The number of points at which the algorithm switches over to
brute-force. Has to be positive.
Raises
------
RuntimeError
The maximum recursion limit can be exceeded for large data
sets. If this happens, either increase the value for the `leafsize`
parameter or increase the recursion limit by::
>>> import sys
>>> sys.setrecursionlimit(10000)
See Also
--------
cKDTree : Implementation of `KDTree` in Cython
Notes
-----
The algorithm used is described in Maneewongvatana and Mount 1999.
The general idea is that the kd-tree is a binary tree, each of whose
nodes represents an axis-aligned hyperrectangle. Each node specifies
an axis and splits the set of points based on whether their coordinate
along that axis is greater than or less than a particular value.
During construction, the axis and splitting point are chosen by the
"sliding midpoint" rule, which ensures that the cells do not all
become long and thin.
The tree can be queried for the r closest neighbors of any given point
(optionally returning only those within some maximum distance of the
point). It can also be queried, with a substantial gain in efficiency,
for the r approximate closest neighbors.
For large dimensions (20 is already large) do not expect this to run
significantly faster than brute force. High-dimensional nearest-neighbor
queries are a substantial open problem in computer science.
The tree also supports all-neighbors queries, both with arrays of points
and with other kd-trees. These do use a reasonably efficient algorithm,
but the kd-tree is not necessarily the best data structure for this
sort of calculation.
"""
def __init__(self, data, leafsize=10):
self.data = np.asarray(data)
if self.data.dtype.kind == 'c':
raise TypeError("KDTree does not work with complex data")
self.n, self.m = np.shape(self.data)
self.leafsize = int(leafsize)
if self.leafsize < 1:
raise ValueError("leafsize must be at least 1")
self.maxes = np.amax(self.data,axis=0)
self.mins = np.amin(self.data,axis=0)
self.tree = self.__build(np.arange(self.n), self.maxes, self.mins)
class node(object):
def __lt__(self, other):
return id(self) < id(other)
def __gt__(self, other):
return id(self) > id(other)
def __le__(self, other):
return id(self) <= id(other)
def __ge__(self, other):
return id(self) >= id(other)
def __eq__(self, other):
return id(self) == id(other)
class leafnode(node):
def __init__(self, idx):
self.idx = idx
self.children = len(idx)
class innernode(node):
def __init__(self, split_dim, split, less, greater):
self.split_dim = split_dim
self.split = split
self.less = less
self.greater = greater
self.children = less.children+greater.children
def __build(self, idx, maxes, mins):
if len(idx) <= self.leafsize:
return KDTree.leafnode(idx)
else:
data = self.data[idx]
# maxes = np.amax(data,axis=0)
# mins = np.amin(data,axis=0)
d = np.argmax(maxes-mins)
maxval = maxes[d]
minval = mins[d]
if maxval == minval:
# all points are identical; warn user?
return KDTree.leafnode(idx)
data = data[:,d]
# sliding midpoint rule; see Maneewongvatana and Mount 1999
# for arguments that this is a good idea.
split = (maxval+minval)/2
less_idx = np.nonzero(data <= split)[0]
greater_idx = np.nonzero(data > split)[0]
if len(less_idx) == 0:
split = np.amin(data)
less_idx = np.nonzero(data <= split)[0]
greater_idx = np.nonzero(data > split)[0]
if len(greater_idx) == 0:
split = np.amax(data)
less_idx = np.nonzero(data < split)[0]
greater_idx = np.nonzero(data >= split)[0]
if len(less_idx) == 0:
# _still_ zero? all must have the same value
if not np.all(data == data[0]):
raise ValueError("Troublesome data array: %s" % data)
split = data[0]
less_idx = np.arange(len(data)-1)
greater_idx = np.array([len(data)-1])
lessmaxes = np.copy(maxes)
lessmaxes[d] = split
greatermins = np.copy(mins)
greatermins[d] = split
return KDTree.innernode(d, split,
self.__build(idx[less_idx],lessmaxes,mins),
self.__build(idx[greater_idx],maxes,greatermins))
def __query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
side_distances = np.maximum(0,np.maximum(x-self.maxes,self.mins-x))
if p != np.inf:
side_distances **= p
min_distance = np.sum(side_distances)
else:
min_distance = np.amax(side_distances)
# priority queue for chasing nodes
# entries are:
# minimum distance between the cell and the target
# distances between the nearest side of the cell and the target
# the head node of the cell
q = [(min_distance,
tuple(side_distances),
self.tree)]
# priority queue for the nearest neighbors
# furthest known neighbor first
# entries are (-distance**p, i)
neighbors = []
if eps == 0:
epsfac = 1
elif p == np.inf:
epsfac = 1/(1+eps)
else:
epsfac = 1/(1+eps)**p
if p != np.inf and distance_upper_bound != np.inf:
distance_upper_bound = distance_upper_bound**p
while q:
min_distance, side_distances, node = heappop(q)
if isinstance(node, KDTree.leafnode):
# brute-force
data = self.data[node.idx]
ds = minkowski_distance_p(data,x[np.newaxis,:],p)
for i in range(len(ds)):
if ds[i] < distance_upper_bound:
if len(neighbors) == k:
heappop(neighbors)
heappush(neighbors, (-ds[i], node.idx[i]))
if len(neighbors) == k:
distance_upper_bound = -neighbors[0][0]
else:
# we don't push cells that are too far onto the queue at all,
# but since the distance_upper_bound decreases, we might get
# here even if the cell's too far
if min_distance > distance_upper_bound*epsfac:
# since this is the nearest cell, we're done, bail out
break
# compute minimum distances to the children and push them on
if x[node.split_dim] < node.split:
near, far = node.less, node.greater
else:
near, far = node.greater, node.less
# near child is at the same distance as the current node
heappush(q,(min_distance, side_distances, near))
# far child is further by an amount depending only
# on the split value
sd = list(side_distances)
if p == np.inf:
min_distance = max(min_distance, abs(node.split-x[node.split_dim]))
elif p == 1:
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
else:
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])**p
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
# far child might be too far, if so, don't bother pushing it
if min_distance <= distance_upper_bound*epsfac:
heappush(q,(min_distance, tuple(sd), far))
if p == np.inf:
return sorted([(-d,i) for (d,i) in neighbors])
else:
return sorted([((-d)**(1./p),i) for (d,i) in neighbors])
def query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
"""
Query the kd-tree for nearest neighbors
Parameters
----------
x : array_like, last dimension self.m
An array of points to query.
k : int, optional
The number of nearest neighbors to return.
eps : nonnegative float, optional
Return approximate nearest neighbors; the kth returned value
is guaranteed to be no further than (1+eps) times the
distance to the real kth nearest neighbor.
p : float, 1<=p<=infinity, optional
Which Minkowski p-norm to use.
1 is the sum-of-absolute-values "Manhattan" distance
2 is the usual Euclidean distance
infinity is the maximum-coordinate-difference distance
distance_upper_bound : nonnegative float, optional
Return only neighbors within this distance. This is used to prune
tree searches, so if you are doing a series of nearest-neighbor
queries, it may help to supply the distance to the nearest neighbor
of the most recent point.
Returns
-------
d : float or array of floats
The distances to the nearest neighbors.
If x has shape tuple+(self.m,), then d has shape tuple if
k is one, or tuple+(k,) if k is larger than one. Missing
neighbors (e.g. when k > n or distance_upper_bound is
given) are indicated with infinite distances. If k is None,
then d is an object array of shape tuple, containing lists
of distances. In either case the hits are sorted by distance
(nearest first).
i : integer or array of integers
The locations of the neighbors in self.data. i is the same
shape as d.
Examples
--------
>>> from scipy import spatial
>>> x, y = np.mgrid[0:5, 2:8]
>>> tree = spatial.KDTree(list(zip(x.ravel(), y.ravel())))
>>> tree.data
array([[0, 2],
[0, 3],
[0, 4],
[0, 5],
[0, 6],
[0, 7],
[1, 2],
[1, 3],
[1, 4],
[1, 5],
[1, 6],
[1, 7],
[2, 2],
[2, 3],
[2, 4],
[2, 5],
[2, 6],
[2, 7],
[3, 2],
[3, 3],
[3, 4],
[3, 5],
[3, 6],
[3, 7],
[4, 2],
[4, 3],
[4, 4],
[4, 5],
[4, 6],
[4, 7]])
>>> pts = np.array([[0, 0], [2.1, 2.9]])
>>> tree.query(pts)
(array([ 2. , 0.14142136]), array([ 0, 13]))
>>> tree.query(pts[0])
(2.0, 0)
"""
x = np.asarray(x)
if x.dtype.kind == 'c':
raise TypeError("KDTree does not work with complex data")
if np.shape(x)[-1] != self.m:
raise ValueError("x must consist of vectors of length %d but has shape %s" % (self.m, np.shape(x)))
if p < 1:
raise ValueError("Only p-norms with 1<=p<=infinity permitted")
retshape = np.shape(x)[:-1]
if retshape != ():
if k is None:
dd = np.empty(retshape,dtype=object)
ii = np.empty(retshape,dtype=object)
elif k > 1:
dd = np.empty(retshape+(k,),dtype=float)
dd.fill(np.inf)
ii = np.empty(retshape+(k,),dtype=int)
ii.fill(self.n)
elif k == 1:
dd = np.empty(retshape,dtype=float)
dd.fill(np.inf)
ii = np.empty(retshape,dtype=int)
ii.fill(self.n)
else:
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
for c in np.ndindex(retshape):
hits = self.__query(x[c], k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
if k is None:
dd[c] = [d for (d,i) in hits]
ii[c] = [i for (d,i) in hits]
elif k > 1:
for j in range(len(hits)):
dd[c+(j,)], ii[c+(j,)] = hits[j]
elif k == 1:
if len(hits) > 0:
dd[c], ii[c] = hits[0]
else:
dd[c] = np.inf
ii[c] = self.n
return dd, ii
else:
hits = self.__query(x, k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
if k is None:
return [d for (d,i) in hits], [i for (d,i) in hits]
elif k == 1:
if len(hits) > 0:
return hits[0]
else:
return np.inf, self.n
elif k > 1:
dd = np.empty(k,dtype=float)
dd.fill(np.inf)
ii = np.empty(k,dtype=int)
ii.fill(self.n)
for j in range(len(hits)):
dd[j], ii[j] = hits[j]
return dd, ii
else:
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
def __query_ball_point(self, x, r, p=2., eps=0):
R = Rectangle(self.maxes, self.mins)
def traverse_checking(node, rect):
if rect.min_distance_point(x, p) > r / (1. + eps):
return []
elif rect.max_distance_point(x, p) < r * (1. + eps):
return traverse_no_checking(node)
elif isinstance(node, KDTree.leafnode):
d = self.data[node.idx]
return node.idx[minkowski_distance(d, x, p) <= r].tolist()
else:
less, greater = rect.split(node.split_dim, node.split)
return traverse_checking(node.less, less) + \
traverse_checking(node.greater, greater)
def traverse_no_checking(node):
if isinstance(node, KDTree.leafnode):
return node.idx.tolist()
else:
return traverse_no_checking(node.less) + \
traverse_no_checking(node.greater)
return traverse_checking(self.tree, R)
def query_ball_point(self, x, r, p=2., eps=0):
"""Find all points within distance r of point(s) x.
Parameters
----------
x : array_like, shape tuple + (self.m,)
The point or points to search for neighbors of.
r : positive float
The radius of points to return.
p : float, optional
Which Minkowski p-norm to use. Should be in the range [1, inf].
eps : nonnegative float, optional
Approximate search. Branches of the tree are not explored if their
nearest points are further than ``r / (1 + eps)``, and branches are
added in bulk if their furthest points are nearer than
``r * (1 + eps)``.
Returns
-------
results : list or array of lists
If `x` is a single point, returns a list of the indices of the
neighbors of `x`. If `x` is an array of points, returns an object
array of shape tuple containing lists of neighbors.
Notes
-----
If you have many points whose neighbors you want to find, you may save
substantial amounts of time by putting them in a KDTree and using
query_ball_tree.
Examples
--------
>>> from scipy import spatial
>>> x, y = np.mgrid[0:5, 0:5]
>>> points = np.c_[x.ravel(), y.ravel()]
>>> tree = spatial.KDTree(points)
>>> tree.query_ball_point([2, 0], 1)
[5, 10, 11, 15]
Query multiple points and plot the results:
>>> import matplotlib.pyplot as plt
>>> points = np.asarray(points)
>>> plt.plot(points[:,0], points[:,1], '.')
>>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1):
... nearby_points = points[results]
... plt.plot(nearby_points[:,0], nearby_points[:,1], 'o')
>>> plt.margins(0.1, 0.1)
>>> plt.show()
"""
x = np.asarray(x)
if x.dtype.kind == 'c':
raise TypeError("KDTree does not work with complex data")
if x.shape[-1] != self.m:
raise ValueError("Searching for a %d-dimensional point in a "
"%d-dimensional KDTree" % (x.shape[-1], self.m))
if len(x.shape) == 1:
return self.__query_ball_point(x, r, p, eps)
else:
retshape = x.shape[:-1]
result = np.empty(retshape, dtype=object)
for c in np.ndindex(retshape):
result[c] = self.__query_ball_point(x[c], r, p=p, eps=eps)
return result
def query_ball_tree(self, other, r, p=2., eps=0):
"""Find all pairs of points whose distance is at most r
Parameters
----------
other : KDTree instance
The tree containing points to search against.
r : float
The maximum distance, has to be positive.
p : float, optional
Which Minkowski norm to use. `p` has to meet the condition
``1 <= p <= infinity``.
eps : float, optional
Approximate search. Branches of the tree are not explored
if their nearest points are further than ``r/(1+eps)``, and
branches are added in bulk if their furthest points are nearer
than ``r * (1+eps)``. `eps` has to be non-negative.
Returns
-------
results : list of lists
For each element ``self.data[i]`` of this tree, ``results[i]`` is a
list of the indices of its neighbors in ``other.data``.
"""
results = [[] for i in range(self.n)]
def traverse_checking(node1, rect1, node2, rect2):
if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
return
elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
traverse_no_checking(node1, node2)
elif isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
d = other.data[node2.idx]
for i in node1.idx:
results[i] += node2.idx[minkowski_distance(d,self.data[i],p) <= r].tolist()
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1,rect1,node2.less,less)
traverse_checking(node1,rect1,node2.greater,greater)
elif isinstance(node2, KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse_checking(node1.less,less,node2,rect2)
traverse_checking(node1.greater,greater,node2,rect2)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1.less,less1,node2.less,less2)
traverse_checking(node1.less,less1,node2.greater,greater2)
traverse_checking(node1.greater,greater1,node2.less,less2)
traverse_checking(node1.greater,greater1,node2.greater,greater2)
def traverse_no_checking(node1, node2):
if isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
for i in node1.idx:
results[i] += node2.idx.tolist()
else:
traverse_no_checking(node1, node2.less)
traverse_no_checking(node1, node2.greater)
else:
traverse_no_checking(node1.less, node2)
traverse_no_checking(node1.greater, node2)
traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
other.tree, Rectangle(other.maxes, other.mins))
return results
def query_pairs(self, r, p=2., eps=0):
"""
Find all pairs of points within a distance.
Parameters
----------
r : positive float
The maximum distance.
p : float, optional
Which Minkowski norm to use. `p` has to meet the condition
``1 <= p <= infinity``.
eps : float, optional
Approximate search. Branches of the tree are not explored
if their nearest points are further than ``r/(1+eps)``, and
branches are added in bulk if their furthest points are nearer
than ``r * (1+eps)``. `eps` has to be non-negative.
Returns
-------
results : set
Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding
positions are close.
"""
results = set()
def traverse_checking(node1, rect1, node2, rect2):
if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
return
elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
traverse_no_checking(node1, node2)
elif isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
# Special care to avoid duplicate pairs
if id(node1) == id(node2):
d = self.data[node2.idx]
for i in node1.idx:
for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
if i < j:
results.add((i,j))
else:
d = self.data[node2.idx]
for i in node1.idx:
for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
if i < j:
results.add((i,j))
elif j < i:
results.add((j,i))
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1,rect1,node2.less,less)
traverse_checking(node1,rect1,node2.greater,greater)
elif isinstance(node2, KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse_checking(node1.less,less,node2,rect2)
traverse_checking(node1.greater,greater,node2,rect2)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1.less,less1,node2.less,less2)
traverse_checking(node1.less,less1,node2.greater,greater2)
# Avoid traversing (node1.less, node2.greater) and
# (node1.greater, node2.less) (it's the same node pair twice
# over, which is the source of the complication in the
# original KDTree.query_pairs)
if id(node1) != id(node2):
traverse_checking(node1.greater,greater1,node2.less,less2)
traverse_checking(node1.greater,greater1,node2.greater,greater2)
def traverse_no_checking(node1, node2):
if isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
# Special care to avoid duplicate pairs
if id(node1) == id(node2):
for i in node1.idx:
for j in node2.idx:
if i < j:
results.add((i,j))
else:
for i in node1.idx:
for j in node2.idx:
if i < j:
results.add((i,j))
elif j < i:
results.add((j,i))
else:
traverse_no_checking(node1, node2.less)
traverse_no_checking(node1, node2.greater)
else:
# Avoid traversing (node1.less, node2.greater) and
# (node1.greater, node2.less) (it's the same node pair twice
# over, which is the source of the complication in the
# original KDTree.query_pairs)
if id(node1) == id(node2):
traverse_no_checking(node1.less, node2.less)
traverse_no_checking(node1.less, node2.greater)
traverse_no_checking(node1.greater, node2.greater)
else:
traverse_no_checking(node1.less, node2)
traverse_no_checking(node1.greater, node2)
traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
self.tree, Rectangle(self.maxes, self.mins))
return results
def count_neighbors(self, other, r, p=2.):
"""
Count how many nearby pairs can be formed.
Count the number of pairs (x1,x2) can be formed, with x1 drawn
from self and x2 drawn from ``other``, and where
``distance(x1, x2, p) <= r``.
This is the "two-point correlation" described in Gray and Moore 2000,
"N-body problems in statistical learning", and the code here is based
on their algorithm.
Parameters
----------
other : KDTree instance
The other tree to draw points from.
r : float or one-dimensional array of floats
The radius to produce a count for. Multiple radii are searched with
a single tree traversal.
p : float, 1<=p<=infinity, optional
Which Minkowski p-norm to use
Returns
-------
result : int or 1-D array of ints
The number of pairs. Note that this is internally stored in a numpy
int, and so may overflow if very large (2e9).
"""
def traverse(node1, rect1, node2, rect2, idx):
min_r = rect1.min_distance_rectangle(rect2,p)
max_r = rect1.max_distance_rectangle(rect2,p)
c_greater = r[idx] > max_r
result[idx[c_greater]] += node1.children*node2.children
idx = idx[(min_r <= r[idx]) & (r[idx] <= max_r)]
if len(idx) == 0:
return
if isinstance(node1,KDTree.leafnode):
if isinstance(node2,KDTree.leafnode):
ds = minkowski_distance(self.data[node1.idx][:,np.newaxis,:],
other.data[node2.idx][np.newaxis,:,:],
p).ravel()
ds.sort()
result[idx] += np.searchsorted(ds,r[idx],side='right')
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse(node1, rect1, node2.less, less, idx)
traverse(node1, rect1, node2.greater, greater, idx)
else:
if isinstance(node2,KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse(node1.less, less, node2, rect2, idx)
traverse(node1.greater, greater, node2, rect2, idx)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse(node1.less,less1,node2.less,less2,idx)
traverse(node1.less,less1,node2.greater,greater2,idx)
traverse(node1.greater,greater1,node2.less,less2,idx)
traverse(node1.greater,greater1,node2.greater,greater2,idx)
R1 = Rectangle(self.maxes, self.mins)
R2 = Rectangle(other.maxes, other.mins)
if np.shape(r) == ():
r = np.array([r])
result = np.zeros(1,dtype=int)
traverse(self.tree, R1, other.tree, R2, np.arange(1))
return result[0]
elif len(np.shape(r)) == 1:
r = np.asarray(r)
n, = r.shape
result = np.zeros(n,dtype=int)
traverse(self.tree, R1, other.tree, R2, np.arange(n))
return result
else:
raise ValueError("r must be either a single value or a one-dimensional array of values")
def sparse_distance_matrix(self, other, max_distance, p=2.):
"""
Compute a sparse distance matrix
Computes a distance matrix between two KDTrees, leaving as zero
any distance greater than max_distance.
Parameters
----------
other : KDTree
max_distance : positive float
p : float, optional
Returns
-------
result : dok_matrix
Sparse matrix representing the results in "dictionary of keys" format.
"""
result = scipy.sparse.dok_matrix((self.n,other.n))
def traverse(node1, rect1, node2, rect2):
if rect1.min_distance_rectangle(rect2, p) > max_distance:
return
elif isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
for i in node1.idx:
for j in node2.idx:
d = minkowski_distance(self.data[i],other.data[j],p)
if d <= max_distance:
result[i,j] = d
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse(node1,rect1,node2.less,less)
traverse(node1,rect1,node2.greater,greater)
elif isinstance(node2, KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse(node1.less,less,node2,rect2)
traverse(node1.greater,greater,node2,rect2)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse(node1.less,less1,node2.less,less2)
traverse(node1.less,less1,node2.greater,greater2)
traverse(node1.greater,greater1,node2.less,less2)
traverse(node1.greater,greater1,node2.greater,greater2)
traverse(self.tree, Rectangle(self.maxes, self.mins),
other.tree, Rectangle(other.maxes, other.mins))
return result
def distance_matrix(x, y, p=2, threshold=1000000):
"""
Compute the distance matrix.
Returns the matrix of all pair-wise distances.
Parameters
----------
x : (M, K) array_like
Matrix of M vectors in K dimensions.
y : (N, K) array_like
Matrix of N vectors in K dimensions.
p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.
threshold : positive int
If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead
of large temporary arrays.
Returns
-------
result : (M, N) ndarray
Matrix containing the distance from every vector in `x` to every vector
in `y`.
Examples
--------
>>> from scipy.spatial import distance_matrix
>>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]])
array([[ 1. , 1.41421356],
[ 1.41421356, 1. ]])
"""
x = np.asarray(x)
m, k = x.shape
y = np.asarray(y)
n, kk = y.shape
if k != kk:
raise ValueError("x contains %d-dimensional vectors but y contains %d-dimensional vectors" % (k, kk))
if m*n*k <= threshold:
return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p)
else:
result = np.empty((m,n),dtype=float) # FIXME: figure out the best dtype
if m < n:
for i in range(m):
result[i,:] = minkowski_distance(x[i],y,p)
else:
for j in range(n):
result[:,j] = minkowski_distance(x,y[j],p)
return result

View file

@ -0,0 +1,38 @@
Qhull, Copyright (c) 1993-2019
C.B. Barber
Arlington, MA
and
The National Science and Technology Research Center for
Computation and Visualization of Geometric Structures
(The Geometry Center)
University of Minnesota
email: qhull@qhull.org
This software includes Qhull from C.B. Barber and The Geometry Center.
Qhull is copyrighted as noted above. Qhull is free software and may
be obtained via http from www.qhull.org. It may be freely copied, modified,
and redistributed under the following conditions:
1. All copyright notices must remain intact in all files.
2. A copy of this text file must be distributed along with any copies
of Qhull that you redistribute; this includes copies that you have
modified, or copies of programs or other software products that
include Qhull.
3. If you modify Qhull, you must include a notice giving the
name of the person performing the modification, the date of
modification, and the reason for such modification.
4. When distributing modified versions of Qhull, or other software
products that include Qhull, you must provide notice that the original
source code may be obtained as noted above.
5. There is no warranty or other guarantee of fitness for Qhull, it is
provided solely "as is". Bug reports or fixes may be sent to
qhull_bug@qhull.org; the authors may or may not act on them as
they desire.

View file

@ -0,0 +1,93 @@
from os.path import join, dirname
import glob
def configuration(parent_package='', top_path=None):
from numpy.distutils.misc_util import Configuration, get_numpy_include_dirs
from numpy.distutils.misc_util import get_info as get_misc_info
from scipy._build_utils.system_info import get_info
from scipy._build_utils import combine_dict, uses_blas64
from scipy._build_utils.compiler_helper import set_cxx_flags_hook
from distutils.sysconfig import get_python_inc
config = Configuration('spatial', parent_package, top_path)
config.add_data_dir('tests')
# spatial.transform
config.add_subpackage('transform')
# qhull
qhull_src = sorted(glob.glob(join(dirname(__file__), 'qhull_src',
'src', '*.c')))
inc_dirs = [get_python_inc()]
if inc_dirs[0] != get_python_inc(plat_specific=1):
inc_dirs.append(get_python_inc(plat_specific=1))
inc_dirs.append(get_numpy_include_dirs())
inc_dirs.append(join(dirname(dirname(__file__)), '_lib'))
inc_dirs.append(join(dirname(dirname(__file__)), '_build_utils', 'src'))
if uses_blas64():
lapack_opt = get_info('lapack_ilp64_opt')
else:
lapack_opt = get_info('lapack_opt')
cfg = combine_dict(lapack_opt, include_dirs=inc_dirs)
config.add_extension('qhull',
sources=['qhull.c', 'qhull_misc.c'] + qhull_src,
**cfg)
# cKDTree
ckdtree_src = ['query.cxx',
'build.cxx',
'query_pairs.cxx',
'count_neighbors.cxx',
'query_ball_point.cxx',
'query_ball_tree.cxx',
'sparse_distances.cxx']
ckdtree_src = [join('ckdtree', 'src', x) for x in ckdtree_src]
ckdtree_headers = ['ckdtree_decl.h',
'coo_entries.h',
'distance_base.h',
'distance.h',
'ordered_pair.h',
'partial_sort.h',
'rectangle.h']
ckdtree_headers = [join('ckdtree', 'src', x) for x in ckdtree_headers]
ckdtree_dep = ['ckdtree.cxx'] + ckdtree_headers + ckdtree_src
ext = config.add_extension('ckdtree',
sources=['ckdtree.cxx'] + ckdtree_src,
depends=ckdtree_dep,
include_dirs=inc_dirs + [join('ckdtree', 'src')])
ext._pre_build_hook = set_cxx_flags_hook
# _distance_wrap
config.add_extension('_distance_wrap',
sources=[join('src', 'distance_wrap.c')],
depends=[join('src', 'distance_impl.h')],
include_dirs=[get_numpy_include_dirs()],
extra_info=get_misc_info("npymath"))
config.add_extension('_voronoi',
sources=['_voronoi.c'])
config.add_extension('_hausdorff',
sources=['_hausdorff.c'])
# Add license files
config.add_data_files('qhull_src/COPYING.txt')
# Type stubs
config.add_data_files('*.pyi')
return config
if __name__ == '__main__':
from numpy.distutils.core import setup
setup(**configuration(top_path='').todict())

View file

@ -0,0 +1,10 @@
1.147593763490969421e-01 8.926156143344999849e-01 1.437758624645746330e-02 1.803435962879929022e-02 5.533046214065578949e-01 5.554315640747428118e-01 4.497546637814608950e-02 4.438089247948049376e-01 7.984582810220538507e-01 2.752880789161644692e-01 1.344667112315823809e-01 9.230479561452992199e-01 6.040471462941819913e-01 3.797251652770228247e-01 4.316042735592399149e-01 5.312356915348823705e-01 4.348143005129563310e-01 3.111531488508799681e-01 9.531194313908697424e-04 8.212995023500069269e-02 6.689953269869852726e-01 9.914864535288493430e-01 8.037556036341153565e-01
9.608925123801395074e-01 2.974451233678974127e-01 9.001110330654185088e-01 5.824163330415995654e-01 7.308574928293812834e-01 2.276154562412870952e-01 7.306791076039623745e-01 8.677244866905511333e-01 9.160806456176984192e-01 6.157216959991280714e-01 5.149053524695440531e-01 3.056427344890983999e-01 9.790557366933895223e-01 4.484995861076724877e-01 4.776550391081165747e-01 7.210436977670631187e-01 9.136399501661039979e-01 4.260275733550000776e-02 5.943900041968954717e-01 3.864571606342745991e-01 9.442027665110838131e-01 4.779949058608601309e-02 6.107551944250865228e-01
3.297286578103622023e-01 5.980207401936733502e-01 3.673301293561567205e-01 2.585830520887681949e-01 4.660558746104259686e-01 6.083795956610364986e-01 4.535206368070313632e-01 6.873989778785424276e-01 5.130152688495458468e-01 7.665877846542720198e-01 3.444402973525138023e-01 3.583658123644906102e-02 7.924818220986856732e-01 8.746685720522412444e-01 3.010105569182431884e-01 6.012239357385538163e-01 6.233737362204671006e-01 4.830438698668915176e-01 2.317286885842551047e-02 7.585989958123050547e-01 7.108257632278830451e-01 1.551024884178199281e-01 2.665485998155288083e-01
2.456278068903017253e-02 4.148739837711815648e-01 1.986372227934196655e-01 6.920408530298168825e-01 1.003067576685774398e-01 7.421560456480125190e-01 1.808453980608998313e-01 4.251297882537475870e-01 6.773002683522370004e-01 4.084108792570182445e-01 7.462888013191590897e-01 8.069930220529277776e-01 9.211110587681808903e-01 4.141491046181076108e-01 7.486318689260342829e-01 9.515405507589296263e-01 4.634288892577109742e-03 8.027593488166355762e-01 3.010346805217798405e-01 8.663248877242523127e-01 2.479968181181605447e-01 5.619851096054278017e-01 3.903886764590250857e-01
7.122019976035700584e-01 6.188878051047785878e-01 7.290897087051201320e-01 6.334802157757637442e-01 5.523084734954342156e-01 5.614937129563645213e-01 2.496741051791574462e-01 5.972227939599233926e-01 1.786590597761109622e-01 2.609525984850900038e-01 7.210438943286010538e-01 2.211429064605652250e-01 9.140497572472672250e-02 1.430242193668443962e-01 7.856446942916397447e-01 4.635256358156553125e-01 5.278744289813760426e-01 3.702808015407184072e-01 5.527073830480792038e-01 6.370732917599846168e-01 9.953487928925482953e-01 3.021789770611936765e-01 3.354901923998221402e-02
6.509638560895427695e-01 8.387598220902757751e-01 7.761375971745763103e-01 1.481627639227802717e-01 3.529474982902305324e-01 4.883093646287851586e-01 9.652923033658690199e-01 9.500680513565308294e-01 3.061885005078281985e-01 7.271902818906019750e-01 2.358962978196710303e-03 7.359889703223099211e-01 8.988893768074724955e-01 4.135279653937307121e-02 8.516441856688283796e-01 4.889597623270667270e-01 5.575909822114655245e-01 9.010853652261575641e-01 2.912844516556202246e-01 9.088759383368658629e-01 8.104351227460024898e-01 8.080695436776826890e-01 1.430530913253185155e-01
8.048001196608134400e-01 3.066089444418462762e-02 9.021887554292090661e-01 6.154331491807940591e-02 1.378912575206647784e-02 5.775720193142440673e-01 1.219298963069791464e-01 1.883270243412101808e-01 5.569262398688379356e-02 8.964817777510125651e-02 7.977092785346929782e-01 4.878149375226197293e-01 4.511973131518809410e-02 1.858690046801604323e-01 6.947686471083162063e-01 5.884058794291086025e-01 8.638884676612634816e-01 3.855470871341656336e-01 3.495049047300468059e-01 2.767740932353948136e-01 4.731087031714035218e-01 6.679001673437914288e-01 7.502944200696660682e-01
6.527328264244687261e-01 8.289483383553154505e-01 9.179741348282299818e-01 1.065639864466713105e-01 6.253616929058514184e-01 5.927750325266062381e-01 3.039157425463192563e-01 2.452766763359194302e-01 6.514027700704632107e-01 5.529218485487964463e-01 4.941158239308394151e-01 6.605306467722642516e-01 2.273688037050677346e-01 4.282616592244774534e-01 2.956128257930247250e-01 1.154803628237965896e-01 9.228220410235263849e-01 6.663525307676617659e-01 1.908852615936970087e-01 9.921383408926374159e-01 4.988716450388516188e-01 1.014900352736023414e-01 3.363930180244284474e-01
2.914369076275757919e-01 5.196673601143533272e-01 7.420144907858341465e-01 1.768984185504740569e-01 5.296766993228564369e-01 5.922023566159900776e-01 5.965161262020234334e-01 3.810272333046110793e-01 8.368797246118340194e-01 7.896422363801189892e-01 9.655797561098209414e-01 4.430034032346981121e-01 2.780869795706976122e-01 3.047310845416009162e-01 8.051138863500326703e-01 6.731468634690835895e-01 4.743383036815584930e-01 9.530709614322225853e-01 7.753587619850917934e-01 2.801137109357491051e-01 6.182543660889736614e-01 5.005218857766725593e-01 9.071447804755052857e-01
2.075071644012620453e-01 4.834950086973934802e-01 3.037011473860764532e-01 6.476084284887700937e-01 8.107195771564194020e-01 7.869075869075803364e-01 6.851234019375299633e-01 3.544187468104398331e-02 4.847673235908021017e-01 5.690262846164507726e-01 1.663354142616256803e-01 9.692796809752548537e-01 4.133441725866372485e-01 6.729167604487583665e-01 3.998813427407297283e-01 8.272617414104491695e-01 2.129248316324727774e-01 6.517004761357130249e-01 7.363013506605019520e-01 4.072375306356985636e-01 4.463336683526665238e-01 5.485059309728204102e-01 1.981745754527846071e-01

View file

@ -0,0 +1,20 @@
7.680465556300619667e-02 4.675022344069014180e-01 8.955498989131543963e-01 3.816236071436276411e-01 1.109030077070989329e-01 2.318928815459808668e-02 7.477394240984251983e-01 1.202289789304434864e-01 8.007290497575981769e-01 6.795195698871731027e-01 6.568225762396605605e-01 2.231475263228478445e-01 7.064624077661341151e-02 1.081656666815267176e-02 1.592069359090128033e-01 1.363392203645097389e-01 9.277020735447568667e-01 8.103136564528209407e-01 5.229467676276455812e-02 7.708020259874025504e-01 6.527954747473352359e-02 5.516397414886525796e-01 3.653371861367954443e-01
8.144399106025798085e-01 7.731852525462976633e-01 6.909477620673205589e-01 9.696063817000286633e-01 4.297887511677249694e-01 6.989600553425188156e-01 7.310201335033380543e-01 3.135256147868910048e-01 5.715578037275241829e-01 3.935000744675094531e-01 2.057715781268398825e-01 5.892508589665171881e-01 8.512951599236765476e-01 9.569808799061578775e-01 6.164885878024699561e-01 4.714185430004367294e-01 6.128831737628155363e-01 6.641799309623502845e-01 6.001985185338730711e-01 4.231922889723856995e-01 7.605249308075449077e-01 1.064530958018087281e-01 6.306470691957204444e-01
4.265470127256254518e-01 5.933766716280767239e-01 3.698589270536845053e-02 2.173799740537294412e-01 3.032679325475639009e-01 4.271831790058847611e-01 1.828944535901013690e-01 4.772333422710156592e-01 2.564773455194128138e-01 7.120329875362141347e-01 8.952243430110462530e-01 1.808777012183288013e-01 3.612151871458374464e-01 3.960999167923041631e-01 1.821669970670747318e-02 8.835474857189200559e-01 1.353104648821573663e-01 3.457291739160937016e-01 1.126467375304566199e-01 4.107293162402323450e-01 4.051719311053743056e-01 4.007382985250427243e-01 1.286905671428811848e-01
2.910657003883979632e-01 9.616259180685315933e-03 2.033032441536681834e-01 1.096599110293863255e-01 4.191101704605176836e-01 5.462131536027151624e-01 8.393047907010142694e-01 9.046805198676335369e-01 7.009863472176891541e-01 2.508215985039629059e-01 6.754410796667598138e-01 6.740895474032024826e-01 1.358993708621679675e-01 8.219861775211464439e-01 6.322220445623235596e-01 2.766813559002430090e-01 6.575983861590951607e-01 9.515869708336625044e-01 8.654526462353933081e-01 3.450245117834797037e-01 5.649032890631299209e-01 4.717687914789682191e-01 3.296483580510030098e-01
9.172477457635394016e-01 3.057396583041891436e-01 7.335332344225760082e-01 8.370236206345178509e-01 3.765464253115927695e-01 5.089680319287778199e-01 1.202325719268168003e-01 9.717771065272349240e-01 5.907820104019682050e-01 9.809211614977710880e-01 9.064285003671219698e-01 8.848841466121748489e-01 2.043407730734815297e-01 9.157600394927275511e-01 4.532260315147775831e-01 4.241077335005828397e-01 1.751730149568804240e-01 4.090412146081819911e-01 3.632197861847064058e-02 5.832539334970230360e-01 4.041848151536805434e-01 3.603643989086504629e-01 1.838411383882069261e-01
2.508806403290032572e-01 4.381403985282813496e-01 4.694787405018008286e-02 6.353900562024634713e-01 1.200813444244532846e-01 6.072397042913001419e-01 9.937255904754030977e-01 4.916670237677555066e-01 3.473845913923001572e-01 3.526875922864345370e-01 5.448595548197197047e-01 2.245096010156972799e-01 9.003258279804994269e-01 3.534560469735994470e-01 2.989266066346342177e-01 4.621024982808636938e-01 9.626538866576676012e-01 9.791401720716153001e-01 7.138514287330390840e-01 9.832862333928654719e-01 3.233999591031431198e-01 5.406467224926423398e-01 9.581890295057201579e-01
5.210583601680578436e-01 4.598159993059653949e-01 2.111497132057748027e-01 5.949977700916546652e-01 6.342618461422359077e-01 9.888228769705599275e-01 6.096770711536318998e-01 7.548431368960863974e-01 7.490858664860100546e-01 3.186213496546415058e-01 7.895687083231245351e-01 4.178326793268141159e-01 8.095818334534051752e-01 7.886271673523481684e-01 4.038905626506847923e-01 3.652649247094948981e-01 8.267205959224892542e-01 6.433617243328785262e-01 3.117681563249452559e-01 9.675995575054980868e-01 3.675673836358472890e-01 5.863757289184046151e-01 9.099029857959717305e-02
4.024573981231733821e-01 3.578997554002771864e-01 3.519299868071553705e-01 7.417747693762357653e-01 2.963713903285800644e-01 9.602967989298948348e-01 3.811392331739601458e-01 5.493237898295448840e-01 6.835113342793640578e-01 2.304506220807415184e-01 3.727299857731285471e-01 5.450263991912108752e-01 6.951521210987908761e-01 6.474582745861203747e-01 6.316089475403589004e-01 5.672043967425510758e-02 9.034937506977609445e-01 2.332567550780038079e-01 1.096955741449157085e-02 8.870663813493575578e-01 4.384385452180562526e-01 7.100898998169548060e-01 3.245358176196319056e-01
9.162009194452818139e-01 5.572224742426723498e-02 3.445910686865658601e-01 9.683564008127462097e-01 9.375063149031520604e-01 9.128188852869822956e-02 9.613605414326487075e-01 5.298598697556915482e-01 6.724799695520149445e-01 1.269103938571825019e-02 1.008406153387807480e-01 8.951105272379104028e-01 1.585460318853607609e-01 6.739986455059543413e-01 5.345419321702655768e-01 6.248843899572337213e-01 3.050288488994817859e-01 1.423645553465189284e-01 1.802121190541096096e-01 9.474646822694763326e-01 2.345716438587298613e-01 9.688281784764296578e-01 1.845165243240991515e-01
2.548297646910531178e-01 2.580877375379494465e-01 1.355482532666937301e-01 6.478812986505504412e-01 9.971695982152032345e-01 2.606721082477282403e-01 5.483439686378906996e-01 4.409612606704470528e-01 4.396442074915688503e-01 7.414262832597111608e-01 7.308840725375539416e-01 8.072095530497225280e-02 6.829509968656330976e-01 5.700030854230387911e-01 3.801845336730320657e-01 2.481059916867158766e-01 3.977295094395927322e-03 5.749480512407895150e-01 4.112033136603401307e-01 8.676159710377848722e-01 9.062646588480167686e-01 3.326691167317923359e-01 8.498307982774666591e-01
4.464338109330643345e-01 8.546516760817471914e-01 7.384800352329814466e-01 3.692485164984804502e-02 2.915662689505471583e-02 9.010049994217171898e-01 8.622900253010918892e-01 9.786230638032608065e-01 6.546824077297251909e-01 6.342297560006789903e-01 2.230339826582647955e-01 7.658846744185553446e-01 4.603043831539479491e-01 2.017100469861691225e-01 4.891590639893540482e-01 1.937140918314912419e-01 8.161582138652878626e-01 5.597293607114051106e-02 8.423261093326828153e-02 5.105392204475533990e-02 8.234193902673621057e-01 1.784268309975372002e-01 9.118997881986501408e-02
8.588746913421980711e-01 1.479641118621310980e-02 1.375875301146138874e-01 7.533888774725254756e-01 5.782592791549248101e-01 9.128573037619659436e-01 1.831275762880391067e-01 3.471382864827737835e-01 4.859524740929310749e-02 8.955146541561730400e-01 4.787220791101074457e-01 4.222803577759057791e-01 8.469923964908064873e-01 6.300290047587608910e-02 1.020873237837905956e-01 3.585612487182909813e-02 6.320107119904569970e-01 5.891245970008752719e-01 1.104698053665007507e-01 4.233226558073774903e-01 4.432217054386708988e-01 2.864765416628194394e-01 2.489777211814803159e-02
5.343810659756068615e-01 4.829076396403546578e-01 8.364480888953172988e-01 8.931374995414760321e-01 6.034161442354715188e-01 3.578336000768178593e-03 4.100579775972763574e-01 3.968667908067096128e-01 5.897163653686778861e-01 3.003241263928478899e-01 2.520935203143799264e-01 3.112129371563532310e-02 9.052865295974613646e-01 1.172285124002711010e-01 4.840001666149388315e-01 3.424620676348436588e-01 5.526057133826853818e-01 6.346139530261846184e-01 5.747945930485597321e-01 1.389915612177697879e-01 2.413801217666421417e-01 7.829900796662081497e-01 7.213528084845653998e-01
9.384509283406079483e-01 6.303019601671526750e-01 1.787921522728125323e-01 1.556003868047917127e-02 5.662397078816850948e-01 3.437473614806091371e-01 8.615844972800188462e-01 7.624380237306396246e-01 1.096468347898514883e-01 1.276566836610887323e-01 8.479188493443535757e-01 3.634713454428405432e-01 7.478112314318967613e-01 9.856395696968375253e-01 6.250293654177319080e-02 1.919327272501809567e-01 1.415594476031050153e-01 7.224057351041784925e-01 8.452145259310355208e-01 5.434318833772002755e-01 5.177620959731277228e-02 3.358977598185840518e-01 2.542654881527960375e-01
4.800909104006243489e-01 3.651345393613150137e-01 3.657093052788148446e-01 8.579662326651369408e-01 5.787694361240260932e-01 6.491966196891312268e-01 3.252508517294879775e-01 8.639694334693422961e-01 3.028097078756678551e-01 6.295814666338699350e-01 7.305627351548695803e-01 6.975931849120264872e-03 8.321205159004851915e-01 2.681809305821257761e-01 3.628869474597150591e-01 9.598981434716586936e-01 5.947913523332928332e-01 7.794864238003402779e-01 2.819511239444029149e-01 5.134200958476284882e-01 7.284684743064278045e-01 3.099571109539331903e-01 1.502222882866774967e-01
2.463382654375219083e-01 4.465700737264240994e-01 7.180855317941433613e-01 5.056099420785193921e-01 6.182117344332578313e-01 2.370453793561340117e-01 9.831748018047525850e-01 6.397098184531551102e-01 8.260469782208745837e-02 7.474671691560941245e-01 9.963429983418570224e-02 5.450078811081275898e-01 5.370188678062637333e-02 2.774024442708808991e-01 2.082643088545442778e-01 2.704155352788065736e-01 7.225035580445194894e-01 4.866791976239246420e-01 1.357043111201584606e-01 7.911335827987711067e-01 7.278977102006007893e-01 6.880892094410231419e-01 1.029231496520791600e-01
6.901796117735281566e-01 1.558248977395644275e-01 4.241818789360329855e-01 5.055658246392458199e-01 1.756288758075611467e-01 4.215083703818177652e-01 7.809231602323289945e-01 1.170053878686481141e-01 6.497026323614403243e-01 5.733120641440232479e-01 4.407703406152092551e-01 5.608677124532297498e-01 7.471045703286000039e-01 3.334604336022076732e-01 8.927208811415126011e-01 9.794565286182396191e-01 9.621542824973521313e-01 3.945825239405253981e-01 8.338963875792834157e-01 9.310552325082104286e-01 7.688283033784242271e-01 3.798823731047119567e-01 1.459993613028365278e-02
7.848623555505630511e-01 2.681039365355797344e-03 7.833208051794043891e-01 8.184381915171493604e-01 4.682581645582317709e-01 2.391069309436419932e-01 1.765377537168698607e-01 9.863494676539893424e-01 4.378412300863872009e-01 7.494505491149090481e-01 1.942180356195394308e-01 9.981402467222395547e-01 7.992190944052800505e-01 1.350875702852057936e-01 4.950149186748543650e-01 7.243422481248201761e-01 3.544596746353472216e-01 8.320192561472177228e-01 9.776840296475269865e-01 7.733852731914863110e-01 2.305732998099923048e-01 9.746878189802981041e-01 7.747723331200035979e-01
6.521099013127149568e-01 5.452399443648201505e-01 8.146707517183656710e-01 3.827256063695345656e-01 7.954832091744263867e-01 7.834427643148527132e-01 9.661317930643520402e-02 9.215673965718058636e-01 4.914305728788055383e-01 4.105628408027649501e-01 9.844647830893304974e-02 3.974831165301851987e-01 3.857608898053827007e-01 5.520210781401946321e-01 3.445787541654143915e-03 4.552922057017416702e-01 7.456544561760444223e-01 4.753985092154335845e-01 2.821385239833401615e-01 7.560136035104459973e-01 8.453142510471420845e-01 6.679627143276523071e-01 6.910882868284401459e-01
8.526493480446283302e-01 1.183917973068240315e-01 6.163988861865119517e-01 5.751899460059114455e-01 1.638797964925038375e-01 8.214597298784013235e-01 5.424670654187370156e-01 1.806631819658732763e-01 9.268107278221827672e-01 4.127397378597359445e-01 7.529877485901653733e-01 1.714251090083847018e-01 2.601487784245806179e-01 2.028326156742237263e-01 5.299879450122358948e-01 7.587877062981395193e-01 4.070738595375062996e-01 3.546903049793261875e-01 8.695365138547607176e-01 1.447085661525142619e-01 3.193366245820845606e-01 8.797841086211429795e-01 2.666562188639977071e-01

View file

@ -0,0 +1,150 @@
5.099999999999999645e+00 3.500000000000000000e+00 1.399999999999999911e+00 2.000000000000000111e-01
4.900000000000000355e+00 3.000000000000000000e+00 1.399999999999999911e+00 2.000000000000000111e-01
4.700000000000000178e+00 3.200000000000000178e+00 1.300000000000000044e+00 2.000000000000000111e-01
4.599999999999999645e+00 3.100000000000000089e+00 1.500000000000000000e+00 2.000000000000000111e-01
5.000000000000000000e+00 3.600000000000000089e+00 1.399999999999999911e+00 2.000000000000000111e-01
5.400000000000000355e+00 3.899999999999999911e+00 1.699999999999999956e+00 4.000000000000000222e-01
4.599999999999999645e+00 3.399999999999999911e+00 1.399999999999999911e+00 2.999999999999999889e-01
5.000000000000000000e+00 3.399999999999999911e+00 1.500000000000000000e+00 2.000000000000000111e-01
4.400000000000000355e+00 2.899999999999999911e+00 1.399999999999999911e+00 2.000000000000000111e-01
4.900000000000000355e+00 3.100000000000000089e+00 1.500000000000000000e+00 1.000000000000000056e-01
5.400000000000000355e+00 3.700000000000000178e+00 1.500000000000000000e+00 2.000000000000000111e-01
4.799999999999999822e+00 3.399999999999999911e+00 1.600000000000000089e+00 2.000000000000000111e-01
4.799999999999999822e+00 3.000000000000000000e+00 1.399999999999999911e+00 1.000000000000000056e-01
4.299999999999999822e+00 3.000000000000000000e+00 1.100000000000000089e+00 1.000000000000000056e-01
5.799999999999999822e+00 4.000000000000000000e+00 1.199999999999999956e+00 2.000000000000000111e-01
5.700000000000000178e+00 4.400000000000000355e+00 1.500000000000000000e+00 4.000000000000000222e-01
5.400000000000000355e+00 3.899999999999999911e+00 1.300000000000000044e+00 4.000000000000000222e-01
5.099999999999999645e+00 3.500000000000000000e+00 1.399999999999999911e+00 2.999999999999999889e-01
5.700000000000000178e+00 3.799999999999999822e+00 1.699999999999999956e+00 2.999999999999999889e-01
5.099999999999999645e+00 3.799999999999999822e+00 1.500000000000000000e+00 2.999999999999999889e-01
5.400000000000000355e+00 3.399999999999999911e+00 1.699999999999999956e+00 2.000000000000000111e-01
5.099999999999999645e+00 3.700000000000000178e+00 1.500000000000000000e+00 4.000000000000000222e-01
4.599999999999999645e+00 3.600000000000000089e+00 1.000000000000000000e+00 2.000000000000000111e-01
5.099999999999999645e+00 3.299999999999999822e+00 1.699999999999999956e+00 5.000000000000000000e-01
4.799999999999999822e+00 3.399999999999999911e+00 1.899999999999999911e+00 2.000000000000000111e-01
5.000000000000000000e+00 3.000000000000000000e+00 1.600000000000000089e+00 2.000000000000000111e-01
5.000000000000000000e+00 3.399999999999999911e+00 1.600000000000000089e+00 4.000000000000000222e-01
5.200000000000000178e+00 3.500000000000000000e+00 1.500000000000000000e+00 2.000000000000000111e-01
5.200000000000000178e+00 3.399999999999999911e+00 1.399999999999999911e+00 2.000000000000000111e-01
4.700000000000000178e+00 3.200000000000000178e+00 1.600000000000000089e+00 2.000000000000000111e-01
4.799999999999999822e+00 3.100000000000000089e+00 1.600000000000000089e+00 2.000000000000000111e-01
5.400000000000000355e+00 3.399999999999999911e+00 1.500000000000000000e+00 4.000000000000000222e-01
5.200000000000000178e+00 4.099999999999999645e+00 1.500000000000000000e+00 1.000000000000000056e-01
5.500000000000000000e+00 4.200000000000000178e+00 1.399999999999999911e+00 2.000000000000000111e-01
4.900000000000000355e+00 3.100000000000000089e+00 1.500000000000000000e+00 1.000000000000000056e-01
5.000000000000000000e+00 3.200000000000000178e+00 1.199999999999999956e+00 2.000000000000000111e-01
5.500000000000000000e+00 3.500000000000000000e+00 1.300000000000000044e+00 2.000000000000000111e-01
4.900000000000000355e+00 3.100000000000000089e+00 1.500000000000000000e+00 1.000000000000000056e-01
4.400000000000000355e+00 3.000000000000000000e+00 1.300000000000000044e+00 2.000000000000000111e-01
5.099999999999999645e+00 3.399999999999999911e+00 1.500000000000000000e+00 2.000000000000000111e-01
5.000000000000000000e+00 3.500000000000000000e+00 1.300000000000000044e+00 2.999999999999999889e-01
4.500000000000000000e+00 2.299999999999999822e+00 1.300000000000000044e+00 2.999999999999999889e-01
4.400000000000000355e+00 3.200000000000000178e+00 1.300000000000000044e+00 2.000000000000000111e-01
5.000000000000000000e+00 3.500000000000000000e+00 1.600000000000000089e+00 5.999999999999999778e-01
5.099999999999999645e+00 3.799999999999999822e+00 1.899999999999999911e+00 4.000000000000000222e-01
4.799999999999999822e+00 3.000000000000000000e+00 1.399999999999999911e+00 2.999999999999999889e-01
5.099999999999999645e+00 3.799999999999999822e+00 1.600000000000000089e+00 2.000000000000000111e-01
4.599999999999999645e+00 3.200000000000000178e+00 1.399999999999999911e+00 2.000000000000000111e-01
5.299999999999999822e+00 3.700000000000000178e+00 1.500000000000000000e+00 2.000000000000000111e-01
5.000000000000000000e+00 3.299999999999999822e+00 1.399999999999999911e+00 2.000000000000000111e-01
7.000000000000000000e+00 3.200000000000000178e+00 4.700000000000000178e+00 1.399999999999999911e+00
6.400000000000000355e+00 3.200000000000000178e+00 4.500000000000000000e+00 1.500000000000000000e+00
6.900000000000000355e+00 3.100000000000000089e+00 4.900000000000000355e+00 1.500000000000000000e+00
5.500000000000000000e+00 2.299999999999999822e+00 4.000000000000000000e+00 1.300000000000000044e+00
6.500000000000000000e+00 2.799999999999999822e+00 4.599999999999999645e+00 1.500000000000000000e+00
5.700000000000000178e+00 2.799999999999999822e+00 4.500000000000000000e+00 1.300000000000000044e+00
6.299999999999999822e+00 3.299999999999999822e+00 4.700000000000000178e+00 1.600000000000000089e+00
4.900000000000000355e+00 2.399999999999999911e+00 3.299999999999999822e+00 1.000000000000000000e+00
6.599999999999999645e+00 2.899999999999999911e+00 4.599999999999999645e+00 1.300000000000000044e+00
5.200000000000000178e+00 2.700000000000000178e+00 3.899999999999999911e+00 1.399999999999999911e+00
5.000000000000000000e+00 2.000000000000000000e+00 3.500000000000000000e+00 1.000000000000000000e+00
5.900000000000000355e+00 3.000000000000000000e+00 4.200000000000000178e+00 1.500000000000000000e+00
6.000000000000000000e+00 2.200000000000000178e+00 4.000000000000000000e+00 1.000000000000000000e+00
6.099999999999999645e+00 2.899999999999999911e+00 4.700000000000000178e+00 1.399999999999999911e+00
5.599999999999999645e+00 2.899999999999999911e+00 3.600000000000000089e+00 1.300000000000000044e+00
6.700000000000000178e+00 3.100000000000000089e+00 4.400000000000000355e+00 1.399999999999999911e+00
5.599999999999999645e+00 3.000000000000000000e+00 4.500000000000000000e+00 1.500000000000000000e+00
5.799999999999999822e+00 2.700000000000000178e+00 4.099999999999999645e+00 1.000000000000000000e+00
6.200000000000000178e+00 2.200000000000000178e+00 4.500000000000000000e+00 1.500000000000000000e+00
5.599999999999999645e+00 2.500000000000000000e+00 3.899999999999999911e+00 1.100000000000000089e+00
5.900000000000000355e+00 3.200000000000000178e+00 4.799999999999999822e+00 1.800000000000000044e+00
6.099999999999999645e+00 2.799999999999999822e+00 4.000000000000000000e+00 1.300000000000000044e+00
6.299999999999999822e+00 2.500000000000000000e+00 4.900000000000000355e+00 1.500000000000000000e+00
6.099999999999999645e+00 2.799999999999999822e+00 4.700000000000000178e+00 1.199999999999999956e+00
6.400000000000000355e+00 2.899999999999999911e+00 4.299999999999999822e+00 1.300000000000000044e+00
6.599999999999999645e+00 3.000000000000000000e+00 4.400000000000000355e+00 1.399999999999999911e+00
6.799999999999999822e+00 2.799999999999999822e+00 4.799999999999999822e+00 1.399999999999999911e+00
6.700000000000000178e+00 3.000000000000000000e+00 5.000000000000000000e+00 1.699999999999999956e+00
6.000000000000000000e+00 2.899999999999999911e+00 4.500000000000000000e+00 1.500000000000000000e+00
5.700000000000000178e+00 2.600000000000000089e+00 3.500000000000000000e+00 1.000000000000000000e+00
5.500000000000000000e+00 2.399999999999999911e+00 3.799999999999999822e+00 1.100000000000000089e+00
5.500000000000000000e+00 2.399999999999999911e+00 3.700000000000000178e+00 1.000000000000000000e+00
5.799999999999999822e+00 2.700000000000000178e+00 3.899999999999999911e+00 1.199999999999999956e+00
6.000000000000000000e+00 2.700000000000000178e+00 5.099999999999999645e+00 1.600000000000000089e+00
5.400000000000000355e+00 3.000000000000000000e+00 4.500000000000000000e+00 1.500000000000000000e+00
6.000000000000000000e+00 3.399999999999999911e+00 4.500000000000000000e+00 1.600000000000000089e+00
6.700000000000000178e+00 3.100000000000000089e+00 4.700000000000000178e+00 1.500000000000000000e+00
6.299999999999999822e+00 2.299999999999999822e+00 4.400000000000000355e+00 1.300000000000000044e+00
5.599999999999999645e+00 3.000000000000000000e+00 4.099999999999999645e+00 1.300000000000000044e+00
5.500000000000000000e+00 2.500000000000000000e+00 4.000000000000000000e+00 1.300000000000000044e+00
5.500000000000000000e+00 2.600000000000000089e+00 4.400000000000000355e+00 1.199999999999999956e+00
6.099999999999999645e+00 3.000000000000000000e+00 4.599999999999999645e+00 1.399999999999999911e+00
5.799999999999999822e+00 2.600000000000000089e+00 4.000000000000000000e+00 1.199999999999999956e+00
5.000000000000000000e+00 2.299999999999999822e+00 3.299999999999999822e+00 1.000000000000000000e+00
5.599999999999999645e+00 2.700000000000000178e+00 4.200000000000000178e+00 1.300000000000000044e+00
5.700000000000000178e+00 3.000000000000000000e+00 4.200000000000000178e+00 1.199999999999999956e+00
5.700000000000000178e+00 2.899999999999999911e+00 4.200000000000000178e+00 1.300000000000000044e+00
6.200000000000000178e+00 2.899999999999999911e+00 4.299999999999999822e+00 1.300000000000000044e+00
5.099999999999999645e+00 2.500000000000000000e+00 3.000000000000000000e+00 1.100000000000000089e+00
5.700000000000000178e+00 2.799999999999999822e+00 4.099999999999999645e+00 1.300000000000000044e+00
6.299999999999999822e+00 3.299999999999999822e+00 6.000000000000000000e+00 2.500000000000000000e+00
5.799999999999999822e+00 2.700000000000000178e+00 5.099999999999999645e+00 1.899999999999999911e+00
7.099999999999999645e+00 3.000000000000000000e+00 5.900000000000000355e+00 2.100000000000000089e+00
6.299999999999999822e+00 2.899999999999999911e+00 5.599999999999999645e+00 1.800000000000000044e+00
6.500000000000000000e+00 3.000000000000000000e+00 5.799999999999999822e+00 2.200000000000000178e+00
7.599999999999999645e+00 3.000000000000000000e+00 6.599999999999999645e+00 2.100000000000000089e+00
4.900000000000000355e+00 2.500000000000000000e+00 4.500000000000000000e+00 1.699999999999999956e+00
7.299999999999999822e+00 2.899999999999999911e+00 6.299999999999999822e+00 1.800000000000000044e+00
6.700000000000000178e+00 2.500000000000000000e+00 5.799999999999999822e+00 1.800000000000000044e+00
7.200000000000000178e+00 3.600000000000000089e+00 6.099999999999999645e+00 2.500000000000000000e+00
6.500000000000000000e+00 3.200000000000000178e+00 5.099999999999999645e+00 2.000000000000000000e+00
6.400000000000000355e+00 2.700000000000000178e+00 5.299999999999999822e+00 1.899999999999999911e+00
6.799999999999999822e+00 3.000000000000000000e+00 5.500000000000000000e+00 2.100000000000000089e+00
5.700000000000000178e+00 2.500000000000000000e+00 5.000000000000000000e+00 2.000000000000000000e+00
5.799999999999999822e+00 2.799999999999999822e+00 5.099999999999999645e+00 2.399999999999999911e+00
6.400000000000000355e+00 3.200000000000000178e+00 5.299999999999999822e+00 2.299999999999999822e+00
6.500000000000000000e+00 3.000000000000000000e+00 5.500000000000000000e+00 1.800000000000000044e+00
7.700000000000000178e+00 3.799999999999999822e+00 6.700000000000000178e+00 2.200000000000000178e+00
7.700000000000000178e+00 2.600000000000000089e+00 6.900000000000000355e+00 2.299999999999999822e+00
6.000000000000000000e+00 2.200000000000000178e+00 5.000000000000000000e+00 1.500000000000000000e+00
6.900000000000000355e+00 3.200000000000000178e+00 5.700000000000000178e+00 2.299999999999999822e+00
5.599999999999999645e+00 2.799999999999999822e+00 4.900000000000000355e+00 2.000000000000000000e+00
7.700000000000000178e+00 2.799999999999999822e+00 6.700000000000000178e+00 2.000000000000000000e+00
6.299999999999999822e+00 2.700000000000000178e+00 4.900000000000000355e+00 1.800000000000000044e+00
6.700000000000000178e+00 3.299999999999999822e+00 5.700000000000000178e+00 2.100000000000000089e+00
7.200000000000000178e+00 3.200000000000000178e+00 6.000000000000000000e+00 1.800000000000000044e+00
6.200000000000000178e+00 2.799999999999999822e+00 4.799999999999999822e+00 1.800000000000000044e+00
6.099999999999999645e+00 3.000000000000000000e+00 4.900000000000000355e+00 1.800000000000000044e+00
6.400000000000000355e+00 2.799999999999999822e+00 5.599999999999999645e+00 2.100000000000000089e+00
7.200000000000000178e+00 3.000000000000000000e+00 5.799999999999999822e+00 1.600000000000000089e+00
7.400000000000000355e+00 2.799999999999999822e+00 6.099999999999999645e+00 1.899999999999999911e+00
7.900000000000000355e+00 3.799999999999999822e+00 6.400000000000000355e+00 2.000000000000000000e+00
6.400000000000000355e+00 2.799999999999999822e+00 5.599999999999999645e+00 2.200000000000000178e+00
6.299999999999999822e+00 2.799999999999999822e+00 5.099999999999999645e+00 1.500000000000000000e+00
6.099999999999999645e+00 2.600000000000000089e+00 5.599999999999999645e+00 1.399999999999999911e+00
7.700000000000000178e+00 3.000000000000000000e+00 6.099999999999999645e+00 2.299999999999999822e+00
6.299999999999999822e+00 3.399999999999999911e+00 5.599999999999999645e+00 2.399999999999999911e+00
6.400000000000000355e+00 3.100000000000000089e+00 5.500000000000000000e+00 1.800000000000000044e+00
6.000000000000000000e+00 3.000000000000000000e+00 4.799999999999999822e+00 1.800000000000000044e+00
6.900000000000000355e+00 3.100000000000000089e+00 5.400000000000000355e+00 2.100000000000000089e+00
6.700000000000000178e+00 3.100000000000000089e+00 5.599999999999999645e+00 2.399999999999999911e+00
6.900000000000000355e+00 3.100000000000000089e+00 5.099999999999999645e+00 2.299999999999999822e+00
5.799999999999999822e+00 2.700000000000000178e+00 5.099999999999999645e+00 1.899999999999999911e+00
6.799999999999999822e+00 3.200000000000000178e+00 5.900000000000000355e+00 2.299999999999999822e+00
6.700000000000000178e+00 3.299999999999999822e+00 5.700000000000000178e+00 2.500000000000000000e+00
6.700000000000000178e+00 3.000000000000000000e+00 5.200000000000000178e+00 2.299999999999999822e+00
6.299999999999999822e+00 2.500000000000000000e+00 5.000000000000000000e+00 1.899999999999999911e+00
6.500000000000000000e+00 3.000000000000000000e+00 5.200000000000000178e+00 2.000000000000000000e+00
6.200000000000000178e+00 3.399999999999999911e+00 5.400000000000000355e+00 2.299999999999999822e+00
5.900000000000000355e+00 3.000000000000000000e+00 5.099999999999999645e+00 1.800000000000000044e+00

View file

@ -0,0 +1,20 @@
1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00
1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00
0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
8.9084734e-01 9.3573853e-01 9.3507398e-01 9.6040691e-01 9.2918157e-01 9.6617342e-01 9.0430930e-01 9.5753424e-01 8.7106898e-01 9.2169905e-01 9.7401159e-01 8.9013416e-01 9.3956689e-01 9.0041896e-01 9.2588355e-01 9.3849417e-01 8.9713468e-01 9.1481804e-01 9.7500539e-01 9.0012586e-01 9.0962559e-01 8.5860091e-01 8.6981095e-01 8.9995771e-01 8.8070172e-01 9.1456657e-01 8.6711474e-01 9.2593917e-01 8.7560376e-01 8.5193121e-01 9.0898542e-01 8.7765302e-01 8.6555584e-01 8.6093485e-01 9.0447028e-01 8.7614405e-01 9.4803522e-01 8.4998062e-01 7.8398996e-01 8.9538612e-01 8.3902291e-01 9.9039470e-01 9.5480519e-01 8.9152195e-01 9.1623329e-01 7.9094921e-01 9.1777100e-01 9.8972335e-01 9.0429093e-01 8.7646362e-01 9.2136649e-01 9.7178177e-01 8.9610979e-01 9.4710327e-01 9.3612450e-01 9.0241499e-01 7.7992538e-01 8.7262126e-01 9.3325183e-01 8.5796531e-01 9.4267977e-01 6.7224167e-01 7.9568368e-01 8.6411267e-01 9.3311642e-01 9.0160114e-01 9.0698887e-01 8.5833256e-01 9.6902830e-01 9.5072298e-01 8.6808495e-01 9.7879599e-01 8.8060729e-01 8.2818573e-01 8.4366706e-01 8.4506700e-01 9.4532981e-01 9.1792306e-01 7.8917825e-01 9.8337805e-01 8.1751613e-01 9.3037855e-01 9.1618832e-01 8.6568874e-01 8.9751397e-01 8.7923710e-01 8.6814329e-01 9.0330164e-01 8.2426213e-01 9.4644643e-01 8.8431293e-01 8.8497426e-01 9.0633818e-01 9.5537161e-01 8.2167575e-01 8.7771053e-01 9.0681167e-01 8.7626143e-01 8.7463464e-01 9.8033940e-01 9.2920881e-01 9.5108549e-01 9.1287466e-01 8.0052218e-01 9.2409517e-01 8.8252650e-01 8.7873923e-01 9.2989402e-01 9.1985043e-01 9.6172646e-01 8.8223856e-01 9.4477822e-01 8.8310948e-01 9.4461306e-01 9.1875210e-01 9.1233363e-01 9.2124013e-01 9.5460897e-01 8.4640982e-01 9.0882657e-01 9.8169468e-01 9.7828355e-01 8.4150533e-01 8.6888923e-01 9.7138825e-01 8.7988144e-01 9.6720910e-01 8.9450147e-01 9.5331584e-01 8.8871809e-01 8.9736685e-01 8.6258146e-01 9.1331565e-01 9.0968870e-01 9.4833654e-01 9.0536967e-01 9.5099871e-01 8.0251958e-01 9.2526150e-01 9.8971957e-01 9.0340947e-01 9.4955892e-01 9.6838162e-01 8.7534901e-01 9.1178797e-01 9.2649154e-01 9.5260993e-01 9.3178143e-01 9.4943000e-01 8.7816171e-01 9.6506542e-01 8.3422958e-01 9.3443585e-01 9.3220084e-01 8.5706573e-01 8.4666325e-01 9.0474744e-01 9.1080644e-01 9.2406899e-01 8.7901768e-01 9.3265263e-01 9.5992829e-01 9.5696271e-01 9.1932272e-01 8.0937044e-01 9.0904917e-01 8.9516756e-01 9.4797906e-01 8.4159421e-01 9.6773901e-01 9.7099825e-01 9.6941820e-01 9.8174088e-01 9.7569951e-01 9.3655362e-01 8.4130333e-01 9.5994549e-01 8.4235414e-01 9.1429418e-01 9.3418117e-01 8.4600977e-01 8.8166496e-01 8.7594776e-01 8.8571112e-01 9.6308174e-01 9.5315927e-01 8.6997519e-01 8.9383032e-01 9.4686804e-01 9.4399596e-01

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
3.2420590e+01 3.3246607e+01 3.0526910e+01 3.5166573e+01 3.1868301e+01 3.6025002e+01 3.2513623e+01 3.6557796e+01 3.3752212e+01 3.4422130e+01 3.2526018e+01 3.2581161e+01 3.3743555e+01 3.6960777e+01 3.4225270e+01 3.2965308e+01 3.4591031e+01 3.4204203e+01 3.4678123e+01 3.5728720e+01 3.0830047e+01 3.1550681e+01 3.3304790e+01 3.2676753e+01 3.2742330e+01 3.1684556e+01 3.2830915e+01 3.2956614e+01 2.7365639e+01 3.3207307e+01 3.3420925e+01 3.4357941e+01 2.8280126e+01 3.4523458e+01 3.2705274e+01 3.2455891e+01 3.1636060e+01 3.1594957e+01 3.1805202e+01 3.3886574e+01 3.3438829e+01 3.3330030e+01 3.4168514e+01 3.0637353e+01 4.2149167e+01 3.6340559e+01 2.9315308e+01 3.5778314e+01 3.7693050e+01 3.2598714e+01 3.2990836e+01 3.4967659e+01 3.9748920e+01 3.6745043e+01 2.7117550e+01 3.6014760e+01 2.9367558e+01 3.3845350e+01 3.5477339e+01 3.1513372e+01 3.2517953e+01 2.4755097e+01 3.0229897e+01 3.4799343e+01 3.3371710e+01 2.9600910e+01 3.3275088e+01 3.3567110e+01 3.4527016e+01 3.4942320e+01 3.2359383e+01 3.2607100e+01 3.1467914e+01 2.9032039e+01 3.3122878e+01 2.8496709e+01 2.9908448e+01 2.9962886e+01 3.0345299e+01 3.1737613e+01 2.8551485e+01 3.2610551e+01 3.3082660e+01 3.3719298e+01 3.6434018e+01 3.6589278e+01 3.3889586e+01 3.8036774e+01 3.1483497e+01 3.4196794e+01 3.5154035e+01 3.5488608e+01 3.6143183e+01 3.3473491e+01 3.4686446e+01 2.8687495e+01 3.5725742e+01 3.0188298e+01 3.3084534e+01 3.3538519e+01 3.6226849e+01 2.9052099e+01 3.6032733e+01 3.0811503e+01 3.2616190e+01 3.3888566e+01 3.3074570e+01 2.9683515e+01 3.0600771e+01 3.4345247e+01 3.6983843e+01 3.3692824e+01 3.3762461e+01 3.4024582e+01 3.3698854e+01 3.1238613e+01 3.4978833e+01 3.4991078e+01 3.4577741e+01 3.3749227e+01 3.4982272e+01 3.0487868e+01 3.2317632e+01 3.1125588e+01 3.4413791e+01 3.1881871e+01 3.1373821e+01 3.0416864e+01 3.2066187e+01 3.1128313e+01 3.0240249e+01 3.0125198e+01 3.1343454e+01 3.5479092e+01 3.4450767e+01 3.2953507e+01 3.4456795e+01 3.0136375e+01 3.3462150e+01 2.9894274e+01 3.1367432e+01 3.2839320e+01 3.1440398e+01 2.9400374e+01 3.1106338e+01 3.1242624e+01 3.5537892e+01 3.3056459e+01 2.8610281e+01 3.4296217e+01 3.5819772e+01 3.2503922e+01 3.0963029e+01 3.4762112e+01 3.4796284e+01 2.9645345e+01 3.4468088e+01 2.6975590e+01 3.3738555e+01 2.8825009e+01 3.2663999e+01 3.2547878e+01 3.2308091e+01 3.2489966e+01 3.0868597e+01 3.2974220e+01 3.0866111e+01 3.8197342e+01 3.0609568e+01 3.5478978e+01 2.9249184e+01 3.6185622e+01 3.1948258e+01 3.2649719e+01 3.3305650e+01 3.4643955e+01 3.6566241e+01 3.4968484e+01 3.2632218e+01 3.6741383e+01 3.5700008e+01 3.1962468e+01 3.1410623e+01 3.0412061e+01 3.3749077e+01 3.5649661e+01 3.7649263e+01 3.2832574e+01 3.1783914e+01 2.8264292e+01

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
9.2507465e-01 9.6528566e-01 8.7255441e-01 1.1287379e+00 8.7318727e-01 1.0767102e+00 9.1419676e-01 1.1503304e+00 9.8074509e-01 1.0135025e+00 1.0495025e+00 9.4794536e-01 9.6829273e-01 1.1345767e+00 1.1048008e+00 9.2407796e-01 1.0228634e+00 9.3853195e-01 9.9377619e-01 1.0407662e+00 9.5048989e-01 9.0465688e-01 9.8056930e-01 8.9777156e-01 9.6357127e-01 9.3864452e-01 9.9754613e-01 9.7271356e-01 8.4383151e-01 9.6981983e-01 9.7510267e-01 1.0112663e+00 7.8730400e-01 1.0299498e+00 9.9307979e-01 9.0239520e-01 8.5428231e-01 8.8972742e-01 8.5933162e-01 9.6625934e-01 9.4175449e-01 9.9120729e-01 1.0503963e+00 8.8223053e-01 1.3261434e+00 1.1063209e+00 8.4058398e-01 1.0844267e+00 1.1153093e+00 1.0092643e+00 8.9585237e-01 1.0599818e+00 1.2321707e+00 1.1359624e+00 8.3503556e-01 1.1792243e+00 7.9159781e-01 1.0830419e+00 1.2181870e+00 9.9888500e-01 1.0227144e+00 6.8557277e-01 9.6836193e-01 1.1061227e+00 1.0883453e+00 9.5681974e-01 9.9436299e-01 1.0304323e+00 1.1273949e+00 1.0735563e+00 1.0582583e+00 9.6040272e-01 1.0032137e+00 8.4900547e-01 1.1035351e+00 8.7867480e-01 9.6433176e-01 9.1850122e-01 8.9337435e-01 1.0449390e+00 8.9639384e-01 9.6704971e-01 1.0084258e+00 1.0528587e+00 1.1764481e+00 1.0913280e+00 1.0136672e+00 1.2737156e+00 9.5130359e-01 1.0367909e+00 1.1983402e+00 1.1319901e+00 1.1117462e+00 1.0343695e+00 1.0838628e+00 7.5266057e-01 1.0763316e+00 8.8067924e-01 9.6734383e-01 9.8800551e-01 1.2265742e+00 7.8833055e-01 1.0338670e+00 8.6666625e-01 9.9039950e-01 9.7142684e-01 9.3138616e-01 8.5849977e-01 8.5486301e-01 1.0516028e+00 1.1105313e+00 9.5943505e-01 9.8845171e-01 1.0566288e+00 9.9712198e-01 9.5545756e-01 1.1817974e+00 9.9128482e-01 1.0117892e+00 1.0979115e+00 1.0493943e+00 9.1318848e-01 9.3157311e-01 8.7073304e-01 1.2459441e+00 9.3412689e-01 1.0482297e+00 9.4224032e-01 9.5134153e-01 9.0857493e-01 9.7264161e-01 8.2900820e-01 9.3140549e-01 1.1330242e+00 1.0333002e+00 1.0117861e+00 1.2053255e+00 8.5291396e-01 1.0148928e+00 8.6641379e-01 9.7080819e-01 9.5457159e-01 9.5207457e-01 9.3539674e-01 9.0769069e-01 9.5322590e-01 1.1181803e+00 9.9765614e-01 7.5370610e-01 1.0807114e+00 1.0804601e+00 9.0214124e-01 8.7101998e-01 1.0167435e+00 1.2045936e+00 8.7300539e-01 1.1054300e+00 7.9145574e-01 1.0279340e+00 8.7623462e-01 1.0034756e+00 1.0386933e+00 9.3910970e-01 1.0028455e+00 9.9868824e-01 9.8752945e-01 9.8319327e-01 1.3110209e+00 8.6180633e-01 1.0993856e+00 8.5912563e-01 1.1303979e+00 9.8690459e-01 9.6910090e-01 9.1456819e-01 1.1525339e+00 1.1064552e+00 1.1062255e+00 9.7226683e-01 1.1091447e+00 1.1072238e+00 9.6544444e-01 9.6681036e-01 9.3247685e-01 9.6854634e-01 1.1035119e+00 1.1317148e+00 9.5557793e-01 9.8908485e-01 7.4873648e-01

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
2.5695885e-01 2.6882042e-01 2.3470353e-01 2.9299329e-01 2.2742702e-01 3.1253572e-01 2.4986352e-01 3.0770122e-01 2.5191977e-01 2.7931567e-01 2.8133743e-01 2.6316239e-01 2.6067201e-01 3.2982339e-01 2.8993002e-01 2.5506356e-01 2.8728051e-01 2.4952121e-01 2.8613379e-01 2.6894157e-01 2.3606353e-01 2.1670935e-01 2.3470242e-01 2.4294172e-01 2.4376454e-01 2.3228195e-01 2.3554918e-01 2.4851241e-01 2.0917546e-01 2.4971488e-01 2.4264224e-01 2.7405461e-01 1.9086415e-01 2.6346574e-01 2.5908801e-01 2.2138495e-01 2.2910721e-01 2.2169919e-01 2.0660065e-01 2.3207102e-01 2.5554688e-01 2.5153751e-01 2.6073682e-01 2.0919640e-01 3.3984433e-01 2.7503792e-01 2.1709889e-01 2.7068095e-01 3.0307041e-01 2.4529612e-01 2.2987015e-01 2.7736967e-01 3.0310708e-01 3.0544316e-01 1.9205388e-01 2.7098021e-01 2.0722466e-01 2.6387343e-01 2.8998308e-01 2.2633010e-01 2.5177075e-01 1.6347011e-01 2.4036389e-01 2.6485871e-01 2.8491965e-01 2.2273619e-01 2.4511873e-01 2.5930533e-01 2.6589995e-01 2.7797191e-01 2.3357373e-01 2.4279909e-01 2.3544532e-01 1.9447286e-01 2.3993534e-01 2.0856243e-01 2.2125251e-01 2.1988206e-01 2.0590152e-01 2.6441952e-01 2.0052739e-01 2.2978496e-01 2.4483670e-01 2.3879510e-01 2.9398425e-01 2.7541852e-01 2.3777469e-01 2.9151131e-01 2.0672752e-01 2.4584031e-01 2.7475025e-01 2.7064343e-01 2.5603684e-01 2.6165327e-01 2.4233155e-01 1.7892657e-01 2.6111203e-01 1.9965682e-01 2.4201634e-01 2.6281353e-01 3.1928221e-01 1.9731963e-01 2.7752862e-01 2.2633080e-01 2.6783167e-01 2.5447186e-01 2.6424243e-01 2.1960672e-01 2.2984242e-01 2.8788736e-01 2.8681630e-01 2.6949787e-01 2.3993685e-01 2.4440073e-01 2.5010397e-01 2.3230769e-01 2.9879682e-01 2.4200592e-01 2.6957748e-01 2.6073240e-01 2.6355347e-01 2.3403674e-01 2.2411413e-01 2.2956729e-01 2.8105976e-01 2.2913304e-01 2.4898608e-01 2.3304000e-01 2.2692988e-01 2.3728251e-01 2.2552243e-01 2.0364084e-01 2.3359511e-01 2.6619167e-01 2.6666588e-01 2.3666880e-01 2.7239113e-01 2.0146697e-01 2.3045559e-01 2.1695523e-01 2.1387991e-01 2.2366404e-01 2.2809635e-01 2.0901297e-01 2.2441100e-01 2.3418882e-01 2.8552218e-01 2.4609015e-01 2.0282492e-01 2.5940295e-01 2.7407006e-01 2.3344890e-01 2.1179142e-01 2.7047821e-01 2.9832768e-01 2.0859082e-01 2.8881331e-01 1.8384598e-01 2.5286491e-01 2.2012615e-01 2.3615775e-01 2.6845565e-01 2.3356355e-01 2.7164193e-01 2.4179380e-01 2.5247973e-01 2.5637548e-01 3.2126483e-01 2.3100774e-01 2.8832546e-01 2.0043257e-01 2.7918333e-01 2.4884522e-01 2.2904723e-01 2.3738940e-01 2.9461278e-01 2.9782005e-01 3.0332073e-01 2.5175971e-01 3.1203784e-01 2.6611535e-01 2.3713507e-01 2.2203585e-01 2.3602325e-01 2.5093670e-01 2.6860434e-01 3.0137874e-01 2.3759606e-01 2.6840346e-01 1.9200556e-01

View file

@ -0,0 +1,20 @@
8.278938049410748956e-01 9.035293984476246987e-01 1.862188994679486731e-01 8.921151312310462433e-01 2.061859119379583216e-02 3.440636727385729676e-01 1.533779912830328662e-01 5.701372300009802663e-01 5.510020730211558915e-01 1.792362258426003496e-01 8.086175120876580857e-01 6.115487184317183189e-01 1.233471787164852618e-02 1.441643531871039663e-03 4.044309209045688913e-01 3.561398959499905148e-01 1.281985712929750720e-01 8.663300833847481508e-01 8.696027786291581352e-01 3.611727370363766454e-01 5.283537658772616830e-01 1.440241088090119526e-01 3.112457227138950566e-01 6.031280796897889873e-01 9.230324792742518047e-01 2.332121881136874908e-01 3.192652267403439659e-02 3.466206294995559656e-01 2.988687728046366399e-01 5.116749542048093513e-02 2.584975830914494344e-01 4.302023478042227289e-01 8.003972751713522849e-01 9.364931911368097328e-01 9.737098649964673891e-01 4.718038453972229762e-01 4.526591686607864817e-01 1.056485678520797666e-01 5.883019714285405710e-01 3.846092237676981274e-01 6.461500053435473845e-01 1.013239729848824933e-01 1.216151561651189761e-01 5.159668929484659827e-01 8.452074473510227115e-01 9.885170962247968873e-01 7.623883073490128615e-01 2.291163243615434997e-02 5.775530980802381364e-01 7.820699896828091635e-01 8.239186345842965942e-01 3.391800105260227571e-01 9.546318451614538292e-01 3.789677917867695367e-01 4.526533399649290690e-02 8.366786473238587707e-01 3.082636811049858094e-01 1.173936820793450853e-01 7.631994969169442200e-02 2.997416650722183329e-01 5.795208655160232203e-01 3.942350892542011431e-01 1.175126383297261379e-01 4.928232513950027149e-01 9.421293996225950096e-01 8.365391053841342295e-02 6.868059693571844093e-01 3.589527962429440722e-01 7.592939427166059962e-01 5.623849466131448649e-01 2.110746828032050715e-01 9.824683704668600859e-01 2.661230142246236996e-01 6.162272315007123469e-01 5.023254536607497656e-01 5.202854476669782624e-02 5.835090668842095596e-01 7.864642118889143552e-01 2.504012386867506823e-01 6.728308641135989365e-01 4.610793534576096420e-01 4.820508770515909980e-01 9.720403251022265989e-01 3.100069285263498120e-01 7.681017126461753275e-01 7.956539306007082146e-02 2.593389637887737464e-01 1.137852590403054531e-01 3.885303073284454012e-01 8.599094660075957686e-01 5.215167875918280682e-02 1.620908248572288102e-01 1.859236090457663249e-01 6.247716512610480555e-01 3.415128495520775020e-01 7.034903368378029320e-01 6.037564640019568163e-01 2.338969434423310290e-01 1.002104885609900187e-02 7.866058403969036217e-01
8.033694116033356369e-01 8.653264545544031572e-01 7.468340410754038539e-01 6.362430919910603278e-01 5.120006306625468628e-02 9.503348372633585450e-01 4.697732609626817935e-01 4.221305288459429317e-01 3.153452119838391354e-01 2.991014843442657556e-01 1.190667967280257811e-01 3.486567714509342109e-01 8.289493649885054660e-01 8.454811050800014049e-01 9.149673018211901265e-01 7.708707837193897738e-01 2.640157732122547785e-01 2.107897022189605396e-01 4.207633055054439408e-01 6.719500284654699174e-01 1.458031684893063007e-01 1.800412735886125493e-02 8.402733435220011149e-02 4.206760156883160295e-02 1.376933515041314227e-01 1.716717341022133692e-01 1.788220727652158892e-01 8.224310433402118869e-01 7.729093666867475898e-01 2.064223621025984556e-01 9.592092036227207741e-01 8.312490243754996344e-01 6.673289360369902834e-01 4.632847903690773261e-02 7.643954098358983762e-01 9.359341525615098023e-01 1.914966319163026176e-01 4.536590469402868031e-01 8.640836016538007147e-01 3.941529178175462444e-02 5.602101995205478469e-01 9.263806161941660067e-01 1.555995325944817820e-01 6.172208102950116348e-01 6.335576752812099866e-01 9.766975460368043649e-02 4.475795689539874278e-02 3.248842796104995934e-01 5.700377122149502540e-01 9.066962967256807504e-01 5.458460621505676347e-01 6.833401285581487405e-01 2.887244409544044155e-01 1.316338647016834784e-01 2.325673305245992140e-01 4.150121963188406760e-01 3.834845466366055833e-01 8.149365773968725302e-01 1.867003849450201702e-01 3.170322173543018707e-01 6.832093662682684476e-01 1.729728518929105618e-01 9.236557359702636250e-01 9.152941252150086360e-01 7.224879983096620384e-01 8.557920626598064517e-01 5.344883059251644974e-01 4.876873274449112783e-01 8.308277804506420949e-01 3.916624489322212410e-01 3.459695122273966916e-01 4.033512499027409604e-01 6.555726444913008155e-01 7.138452409380238173e-01 1.683937314599968094e-01 1.769382143486440961e-01 7.588683655178136700e-01 3.750589892880819010e-01 7.525176245126207197e-01 6.083961152538303052e-01 1.145972309907993258e-01 6.239614485809552580e-01 1.307655482065895880e-01 8.530458750670916190e-01 4.801602070124768584e-01 8.168122189863546989e-02 3.793139622744635675e-01 1.496986997776840189e-01 7.129023878302899186e-01 6.830979237438047358e-01 7.635375943876505644e-01 1.824004963251233402e-01 5.764695848992339444e-01 8.865113248731604223e-01 5.784337085544002388e-01 9.700026628755119562e-01 7.318207347905059112e-01 3.851401393936705331e-01 1.774291851193399161e-01 9.763423229242296220e-01
9.287178470949695175e-01 1.748282433617460718e-01 9.238531711586964734e-01 8.291274445125006443e-01 9.513259272578692416e-01 7.486316801165745494e-01 6.257378457524477300e-01 2.062711693536473101e-01 3.970721244184766130e-01 2.738325225026445597e-01 8.735038948299954642e-01 5.415282140033768066e-01 5.176317904298315398e-01 5.347036264518250093e-01 7.482056965410627258e-01 4.140672582824351800e-01 8.709067272363142376e-01 9.499605569181273079e-01 5.380266748336398619e-01 4.369252161707162241e-01 8.235722216228258397e-03 4.308187193646527691e-01 6.030581482859224129e-01 7.316831195156517920e-01 5.540499846834291420e-01 2.044203040111662872e-01 8.645251782981867583e-01 1.816095717570278545e-01 9.639119168018674966e-01 3.572031072322333634e-01 5.580226816834680248e-01 5.586629875016585478e-01 7.213854320902782780e-01 8.513998260042524580e-01 6.308764347277173723e-02 4.299855362100638567e-01 8.789303907444128150e-01 9.178850359236285783e-01 2.275205845091231582e-01 1.899395443939643213e-01 7.103070862773533944e-01 9.450015289553428399e-01 1.691856364522159595e-01 7.368719616877857925e-01 9.600189536623833231e-01 5.128846522932454244e-01 6.209162727118655578e-02 7.992250598838029907e-01 9.141050280518014937e-01 1.471297785256820978e-01 7.466162372930541524e-01 4.656107650642931084e-01 6.399324135161845728e-01 2.023617619481610230e-01 1.019104648900100996e-01 4.390693688536728700e-02 9.822620353006089600e-01 2.881951852926285529e-01 6.191575015960482098e-02 8.989580763251467932e-01 4.635958631890454429e-01 1.781973138114967270e-02 7.906911683818984571e-02 6.525270776225711167e-02 3.620583622807886925e-01 2.651673718940715796e-01 5.829372395929610651e-01 2.118159824373908595e-01 5.900287159143694504e-01 9.405929925178391215e-01 9.262415619063500971e-01 5.639581506302312475e-01 4.529556154689695635e-02 2.873819210518682166e-01 5.718545934306838996e-01 9.877670791317306742e-01 4.120364488714320927e-01 9.896078045634184583e-01 3.796586997026456523e-01 1.178183652203194098e-01 6.641068305236120795e-01 4.045960610587706618e-03 2.262690437428437340e-01 7.839938005832693957e-01 7.695391333937223743e-01 3.713918392552509884e-01 4.245533341514018399e-01 1.475072494020331915e-01 6.011975181419888514e-01 5.158174017998343741e-01 1.788706151398071764e-01 8.880707130134481986e-01 6.463351030474082659e-01 6.499920635615744624e-01 8.570273676455353318e-01 6.055019270899113515e-01 2.123561211054603159e-02 2.027688787664126968e-01 1.930834215328548487e-01 5.131906052747271518e-01
2.599990881903107010e-01 6.767857524909899336e-01 7.188217446352963558e-01 3.037178903357997672e-01 4.252381412838680541e-01 4.070924411439535984e-02 8.426710493038247485e-02 8.301517457289483426e-01 8.254603255702420705e-01 7.258533909453509514e-01 9.958706809470796451e-01 1.323408451651194584e-01 8.523995455245143571e-01 2.572405385832454705e-02 4.715363690065482727e-01 7.920130365690022378e-01 7.613745641534582775e-01 5.108305991695683002e-01 7.908714335912382376e-01 4.641131983754837043e-01 3.112627109831845873e-01 4.218013908715474436e-01 3.291577909008427394e-01 2.538715054071232213e-01 1.362470842487485401e-01 2.716429790290709745e-01 1.485325814161112534e-01 4.514539027544387517e-01 6.900835128673067365e-01 7.793407072946112457e-02 5.938024345270752624e-01 1.497853829906865553e-01 5.399567982652856424e-01 1.419209916759478496e-03 7.719776132867679497e-01 3.130795105576239523e-01 6.670071611167494030e-01 8.900596881158256979e-01 8.011158503301568645e-01 7.089295605187424520e-01 4.671116382997058114e-01 6.682965170673403899e-01 6.524835265739736823e-02 5.454288420771494783e-01 7.751910790556310049e-01 8.192595541387335256e-01 3.098855848167891835e-01 3.689971355659119601e-01 8.666507475054133769e-01 2.749042684253171220e-01 3.566565602478318775e-01 4.838173174723044978e-01 1.032975933616413489e-01 5.063065339610417492e-02 5.791168455729079900e-01 3.573337411289496668e-01 6.714098909652352898e-01 2.917057662433912846e-01 2.654964332620638467e-01 7.171804039048814694e-01 3.314488637898249657e-01 5.230399837442840649e-01 6.866534136026025692e-02 1.252966394621071178e-01 5.349397882659551184e-01 2.841423847455760709e-01 4.158473635710734362e-01 7.197062989831272128e-01 5.123869045047864113e-01 8.675622821594339840e-01 8.097441845042540054e-01 7.317178252133832439e-01 3.300847596465853462e-01 5.922311859141077273e-01 8.852619511417836318e-02 2.673412917259408994e-01 6.878259052441990651e-01 3.223000927116328462e-01 8.859387123976615319e-01 5.722722388300067742e-01 8.254877606669521750e-01 5.705299682290687624e-01 7.046478734972855262e-01 1.316324413616759559e-01 3.056358395675535800e-01 2.396516834600909140e-01 2.041201422493257311e-01 1.610755140653103989e-01 1.617012564641111538e-01 4.449920510036902144e-01 2.731012972755201274e-01 7.826874666257994662e-01 5.193612375350010746e-01 8.688804522977213729e-01 3.742157602758655610e-02 6.649628920608219307e-01 5.978149424619171315e-01 5.345645500553952711e-01 9.443202650415919441e-01 6.105837075491723498e-01
6.387761328141735584e-01 4.210087412162694109e-01 3.777306694964789324e-01 3.576349403292201634e-01 7.272699618880260619e-01 9.173392803607671731e-02 1.212535698300880593e-01 3.871229381194544183e-01 7.735150198351389284e-01 4.687200483013695962e-01 5.161778571874678923e-01 9.839646447226980674e-01 8.626932748911960713e-01 9.618485576577924245e-01 2.997996427525421170e-01 3.955404657388794654e-01 8.480126027102616870e-01 8.194992325050480808e-01 2.800213436873294492e-01 7.188391466620779324e-01 2.289766105875049584e-01 3.838547514028287644e-01 1.363553401061209369e-01 2.131328253542326134e-01 2.666779468144075960e-02 3.252883844200405994e-01 4.207860197469600605e-01 2.991365385037647595e-01 9.180779845534067229e-01 8.787338732192649937e-01 5.404510999105649471e-01 1.735493827761729335e-01 7.405224640747264386e-01 3.927355563629583157e-01 3.957109873399460298e-01 1.313029813325972128e-01 6.434498219738993274e-01 7.162213694578050127e-01 6.454998257494671821e-01 3.808124530008022424e-01 2.027201015737234435e-01 6.667632842770417900e-01 1.609491052365198405e-01 1.192413785409307536e-02 4.546773323526854815e-01 7.733541911050207940e-01 3.902525737195561284e-01 4.006023779897505133e-01 5.156517815815246930e-01 6.135685498584592112e-01 7.062153114980724844e-01 5.505858882117883324e-01 3.541308807182554919e-01 5.237151122342533771e-01 5.230649229131387745e-01 1.973541027697351957e-01 7.940327858595511712e-01 9.998588700623055603e-01 3.878271015153827994e-01 4.455006584967207139e-01 8.376414508056347907e-01 3.310833863524501597e-01 8.020469097392601832e-01 1.890327633084128989e-01 3.830289472395409511e-01 8.605040171046141051e-02 9.978185524023941433e-01 8.333890591892906263e-01 4.509013468741837061e-01 6.355778557686052599e-01 1.422515991097305088e-01 9.549891485963732940e-01 7.535776302868563148e-01 9.306005301880662106e-01 2.444330347211679522e-01 5.828218427569508142e-01 1.261938242968304591e-01 2.829188731405173352e-01 8.100246952078660190e-01 2.032739130996042975e-01 3.997268448390065565e-01 3.882777703107541667e-01 1.102505652624736765e-01 5.826634725328041498e-01 6.508734477956333864e-01 1.777287661702166011e-01 4.857051012052149286e-02 6.850537712379254351e-01 5.012281307761055071e-01 3.329154880061502286e-01 5.006261767216675374e-01 4.542081454976160115e-01 6.777801995399822532e-01 4.271303586474960445e-01 7.820470659692947413e-01 5.143462618485082904e-01 4.071273891563575997e-02 8.503383643856671226e-01 6.877485768345151795e-01 6.498843855014626580e-01
5.539512747016193117e-01 6.329206647391879548e-01 2.798533500321682688e-01 4.825977295850051307e-01 7.625297023172977751e-01 9.081309101427640362e-01 4.124792086535029600e-01 3.647019658319609059e-01 7.529595202332928228e-02 3.072404010876803593e-01 7.890673660964639957e-01 4.079781478915127657e-01 1.440519120695739064e-01 2.538968953804546791e-01 1.595028243568367143e-01 9.066545851872198636e-02 6.367601114674349416e-01 7.622263643880089479e-02 3.015728236404162654e-01 2.424070469873378375e-01 5.711440390241000475e-01 5.717001375511508998e-01 2.237853674032181939e-01 7.112101625753678436e-01 4.321054197012103026e-01 2.505322169010260058e-02 5.877307077139551916e-01 4.415771174397812304e-01 3.766022855145171322e-01 9.803490652619811785e-01 1.229258314111529860e-01 8.108351868714478439e-01 8.558595456964329662e-01 2.168217533833206589e-01 2.034022719386595623e-01 8.687457137579783772e-01 9.013327195854559104e-01 8.156766512673154779e-01 2.717576187546973943e-01 1.756417893371479133e-01 7.555856977566548505e-01 6.708809351312817748e-01 8.998789237886926085e-01 1.936367585946979775e-01 7.949724635465026390e-01 3.164799312763589834e-01 5.493048513173155456e-01 1.608917269168268493e-01 3.048667492191803330e-01 5.599401537727016764e-01 5.779501360842279611e-01 1.296714605309662316e-01 9.160752328055997706e-01 8.058674476110374574e-01 4.385508937505578908e-01 9.212419718012100356e-01 2.249887451242467140e-01 6.283927745352599903e-01 3.778992451536005159e-01 3.571958698867505611e-03 7.276526470528231760e-01 9.051678673805297892e-01 8.465837072484881931e-01 4.548317505393462135e-02 3.189318261926020748e-01 4.446388607398673587e-01 4.292356336344156365e-01 4.203980977718795309e-01 4.698059253071955599e-01 6.151991200848159203e-01 8.479986139404802614e-01 9.870993262459623052e-01 3.164206525899861955e-01 6.464672171639846976e-01 8.508781429592480183e-01 4.733667503354813677e-01 8.076014176740163863e-01 6.671443255679101458e-01 6.639213267047979761e-01 3.681688930741919830e-01 4.679870252651611162e-01 1.790041740686979521e-01 8.446070273663058847e-01 3.350737544979878191e-01 6.600272349677447359e-01 4.356083218487936115e-01 7.995134167346013010e-01 9.083660261041469619e-01 9.743975306734570241e-01 8.144839650654719376e-01 6.865011984586443239e-01 1.709747281999153268e-01 8.534933687161740945e-01 9.494753729726415070e-01 8.140124992294850426e-01 8.936241255316055287e-01 9.087976860818796077e-01 9.030687493451383663e-02 4.025785149840914734e-01 9.592005611533803711e-01
5.714058727476275523e-01 7.913573761505965365e-02 9.301773447377043036e-01 4.302822433307075256e-01 4.618892554175407783e-01 1.882471300213742760e-01 6.231472878215863487e-01 2.350437450940777717e-01 8.483410480771292894e-01 8.580803842040533036e-01 4.246398783388435350e-01 5.667321565946502604e-01 7.247417018955526480e-02 5.373984417482219333e-01 8.794242091541510931e-01 9.699025554453030162e-01 8.254197752548814160e-01 7.739723972867470492e-01 6.365819416181199841e-01 3.451230687021222820e-02 1.829102490094791644e-02 9.179618383026147965e-01 4.481667270072077214e-01 4.771270250445739380e-01 1.588469404953456454e-01 3.766332499200618633e-01 5.057026248713025751e-02 9.125900914275182352e-01 8.438133644246305076e-01 3.282972411719701222e-01 6.042003956122835584e-01 7.423456085393266290e-01 1.389012737541106546e-02 3.674754266702850991e-02 2.126646727703802586e-01 3.085666164246750887e-01 4.303440338750976757e-01 1.749037978865556342e-01 2.177699993322510519e-01 6.675614739991906355e-01 1.926533336347433512e-01 8.032010572660308600e-01 4.611412981769049679e-01 9.907201268457492827e-01 8.973785930837320235e-01 6.286342392657409128e-01 8.111266245859546364e-01 1.154230969025437092e-01 8.382880466301794176e-01 1.053753927827069115e-01 9.921712862234919328e-01 9.041662667920956631e-01 3.626267376021269362e-01 2.262225368932846425e-02 8.669003741626111204e-01 7.597054897704164089e-01 4.700318514995387442e-01 4.338185014241978665e-01 1.205425463362067573e-01 2.413879270602589111e-01 5.483334840461459025e-01 2.042653841254596925e-01 5.452588940366013270e-01 3.164646091706100339e-01 1.878958248945691301e-01 2.188622304737641855e-01 2.970982599823450698e-01 5.952148400199362976e-01 9.614251220149501176e-01 5.446813400697393392e-01 5.900748097930779146e-01 2.653062526715309621e-01 5.459933097767216692e-01 3.174185404661935550e-01 1.412133354129242457e-01 1.487441669790685594e-01 3.953776242211952674e-01 5.274261039692862418e-01 1.756132307607755072e-01 4.481942852746899630e-01 6.390660088765629521e-01 2.860380430081067571e-01 5.866902519902850166e-03 3.026687645174785946e-02 1.952533570196290924e-01 2.154769096186736066e-01 8.920573593276575064e-01 5.644513191915436767e-01 5.551464696654353492e-01 4.378199413349500579e-01 8.685737643974280608e-01 7.493934764293597173e-02 9.556749726352036234e-01 6.386433482536227890e-01 8.714694524097754691e-02 1.722786161701279628e-01 6.526867532768643176e-01 8.950304705281527662e-01 6.158198776753203152e-01 9.587176904005377809e-01
7.705718397401561948e-01 3.165816092999733655e-01 4.334200859975760878e-01 8.639807015515663657e-01 5.576514209532534849e-03 2.456745447057938625e-01 1.664686313299922338e-01 9.637084729617834133e-01 1.083448720752323569e-01 1.865218070380464388e-01 3.730358890475884426e-01 5.015351872138350542e-01 7.420710795841709562e-01 4.919420674769692248e-01 3.426558201886464872e-02 8.669984854934246199e-01 2.204243734202966376e-01 4.109792246853891662e-01 4.361732572946559472e-01 6.819306998053020763e-02 9.986304248057148447e-01 4.119289455392274313e-01 8.533050041845835487e-01 3.416914861912183632e-01 6.522191951039880697e-01 4.162803668786793088e-01 9.051674379917418189e-02 4.552378661306888397e-02 2.122677193466918633e-01 7.461518531655018105e-01 4.654688019259497489e-01 7.877564083548750373e-01 4.518328005682387127e-01 7.173857464237374248e-01 6.940056370290903498e-02 2.804574410412373764e-01 6.095681113112718652e-01 3.680596478602831123e-01 1.814569150719304025e-01 6.505055517979729807e-01 2.759585245701871026e-01 1.429501104786028431e-01 7.813891153083207808e-02 8.925314279991185540e-01 6.692056941902108091e-01 1.915141341107173822e-01 5.750233129581091562e-01 2.051961006251528108e-01 3.849013692629975614e-01 9.503788222043518807e-01 7.690419386411734282e-01 9.978147530014782607e-01 1.719584162437415298e-01 4.890758882401113894e-01 7.195660736040896399e-01 2.485818040997200828e-01 9.706486601870933928e-01 5.182604282071262558e-01 8.082072245463804983e-01 4.889961284821118248e-01 8.042893959057633158e-01 3.200685313413229593e-01 8.983245016887355661e-01 2.811495336955205371e-01 3.986095833814048417e-01 8.607229214132059436e-01 4.827620119717191960e-01 6.715610252037491623e-01 9.330824374137768329e-01 7.537710530085762750e-01 9.840804224010484269e-01 2.319352541177217564e-01 9.569114943157627229e-01 5.821928104654411351e-01 6.700479524814679788e-01 5.663434680086896211e-01 8.851091082101365526e-01 6.800562815862243315e-01 3.578475213752868589e-01 2.900164669281133367e-01 8.379170683569914235e-02 9.929972839740475177e-02 5.946248553621906741e-01 1.991332889320840405e-01 8.115065723822508792e-01 2.023388190440008616e-01 4.056545651129230823e-01 2.966825350250481552e-01 7.457176343507545546e-01 9.856015771246517954e-01 2.264338016147812160e-01 8.366528670045663141e-01 6.116829813603242849e-01 2.605933184296719274e-01 5.765962146558850643e-01 5.064075092266390188e-01 5.499615769589756287e-01 9.240234698632640020e-01 7.169900155229913530e-02 3.544181364560751168e-01
8.154844535553099627e-01 4.797965609394789777e-01 7.476703385713100447e-01 9.086708404761600910e-01 3.191752505450355937e-01 7.611128630021511965e-01 6.246790343299296611e-01 1.942001426217137006e-01 2.789860414631386565e-01 3.236359785042408621e-02 3.178191288741717413e-01 8.372264298357038337e-01 8.872692914664047636e-01 9.589758852077276963e-01 3.123722260380168425e-01 8.980164015338999439e-01 7.260784140459818348e-01 6.567013512265649222e-01 1.028743505926521529e-01 6.821705410750319443e-01 6.889838995316139858e-01 5.587525493094736007e-02 6.921487028366646310e-01 3.616312929861494885e-01 1.673758008792780583e-01 6.626504595920326146e-01 9.125680913222075086e-01 1.424077784972291871e-01 6.508496429060767197e-01 6.615417385775157477e-01 9.654167310675311198e-01 5.536662974550183858e-01 7.092622144968085962e-03 6.694595400455760625e-01 1.828533619119211417e-01 3.421514408394116247e-01 1.242580151818144518e-01 9.888774797458224075e-01 9.777955172739735135e-01 4.271370765628749178e-01 1.211608384809655936e-01 1.580132417172936954e-01 3.242705395708289640e-01 3.268994391754735940e-01 5.213767653645562383e-03 4.475169480357120699e-01 9.593245219293577986e-01 6.994304536782350867e-01 7.063863152769014331e-01 8.381620829497931080e-01 2.760441799736219615e-01 3.755200946645842475e-01 3.627729621737311172e-01 9.518310606719182498e-01 3.577273025276901386e-01 3.991159901003488164e-01 4.187060513068554535e-01 7.422605403637314581e-01 6.697944269780702342e-01 6.020599837037767799e-01 1.571185850817550245e-01 7.519860911185742847e-01 6.635775704496444938e-01 9.487848173531471252e-01 7.900030232338028924e-01 4.143783957270819052e-01 5.618429740858444932e-01 3.737804619062014000e-01 6.179941187802344693e-01 6.553638605616040058e-01 1.009709416658691739e-01 4.935037098582963910e-01 5.485489972455533936e-01 1.024147956480448984e-01 1.195764707555347917e-01 4.910516327810896531e-01 3.551185778630389089e-01 3.857601645798814927e-01 2.074975219600547760e-01 2.084038664460790002e-01 5.268616653491025037e-01 6.948014877618717833e-01 6.179744044618615817e-01 7.063658085955483168e-01 7.925757227686872630e-01 6.199016959584816577e-01 1.163676037434490107e-01 7.425752264755586252e-01 5.403115665133301215e-01 2.546191951391015840e-01 6.961300925345208501e-01 4.003013072125547467e-01 5.906120962720950995e-02 5.879915846330325824e-01 1.213602408288709800e-01 3.801780679842765576e-01 1.731477742402802722e-01 4.624568816669496485e-01 3.304453744619206823e-01 8.810445876116090869e-02
5.140190515373614932e-01 1.419225260054487459e-01 7.777845802285945354e-01 3.327562899409282071e-01 8.916875699762913943e-01 7.212852862736146564e-01 5.727327199433507321e-01 5.897820225918504189e-01 7.318614954542906892e-01 7.393985144455500480e-01 4.531340740296823100e-01 9.903061584426188224e-01 4.213350938331624773e-01 4.542342471963995987e-01 9.788786426453045530e-01 1.881707000343846303e-02 8.005433413647761176e-01 1.523502822273363755e-01 5.630164732287495921e-01 5.946603842470724599e-01 1.225547698678740582e-01 1.531136594724622491e-01 8.157973612638946825e-02 2.752046015644330490e-01 6.809045821946161370e-01 6.455289724528190387e-01 3.830356726830793646e-01 4.446144649678575034e-01 4.969038423960672191e-01 5.497873820641221432e-01 9.471879627821714331e-01 5.933046675329255448e-01 4.099233758501530378e-02 5.790409810134594659e-01 9.546095885251496549e-01 2.608616052375664074e-01 6.910160339170060562e-01 1.293709850476291168e-01 6.407264616302255078e-03 6.186037089828009261e-01 5.537861302543241049e-01 3.527421038298221845e-01 8.033232052121624944e-01 8.128114152830284711e-01 8.319982582278713235e-01 5.939566376046836460e-01 2.291090283499520597e-01 5.438101817725821130e-01 6.881146379117278888e-01 2.421968586304659166e-01 5.874047918543783275e-01 6.210102709484541794e-01 7.041387566450251212e-01 6.959223476278774134e-01 9.133877300988062498e-01 9.230647706207778525e-01 6.856884219815310155e-01 6.997988808693775820e-01 6.177944932528769417e-01 5.512902545683161515e-01 5.818280341729102911e-01 6.538267999985679646e-01 6.946673485935980219e-01 4.817938258357623571e-02 9.352008817207906333e-01 4.774162142215661042e-01 5.768063588692976529e-01 4.589648891483899540e-02 7.998946815651652997e-01 4.434260476954369201e-01 9.850053510925722566e-01 6.648626681529369309e-01 4.606293826856903140e-01 3.309042418210563774e-01 1.438901922508034614e-01 7.986559119276418484e-01 7.037818421334554042e-01 3.605119534240813772e-01 3.785959549258922641e-01 9.562491516841659100e-01 4.997955143590974147e-01 1.029540300938682762e-01 1.819017177001992502e-01 3.665425750262368831e-01 1.688063588370778412e-01 7.030735208313992901e-01 8.922375654244527610e-01 1.055706412056253152e-01 2.664739907746691561e-01 9.906029568647586325e-01 6.043845090140997911e-03 3.495786295043534775e-01 5.989441999519146131e-01 6.776147193866479679e-01 7.012991789852640601e-01 1.825838783477321536e-01 7.612293578749116385e-01 1.564769891240175292e-01 2.762157292905387251e-01 7.641900040015234818e-01
4.746013333880729768e-01 7.609202966712714788e-01 2.537820854162747830e-01 1.709362234877408460e-01 1.886635378734374813e-01 2.439567014093724229e-02 7.640304718272151741e-01 3.483216170435471382e-01 7.744289278738043514e-01 4.190437573644867353e-01 5.319091476394965934e-02 8.580130976087452233e-01 6.259446446786639529e-01 8.793213970773006150e-01 2.441023074890465994e-01 7.753405549489799098e-01 8.760187573193888300e-01 5.946480724009295393e-02 2.873093046571124631e-01 8.710837851946537924e-01 9.103181731924696596e-01 6.534637257615111272e-01 4.128420398577182793e-01 4.905858108576378607e-01 6.178275806701372108e-02 6.368043900016381320e-01 2.865296941219959148e-01 6.371773028539067241e-01 4.924322796636745325e-01 1.709313290387282080e-01 1.856892551689268700e-01 9.592782603102242289e-01 5.402593764193130976e-02 7.287312244390512506e-01 5.679467572000697073e-01 6.255587794305905724e-02 3.069660218141317953e-01 1.089960430557104232e-01 5.550748245336984965e-01 2.555948886689661803e-01 4.140925514039996980e-01 1.180376445052062628e-01 8.832322629884041820e-01 7.784546946701487169e-02 3.177678935473182698e-01 6.681804863429485764e-02 7.047099396645268854e-01 4.133897376851528582e-01 5.600656990480865627e-01 3.883995683475501837e-01 4.459430113152932362e-01 4.214077227574740681e-01 4.763369230200156235e-01 2.701480661168440545e-01 4.296286564389811824e-01 9.601402258758658936e-01 6.326999441846863359e-01 2.442086919688498670e-01 8.407708423957936938e-01 3.626867985638081437e-01 3.641441713291436733e-01 7.932397565989488530e-01 8.902073520619256941e-01 1.929173010337000838e-01 7.309376779324568973e-01 7.305852858337777977e-01 6.510197444582447313e-01 9.512661608643838695e-01 8.461467164366111016e-01 9.245490147941206605e-01 2.658844813385705663e-01 9.538758859344749208e-01 8.215517204998477041e-01 8.217795540390903097e-01 7.569662091300560780e-01 6.262685322871274218e-01 5.597770510574888725e-01 8.155720175123675197e-01 8.545688745180864965e-01 8.986051518529034610e-01 2.477911506572628708e-01 8.462580108996445860e-01 6.065941220995090255e-01 6.500490804973033665e-01 1.120463882674053169e-01 9.299049132942927010e-02 1.388364074229719858e-02 5.901199124540731367e-01 2.795110110544174464e-02 1.644097083463245124e-01 5.341029647603202646e-01 5.276816677181681570e-01 5.439849107754858304e-01 5.371677986392331405e-02 4.515163125788429488e-01 5.036243367087100964e-01 5.721818679625961801e-01 5.271368612400184617e-03 7.720961020546839304e-01 9.015383457479009266e-01
8.301526916287945701e-01 8.704609696144033348e-01 2.955689129581380303e-01 1.762209253489944727e-01 2.698172933050072553e-01 1.138095349991521399e-01 4.092588531860634760e-01 8.202978121681584467e-01 2.822241377079557356e-01 6.117376205659387223e-01 7.169923068016897938e-01 9.310256256264415331e-02 3.989664052931106708e-01 1.651874953308862803e-02 7.890202597932294282e-02 9.068686774810821305e-01 5.203866694486933842e-01 4.297748572844445336e-01 5.208786995443430712e-01 2.163224881365530816e-01 7.274307306357226111e-01 1.675784956180090823e-01 5.969822786565782691e-01 8.959750832846602453e-02 1.253794151891943764e-01 5.352628522116801291e-01 2.562706125890066300e-01 6.030433202137867044e-01 8.330717547440393833e-01 9.603613683422040914e-02 7.569714244468559450e-01 3.184801677796517128e-01 1.667069341164499896e-01 3.132470247801235619e-01 6.417752836394801097e-01 6.433909425912354152e-02 4.056860213146201710e-01 3.166772891331335327e-01 9.574059746098845247e-01 1.492907964460536974e-01 8.311513764927496162e-01 6.652928354977717396e-01 2.396804722185036374e-01 5.812361618600220270e-01 9.724228681350225445e-01 2.853983236378453414e-01 5.337719354896472979e-01 6.779446197712412081e-01 5.485102006140557540e-01 9.010109155962182648e-01 5.724439967467525037e-01 5.965540527411405947e-01 1.598667990086183321e-01 1.363934512727023041e-01 5.327536522697270405e-01 4.123866715061276222e-01 4.617251396918636841e-01 6.935944951381239898e-01 4.300337419593377453e-01 1.892407993760835128e-01 1.666936825594794724e-01 4.625634184864588772e-01 4.805197636774838355e-02 7.003542850133466224e-01 2.130226006716084974e-03 8.678863343041013367e-01 4.874478520451258623e-01 7.043560228741558848e-01 6.317719270475393722e-01 5.372392256296196766e-01 2.982649812986511995e-01 1.272558612133412037e-01 2.467337555730741983e-01 6.546893200021091097e-01 6.291921159383098150e-01 8.505920470407707379e-01 4.046520490181828578e-01 3.875732096593392795e-01 8.551517214319142024e-01 4.152602284179877090e-01 9.587779137989138611e-01 6.977437468944928112e-01 3.240620775541913634e-02 4.025873770391376061e-01 5.485549335619134270e-01 7.146066156157020455e-01 3.012702534568838519e-01 3.526414480395153594e-01 3.309707144485515284e-01 4.315687014460974913e-01 6.641934530697197747e-01 2.172886798352815507e-01 4.807480925564590057e-01 5.006795397998469177e-01 5.818100901154411586e-01 2.107716091585690732e-01 6.606606051140029301e-01 9.317629042790995797e-01 9.840326342340242061e-01 5.752000964817773898e-01
9.843444595454536872e-01 1.339523968066913540e-02 6.082172659959028671e-03 7.828244785439336662e-01 5.069653703872761819e-01 2.804896494365415327e-01 2.112385836660957139e-02 6.016479440778699228e-02 7.457477935084961818e-01 3.445503949245375397e-01 4.063494277166557200e-01 8.630275274433116817e-01 5.948396018456146850e-01 1.400867933474212457e-01 6.997522422654076646e-01 5.766519767930851081e-01 5.419976500582250889e-01 7.474121304089603735e-01 2.951600193008566686e-01 7.980170422334191827e-01 1.829036799578199757e-01 6.317636496261300749e-01 2.812612231140887431e-02 5.464747656105657381e-01 3.909873503320924204e-01 4.940850205957293406e-01 8.157850130814222611e-01 5.111092739445756150e-01 9.336823640685747439e-01 7.157105167170837445e-01 7.778989455994214097e-01 1.398722535910470466e-01 5.642653936300449091e-01 3.218717164845980028e-01 9.717427501967056402e-01 3.665791984428700134e-01 3.874321311211759156e-02 9.437600858738082188e-02 5.679526822961932231e-01 5.141385991358327079e-01 7.497840799582222715e-02 5.736515309094968318e-01 1.928132849879083954e-01 6.924244068001785823e-01 1.748389677952593146e-01 4.469577663506929532e-01 1.738527450963387455e-01 7.195287763517190793e-01 8.861150811892871682e-01 1.058443750714600506e-01 1.941789362229970894e-01 9.188374820700584422e-02 7.706736301449305104e-01 6.718642548609364828e-01 5.981029087121966237e-01 4.832880127232569434e-01 3.073688779938709148e-01 5.156312334804930009e-01 1.777418420119527553e-01 8.885462205165685079e-01 4.486254681289014723e-02 1.345398129556140132e-01 7.467627984379916484e-01 4.384565546058830643e-01 7.217750080760946263e-01 3.949550352625393890e-01 4.307950907642028593e-01 6.087680934849041270e-01 3.294516167246774874e-01 1.316682090209408962e-01 1.824857738754404046e-01 5.332379826483617524e-01 3.567136182864261151e-02 1.976220743086236631e-01 5.849349042822560296e-01 1.133174406357483344e-01 7.711522754393199675e-01 8.557306786807005183e-01 3.038353471344266143e-01 4.422747047768413875e-01 2.537160404215925702e-01 2.372714099723788328e-01 5.906462765375103396e-01 4.849909323133470007e-01 2.692576210504484813e-01 4.540849506602829821e-01 9.664935719107857759e-01 2.044371576459835804e-01 4.505417469690352616e-01 7.110722322201217249e-01 3.051357995214963870e-01 8.978937034341526457e-01 6.090501112506481185e-01 6.595415779178889215e-01 6.565426836745864581e-01 6.565608489824376059e-01 2.679102664248229626e-01 3.819533138204529443e-01 6.609794961162380744e-01 2.289558446859882856e-01
9.274935298374649140e-01 1.174096651033715855e-01 3.030761852629033637e-01 1.605508209527917174e-01 9.601854834873225775e-01 4.341959513718630648e-01 6.320768160802121560e-01 4.213429090614078110e-01 3.695553969042019160e-01 5.965457437116089556e-01 3.520335041155040479e-01 7.702703502247409961e-01 8.571112772962534709e-01 7.904077282532658844e-01 2.247339318352784554e-01 6.823720204503556097e-01 5.883435710582129996e-02 6.786037033312407596e-01 9.721137137641507886e-01 2.042576970668320557e-01 8.394085754806240862e-01 7.433082729552867862e-01 4.072614159870893147e-01 7.451483066617257123e-01 1.699472962789440045e-01 1.753052015584344314e-01 2.255269204788400428e-01 7.794755643807432799e-01 8.407732260470973662e-01 9.301182862857163558e-01 3.701995309382508648e-01 4.481909027604019657e-01 1.261889085033987001e-01 5.600591735875248833e-01 8.244692493969552061e-01 8.969188061645969601e-01 4.802217973423368313e-01 3.556164122713412201e-02 3.393317823164623270e-01 2.491242957582864292e-01 9.863253789366602797e-01 5.585415885291432625e-01 3.702350606362231344e-01 6.766101432620400535e-01 6.999259389475386284e-01 6.676108316872160220e-01 7.870681827507105544e-01 8.746765411259082024e-01 9.125268371282718727e-01 6.638849997061806452e-01 3.253268113800632522e-01 7.968625619248901337e-01 7.584122525443606211e-01 9.028886850768532701e-01 5.381622293189292083e-02 8.097562873320752752e-01 7.092942088208666895e-01 9.915538877968065323e-01 4.319294903327922652e-01 4.307127933969153721e-01 2.768507739641907772e-01 8.076253078288621046e-01 2.569233696442670967e-01 7.595893829724666979e-01 5.768081727897018673e-01 2.537536777625452045e-01 8.874419624636734616e-01 5.091705681832693342e-01 4.811826624992353585e-01 2.794462461940371290e-01 3.846927898276129021e-01 5.129562951959991679e-01 8.515004062224775794e-01 7.103144978683579858e-01 9.526388607201888847e-01 2.367905569592337889e-01 9.137336039323161740e-01 5.722969943101696710e-02 2.019723935481291255e-01 3.098764675203513619e-02 1.121146613918624357e-01 9.937693067724532314e-01 8.476717958861412772e-02 2.059652110343795917e-01 2.139791918759540446e-01 9.137860316709250919e-01 9.530862653366889425e-03 2.027843281683039400e-03 2.506229951837134484e-01 6.244523528392044165e-01 5.523937894075592325e-01 3.712168074031840792e-01 4.218847794299319665e-01 4.827576239387890711e-01 5.244634168840578425e-01 5.182241092381567604e-01 3.308639956263292881e-03 9.370528021570383448e-01 4.694554875029453012e-01 4.950447554541728135e-01
1.525818111800841814e-01 4.708012184002630107e-02 3.899035965341954846e-01 3.928304521031263929e-01 5.602286661727436945e-01 9.738256658043862313e-01 9.404465779766183475e-01 5.750862754958349088e-01 9.547546956257608741e-01 2.750275291553152535e-01 1.682773435862793265e-01 5.865928471016079726e-04 8.543378154943809255e-01 3.547649971465383079e-01 5.058056647397523031e-01 9.116332486700751137e-02 7.534666421106954726e-01 3.082429494433007733e-01 4.527145111847344916e-01 5.456680635225539255e-01 2.504131242494785914e-01 2.509240770568589296e-01 3.949236999582302898e-01 8.782959620323271821e-03 2.474641132111736752e-01 8.229417958971670943e-01 3.444225768479134420e-01 4.000027489436257522e-01 4.247741954177396417e-01 2.497745404169693373e-02 4.325768602588443423e-01 7.336592463477830117e-01 7.667663267650381975e-02 4.179022553581047683e-01 8.745172741480690126e-01 9.417705509525042817e-02 2.807522782799587446e-01 8.212710101351362590e-01 2.211181944001613386e-01 4.319929503523877168e-01 1.858636923768219873e-02 6.737037795085246694e-01 7.997187114913413275e-01 2.976552505976116647e-01 3.272347030789168887e-01 5.550935453236346406e-01 9.224109746648162522e-01 3.192827922106745708e-01 3.500098324549234530e-01 7.821988386980260888e-01 4.478417135239194380e-01 1.580956175222456572e-01 5.300807813550156844e-01 5.806154798468634581e-01 9.456842911054151868e-01 7.688127895655872956e-01 8.456527833650537840e-01 1.784229089865225770e-01 8.114517450321339087e-01 8.062506298824222428e-01 2.113482500442499523e-01 2.629226789210241666e-01 6.478686221690072022e-01 6.006672861605766300e-02 7.013679843242253131e-01 8.784753961212666828e-01 3.487138165323044880e-02 4.928426758517070461e-01 5.976224683315064512e-01 7.629063997052759616e-01 2.761721278953045422e-01 7.240740503283805696e-01 6.131065729985127888e-01 1.630885615792579957e-01 8.473783868551159060e-01 8.347614542399306448e-02 8.137265626844719657e-01 8.512508664918938539e-01 2.777097816703766320e-01 1.729154355214796990e-01 2.203382750835449766e-01 6.134780912629795857e-01 3.524352564238901753e-01 5.370314860129862256e-01 8.013986113284543578e-02 2.555842138998117852e-01 6.553915758947851389e-01 9.679125599178584061e-01 2.549566319678178150e-01 4.008180804370896633e-01 9.145789951670967310e-01 2.787926039163850511e-01 8.599455912576436933e-02 9.637558000691170967e-02 8.274101203974880692e-01 1.803747268179315411e-01 2.175735407836230095e-01 7.825994939720237742e-01 7.928519890958951599e-02 8.707949373106749213e-01
6.398420210047787160e-01 5.739624494012524059e-01 3.359672805578653998e-01 1.130399363175038641e-02 3.349439685346782269e-01 2.315484030880912147e-01 4.575228302577399875e-01 1.149494135594463229e-01 2.888244352925943836e-01 3.625470995156252485e-01 3.795973190611611203e-01 6.567047810450010736e-01 1.484039742710284715e-01 9.273251916560719676e-01 4.334256728976307871e-01 6.734771102219323513e-01 9.125080197222198430e-01 4.974393931097168542e-01 8.301481563280355136e-01 4.526450714147856047e-01 2.414236092573898151e-01 8.070129698367667359e-02 7.260400697427102923e-01 1.396509691839398215e-02 2.496450588391967429e-01 4.335741205447194435e-01 3.089314419194891803e-01 9.543503534526003307e-01 5.457977547458532364e-01 3.139663643587058406e-01 5.034762326753475792e-01 4.756788330475764104e-01 6.849334942793482428e-01 3.880666613022351052e-01 6.483446580176778218e-01 5.217503801099343530e-01 5.371145824070304720e-01 3.121260159429154468e-01 8.314121854062171968e-01 4.538695969561833410e-01 8.598896961203845724e-01 9.961993522734106099e-01 8.865717795946430613e-01 7.828987966783660379e-01 3.412415531643435695e-01 7.421170530151157685e-01 4.484104178639959359e-01 6.793217012099640462e-01 3.756179958191659951e-01 7.821287098222597933e-01 6.227726265188193722e-02 8.552983413221663112e-01 4.824668768009222619e-01 2.241531065858231031e-01 4.939536577599041856e-01 5.129566641128722182e-01 1.057984177672518511e-01 9.541452507300716146e-01 3.396646181755047511e-01 7.452588103611947901e-01 5.315559265659929311e-01 5.493475179850665358e-01 5.214824278139198466e-01 5.150075718147916204e-01 1.196075368500321146e-01 9.035665331176232495e-01 7.522653903639873185e-01 6.638708679914825384e-01 5.584174553800479446e-01 5.015819402508836511e-01 5.507698483308445248e-01 5.978677577011723976e-01 8.450418028759657529e-01 3.266677322748618995e-01 1.321610045897971819e-01 2.394354042746985600e-01 2.723972163557076831e-01 5.523301747352814539e-01 5.518043850608547185e-01 5.283968096837132755e-02 8.192733312104071297e-01 2.277106024970321219e-02 1.414998099027269252e-01 6.517281615256080851e-01 1.811694734825117781e-01 9.472370614713256920e-01 5.454497319021770485e-01 1.364119913158231556e-01 8.446142008509562871e-01 7.671725984742419069e-01 2.461161648406858804e-01 1.421724627107351369e-01 6.290652581179481118e-01 7.094144689448004248e-01 4.419656923472803367e-02 6.614741876652251440e-01 8.712193265403500586e-02 4.734931280852430202e-01 5.382037050480286133e-01 1.396459758005891283e-01
9.709329844415439670e-01 8.998575745276288229e-01 9.151313462895852568e-01 6.920489275523904471e-01 2.892231405199537919e-01 6.750679746268205550e-01 5.515642485826798280e-01 1.065253097812824956e-01 2.957026803465776510e-01 8.937347659632134400e-01 9.800016515925590310e-01 7.745900896182087436e-01 1.570977683146633774e-01 1.482028765821026273e-01 2.111147779712029271e-01 9.683759902485811200e-01 6.550951580826911425e-01 8.728324682592377703e-01 5.044803166579884257e-01 8.285704754811143991e-01 1.693574499337324735e-02 6.032669995180495182e-02 1.687026879086964692e-01 7.701554026145973619e-01 1.429888016593102718e-01 5.881172815379975827e-02 9.704206919487038396e-01 4.450807650730836951e-01 1.597445784258376689e-01 9.849229394397314152e-01 4.220083573536804744e-01 9.357693600374825671e-01 2.313199262338369033e-01 4.556443403861323294e-01 2.590791012828855822e-01 8.438664994487065085e-01 5.519045677502344427e-01 4.702170125676508050e-01 6.814723205638187897e-01 7.418295483665861001e-01 3.684921032028853904e-01 1.501895844844561845e-01 4.214513377519605308e-01 8.600279963652578408e-01 6.625616611189292238e-01 5.200151456470966105e-01 7.881072743086801058e-01 2.771703241081423519e-01 9.034135930616548071e-01 5.848441705791300738e-01 8.341698181274771473e-01 1.966638677318299777e-01 7.059747894371543042e-01 7.013854316067694716e-01 1.828430942760242983e-01 4.745548949934464966e-01 6.306422394641082452e-01 7.760751707194470939e-01 9.813187212598396547e-01 2.293595795266353266e-01 7.749261876107090830e-01 2.384106107787011819e-01 9.721209688979495223e-01 2.715569353686980714e-01 2.915573577694993146e-01 3.579601509630966349e-01 3.085697512342830962e-01 4.070219981627976047e-01 1.989632411372218579e-01 7.330003339460906542e-01 5.397259604481572381e-01 6.931009942216573849e-01 1.385457419653816080e-01 1.140339999976658358e-01 3.980752590866034613e-01 9.471822621683767540e-01 5.476643721405823895e-01 6.824131903515884279e-02 5.844099130744569992e-01 2.346881692012994236e-01 9.436439228519653000e-01 4.855518260479008141e-02 8.157036123302675579e-01 1.169761256455048581e-01 5.532962903488753970e-01 1.100965596251435308e-01 9.789490602992410029e-01 8.433487462016989733e-01 1.272410782852178013e-01 2.885715258680641160e-01 7.990943955388217779e-01 1.565305358979097727e-01 9.160846960406943129e-02 8.521842244411678147e-01 4.474243106736998099e-01 3.843945818845087015e-01 4.710645906071458944e-01 2.398348154123419729e-01 6.435351435258193087e-01 7.656897921129046658e-01
4.894328120406804539e-01 7.881019629214267574e-01 6.974585354155089512e-01 2.023858939857701156e-01 1.660984914264745926e-01 4.854517801734643534e-01 2.789848572630315715e-01 2.311636522410289718e-01 9.821076233980715608e-01 1.220641257408076052e-01 2.614036146663852866e-01 7.657560715165320220e-01 3.968360577545695378e-01 4.566023622802184434e-02 1.049701948619241598e-02 9.281162949127452766e-01 4.490137965769909201e-01 2.095846458383606725e-01 9.195504656719085679e-01 9.683515436855471004e-01 9.800174878114910060e-01 5.517610861380117804e-01 6.711570559348770670e-01 5.125258050287277989e-01 2.105581493613526423e-01 8.281813206544574868e-01 4.964783994807770995e-01 7.284974208756571645e-01 1.320629592816270348e-01 6.652194518096135045e-01 9.430156297917950958e-01 7.477263137894260003e-01 2.054087806450300979e-01 4.248209124837907247e-01 7.657518666018259257e-02 1.031614100713345028e-01 4.122242287567021712e-01 4.919658859336810686e-01 3.752650167259050651e-01 4.175771429986683270e-01 6.131376293448997927e-01 5.463797405837259591e-01 3.119918548921774004e-01 6.331762507678504459e-01 5.484632429281035559e-01 6.815448032785871302e-01 8.065695507425107991e-02 8.720129122297424207e-01 8.318188557125294480e-03 2.199323537180564170e-02 8.933872719887463454e-01 1.953120287872067706e-02 2.478721941404590234e-01 5.994061179859005994e-01 6.588362611693047155e-01 6.332808851020984564e-01 3.823849348043323326e-01 5.111091324899629251e-01 7.034808459110406531e-01 4.347681568463539481e-01 4.316973576672314961e-01 9.620411080123215664e-01 6.247837467655984467e-01 8.196961678222113301e-01 5.574601810887074294e-01 8.800635018469276094e-01 8.772255241161972528e-01 5.075275933138404527e-01 8.022583187266906224e-01 2.320670802521890286e-01 1.165626629103270195e-01 4.623759662685936744e-01 7.938327000737943617e-02 7.986374689793115378e-01 6.728842751465858862e-01 8.133909095059230765e-01 1.202639390769081329e-01 1.052937257108800262e-01 8.717600467040409473e-02 2.163819956545051104e-01 6.596483385763984852e-01 1.202843170392309258e-02 1.538789195854695091e-01 3.120247727263308901e-01 3.408168327248596308e-01 3.241861797851740556e-01 3.637074533655986208e-01 1.533669345890729119e-01 4.455921334699539660e-01 5.619140093874478437e-01 1.881731359879111887e-01 9.416670800570559052e-01 1.740018593664415247e-01 7.030242331869680505e-01 5.922055553954849172e-01 9.326211623391688077e-01 6.608322881013140027e-01 7.009721551241574478e-01 1.079126054675583202e-01 6.158176671761947940e-01
5.185079639625639336e-01 9.613742991518259284e-01 5.555312825626229634e-01 2.647628827924735084e-01 6.003697207460141350e-01 5.392112376769145898e-01 6.781186965667050925e-01 9.908971748181496508e-01 4.124155872095397468e-01 9.814941401724619485e-02 2.684237785531295994e-02 1.774652505962848181e-01 1.707589529595294753e-01 4.640932098465534450e-01 2.882179883914587348e-01 7.276822905806898945e-01 6.145789546745269449e-01 1.100959863917608805e-01 6.798859723042820491e-01 9.096984032948918220e-01 3.971368455178179158e-01 2.959494950971321980e-01 3.742088799298171065e-02 1.960739526210202310e-01 7.536102695342027369e-01 6.680915510628401277e-01 4.136507204312135366e-01 3.613996339406737590e-01 3.605422038261204554e-01 7.098503555159476619e-01 8.093719147087541366e-01 6.344097009128880638e-01 3.990082448083617228e-01 2.805918009906902544e-01 7.078488167363675698e-01 9.969917259866583059e-01 9.442054998992396309e-01 1.329075240769165278e-01 6.810681350588387861e-02 8.503491437913293094e-01 8.347117439165431252e-01 2.381858201903953587e-01 7.884260706938626129e-01 7.109907917419661105e-01 6.390916681983604963e-02 6.174365227062991179e-01 5.085733343630816083e-01 1.716846139694149231e-01 9.065664924270055991e-02 5.625330757196970177e-01 3.539663480209681579e-01 8.937139525947165319e-01 3.981380511900556307e-02 7.403597927449541150e-01 3.803872284089604427e-02 6.729519695709765825e-01 5.306080908840085097e-01 2.091237680402112664e-01 5.902903662907804661e-01 2.094778612095482551e-01 7.323447855684165342e-01 3.644574495843493356e-01 2.006215478057034041e-01 3.737617545555030896e-01 5.253471759602216240e-01 4.287889547869583318e-01 7.086098806190446187e-01 4.510792335515292351e-01 6.383187180169215269e-01 8.779355722397681472e-01 4.221338898667141848e-01 6.375840144651815367e-01 8.683057298299173832e-01 6.093730356952498095e-01 9.297141161056151626e-01 7.770838342807246946e-01 6.549661287008456956e-02 2.835060738158660110e-01 4.474138867374952699e-01 8.530336387421445510e-01 3.160209657891883683e-01 8.301538680518486535e-01 6.646903097549101691e-01 7.187130118106234145e-01 1.651862041735395747e-01 9.578252676762609719e-01 6.490273812885494209e-02 9.777273484666341163e-01 8.930729829254262508e-01 9.851054752118463265e-01 4.094323402286751401e-01 1.139176240124337713e-01 7.612865863899589414e-01 2.266379302491570158e-01 6.998882496157835531e-01 9.945043379099228753e-01 7.111578056749194854e-01 7.806190603886183910e-01 3.410170920712443099e-01 9.446084168886822452e-01
5.015172758330755931e-01 5.569527971282052237e-01 1.122406928736449094e-01 8.960352822124777461e-01 6.049568585854003810e-02 1.202196001338627918e-01 1.870314295763603196e-01 9.017590029396971296e-01 3.597904628087450485e-01 2.130941062746317671e-01 2.556281834629479111e-01 5.123669364829196438e-01 4.754061129282013409e-01 9.764470380372083369e-01 8.038663983900646848e-01 6.960491266420890666e-01 2.940135977911654264e-01 2.857282759910040326e-03 4.599343225832352999e-02 5.597554495210212977e-01 7.445266674304001908e-01 3.387528030535971180e-01 6.429542922125383031e-01 2.123331785532429627e-01 5.302332654117811739e-01 7.262555377662539557e-01 3.982425859900724507e-01 3.243388301740235402e-01 6.191064123738921898e-01 8.988047781373914580e-01 7.819700328765150088e-01 7.664269102804815992e-01 6.734095355422575757e-03 2.904762329148526945e-01 5.097537644843168625e-01 9.524734606001823423e-01 4.812869576591960463e-01 6.236868013640477493e-01 1.459170943214320726e-01 9.874505139403206844e-01 7.561708982837871407e-01 3.798591332432484924e-01 6.056633451375117438e-01 7.935708170258731764e-01 1.458141583518740569e-01 7.082511296391911237e-01 1.098798009731616343e-02 3.655618484905173160e-01 9.551862303858617009e-01 8.148959351152762487e-02 4.739306219219985294e-02 7.963357515359494876e-01 6.208332695202813944e-01 3.884182264923189409e-01 4.589167647950288531e-01 6.496652974138312775e-01 2.467528128074852889e-01 5.309593064844935206e-01 5.364606369543487574e-01 2.421352989851309756e-01 3.776834556696828660e-02 1.564861233558080267e-01 5.197231021782636740e-01 8.725375120634637494e-01 2.441225493455024820e-01 2.320363366041028330e-01 5.026358683423555185e-01 7.035766000474735771e-01 8.347805591467084563e-01 2.303229841813967393e-01 6.908373419683054850e-01 2.646662377366995056e-01 1.259467197942290007e-01 9.372770922994989595e-01 6.674216272867254940e-01 1.027944489143072238e-01 5.686267290346079806e-01 3.948222804451942958e-01 4.689706944496729868e-01 4.446117700449114807e-02 6.817992275557515081e-01 9.084821829413957106e-01 9.184021015315092518e-01 3.045815734169987632e-01 2.204958624923980537e-03 7.542672057172502553e-01 9.460844786545006269e-01 3.373139094575949848e-02 9.059565314915285494e-01 9.938525461318854504e-01 2.542072661725306437e-01 9.685734112479216229e-02 8.223629541824816203e-01 1.057429056898460118e-01 8.080679390260248063e-01 5.823014244609205914e-01 6.413551528031806725e-01 1.787341975438894170e-01 1.250471413912357388e-01 8.390281297596062782e-01

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
4.0515260e+00 4.2121458e+00 3.7357405e+00 4.2313317e+00 3.9136009e+00 4.3843298e+00 3.9811426e+00 4.3624182e+00 4.0642508e+00 4.2105933e+00 4.0747226e+00 3.9068586e+00 4.1637004e+00 4.4303203e+00 4.1841564e+00 4.1063279e+00 4.1862390e+00 4.0719925e+00 4.2227579e+00 4.3173531e+00 3.8811067e+00 3.7577567e+00 4.0623722e+00 3.9882453e+00 4.0432671e+00 3.9085109e+00 4.0283414e+00 4.0846110e+00 3.6459235e+00 3.9544001e+00 4.1134244e+00 4.1805752e+00 3.5121011e+00 4.2747789e+00 4.1048323e+00 3.9269426e+00 3.8932032e+00 3.8281172e+00 3.7288430e+00 4.0863477e+00 4.1527428e+00 4.1646409e+00 4.2027433e+00 3.8441594e+00 4.8419117e+00 4.2455384e+00 3.7622220e+00 4.3967923e+00 4.4663183e+00 4.0435853e+00 4.0421692e+00 4.3124625e+00 4.6499961e+00 4.5595743e+00 3.4230430e+00 4.2612266e+00 3.5676603e+00 4.0866580e+00 4.2307103e+00 3.8521940e+00 3.9951183e+00 3.1022409e+00 3.7290193e+00 4.1931517e+00 4.1127027e+00 3.6633651e+00 4.0235815e+00 3.9729858e+00 4.1980132e+00 4.1579993e+00 3.9948955e+00 3.9081966e+00 3.9031152e+00 3.5069036e+00 4.0015727e+00 3.6763496e+00 3.6614339e+00 3.6227109e+00 3.7357992e+00 4.0170026e+00 3.5216829e+00 3.9322227e+00 3.9094621e+00 4.0170286e+00 4.3264246e+00 4.3435483e+00 4.0788635e+00 4.4761765e+00 3.8468186e+00 4.1490333e+00 4.2800007e+00 4.2260191e+00 4.3031858e+00 4.1897413e+00 4.0530244e+00 3.5893641e+00 4.2186615e+00 3.7979503e+00 4.0915473e+00 4.1343073e+00 4.5063851e+00 3.6394889e+00 4.2508448e+00 3.7160826e+00 4.0105262e+00 4.1578269e+00 4.0290590e+00 3.6971819e+00 3.9414087e+00 4.2522313e+00 4.4091714e+00 4.1542292e+00 3.9594691e+00 4.0923600e+00 4.0855497e+00 3.8253075e+00 4.3034717e+00 4.0976731e+00 4.1316523e+00 4.0872717e+00 4.2643353e+00 3.8887280e+00 3.9411273e+00 3.8848001e+00 4.3481996e+00 3.8716733e+00 3.9084684e+00 3.7546361e+00 3.9354816e+00 3.8293694e+00 3.7568515e+00 3.7184961e+00 3.8404278e+00 4.2570811e+00 4.1423777e+00 4.0291411e+00 4.2094682e+00 3.6127418e+00 4.0459839e+00 3.7737985e+00 3.7647653e+00 3.9762006e+00 3.8999512e+00 3.8509090e+00 3.8975941e+00 3.8432839e+00 4.2109046e+00 4.1339124e+00 3.5898873e+00 4.0794519e+00 4.3504966e+00 3.8862612e+00 3.8332931e+00 4.2190310e+00 4.1366595e+00 3.7220268e+00 4.1250795e+00 3.3169452e+00 4.0757181e+00 3.6487114e+00 3.9513724e+00 4.0735549e+00 3.9137880e+00 3.9656942e+00 3.7724953e+00 4.0505153e+00 3.9062302e+00 4.5671852e+00 3.7542175e+00 4.3731708e+00 3.6733907e+00 4.4667545e+00 4.1004635e+00 4.0530038e+00 4.0346958e+00 4.2145752e+00 4.4298637e+00 4.2982360e+00 4.0878239e+00 4.4061563e+00 4.2115971e+00 3.8263277e+00 3.8603258e+00 3.8572375e+00 4.1051910e+00 4.3787786e+00 4.5309659e+00 4.0047055e+00 4.1308854e+00 3.6283561e+00

View file

@ -0,0 +1 @@
4.6000000e-01 4.3000000e-01 4.3000000e-01 5.4000000e-01 4.1000000e-01 5.3000000e-01 4.3000000e-01 5.9000000e-01 4.8000000e-01 4.7000000e-01 4.6000000e-01 4.9000000e-01 4.5000000e-01 5.5000000e-01 5.3000000e-01 4.5000000e-01 4.8000000e-01 4.7000000e-01 4.8000000e-01 5.1000000e-01 4.9000000e-01 4.4000000e-01 4.9000000e-01 4.7000000e-01 4.9000000e-01 4.7000000e-01 5.2000000e-01 4.7000000e-01 4.2000000e-01 4.9000000e-01 4.7000000e-01 5.5000000e-01 3.9000000e-01 5.5000000e-01 4.6000000e-01 4.5000000e-01 4.0000000e-01 4.8000000e-01 4.5000000e-01 4.8000000e-01 4.8000000e-01 5.0000000e-01 4.8000000e-01 4.5000000e-01 6.4000000e-01 5.7000000e-01 4.6000000e-01 5.4000000e-01 5.6000000e-01 4.8000000e-01 4.8000000e-01 5.3000000e-01 5.4000000e-01 5.3000000e-01 4.5000000e-01 5.8000000e-01 4.2000000e-01 5.4000000e-01 6.0000000e-01 5.1000000e-01 4.6000000e-01 4.1000000e-01 4.4000000e-01 5.6000000e-01 5.4000000e-01 4.8000000e-01 4.8000000e-01 5.1000000e-01 5.2000000e-01 5.5000000e-01 4.5000000e-01 4.3000000e-01 4.7000000e-01 4.7000000e-01 5.6000000e-01 4.9000000e-01 4.8000000e-01 4.5000000e-01 4.9000000e-01 4.7000000e-01 4.5000000e-01 4.5000000e-01 5.6000000e-01 4.9000000e-01 5.8000000e-01 5.4000000e-01 4.6000000e-01 5.8000000e-01 5.3000000e-01 5.4000000e-01 5.5000000e-01 5.0000000e-01 5.2000000e-01 4.8000000e-01 5.0000000e-01 3.8000000e-01 5.3000000e-01 4.8000000e-01 5.1000000e-01 4.8000000e-01 5.2000000e-01 4.7000000e-01 5.0000000e-01 4.3000000e-01 4.8000000e-01 5.2000000e-01 5.0000000e-01 4.2000000e-01 4.2000000e-01 4.7000000e-01 5.4000000e-01 5.1000000e-01 5.4000000e-01 5.1000000e-01 4.8000000e-01 4.7000000e-01 5.2000000e-01 5.2000000e-01 5.4000000e-01 5.4000000e-01 5.0000000e-01 4.5000000e-01 4.4000000e-01 4.1000000e-01 5.7000000e-01 4.6000000e-01 5.1000000e-01 5.2000000e-01 5.0000000e-01 4.8000000e-01 5.0000000e-01 4.4000000e-01 5.3000000e-01 5.2000000e-01 4.9000000e-01 5.7000000e-01 5.8000000e-01 4.9000000e-01 5.1000000e-01 4.5000000e-01 5.3000000e-01 4.5000000e-01 4.4000000e-01 3.5000000e-01 4.2000000e-01 5.3000000e-01 5.2000000e-01 5.0000000e-01 3.8000000e-01 5.2000000e-01 5.6000000e-01 4.7000000e-01 4.4000000e-01 5.1000000e-01 5.7000000e-01 4.5000000e-01 5.7000000e-01 4.3000000e-01 5.1000000e-01 3.8000000e-01 5.3000000e-01 4.8000000e-01 4.4000000e-01 5.0000000e-01 4.8000000e-01 5.0000000e-01 4.7000000e-01 6.4000000e-01 4.9000000e-01 5.2000000e-01 4.8000000e-01 5.6000000e-01 4.3000000e-01 4.8000000e-01 4.7000000e-01 6.0000000e-01 5.4000000e-01 5.5000000e-01 4.0000000e-01 5.5000000e-01 5.6000000e-01 4.9000000e-01 5.0000000e-01 4.3000000e-01 5.7000000e-01 5.0000000e-01 5.7000000e-01 4.9000000e-01 4.2000000e-01 3.9000000e-01

View file

@ -0,0 +1 @@
6.5714286e-01 6.0563380e-01 6.3235294e-01 7.3972603e-01 6.0294118e-01 7.3611111e-01 6.4179104e-01 7.7631579e-01 6.4000000e-01 6.6197183e-01 6.6666667e-01 7.0000000e-01 6.4285714e-01 7.7464789e-01 7.1621622e-01 6.4285714e-01 6.8571429e-01 6.4383562e-01 6.6666667e-01 6.5384615e-01 6.6216216e-01 6.1971831e-01 6.5333333e-01 6.5277778e-01 6.7123288e-01 6.4383562e-01 6.5000000e-01 6.3513514e-01 6.0000000e-01 6.7123288e-01 6.3513514e-01 7.4324324e-01 5.5714286e-01 7.0512821e-01 6.3888889e-01 6.0000000e-01 5.6338028e-01 6.3157895e-01 6.0810811e-01 6.2337662e-01 6.4000000e-01 6.5789474e-01 6.3157895e-01 5.6962025e-01 7.5294118e-01 7.1250000e-01 6.2162162e-01 6.7500000e-01 7.2727273e-01 6.2337662e-01 6.2337662e-01 6.7948718e-01 6.5853659e-01 6.6250000e-01 6.3380282e-01 7.3417722e-01 6.0869565e-01 7.2000000e-01 7.5949367e-01 6.4556962e-01 6.3013699e-01 5.9420290e-01 6.2857143e-01 7.1794872e-01 7.3972603e-01 6.4864865e-01 6.4864865e-01 6.8918919e-01 6.6666667e-01 7.0512821e-01 6.2500000e-01 6.2318841e-01 6.6197183e-01 6.5277778e-01 6.9135802e-01 6.6216216e-01 6.6666667e-01 6.4285714e-01 6.6216216e-01 6.8115942e-01 6.2500000e-01 6.2500000e-01 7.3684211e-01 6.4473684e-01 7.3417722e-01 7.1052632e-01 6.3888889e-01 7.3417722e-01 6.5432099e-01 6.9230769e-01 7.1428571e-01 6.7567568e-01 6.7532468e-01 6.7605634e-01 6.5789474e-01 5.4285714e-01 6.9736842e-01 6.2337662e-01 6.6233766e-01 6.7605634e-01 7.0270270e-01 6.1842105e-01 6.7567568e-01 6.2318841e-01 6.7605634e-01 6.9333333e-01 7.1428571e-01 6.0000000e-01 6.0000000e-01 6.6197183e-01 6.9230769e-01 6.8000000e-01 7.2000000e-01 6.5384615e-01 6.5753425e-01 6.6197183e-01 7.1232877e-01 6.9333333e-01 7.5000000e-01 7.1052632e-01 6.7567568e-01 6.4285714e-01 6.0273973e-01 5.8571429e-01 6.9512195e-01 6.3013699e-01 6.8918919e-01 7.0270270e-01 6.6666667e-01 6.8571429e-01 6.6666667e-01 6.1111111e-01 7.0666667e-01 6.6666667e-01 6.5333333e-01 6.8674699e-01 7.0731707e-01 6.3636364e-01 6.3750000e-01 6.1643836e-01 6.5432099e-01 5.8441558e-01 5.8666667e-01 4.7297297e-01 5.5263158e-01 6.9736842e-01 6.9333333e-01 6.5789474e-01 5.7575758e-01 6.7532468e-01 7.0886076e-01 6.4383562e-01 5.8666667e-01 6.6233766e-01 7.5000000e-01 6.2500000e-01 7.7027027e-01 6.0563380e-01 6.8000000e-01 5.6716418e-01 6.7948718e-01 6.4864865e-01 6.1971831e-01 7.1428571e-01 6.5753425e-01 6.7567568e-01 6.6197183e-01 7.7108434e-01 6.6216216e-01 7.1232877e-01 6.4000000e-01 7.0886076e-01 6.0563380e-01 6.2337662e-01 6.2666667e-01 7.7922078e-01 7.2972973e-01 7.5342466e-01 5.7971014e-01 7.3333333e-01 7.0886076e-01 6.6216216e-01 6.4102564e-01 5.8904110e-01 7.3076923e-01 6.4102564e-01 7.1250000e-01 6.4473684e-01 5.9154930e-01 5.3424658e-01

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
0.320369972991 0.338972466 0.308199372323 0.3452431902 0.310024768313 0.357115225615 0.311131096357 0.357391534414 0.329718053755 0.347365921475 0.335272625287 0.336451560653 0.33015370606 0.369628769749 0.344499490029 0.321622508707 0.345377707016 0.321007207534 0.350728979121 0.32809430086 0.30207071308 0.291663252492 0.30760470102 0.315976639534 0.308132467187 0.313014586878 0.310463895925 0.321091616502 0.290044394125 0.322213459935 0.315509196522 0.3331114403 0.281071919202 0.320854431887 0.332190658438 0.299342730178 0.313528775154 0.310049073937 0.288821516545 0.307662081954 0.328387688508 0.317185603454 0.332046170365 0.291912213887 0.37870970117 0.336080073379 0.304593343921 0.330138983604 0.355071759299 0.311946140607 0.302025400768 0.330940761586 0.351140062502 0.354772884287 0.272605322053 0.327957349848 0.28871110366 0.320821172951 0.340976919806 0.30757488831 0.320975346884 0.252776262329 0.314549731907 0.326876483 0.337684418756 0.296520013735 0.31493077245 0.327721982167 0.325802862624 0.341908184107 0.300481749419 0.312499767894 0.301061762121 0.27665157989 0.3082566692 0.287466396145 0.288313694552 0.296629698731 0.283556095025 0.322489360684 0.280765581604 0.297958166613 0.313189657041 0.303470399659 0.348652898212 0.331594734387 0.299446687464 0.339047458559 0.286979246044 0.316326095312 0.321618884109 0.330065896317 0.324500638067 0.328300795872 0.309002568222 0.262587468469 0.31974123777 0.286316182293 0.321162329165 0.328160620315 0.356618051635 0.289733970648 0.344507756538 0.301485561986 0.335785898715 0.322635066518 0.331480718646 0.297897604494 0.306942928189 0.350843442517 0.342585296966 0.341311053315 0.306780105123 0.313401804298 0.319978145568 0.302460397612 0.346105758567 0.312802351189 0.331552275517 0.321624157344 0.318798118247 0.301906095501 0.301585920138 0.314556178985 0.333215221158 0.306929663844 0.317083256901 0.309667679181 0.306529028004 0.30865993751 0.296031907986 0.28742420979 0.311584483038 0.319043629504 0.330278008622 0.314466433681 0.327937382021 0.296448162218 0.307033121385 0.296391953011 0.292691206116 0.297146209653 0.307929858983 0.291863681454 0.307300188104 0.306597817799 0.34718100163 0.317436210259 0.29952626739 0.330762834707 0.334951064852 0.323806678898 0.296203706701 0.33398466797 0.344931265559 0.293948734727 0.332764639313 0.272651853935 0.317324315923 0.300493570867 0.307008231016 0.333263322802 0.31390648462 0.332416491248 0.314766869708 0.321015549211 0.322909289307 0.356882966656 0.310596945263 0.343939748528 0.286269629586 0.33173459898 0.323848483719 0.305841388975 0.319266258167 0.34012363898 0.3443280395 0.353885654057 0.320544729867 0.353280499623 0.315621795536 0.312176062734 0.301562130879 0.312061680573 0.312642847966 0.326222109701 0.357417912858 0.313083593142 0.334033412713 0.295630506074

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
2.0215050e+00 2.0988154e+00 1.8614681e+00 2.0510161e+00 1.9210911e+00 2.1323516e+00 1.9565454e+00 2.1029889e+00 1.9617871e+00 2.0544792e+00 2.0357408e+00 1.8811414e+00 2.0694693e+00 2.1245977e+00 2.0632165e+00 2.0452823e+00 2.0249330e+00 1.9635489e+00 2.0508580e+00 2.0838578e+00 1.9324052e+00 1.8224609e+00 1.9795343e+00 1.9536534e+00 1.9694910e+00 1.9075569e+00 1.9590397e+00 2.0022087e+00 1.8814000e+00 1.8884208e+00 1.9961121e+00 2.0215351e+00 1.7515769e+00 2.0756437e+00 2.0109476e+00 1.9234849e+00 1.9160076e+00 1.8550862e+00 1.7733640e+00 2.0071906e+00 2.0209542e+00 2.0616569e+00 2.0565503e+00 1.9083573e+00 2.2732431e+00 1.9975503e+00 1.9080072e+00 2.1437809e+00 2.1296295e+00 1.9739085e+00 1.9834166e+00 2.1078664e+00 2.2016840e+00 2.2080962e+00 1.7340579e+00 2.0549287e+00 1.7331748e+00 1.9559688e+00 2.0343364e+00 1.8736929e+00 1.9730416e+00 1.5308944e+00 1.8421831e+00 2.0174240e+00 2.0137378e+00 1.7956151e+00 1.9606596e+00 1.9074857e+00 2.0413879e+00 2.0070305e+00 1.9584677e+00 1.8977851e+00 1.9176239e+00 1.7067419e+00 1.9461927e+00 1.8431700e+00 1.8284576e+00 1.7778704e+00 1.8350329e+00 2.0175415e+00 1.7459063e+00 1.9242505e+00 1.8757370e+00 1.9312506e+00 2.0574808e+00 2.0894636e+00 1.9780203e+00 2.1374036e+00 1.8900436e+00 2.0273032e+00 2.0681953e+00 2.0234699e+00 2.0666449e+00 2.0663485e+00 1.9281402e+00 1.7846314e+00 2.0372479e+00 1.8831230e+00 2.0186015e+00 2.0193231e+00 2.2022665e+00 1.8145737e+00 2.0466545e+00 1.8092421e+00 1.9600687e+00 2.0322961e+00 1.9556364e+00 1.8266422e+00 1.9950345e+00 2.1038429e+00 2.1164145e+00 2.0188062e+00 1.8863331e+00 2.0006971e+00 1.9971068e+00 1.8771862e+00 2.1148855e+00 1.9570638e+00 1.9859615e+00 2.0030854e+00 2.0737344e+00 1.9739259e+00 1.9266524e+00 1.9200535e+00 2.1376689e+00 1.8944425e+00 1.9330553e+00 1.8561590e+00 1.9422954e+00 1.8874178e+00 1.8624808e+00 1.8265563e+00 1.8840519e+00 2.0515092e+00 2.0174226e+00 1.9771196e+00 2.0635988e+00 1.7334466e+00 1.9912604e+00 1.8915711e+00 1.8262636e+00 1.9369173e+00 1.9560446e+00 1.9549934e+00 1.9279230e+00 1.9021073e+00 2.0113391e+00 2.0305786e+00 1.8066806e+00 1.9656739e+00 2.1219217e+00 1.8820250e+00 1.8936826e+00 2.0565131e+00 1.9839441e+00 1.8553479e+00 1.9923760e+00 1.6393276e+00 1.9786440e+00 1.8274394e+00 1.9322611e+00 2.0404318e+00 1.9216532e+00 1.9361171e+00 1.8401373e+00 1.9908059e+00 1.9495117e+00 2.1975655e+00 1.8413913e+00 2.1528773e+00 1.8434374e+00 2.1668863e+00 2.0429273e+00 1.9980016e+00 1.9790129e+00 2.0264829e+00 2.1478843e+00 2.0899600e+00 2.0280670e+00 2.1210881e+00 1.9993891e+00 1.8646871e+00 1.9099983e+00 1.9263353e+00 2.0042495e+00 2.1365919e+00 2.1830279e+00 1.9631961e+00 2.0880004e+00 1.8348369e+00

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
1.4330520e+01 1.4635426e+01 1.3450855e+01 1.4761140e+01 1.3508642e+01 1.5434417e+01 1.3887693e+01 1.5166776e+01 1.3966038e+01 1.4950451e+01 1.4564587e+01 1.3834201e+01 1.4347008e+01 1.5641962e+01 1.4689053e+01 1.4418720e+01 1.4545856e+01 1.4151822e+01 1.4669017e+01 1.5150750e+01 1.3770166e+01 1.3288969e+01 1.4048191e+01 1.4049959e+01 1.4164158e+01 1.3727834e+01 1.4074687e+01 1.4321303e+01 1.2497330e+01 1.3820273e+01 1.4441030e+01 1.4780222e+01 1.2504339e+01 1.5022245e+01 1.4263650e+01 1.3704507e+01 1.3694385e+01 1.3667517e+01 1.3177468e+01 1.4391931e+01 1.4893903e+01 1.4475753e+01 1.4440707e+01 1.3603096e+01 1.6889651e+01 1.4731174e+01 1.3337775e+01 1.5187532e+01 1.5667271e+01 1.4226037e+01 1.4203554e+01 1.5272898e+01 1.6031460e+01 1.5991549e+01 1.1855060e+01 1.4844776e+01 1.2475182e+01 1.4408126e+01 1.4836870e+01 1.3472986e+01 1.4089281e+01 1.1018298e+01 1.3183296e+01 1.4590802e+01 1.4404230e+01 1.2717623e+01 1.3983283e+01 1.4017133e+01 1.4608005e+01 1.4402553e+01 1.3977803e+01 1.4091040e+01 1.3977459e+01 1.2630449e+01 1.4160109e+01 1.3029417e+01 1.2654432e+01 1.2794946e+01 1.3194978e+01 1.4378745e+01 1.2431908e+01 1.3852651e+01 1.3748358e+01 1.4003568e+01 1.5066681e+01 1.5192826e+01 1.4370013e+01 1.5792545e+01 1.3547546e+01 1.4411543e+01 1.4794215e+01 1.4924312e+01 1.4789153e+01 1.4875055e+01 1.4208537e+01 1.2786148e+01 1.4882476e+01 1.3302010e+01 1.4354774e+01 1.4542129e+01 1.5889633e+01 1.2928185e+01 1.4877868e+01 1.2890902e+01 1.4406165e+01 1.4498123e+01 1.4303273e+01 1.3207002e+01 1.3954732e+01 1.4841248e+01 1.5427799e+01 1.4363463e+01 1.3976277e+01 1.4284878e+01 1.4457991e+01 1.3369469e+01 1.5246610e+01 1.4487573e+01 1.4525176e+01 1.4505865e+01 1.5037347e+01 1.3834927e+01 1.3758988e+01 1.3424987e+01 1.4914766e+01 1.3783923e+01 1.3434291e+01 1.2895927e+01 1.3870360e+01 1.3342977e+01 1.3094322e+01 1.3057847e+01 1.3322375e+01 1.4940650e+01 1.4476829e+01 1.4197503e+01 1.4597035e+01 1.2963234e+01 1.4011414e+01 1.3181409e+01 1.3339615e+01 1.3928735e+01 1.3508015e+01 1.3170749e+01 1.3529133e+01 1.3454724e+01 1.4883437e+01 1.4564565e+01 1.2474313e+01 1.4435790e+01 1.5285703e+01 1.3701736e+01 1.3578312e+01 1.4807311e+01 1.4281072e+01 1.2920213e+01 1.4427803e+01 1.1408611e+01 1.4097334e+01 1.2868115e+01 1.3903683e+01 1.3800332e+01 1.3439339e+01 1.4062651e+01 1.3242107e+01 1.4400424e+01 1.3826132e+01 1.5991146e+01 1.3118258e+01 1.5377390e+01 1.2858378e+01 1.5249567e+01 1.4081585e+01 1.4458052e+01 1.4175623e+01 1.4850069e+01 1.5506668e+01 1.5014770e+01 1.4337030e+01 1.5214705e+01 1.4803729e+01 1.3188675e+01 1.3437739e+01 1.3409394e+01 1.4607386e+01 1.5394271e+01 1.5946451e+01 1.3769364e+01 1.4181208e+01 1.2551765e+01

View file

@ -0,0 +1 @@
9.3540954e-01 9.7904590e-01 8.6703870e-01 1.1569997e+00 8.7174317e-01 1.0627183e+00 9.1272727e-01 1.1593999e+00 9.7573357e-01 1.0072127e+00 1.0536814e+00 9.6276028e-01 9.7700570e-01 1.1513951e+00 1.0719592e+00 9.2178818e-01 1.0004680e+00 9.3689769e-01 9.8205821e-01 1.0332673e+00 9.4517852e-01 8.9437744e-01 9.7556556e-01 9.0460246e-01 9.7210921e-01 9.2230423e-01 9.9605161e-01 9.6852085e-01 8.4162016e-01 9.6667267e-01 9.7759376e-01 9.9757576e-01 7.6992499e-01 1.0151695e+00 9.8691869e-01 9.0325833e-01 8.6665467e-01 8.8844884e-01 8.4553255e-01 9.7700570e-01 9.5159916e-01 9.8906691e-01 1.0551935e+00 9.1973597e-01 1.3266247e+00 1.0982778e+00 8.4531653e-01 1.0887369e+00 1.0984938e+00 9.9851185e-01 9.0701470e-01 1.0639304e+00 1.2392919e+00 1.1422502e+00 8.1725773e-01 1.1844944e+00 7.8219022e-01 1.0817162e+00 1.2196100e+00 1.0003120e+00 1.0164536e+00 7.0724272e-01 9.7981398e-01 1.1134953e+00 1.0671107e+00 9.3600960e-01 9.9984398e-01 1.0356916e+00 1.1248005e+00 1.0696310e+00 1.0634263e+00 9.6472847e-01 9.9365137e-01 8.5724572e-01 1.1257846e+00 8.9930993e-01 9.4903090e-01 9.0667867e-01 9.1231923e-01 1.0573777e+00 9.0105011e-01 9.5255926e-01 1.0177978e+00 1.0606901e+00 1.1966997e+00 1.0891929e+00 1.0085089e+00 1.2640264e+00 9.3246925e-01 1.0198020e+00 1.2055806e+00 1.1237924e+00 1.1060666e+00 1.0517252e+00 1.0684668e+00 7.6844884e-01 1.0572697e+00 8.7373537e-01 9.6283228e-01 9.9350735e-01 1.2412601e+00 7.6322832e-01 1.0298950e+00 8.6148215e-01 1.0042724e+00 9.7012901e-01 9.3712571e-01 8.5845785e-01 8.5862586e-01 1.0336634e+00 1.0955536e+00 9.5302730e-01 9.8696670e-01 1.0633063e+00 1.0026643e+00 9.6380438e-01 1.1711251e+00 9.9273927e-01 1.0260906e+00 1.0863966e+00 1.0482808e+00 9.0361836e-01 9.2358836e-01 8.7794779e-01 1.2461206e+00 9.2985299e-01 1.0418962e+00 9.4660666e-01 9.5636364e-01 9.0646265e-01 9.9113111e-01 8.3027903e-01 9.3341734e-01 1.1378938e+00 1.0548215e+00 1.0086889e+00 1.1998920e+00 8.6063006e-01 1.0255506e+00 8.4786079e-01 1.0090729e+00 9.2542454e-01 9.5176718e-01 9.3477348e-01 9.0091809e-01 9.6404440e-01 1.1158716e+00 9.9614761e-01 7.7682568e-01 1.0605461e+00 1.0895650e+00 9.0065407e-01 8.7173117e-01 9.9821182e-01 1.2165617e+00 8.6127813e-01 1.1111071e+00 7.9015902e-01 1.0433843e+00 8.6510651e-01 1.0019202e+00 1.0154815e+00 9.4381038e-01 9.8646265e-01 1.0062526e+00 9.7426943e-01 9.8191419e-01 1.3038944e+00 8.6277828e-01 1.0830243e+00 8.6851485e-01 1.1192559e+00 9.9120312e-01 9.6540054e-01 9.1072307e-01 1.1775698e+00 1.1139154e+00 1.1083468e+00 9.9593159e-01 1.0825923e+00 1.1115032e+00 9.7430543e-01 9.5605161e-01 9.2800480e-01 9.4369037e-01 1.1136034e+00 1.1382898e+00 9.5937594e-01 9.8843084e-01 7.4563456e-01

View file

@ -0,0 +1,100 @@
0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1
1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1
0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1
1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0
1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0
1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1
0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 0
1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0
1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0
1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0
1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1
1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1
1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0
1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0
1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1
0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1
0 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0
1 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1
0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0
0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 1
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0
1 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0
1 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1
0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1
0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1
0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 0
1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1
1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1
1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1
0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 0
1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0
0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1
0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1
0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1
0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0
1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0
1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0
1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1
1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0
0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1
0 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 0 1
1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1
1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0
1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0
1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 1
0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0
0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0
1 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0
1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0
0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1
1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1
0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1
0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1
0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1
1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0
1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0
0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0
1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0
1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1
1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1
0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1
1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0
1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0
1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1
1 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0
0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0
1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0
1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1
1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1
0 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0
0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0
1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0
0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0
1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0
0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1
0 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1
1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0
0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0
1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1
0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0
1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1
0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1
0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0

View file

@ -0,0 +1,100 @@
1.172993630434470589e+02 1.905532343119886605e+02 2.613653823499444115e+02 1.570270816248337269e+02 2.373767637129340642e+02 2.175366144750510671e+02 2.609909144757107242e+02 2.086671686166440622e+02 2.674986450118991002e+02 1.395992762090408235e+02 1.115453060949917159e+02 1.531034842395609701e+02 2.621042034264289668e+02 2.958729454449504033e+02 2.137960368830719062e+02 2.606436280968571282e+02 2.492136530687155869e+02 2.770806237064748530e+02 2.667325121892417883e+02 2.909243437665674037e+02 1.570328417294508085e+02 1.738762543815240917e+02 1.514157955792608163e+02 2.264748814818163396e+02 1.911869834397498380e+02 2.083706054660671043e+02 2.778115921852293013e+02 1.330374814391803397e+02 2.988697222234711717e+02 2.534167825404447001e+02
2.090964891529778242e+02 1.322006104643973003e+02 1.443415945355371832e+02 2.991388772264980389e+02 1.649302344777914868e+02 2.839528641910463875e+02 1.677159709681393736e+02 2.597553832458208944e+02 2.861055547321268477e+02 1.866431671806918189e+02 2.131812134614140177e+02 1.881465139477683124e+02 1.271865139985419262e+02 1.821608865941132649e+02 2.793653846657656459e+02 1.745982981552271838e+02 2.440893905635109888e+02 1.926469151980868446e+02 2.752453852984189098e+02 1.333479229516146347e+02 1.756311805755703404e+02 2.039367615619088383e+02 2.441861159155101575e+02 2.136111324500645594e+02 2.893808960992043922e+02 2.723220466017930335e+02 2.367879096909125565e+02 2.831541206793258425e+02 2.017643187924728068e+02 1.293072046241175030e+02
2.311242818257193221e+02 2.180694109009666306e+02 2.728791416531455525e+02 1.239345918565636993e+02 2.885729762050686418e+02 2.082619393005260804e+02 2.331416004257805525e+02 1.003112528445347778e+02 2.796331120515330895e+02 2.804679740148056339e+02 2.466936828597247597e+02 1.422398585800914361e+02 1.312115029632765015e+02 1.324417143647877708e+02 2.161716508991076466e+02 1.791489656100356171e+02 2.239038785146145472e+02 2.456511993086799919e+02 2.885023077068626662e+02 2.127338775308419940e+02 2.468090724782538246e+02 2.704135008577740109e+02 1.144148504575758665e+02 1.641571759150080538e+02 2.473349551308716343e+02 2.366620528761779667e+02 1.208143167141831498e+02 1.403705034199327599e+02 2.061073908129479548e+02 1.482034962693051057e+02
1.938319500339997035e+02 2.000523826243218650e+02 1.356134735235139317e+02 1.224357428573656250e+02 1.262840705282213918e+02 1.112797762573139977e+02 1.727826315738305993e+02 2.199559683100150664e+02 1.817290208723558180e+02 2.185579898773881951e+02 1.772844462934412491e+02 1.589145011846130728e+02 1.017520743541414703e+02 2.836990856171782980e+02 1.265544072638776640e+02 2.503473341476423855e+02 2.178539278172635534e+02 2.063574432066289432e+02 1.473169457524925861e+02 1.112719632489760784e+02 1.195996070145015722e+02 1.345099678548529312e+02 2.992645259487585463e+02 2.692242364540683752e+02 2.139649193607747861e+02 2.313659165106297451e+02 2.524185025119667785e+02 2.678714004815313388e+02 1.111457754393238702e+02 1.296443575800298902e+02
1.183944097426736306e+02 2.750477277868330930e+02 1.688558971333346790e+02 1.432283295687057034e+02 2.226043174503911359e+02 1.825124733235978169e+02 1.806485153578007612e+02 2.270256019866706936e+02 2.852913053786990076e+02 2.867562520175486043e+02 2.795056496733417362e+02 1.142488895870292822e+02 1.502985045661773427e+02 2.246907359526948937e+02 2.051158858061974115e+02 2.663351441156772808e+02 2.864853431806749882e+02 2.276548949573071070e+02 2.678087640355958001e+02 2.266463576941352187e+02 1.886763304826383774e+02 1.150603609957262563e+02 1.596187994714221929e+02 1.844565420383776484e+02 1.730173420200940768e+02 1.427940137102308995e+02 1.774757620992130001e+02 2.563086691508434001e+02 1.666317348809653822e+02 1.878143419608473437e+02
1.642344698640436036e+02 1.591648429561690818e+02 1.561851029939521140e+02 1.854367091922420059e+02 1.494951311500319093e+02 2.443780767043579942e+02 2.741090240793212160e+02 1.519200656263381006e+02 1.391711947382712538e+02 1.482414334940778815e+02 2.574425018646875287e+02 1.455120022089010945e+02 1.620904376421240727e+02 2.098493186451893848e+02 2.377904829227144887e+02 2.881187570801528750e+02 1.785609418793050054e+02 1.500483139796714340e+02 1.697371065898091729e+02 1.824143324642365087e+02 2.329862749140337712e+02 1.372006180078979298e+02 2.250666134242961789e+02 1.760894707637434067e+02 1.874161150869196035e+02 2.860410495381969440e+02 1.539271628213176086e+02 1.051658254213322152e+02 1.501619097950496666e+02 1.205717364486104515e+02
1.275638286377957371e+02 2.620802183565458563e+02 2.290828196339760723e+02 2.591630015014513333e+02 2.102568650793322149e+02 2.385080320420775593e+02 2.683788150825365619e+02 1.808700201925492763e+02 1.972184450648797451e+02 2.382313686117472287e+02 1.733526990293641177e+02 2.369802981553972074e+02 1.835652530901061823e+02 1.274084560526275141e+02 2.403488205519001326e+02 2.713515297463850402e+02 1.455311801633137065e+02 1.889430214806582171e+02 1.676324321357484735e+02 2.327799977696781184e+02 2.846419393176552148e+02 1.510702433968490936e+02 1.361559014852734606e+02 1.732199851325496525e+02 2.451323003571785364e+02 1.833444866660036894e+02 2.451280287301300405e+02 1.669088211440060832e+02 2.768492228383354359e+02 2.445882168033535038e+02
2.905092787520428601e+02 2.948076984760371033e+02 1.731080208454208673e+02 2.825532355845657548e+02 1.108820315678514845e+02 2.862013985457700755e+02 2.111453776876104769e+02 2.614428154999528147e+02 1.461523265575596042e+02 2.304914832379158156e+02 2.502987607420118934e+02 2.474276046141548875e+02 1.739607960146905725e+02 2.098700376203710789e+02 2.373226438948917121e+02 1.258493219462072119e+02 2.692932028872633055e+02 2.819145908444669999e+02 1.941653933285864468e+02 1.666395497972145847e+02 2.371919109091950588e+02 1.978302896313488191e+02 1.951483674191611613e+02 2.694357972099330141e+02 2.387068160427941450e+02 2.826084316255729618e+02 1.350954172043159929e+02 1.414479610501084039e+02 1.407657276334374501e+02 2.725513503737778365e+02
2.055761393809777360e+02 1.070553196069381556e+02 1.045726024365074096e+02 1.611577217417760153e+02 1.258091705742062629e+02 1.038769334534844120e+02 2.956016304760584035e+02 1.586570076132481972e+02 1.636816353299032585e+02 2.375674325770941095e+02 2.085436646116971531e+02 2.088922128397473443e+02 2.316234644183506930e+02 2.623581653234684268e+02 1.714245300492981698e+02 2.844387943099641234e+02 1.469270259610659650e+02 1.157700922187784727e+02 2.367694595159086361e+02 1.548671738744121740e+02 2.013687686570863207e+02 1.860374943080277887e+02 1.733446602950305930e+02 2.488507085609763010e+02 2.929099979257852056e+02 1.825615338506695480e+02 1.338575452835397925e+02 1.491478381149757979e+02 1.116052925520655066e+02 2.341983606431906537e+02
1.014445800974648222e+02 2.539987638010908597e+02 1.871788778457793399e+02 1.454231386314719998e+02 2.284640297096368045e+02 1.174773591296971915e+02 1.395683165851895637e+02 1.137193571402578414e+02 2.370662356797280950e+02 1.767292649815032064e+02 2.688513591587910696e+02 2.913902923086397436e+02 1.122392290694582897e+02 1.366157623619356229e+02 2.667409125457835444e+02 1.834435599491967537e+02 1.437174343391732236e+02 1.130622879516462120e+02 2.898543289046954214e+02 1.559795378531963479e+02 1.765577834073310157e+02 2.422955620302867885e+02 2.384835032255701321e+02 1.708163174135501094e+02 2.012159081107001839e+02 2.825663186839160517e+02 2.627299211659199045e+02 2.173916205317264883e+02 1.878835852278120910e+02 2.578733373077019451e+02
2.843897417914848802e+02 2.685865547709703378e+02 2.810255710736182664e+02 2.572690897085278152e+02 2.416998564827035523e+02 1.770932574976374099e+02 2.021652319180342943e+02 1.414744641219446351e+02 1.464677002516696405e+02 1.831165552459343644e+02 1.157177632931430651e+02 2.625289386264841482e+02 2.972225480003540952e+02 1.024156386789293265e+02 2.305099741095138768e+02 2.241903749843916671e+02 1.157222019118702292e+02 1.533205318359311775e+02 1.179505454242311799e+02 2.666741766563739020e+02 2.792728900733587238e+02 1.222170248460037811e+02 2.573772727215269924e+02 1.535874607134987286e+02 1.231830862844115728e+02 2.584552954023608891e+02 2.541883057030129862e+02 1.001259630352790566e+02 2.332879439260797767e+02 2.240027888381033563e+02
1.537092645679641123e+02 1.737278083620151392e+02 1.736358049797527201e+02 2.251608985235982630e+02 1.812387130195175473e+02 1.605621432944637377e+02 1.880655312831545700e+02 2.234500385148787700e+02 1.156918728696038272e+02 2.243685096423413654e+02 1.934342626327970720e+02 1.850952349553267027e+02 2.629944548485545965e+02 1.410418270562070973e+02 1.442479234012843960e+02 2.244518961458842909e+02 1.350755563946989923e+02 1.207094763037939913e+02 1.849900977633715797e+02 1.712315707730903398e+02 1.136025349108833495e+02 2.266901327137990734e+02 2.049289406654929735e+02 2.168279721613268407e+02 2.802488024880154285e+02 2.288593244920211873e+02 2.512942787545493957e+02 1.605416563468323261e+02 1.449848598254574483e+02 1.444073785399158396e+02
1.576600406756634243e+02 1.316580100950168912e+02 2.530050469343043460e+02 1.319013133578224028e+02 2.708693079386434306e+02 1.256852413190491689e+02 1.471714019119002046e+02 1.119112141125198576e+02 1.482405279774543772e+02 2.151504825709631064e+02 1.449998801809978488e+02 2.163638771503673581e+02 1.272949254250747657e+02 2.476027791419436141e+02 2.891208457332292028e+02 2.642744540427622724e+02 1.972643066216432999e+02 2.480891057982425423e+02 1.265454595896786003e+02 2.957735252703171227e+02 1.831389323451852533e+02 2.674516147697771657e+02 1.404389674972707667e+02 1.350952754772052913e+02 2.169062951790871807e+02 2.445227715623778408e+02 1.771545655819627427e+02 2.729961759152714649e+02 2.655105689521545855e+02 1.887977700062222084e+02
1.336462666694000632e+02 1.333709897858500995e+02 2.263366393511863350e+02 1.847175439991091821e+02 1.121699721143812383e+02 1.985314153845103533e+02 2.097626398761568396e+02 1.994292542548276970e+02 2.119822099620050722e+02 1.121578896112172430e+02 2.285640262135607372e+02 1.530452060058861719e+02 2.280757825791220625e+02 1.002584314437652893e+02 1.549763597162410349e+02 1.962603185897801836e+02 1.520023734031539107e+02 2.188357004065238129e+02 2.078620274892635678e+02 2.253215106546470281e+02 1.707542413836397373e+02 2.818584030117174279e+02 2.256862624833151472e+02 1.123882683852972377e+02 2.188298604829752776e+02 1.623779544769217296e+02 2.272253780943444212e+02 1.236449568833132560e+02 1.456708971140968174e+02 2.173334506159979753e+02
1.355111076933105210e+02 2.882277378633141325e+02 1.458332953325788139e+02 2.038461345794760007e+02 2.077052275373579278e+02 2.430957456359013804e+02 2.398926697516154150e+02 1.861334604823129553e+02 1.056851094080089695e+02 1.250491536199931772e+02 1.475324860190441427e+02 2.446126161547439324e+02 2.283994822545897705e+02 1.411463500178549850e+02 1.017206978570942510e+02 2.805514386584911790e+02 1.128847993259780083e+02 2.326583828053989862e+02 1.968387029218569069e+02 2.013375618903088480e+02 2.981010702857409456e+02 1.018614681114941902e+02 1.799507821883679526e+02 1.133741465580100396e+02 1.235533581072856038e+02 1.980629645203880500e+02 2.289642287691829097e+02 1.596082722591768288e+02 1.905110471998515322e+02 1.789448781159623820e+02
2.588286452268601465e+02 1.978130463173739599e+02 1.052689337312009599e+02 1.316763830509305251e+02 2.659236586726388509e+02 1.637014132384438767e+02 1.416031833329826668e+02 2.638665530652568236e+02 1.007257384115875425e+02 1.143900271701907769e+02 2.977834670475828602e+02 1.589765734727692745e+02 1.903975572290986520e+02 2.371635535037608804e+02 1.840341975670916668e+02 2.047003785265828242e+02 2.798969769773281655e+02 2.731706896262927557e+02 1.266878907904394254e+02 1.882415083052244427e+02 2.273996647906652129e+02 1.051754139634791869e+02 1.949647447346334843e+02 2.153583447980240919e+02 2.763468452623635585e+02 1.126493843527773322e+02 1.566047572050934491e+02 1.655928523150526246e+02 1.733528322945315949e+02 1.292815908595541146e+02
1.453195062153936874e+02 1.443849872704900008e+02 2.393030362110915519e+02 2.203850914291498668e+02 2.628192548589183275e+02 1.142161203389242132e+02 2.954875947743198594e+02 1.914138981839176950e+02 1.956478457154231023e+02 1.282875398486639824e+02 2.801001077571227142e+02 2.478095646281364566e+02 2.467477848581343949e+02 2.819656424464902784e+02 2.951823714077539194e+02 1.777239847229775478e+02 1.197979896746704185e+02 1.481181033052623661e+02 1.906710229153984528e+02 2.142395628283543658e+02 2.300980272040501973e+02 2.228884003748859186e+02 2.473330601440014220e+02 1.391193242835927322e+02 2.836257563055140736e+02 1.510096324299383923e+02 2.202302141125946946e+02 1.931468179284185851e+02 1.332427495686727639e+02 2.591048546650930575e+02
1.878681542531208208e+02 1.576240359584147654e+02 2.653849736815447500e+02 2.963544993865212973e+02 2.044592436730770828e+02 2.022626486161902903e+02 2.692262675681025144e+02 2.660999355751699227e+02 2.275843495473382347e+02 1.090849337992742818e+02 2.095602584555617227e+02 1.896271059113536808e+02 1.103822849104477513e+02 2.916911739044173260e+02 1.131212278363718582e+02 2.998892666268029643e+02 2.476782245756396605e+02 2.259689579913920738e+02 1.853942231198421950e+02 1.358270117521841200e+02 1.538630682720535674e+02 1.002148317174243601e+02 2.538393939061405433e+02 1.631649956267838206e+02 2.086654853664906000e+02 2.065167771482954322e+02 2.184161808630845485e+02 2.204789814939956045e+02 2.876785893506615821e+02 2.415299687386639675e+02
2.578989465605797591e+02 2.309888943086805853e+02 2.139372792253111584e+02 1.438019921733897775e+02 2.686852572045135616e+02 1.347038004304963579e+02 2.662658866335509060e+02 2.378358170108797367e+02 2.901455078003721155e+02 2.653867524737770509e+02 1.011162296015096302e+02 1.236447329941733528e+02 2.440241295351771669e+02 1.285889645706482725e+02 1.234088480316093808e+02 2.765916670935633874e+02 1.132915304101479421e+02 2.967043774237617413e+02 2.960414394814537786e+02 1.923965028192617410e+02 2.177448618307050765e+02 2.328047369831131732e+02 1.702256773965170282e+02 2.320080409490440729e+02 2.962065584958517093e+02 1.421971909775941185e+02 1.416181340866144183e+02 2.318260414882616374e+02 1.990521696869427046e+02 1.291045564046920333e+02
1.562042774178686386e+02 1.004265446278790392e+02 2.987714610921041185e+02 1.843637355858842284e+02 1.975513718825063165e+02 2.869996482942455032e+02 1.598134132589713943e+02 1.814921031876193638e+02 2.433389905907341983e+02 2.220363745053336970e+02 1.548306942100590504e+02 2.274512269554506361e+02 2.173006200058655963e+02 2.139515436667214772e+02 1.820439741095771353e+02 2.954110718222074183e+02 2.706126458816278273e+02 2.546812106115172583e+02 1.499899738326257363e+02 1.498010641912065921e+02 1.897725780579399668e+02 2.531561160917130167e+02 2.568891780637028432e+02 2.223136077092870551e+02 1.518604819103856585e+02 1.610422120589223027e+02 1.090455809489133259e+02 1.950503873748027388e+02 1.235704160644129388e+02 2.711492093024702967e+02
2.039597038432034424e+02 2.026680584622021684e+02 1.365818873512059213e+02 2.909476552420245525e+02 1.721994194158640425e+02 1.854386667051114443e+02 2.287109571295530372e+02 1.912591665763447963e+02 1.607322994166321450e+02 2.949516230628389053e+02 2.522065912002103403e+02 1.869433122585654701e+02 1.235797649248940644e+02 1.522422059501078024e+02 2.738245135411146975e+02 1.059681837441489307e+02 1.013027238331489173e+02 1.660100598156148237e+02 2.454471731623151243e+02 2.467503196183328100e+02 2.584564749953993896e+02 2.079587352810677316e+02 1.650926041957846451e+02 2.269719270682073784e+02 2.376254891983122093e+02 1.510146656008620596e+02 2.672848371954185041e+02 2.692845974117340688e+02 2.180714754246087921e+02 2.186797802447831884e+02
1.704231257711912519e+02 1.993416036368699906e+02 2.293703655438095268e+02 1.494582642918422266e+02 1.988970317734676030e+02 2.329763291241497711e+02 2.594871448385057420e+02 2.168089936885102134e+02 1.825320854593447280e+02 1.816754553181755796e+02 2.164740515812325725e+02 2.676208645391697019e+02 1.298365075936954725e+02 1.802664596093496243e+02 1.015344620621038132e+02 1.955048336384612639e+02 1.938953913674110083e+02 2.716932071347151805e+02 2.391085978949223829e+02 1.852300387899809380e+02 2.933293185307651356e+02 2.502753353909542966e+02 1.326128348575908262e+02 1.132638325194699433e+02 1.382024010322260494e+02 1.899310337488860796e+02 2.577639546186944699e+02 2.130234590296898887e+02 2.056292296528304746e+02 2.070746044453983927e+02
2.712524956603344890e+02 1.103212761114690750e+02 1.501201791543782917e+02 1.588084859702673555e+02 1.780379814134324192e+02 1.938691258391782810e+02 1.322057441019641146e+02 1.105823874551086590e+02 2.879365916037821194e+02 2.457617763012990224e+02 1.036189749330240488e+02 1.682919366264929124e+02 2.271749409116763161e+02 2.468308259697249127e+02 2.530034131464132088e+02 2.481420904342841709e+02 1.546080547019561209e+02 1.278414739842506265e+02 2.234886960240669111e+02 2.535365186455997843e+02 1.599130733896959669e+02 1.151371295028686035e+02 2.378656188176093451e+02 2.901072209563180877e+02 2.524076257924749882e+02 2.849501171254129304e+02 1.802791659856764568e+02 1.527418387706650833e+02 2.578820596338672431e+02 1.208856989199291263e+02
1.884906470590645711e+02 2.304295185581007672e+02 1.035923344330140736e+02 1.647061655195892627e+02 1.910201770870304472e+02 1.752788518438422614e+02 2.763014227316762117e+02 2.545709641405486252e+02 1.642694881393259152e+02 1.850698110761380804e+02 2.423689469305483328e+02 2.821007056776016384e+02 1.440765548977453250e+02 1.082195827231368952e+02 1.292487205530619008e+02 2.136496853657876613e+02 2.268509220579896635e+02 2.999629735037570981e+02 2.135306905316524535e+02 2.807718279523737692e+02 1.079256111018183759e+02 2.233050677333321801e+02 1.960571416898615951e+02 2.930642308139058514e+02 1.350490077967585307e+02 2.626074042719769750e+02 2.812196827814445328e+02 2.812753678081913336e+02 1.893738913514469004e+02 1.237248675858835725e+02
2.024005284879252144e+02 2.663611407988397559e+02 2.687079844301063076e+02 1.583164038086077312e+02 1.451019436850150441e+02 1.100558451420041450e+02 2.083655450975085159e+02 2.034012033819327598e+02 2.745375932717230398e+02 1.454718097055225599e+02 1.519068131933423729e+02 2.522666952972969625e+02 2.409340029943109300e+02 1.697386944425205115e+02 1.092659514648129289e+02 2.785598218078254149e+02 1.404092026094307357e+02 2.152301424167146990e+02 1.170396027347833723e+02 2.495323893679063474e+02 2.070836095469416591e+02 2.187978925167305135e+02 1.478606128149070855e+02 1.189323178954538207e+02 2.012925160284665651e+02 2.080878545398990127e+02 1.510128433840351647e+02 1.657302151838663065e+02 2.177026636795220043e+02 1.221198981216710422e+02
1.411258561955272341e+02 1.419717097672817374e+02 2.247481951315160984e+02 2.805973971111802712e+02 2.755562061324142178e+02 2.039769327420251557e+02 2.994080883760036045e+02 2.417843309736466040e+02 1.023751441731232319e+02 1.491356884971497152e+02 2.542464200475323821e+02 1.496044144381669128e+02 2.829129207809560285e+02 2.479316882407134699e+02 2.441205876677642550e+02 2.045492313770996020e+02 2.855582203360229414e+02 2.884005586284110336e+02 2.039668453101600676e+02 1.690279206477617890e+02 2.136822090795746760e+02 1.254275901194574772e+02 1.084851042192170922e+02 1.656011685190305229e+02 1.415195951026897774e+02 1.578115814760412263e+02 2.619737257057257693e+02 1.492347147839753347e+02 1.627213988646173561e+02 1.343297485726322691e+02
2.544675070683062756e+02 1.367461330002975899e+02 2.928364121110963652e+02 2.024865028281971036e+02 2.758937379397792142e+02 1.293527538914390220e+02 1.003170531204512059e+02 1.514803620238746760e+02 2.603616046431354789e+02 1.790387290949859960e+02 1.954717187769221027e+02 1.325226280128280223e+02 1.522166198122710625e+02 1.162911821325583048e+02 2.798489406348742250e+02 2.521718932296424498e+02 2.622327475379161115e+02 1.027798265388270949e+02 2.437256510683693023e+02 1.911771820917219884e+02 2.722604457055863350e+02 2.850557929858495640e+02 1.953760157441756746e+02 2.473572905253965644e+02 1.891404804097296051e+02 1.514672503279451803e+02 2.213565012031598940e+02 2.253356064978207769e+02 2.044629345029305227e+02 2.805872739342098612e+02
2.859142434488251183e+02 1.016009480575973356e+02 1.779351649172412522e+02 2.205171340775500539e+02 2.104472905774927369e+02 1.755755724600441567e+02 2.751836189782782185e+02 2.820692049982218350e+02 1.337557428916256015e+02 1.569761138230965969e+02 1.991757527032745543e+02 2.615974376894962461e+02 1.944849272958306017e+02 1.868411694165790777e+02 2.994394032068257729e+02 2.802783326794233290e+02 2.693871918204162625e+02 1.750293298802730249e+02 1.468161278725061720e+02 1.272003326865558108e+02 2.233103517167062932e+02 2.103066399402185027e+02 2.720825853079193735e+02 2.728915492341989193e+02 2.160004538807991992e+02 1.325145501710478015e+02 2.549827549782140466e+02 2.921469675413995901e+02 1.846231529604695822e+02 1.391152989663993651e+02
2.538717579982014456e+02 1.450483481068324352e+02 2.720200816305956550e+02 1.120834821105324011e+02 1.703801876168104741e+02 1.091293661435919233e+02 1.410263490040598526e+02 1.910022197757120352e+02 2.505223413771657022e+02 2.069613533172621374e+02 1.367200764291426935e+02 1.269156762039037574e+02 1.459486945063737267e+02 1.585863332989725905e+02 1.433846106215619329e+02 2.893202513225785424e+02 1.754070497414596730e+02 1.678900237854272746e+02 2.363821059303507752e+02 1.088858921730617908e+02 1.962435837543239927e+02 2.151311182954276831e+02 1.943029551670006754e+02 1.670799798236046172e+02 1.348235227224938910e+02 2.005836112104490212e+02 2.601588534628079969e+02 1.194827586439497935e+02 2.131891535893303740e+02 1.835674362703964277e+02
2.872207377280434457e+02 1.680389491751975299e+02 2.268072198735419533e+02 1.324343035526375729e+02 2.746241572770433095e+02 2.142161570690199710e+02 1.852290440736100550e+02 1.772431485621305285e+02 1.144750125154023266e+02 2.162070901557998468e+02 1.490690769171257557e+02 2.904041493178549445e+02 2.673617561413327621e+02 2.904362235840736730e+02 1.438791831406123833e+02 2.596893065528289526e+02 2.617155941751458386e+02 2.388486986717779246e+02 2.718819501315180105e+02 1.265484539827731680e+02 2.508989305854047700e+02 1.677208481362706323e+02 1.527665277518251230e+02 2.069026506407369084e+02 2.223100964495413336e+02 2.859845330217733022e+02 1.430291068893224349e+02 1.186508486537613436e+02 2.043257492072551713e+02 2.909823892985461953e+02
2.385945641230763670e+02 2.011887933217761031e+02 1.622448188725907983e+02 1.738874847453056987e+02 1.669498482708885376e+02 1.853462372214463016e+02 1.514500885098960907e+02 1.569159134451362547e+02 2.521399095730983504e+02 1.246878140446721659e+02 1.758330561641313352e+02 2.722601647479554003e+02 1.679012078705679869e+02 1.710944469563905272e+02 2.012619557548435978e+02 2.130692925302264200e+02 2.489118511754019778e+02 1.553758318484749452e+02 2.531318516516165857e+02 1.895498740333992487e+02 2.010265603399928409e+02 1.805605111948569856e+02 2.471772127430102159e+02 2.822665908577009759e+02 1.256656757093761314e+02 1.218957078832023626e+02 2.851942693987446660e+02 2.434079459678487751e+02 2.183256665756584312e+02 1.881473862468819220e+02
2.878274557836845133e+02 1.654481949983921254e+02 1.215681808546938214e+02 2.567820905945674781e+02 2.104106688330284101e+02 2.960796083414018085e+02 2.020680111052573693e+02 2.328934707961639106e+02 1.081575190462602336e+02 1.003340046261853189e+02 2.009697278729638299e+02 2.231963192062537757e+02 1.203849639323555323e+02 1.187994179134823156e+02 2.211937485225296030e+02 1.667300587261732119e+02 1.727379541915926211e+02 2.085029285798690353e+02 2.440827389167183981e+02 2.864522928573259151e+02 2.974890568790378893e+02 2.102945085846974393e+02 1.972598274048171447e+02 1.762889209976547136e+02 1.346946323322499666e+02 1.554434255958064170e+02 2.915634104756007901e+02 1.434053307556222876e+02 1.055800565037633163e+02 2.043924431141962259e+02
1.494596010135965116e+02 1.369114048625681335e+02 1.414146701131132886e+02 1.383970135097982848e+02 1.734304788623498155e+02 1.594301265610334610e+02 1.040146208229407137e+02 2.208381597698417806e+02 2.904998286250861383e+02 1.300157615397056929e+02 2.667076669416877621e+02 1.062418844419948556e+02 2.717657999079561364e+02 1.054097765488278640e+02 2.401074677516734823e+02 1.045408432466875297e+02 1.330046749931937882e+02 2.297648034226271534e+02 1.488059718063634307e+02 1.725671935994615183e+02 1.330818497812682608e+02 2.341687919103425770e+02 2.983144736799429211e+02 2.798846823197050071e+02 2.218705077010061473e+02 2.681931695329894865e+02 2.339384973461015420e+02 2.893058480095726281e+02 1.539801301873031321e+02 2.746688360458649640e+02
1.330701439354522222e+02 1.727884450558678395e+02 2.309082669627648272e+02 2.027633892073664299e+02 2.725503026364725656e+02 1.999882667367585896e+02 1.904108867169430255e+02 2.952458047945178805e+02 2.903769421220866320e+02 1.593020200554085477e+02 1.236139458806368623e+02 2.670862420061573062e+02 2.910830183895285472e+02 1.860711175093342149e+02 2.161724988935532963e+02 2.564488756979296795e+02 1.231566645138573648e+02 1.554206254375235403e+02 1.148558104746345521e+02 1.512714227454516163e+02 1.953024826710307025e+02 1.296022137194406127e+02 1.500450396815122076e+02 2.611742573447975246e+02 1.601671705158374550e+02 2.391666762859087214e+02 2.566415095930981352e+02 1.923304801412870404e+02 1.194174883996373353e+02 1.970722090829630986e+02
1.912113734453868688e+02 1.498407015577022605e+02 2.038188614169363007e+02 1.315017316695561647e+02 2.564290419741012101e+02 1.890015309531812022e+02 2.451565642315005960e+02 2.794356592632736920e+02 2.286941218755985972e+02 1.959549984609147941e+02 1.183834182035568716e+02 2.102820643179567242e+02 1.748108698585573393e+02 1.534379248653211221e+02 1.919662859034699522e+02 1.273611408042816464e+02 1.848163823983119585e+02 1.719445827292381637e+02 1.098466009889928898e+02 2.781108902268393877e+02 2.089286134506138524e+02 2.324518337977864348e+02 1.983840049195213169e+02 1.897881971862217370e+02 1.057077761008814605e+02 2.693629461665184408e+02 1.359710117509105487e+02 2.191184409971657487e+02 1.295811391257115304e+02 1.272165218667991553e+02
1.987244486959793903e+02 1.516360617950651317e+02 2.198509518241761498e+02 2.494181713303175911e+02 2.903223989223247372e+02 2.847249789220907132e+02 1.747037051964282171e+02 1.610307305098726829e+02 1.866621867053561061e+02 1.016530888490581503e+02 2.606194448419089440e+02 1.820037020201941402e+02 2.650669443765450524e+02 1.137210849453726098e+02 1.329244106101075715e+02 1.741312140090854257e+02 2.301425980066611885e+02 1.051708772384664030e+02 1.994040172335078864e+02 1.874773290907829733e+02 2.745616984783777070e+02 2.354781865911449756e+02 1.598287033335407159e+02 2.650689470710170212e+02 1.643692352330562017e+02 2.991199217036622713e+02 2.713535332162406348e+02 2.516280148665988463e+02 1.124367393830256532e+02 1.725070309959049837e+02
1.637875882282461077e+02 1.407642428016634426e+02 2.759741260511348173e+02 1.982469453863400304e+02 2.966736241669494802e+02 2.756530253528777052e+02 1.426661371226006167e+02 1.585144634205103102e+02 2.836415355000413001e+02 2.468213340046699784e+02 2.898204535963063790e+02 1.711408259966125343e+02 1.900542569026269177e+02 1.112151031999617032e+02 2.679918109779015936e+02 2.737346364036235400e+02 2.597479311885246602e+02 1.719445390286030886e+02 2.361360157374418236e+02 1.123330408578339785e+02 1.214203690485689719e+02 2.552722899309185891e+02 2.436705678248840456e+02 1.596697357728296254e+02 2.533254006866929444e+02 2.066863222258713790e+02 1.194370826184286329e+02 2.943584774485435673e+02 1.636272134478143130e+02 1.191267138602315185e+02
2.350924626651462006e+02 2.263138093076711357e+02 2.206572605284771385e+02 1.704171521239532296e+02 2.000250897638135257e+02 2.966317084215347109e+02 1.350543763227695138e+02 1.248113195978286285e+02 1.480602782771696297e+02 2.391913401309390679e+02 1.908758915801345779e+02 2.476074601271855045e+02 2.408834383325319095e+02 1.009169451940341560e+02 2.567526834523320645e+02 1.791854948779896688e+02 1.412277552146151152e+02 2.660711025781407670e+02 2.073940326990519054e+02 2.509760072499196610e+02 1.358593750308925223e+02 2.127422683140523532e+02 1.874643773621423293e+02 2.844455725631112273e+02 2.197223292953194118e+02 2.049519862750077266e+02 1.674367936692717365e+02 2.806316262053937294e+02 2.040091003350897836e+02 2.675290975004411962e+02
1.483513543637005796e+02 2.384008274111940011e+02 2.834409911154408519e+02 1.344593118283445392e+02 2.346883831968173979e+02 1.381882879805813218e+02 1.241165074750676638e+02 2.186327911062819567e+02 2.466602279029802673e+02 1.573094529523951906e+02 1.568918412618390903e+02 2.289205163045023710e+02 1.170165333644822283e+02 1.742406104080407658e+02 2.082974381484526702e+02 1.600869123712819260e+02 2.399160913983472199e+02 2.877189278027444743e+02 2.845252294036096146e+02 2.342337907657317544e+02 1.496264758341107779e+02 2.905797831387872066e+02 2.824703799011629144e+02 1.047015685176013307e+02 1.056531628249932169e+02 2.778559625738202499e+02 1.693549799118289343e+02 1.654193764711911570e+02 1.062077606699500762e+02 1.159643419206647792e+02
2.694780377267857716e+02 2.229138360502907403e+02 2.407432883969363218e+02 1.240072643521201741e+02 2.128611568148922970e+02 2.114050669978733481e+02 1.042337934877265297e+02 1.044783539591350490e+02 2.706611056394938259e+02 1.972285130309975898e+02 1.959046941044780681e+02 2.915493579522836853e+02 1.131994346897827342e+02 1.197362406389762839e+02 2.877593780027675621e+02 1.089470964294721824e+02 1.996015695685267417e+02 2.185569019121031999e+02 2.102686704320404374e+02 2.955299037924150980e+02 2.987478446256551479e+02 2.517129931888254646e+02 1.552463625479420557e+02 2.295020326441428153e+02 2.886454895961533111e+02 1.869792800456660871e+02 2.703426621835664037e+02 1.873514421416134326e+02 2.714620374401066556e+02 1.623625260081516331e+02
1.457420078291350194e+02 1.926195242081234369e+02 1.841639049563959247e+02 1.397830290030836125e+02 1.287503203163068406e+02 1.684614546803193775e+02 2.820658047345126533e+02 2.986548244924653090e+02 2.631399932039782925e+02 2.870930868530864473e+02 1.141938207690214426e+02 2.868552010662050407e+02 2.019110175402121286e+02 2.840219745246005232e+02 2.848478851173646262e+02 1.902287203163165259e+02 2.696968940302964484e+02 1.690355482825476656e+02 2.171695948786692725e+02 1.960363641465239652e+02 2.930566891688549731e+02 1.380341365242818483e+02 1.769912313914243214e+02 1.164985277343077996e+02 2.079184380436491324e+02 2.871364788135472850e+02 1.796231479741346391e+02 1.115892945700443875e+02 1.922852518794877028e+02 1.851500906627327083e+02
2.894943401361737187e+02 1.972990286414578804e+02 2.801948561309920933e+02 1.993490085147259947e+02 2.539099743775018112e+02 2.972486389690005240e+02 1.162404922698449354e+02 1.801898545246462504e+02 1.283416456049016858e+02 2.289248555429664407e+02 2.419505668531598985e+02 2.755101537543703216e+02 2.786083442131507013e+02 2.461931811431258552e+02 2.699066237266536064e+02 1.088542193903703179e+02 2.302113104476973149e+02 2.158136503417114227e+02 2.797451432348925096e+02 2.832754349673875822e+02 2.207567008139471909e+02 2.920947868166995249e+02 1.300092217647513735e+02 2.953259288980694350e+02 2.539624465668687492e+02 1.304833679125420645e+02 1.051395153781939484e+02 1.855592224876973830e+02 2.160289702497469477e+02 1.227895712666205981e+02
1.029685235386965587e+02 1.410297052380113882e+02 1.832105986621241982e+02 1.016727951098498579e+02 2.130361696974732126e+02 1.817578553203918830e+02 2.644724203174304193e+02 1.713346250427240420e+02 1.297164370175517547e+02 1.072810924841072193e+02 1.083932811014470161e+02 2.860684171745337494e+02 2.893854146138399983e+02 1.677808320623732925e+02 2.343535290724524600e+02 1.209564642240636090e+02 1.329537830609780542e+02 2.924542956964438645e+02 2.733376468658280487e+02 1.397146179999238598e+02 1.103570089598620285e+02 2.231457082965310690e+02 1.056672424832338635e+02 2.887779644840117612e+02 1.127167878193751704e+02 1.387640376146708263e+02 1.791595456124304633e+02 2.709107895779202408e+02 2.238624693992912569e+02 1.773395240564728397e+02
2.317578772498348769e+02 1.294950944138938667e+02 1.126253428029936572e+02 1.371351849575549693e+02 1.785990678455200964e+02 1.021081186758702444e+02 1.471984209931611360e+02 2.907355141803875540e+02 1.881128962816476644e+02 2.776434621780599628e+02 2.231668573818950279e+02 1.905362514139340817e+02 1.921875823712000226e+02 1.027725913116546792e+02 2.939602582690168902e+02 1.776540079128602656e+02 2.761214484196684111e+02 1.042033722248946646e+02 1.812858538041361385e+02 1.739774673118114663e+02 2.626640185867897799e+02 1.702975408841979288e+02 2.558138050153142729e+02 1.733257751657050392e+02 2.918973111180089859e+02 2.499103812623473857e+02 1.210050998380505973e+02 2.819910650801346605e+02 1.887952629909842699e+02 1.910084514453274380e+02
2.212539479167726029e+02 2.774434360961662378e+02 2.337566454731646104e+02 2.345785537275947661e+02 2.365459264006348405e+02 1.983982238092833086e+02 2.030822332599765332e+02 1.995891111618029186e+02 2.834365683300363798e+02 1.036872616932399609e+02 2.192093181482490252e+02 2.601252995545215754e+02 2.498786393235831724e+02 2.102914196276636858e+02 1.344974807588668000e+02 2.319076536245909210e+02 2.769341510052834110e+02 2.705990780330756138e+02 1.679097240924248240e+02 2.394521666103182724e+02 2.042111123157340842e+02 1.679545908808316028e+02 1.638112120198904051e+02 2.498667640522866407e+02 1.298749690282424183e+02 2.953546510122243944e+02 2.420377599473625025e+02 1.972281420856064642e+02 1.511153679243939223e+02 1.785899871179086063e+02
2.568297621323404201e+02 2.469847896802298237e+02 2.766623631158322496e+02 2.476135901735717937e+02 1.788596740963971570e+02 1.849716544556056874e+02 2.568516536462929594e+02 1.692762419184084877e+02 1.468834240718183537e+02 2.716053370235183593e+02 1.674083895790932957e+02 2.340636951853666687e+02 1.637725360284847227e+02 1.316562872243186177e+02 2.850086566701365882e+02 2.066513343106022944e+02 2.990778363456342390e+02 1.780020440519503495e+02 2.906711993591478631e+02 2.149926413975278479e+02 2.151504627144789765e+02 1.458362697904619836e+02 2.339644011324822657e+02 1.740513991402896181e+02 1.804876886135730842e+02 1.706585538790989176e+02 1.113370339871644603e+02 2.032819788543359039e+02 1.225434838619497526e+02 1.558188197132453183e+02
2.752385657001058803e+02 1.704994416021052643e+02 1.607090409105587696e+02 2.031247490318933444e+02 1.333383797740430339e+02 1.922643047184382112e+02 2.665685682619526915e+02 2.611043497447243453e+02 2.444450591022788615e+02 1.012899678037660181e+02 2.236752860048796947e+02 1.164606756896235993e+02 1.768812782093617955e+02 2.532808672341815850e+02 1.308823477633827395e+02 1.683394957344131626e+02 1.787390150786144716e+02 1.962681762314343530e+02 1.178176219749694980e+02 2.151624908275416885e+02 2.951256579216935734e+02 2.058583926262361388e+02 2.348769662163374790e+02 2.500118096543036472e+02 2.065978549387351109e+02 1.732426267043477139e+02 2.575950640438621804e+02 1.826939497339359946e+02 1.586062531006688801e+02 1.141086110094916819e+02
2.107478059550890066e+02 1.212326460542207940e+02 2.154852140069355073e+02 2.624147598788578648e+02 1.169795422214265699e+02 1.682202484364929660e+02 2.987700686247625299e+02 2.259973608163532504e+02 1.912690930240648015e+02 1.896338093439390775e+02 2.747727757049322008e+02 2.388804299971102978e+02 2.538821160842531128e+02 1.839990833334872491e+02 2.839611350159472067e+02 2.953225980324958755e+02 1.674336071760058076e+02 1.609172697163818953e+02 2.902596210806400450e+02 1.513824951234124114e+02 1.873458283487339600e+02 1.695960935104061491e+02 2.116215526550050470e+02 1.849422962892989233e+02 1.434256749723924713e+02 1.304784783123307079e+02 2.632948417544853328e+02 1.656472047377057777e+02 2.303125851744007377e+02 1.681993961373014486e+02
1.104191565760665128e+02 1.750924257030650040e+02 1.242494131306669090e+02 1.541741282893887899e+02 2.585460716706878657e+02 2.286423505464783261e+02 1.890990979891397501e+02 2.707781238779197679e+02 2.619171833457787670e+02 2.695823002806438353e+02 1.941989480397771786e+02 1.389058748786196134e+02 1.283479072532797431e+02 2.347481590897206729e+02 1.518985431591505630e+02 1.757095590143896402e+02 2.225334593093496096e+02 2.231309387578290568e+02 1.039310896134069395e+02 2.614149485334186238e+02 2.212890027388380076e+02 1.425609106790709859e+02 1.376620423520403733e+02 2.403640719649376933e+02 1.152284694789922526e+02 2.108068210397188409e+02 2.526640691383259991e+02 2.323633859683563969e+02 2.720522122905912283e+02 2.498034621012949685e+02
2.223449436042899947e+02 2.823923482876032267e+02 1.728419664392092727e+02 1.542710015610415724e+02 2.699062389875002737e+02 1.776741825057288793e+02 1.800001384193664080e+02 1.819433000632012636e+02 1.436484983468620840e+02 2.344086094824976954e+02 2.824459866922626361e+02 1.860318500101035681e+02 1.749968777772715498e+02 2.792448396035428004e+02 2.134719239619671498e+02 2.649346822194891047e+02 2.535109715864082602e+02 1.651109960016319178e+02 2.407385671793928736e+02 2.276937454871455770e+02 2.965404491761371446e+02 1.771850291606413634e+02 2.317902380753697855e+02 2.233400563607936817e+02 2.471010629200553694e+02 2.999085009765063319e+02 1.263611681933084725e+02 2.954593528043474180e+02 2.279026703099021915e+02 2.630592311905735414e+02
1.662671322607742752e+02 1.600442354914371208e+02 2.476541290397616137e+02 1.471310870365195740e+02 2.302232198157895198e+02 2.833854716762933776e+02 1.464787719165046553e+02 1.913553080525503560e+02 1.014594285276723156e+02 2.182963956218923158e+02 1.629807715448000636e+02 2.692152036144454428e+02 2.287521686048013976e+02 2.982465613581407524e+02 1.646080094271899839e+02 1.685350412843276899e+02 2.638506951547767585e+02 2.931520510309920837e+02 1.395453733045734168e+02 2.192750645467382355e+02 1.118562057344099543e+02 2.210439168983162972e+02 1.977199388190010438e+02 2.248771354041466566e+02 2.967583759675493411e+02 1.144799677712354793e+02 2.877369511761256149e+02 2.831237961244747225e+02 2.909105411130262269e+02 2.550977837950437390e+02
1.519738194711488006e+02 1.042788193386050608e+02 1.298121344332743377e+02 1.827398187867084971e+02 2.371985543371917800e+02 1.647119082252074236e+02 2.792046599520904238e+02 1.737333830141970452e+02 2.019611337599129968e+02 2.402390448779260623e+02 2.107045415433176174e+02 2.447101973248666411e+02 1.584507446746840174e+02 2.877533155913679366e+02 1.209142860803932251e+02 1.903846717728129931e+02 1.485923447895592631e+02 1.040627746119376695e+02 2.329784390325348795e+02 1.136264746597146882e+02 1.019818146651219024e+02 2.395077159260278847e+02 2.571474008697522322e+02 2.507839876514990465e+02 2.649762964978717719e+02 1.398370322453145889e+02 1.116668292809188614e+02 1.262068209877756289e+02 2.561228606182183967e+02 1.019925993853918413e+02
2.525550526067758881e+02 2.649927164229666232e+02 1.457764901336312846e+02 1.519121804298574148e+02 1.112983565335166247e+02 2.979018464293943680e+02 2.517559946611144142e+02 1.257251989750113239e+02 2.377842966816966737e+02 2.692916709774201536e+02 1.558791612193160745e+02 2.988101508442036334e+02 1.264682305510686575e+02 2.586186621657187743e+02 2.397705732393993969e+02 1.799773948514575750e+02 2.289212202830902072e+02 2.551439950194432242e+02 2.270410183155361210e+02 2.624250216967006395e+02 2.894508375480465361e+02 1.106681053253299183e+02 1.696755343387707171e+02 2.302155275158106917e+02 1.445113211107399138e+02 1.886794441144848236e+02 2.129906512422033131e+02 2.340704769023953986e+02 1.082933010325512981e+02 1.977265970892881626e+02
2.874406426475449052e+02 1.913451373833616742e+02 2.647704607931181044e+02 1.881279366057496532e+02 2.840067538093052804e+02 2.179159896935567247e+02 1.839859875309309132e+02 1.189702187115672132e+02 2.794517441847542614e+02 2.815599370853284427e+02 1.258259904677427699e+02 1.428483537633051412e+02 2.541426109645265967e+02 1.338781623221585164e+02 2.877181693280556374e+02 2.041742222547631513e+02 2.429167887622087392e+02 1.861891141000048435e+02 2.815058357304060337e+02 2.932279451804108703e+02 1.428092602118218792e+02 1.129541128601477595e+02 1.104970415865426503e+02 1.361068733124779726e+02 1.702082770497633533e+02 1.583852379729134157e+02 1.614070717213254511e+02 1.054529192214523476e+02 1.116913943762218366e+02 1.806474879921846366e+02
1.904583320230821926e+02 1.477903225290235980e+02 2.926623631581093150e+02 2.267002240281469199e+02 1.643763662729302268e+02 2.199235242233247902e+02 1.853923849032223359e+02 2.941726936508506469e+02 2.665966841434134835e+02 1.199566433868006357e+02 2.951991052054676175e+02 1.594510101065885124e+02 1.458298791153635534e+02 1.532145001211049475e+02 1.411023254500616133e+02 2.140513226665028128e+02 1.678784758049908419e+02 1.708308530430679184e+02 2.099440033407245778e+02 2.664570659333852518e+02 2.959905162222905801e+02 2.829445582187913715e+02 2.588706049990775000e+02 1.722199615074994483e+02 2.869184560072056343e+02 1.681559218785307053e+02 1.503240659973911306e+02 2.588597461006905291e+02 2.678295026364270939e+02 2.154561503934444886e+02
2.071927904539387839e+02 2.171736003654224305e+02 1.593735315924418785e+02 2.947356579175152547e+02 1.742775794491871011e+02 2.184611101357660914e+02 2.225198306238390842e+02 2.168369296352294668e+02 1.755672175076374231e+02 2.252214925755263835e+02 1.563369877784152209e+02 2.085332604119019209e+02 2.572482649031854862e+02 2.951800051631508950e+02 1.079183556031880329e+02 1.218838648771928774e+02 2.685371616407055626e+02 2.419162624723466877e+02 1.022244855205179022e+02 1.101224552326326602e+02 2.597819405832950679e+02 1.134555412120959517e+02 2.870491931154815575e+02 1.374365654160442318e+02 2.645641258978021142e+02 2.531141673781916666e+02 2.361747183362105886e+02 1.893108861581111171e+02 1.539026912190118139e+02 2.501170032332128415e+02
2.547888423116186232e+02 1.853670755857669974e+02 1.389074705955763420e+02 2.709929622842061008e+02 1.228800068832790515e+02 2.778321736112652616e+02 1.309641642706778555e+02 1.156980811627219055e+02 1.431313378740429982e+02 1.646591400066212714e+02 1.920182917083556049e+02 2.178001706163468043e+02 2.235489712948179886e+02 1.079088316874027242e+02 2.447091545393394370e+02 2.320303973549428065e+02 2.359105911115680101e+02 2.382951907588607128e+02 1.062067779247245483e+02 2.905379355334102911e+02 2.023335418134440715e+02 2.128348219019524095e+02 2.865957710750057004e+02 1.782427960783044796e+02 2.856139874187100531e+02 1.139905905655008098e+02 2.264676166669663360e+02 2.479179013019825675e+02 1.746165350218777803e+02 2.255842464851874070e+02
1.883869033800616819e+02 1.965817072065136699e+02 1.890868666652849015e+02 1.898737766004000491e+02 2.779218373710688184e+02 2.134628932560298722e+02 1.100835458783813436e+02 2.768750976313177148e+02 2.547073561014202880e+02 2.728160162818061281e+02 1.733645011505617504e+02 1.625036971255624394e+02 2.977754324167240156e+02 1.632372616873928450e+02 2.174045665187836107e+02 2.606964806055048030e+02 1.625508452643421720e+02 1.715067940576683441e+02 1.218481476549646629e+02 2.842560845538128547e+02 1.928678337146606623e+02 2.708765321293922739e+02 2.077020047066411621e+02 2.923591890868326004e+02 2.230876482822842206e+02 2.689925468225608256e+02 1.036588336737814586e+02 2.052618530546818363e+02 2.648220111560104897e+02 1.868396012623422280e+02
1.785937212608853315e+02 2.973454718025594161e+02 2.368986004504845084e+02 1.146953890760472348e+02 1.265905165006724644e+02 2.255973396401841455e+02 2.163675674740596264e+02 1.527913853500098185e+02 2.283358642424602465e+02 2.759303134283557597e+02 2.876072117803540777e+02 2.029362495845153944e+02 1.212425121544320490e+02 1.100001317370093830e+02 2.335268996183764330e+02 2.375268130741384027e+02 2.336339660612213436e+02 2.462747325703657282e+02 2.841981652294566061e+02 1.081959034831858446e+02 1.291296469376330833e+02 2.602425849072438950e+02 2.575669438145553727e+02 2.135342654708205714e+02 2.294373105308322067e+02 2.706502840281193016e+02 2.928412927772634475e+02 1.330151104176747765e+02 1.533759962548247131e+02 2.744006234275867655e+02
2.257735103076358882e+02 2.728385269717355186e+02 2.290872800510813363e+02 2.330934692803050154e+02 1.037274604992595215e+02 2.674079561164307961e+02 1.195755645916240866e+02 1.402804464035359047e+02 2.170516922702277611e+02 2.744725918691634661e+02 2.930458735600458908e+02 1.496408395971007224e+02 1.595562419103408729e+02 2.835538666488008630e+02 1.780163567793609332e+02 2.906408145890961237e+02 1.133853019218590248e+02 1.494630592331960770e+02 1.214592101712915451e+02 2.263015460193574881e+02 2.598100406717117608e+02 1.963383361449393192e+02 2.235083985338561376e+02 2.946475410923074492e+02 1.758055989844200724e+02 2.637780439251395137e+02 2.875400021086666698e+02 1.577781508415756662e+02 2.146553072676672684e+02 1.798181279868336446e+02
2.620574340171276617e+02 2.153711882285265915e+02 2.245961661539886904e+02 2.054509343172356921e+02 2.926008719008261210e+02 2.432564531143420652e+02 2.303655720936658611e+02 1.615953803481287991e+02 2.918921003884012748e+02 2.760746977013722017e+02 1.909442200188182710e+02 1.596536528765051060e+02 2.491411570718119037e+02 2.924629085319008936e+02 2.587604848561293807e+02 1.524605619386706792e+02 2.737599884275671798e+02 2.090365453766356723e+02 1.610548024559351461e+02 1.018774121963877803e+02 2.410901898572944049e+02 1.875862586601133444e+02 2.588626077539996686e+02 2.579873618626863845e+02 2.838744453525392828e+02 2.580071516854936817e+02 2.114887112935771256e+02 2.675506009048368696e+02 1.260391751775616029e+02 1.858866479221875920e+02
1.963224789638335892e+02 2.444908535968891954e+02 1.962779352478895589e+02 1.553096436749702889e+02 2.483662294276224429e+02 1.067992874414757978e+02 2.633849667942634483e+02 2.454321751613854588e+02 1.854433418739394028e+02 2.562889653665436072e+02 2.506342746416453622e+02 1.900819942764665598e+02 1.704565979131312474e+02 2.916979173024495822e+02 1.898592592817412310e+02 2.687872145548625440e+02 1.525347862509104004e+02 2.786582104923993484e+02 2.310813531087783872e+02 1.166208530157265386e+02 2.602471623613457723e+02 2.102772607982462034e+02 2.183751071150112466e+02 1.065011561509572999e+02 2.813176394708128782e+02 1.792292558016025623e+02 2.804083600455996361e+02 1.557890480883644102e+02 2.439522159916458861e+02 2.652201783594097719e+02
1.425266334964659904e+02 2.075049705342416928e+02 1.704914602333145126e+02 1.886474594627911756e+02 1.252313163849750595e+02 2.836097447326676502e+02 1.406399617929505439e+02 2.414245225193989768e+02 2.576349788827002385e+02 1.486724691707949262e+02 1.092388214497626961e+02 1.685935770192617724e+02 2.033388664740227227e+02 1.390809359458484948e+02 1.056188661648174758e+02 2.350581131530574055e+02 1.964295662906907012e+02 2.578831766420791496e+02 1.109952979966328144e+02 2.027546721440710940e+02 2.501377690830167637e+02 2.111868593440530617e+02 2.324728205186171692e+02 2.453971856382445935e+02 1.723822394524685819e+02 2.872924628066301693e+02 1.140766727214026446e+02 2.221345013854892159e+02 1.728173248741775296e+02 2.676400838220500873e+02
1.711571121866394947e+02 1.085759247733173396e+02 2.001753766691515750e+02 2.760446855018309407e+02 2.056587091496190567e+02 1.121827347031253197e+02 2.274644480946081444e+02 2.571858980756533128e+02 2.945439217283808375e+02 1.913312305877045674e+02 1.500446430731354894e+02 1.650397772114545489e+02 2.581660073502400792e+02 2.094009769144933273e+02 1.731816092302842094e+02 2.727903589313663133e+02 2.606648610353666982e+02 1.460656197586831695e+02 2.016951883706858268e+02 1.247477859691891240e+02 1.732157361502286221e+02 1.195560196858487245e+02 1.253893910664414904e+02 2.455457677441618216e+02 1.778732818035962850e+02 2.490436815297808266e+02 1.487573988963908960e+02 1.937302250034929898e+02 1.502426775501600389e+02 1.110841009912817583e+02
2.382535443835092508e+02 1.972031918916456732e+02 2.576267295349729807e+02 1.730194312205534288e+02 1.301593684828995094e+02 1.624008376323430127e+02 2.060036399923972681e+02 1.233366573394677630e+02 2.194763391620297739e+02 1.701495187616251314e+02 1.223397596968992218e+02 1.987622577877627350e+02 2.511738650001373117e+02 2.130204435763062634e+02 1.993899817227978133e+02 1.597764561560970265e+02 1.205224890815559604e+02 2.184250491898233690e+02 1.755709834516516139e+02 2.741081010321077542e+02 2.104755291992826187e+02 2.698148014221883386e+02 1.299106544858947814e+02 2.008369880697999292e+02 2.938716155581552130e+02 2.671516623028076083e+02 1.332347035771324215e+02 1.291435420390463378e+02 1.835021202063177554e+02 2.002866194329941720e+02
2.554906544300547182e+02 2.365682876454178540e+02 2.924004211094360244e+02 1.662852505275750730e+02 1.123350814405425808e+02 1.910015128879867632e+02 1.341551373493250594e+02 1.313122940860927770e+02 2.397311819484906152e+02 1.559268654058377024e+02 1.407120959783594003e+02 2.371419051640040152e+02 2.217591327496910480e+02 1.881187811266301537e+02 1.632462641154496907e+02 2.970940639140721373e+02 2.422917505999918433e+02 1.356966040631749593e+02 1.702398486895437486e+02 2.608644720933497183e+02 2.783751927848827563e+02 2.951746624002826138e+02 1.720706565846523688e+02 1.275268866601749096e+02 1.880990845238362681e+02 1.129502795714700625e+02 2.919985401845127626e+02 2.747497807112307555e+02 2.667734033775608395e+02 1.373740617490475699e+02
2.115416415080857746e+02 1.431719947715498336e+02 1.718744824503889674e+02 1.075365968452523902e+02 2.220100335193473029e+02 1.965127222891928795e+02 1.062726056237197838e+02 2.631794488147562561e+02 1.658640190278337627e+02 1.169182569761068464e+02 1.645780782039788619e+02 2.940728738870184316e+02 2.979920277570993790e+02 2.125849825405138631e+02 1.533327700316632161e+02 2.655551337415409421e+02 1.329075684859120088e+02 2.686536376777100941e+02 2.299223677315555676e+02 2.123135030200585334e+02 1.474417961566917654e+02 2.899688778344954017e+02 1.439992490259426461e+02 1.606165457016644780e+02 2.854253601360321682e+02 2.837928223954166924e+02 1.868865943198568402e+02 1.809928275876523571e+02 1.583918020284682484e+02 2.384217495701244331e+02
1.181670050605631417e+02 1.525653020190297582e+02 2.615084872177121724e+02 1.755024420886775829e+02 2.989795566898581001e+02 1.573585789513378188e+02 1.903575226478752711e+02 1.641861715477102166e+02 2.943146494922903003e+02 2.038802368327418719e+02 2.581560000437879694e+02 1.504995935930718076e+02 1.095655891680627008e+02 2.628623226127134558e+02 1.069018430130149255e+02 2.750818506761686422e+02 1.121786007219489818e+02 1.106710601660877415e+02 1.217291564359016149e+02 2.915199334459504144e+02 1.325859381653097557e+02 1.737237090326784141e+02 1.036075961875061751e+02 2.392327113385031510e+02 2.486092083099548233e+02 1.259492139939950306e+02 2.665249241620523435e+02 2.103119814995928039e+02 2.718465347096271216e+02 2.018653364759854298e+02
2.085808638159350608e+02 2.977621083099649582e+02 1.394173606621695285e+02 2.232898484647512873e+02 1.347812725162832521e+02 1.574683348766579627e+02 1.827258429860655724e+02 2.827887224427595356e+02 2.608349632236463549e+02 2.370910079389979046e+02 2.033290260845359398e+02 1.566531500677691042e+02 2.982287288081304837e+02 2.998057140577807900e+02 1.906108269451214596e+02 2.023344526730545851e+02 1.717672594576409040e+02 2.093320563180507747e+02 2.649028095061802333e+02 2.840422446800275793e+02 2.111868958418739908e+02 1.803076798272542760e+02 2.311954915496957312e+02 1.563425451766251513e+02 2.610066662710300989e+02 1.855286443040786537e+02 1.478912573842241045e+02 2.544380211258828410e+02 2.799416317427427430e+02 2.238937193404353252e+02
1.269470316997365131e+02 1.895539822645488357e+02 2.443421824114378467e+02 2.632321641240823737e+02 2.164919638664115951e+02 1.042697198382110884e+02 2.896061632271033659e+02 2.068164163046922681e+02 2.059671371408958294e+02 2.352532326493898722e+02 1.046233655847859296e+02 2.755187319279126541e+02 2.344641322699609987e+02 1.434858288567621969e+02 1.255438908126368176e+02 2.548141480364848803e+02 1.466719626681152704e+02 2.020892715394597872e+02 1.195107046056347713e+02 2.012968701954913797e+02 1.996902768982717191e+02 1.560547951636197013e+02 2.162555170020900164e+02 1.483278604161245084e+02 2.615607136845001151e+02 2.424344777210258997e+02 2.524090919470299070e+02 1.726167614603126026e+02 2.199373130240069258e+02 2.318614758097714912e+02
1.590143031424979370e+02 1.933970326403360502e+02 1.227042846200323112e+02 2.107086401017011781e+02 2.844049872407889552e+02 1.420899421875644464e+02 1.736571760246831673e+02 1.130876049831349661e+02 1.470306210908964317e+02 2.959723384067232246e+02 1.438030965279091049e+02 1.685928342779160403e+02 1.351720793691902713e+02 1.909711091249450590e+02 1.477005416416634205e+02 1.010528808923594681e+02 2.205493627613245167e+02 2.367352422049318079e+02 1.224997665062844305e+02 1.620949451166091251e+02 1.270634404764108467e+02 2.673321646154778932e+02 1.618882934467209225e+02 1.208967331765591524e+02 2.073956586593529607e+02 1.223277950209799059e+02 2.625820210851194361e+02 2.262632377752408672e+02 2.222881433937307349e+02 1.716205611551696961e+02
2.376094214038359667e+02 2.287867757784330820e+02 2.035778067022395703e+02 2.546588007138803391e+02 1.514832565507949198e+02 1.736683542684334327e+02 1.991020520349750598e+02 1.873563480883249213e+02 1.589186331386689801e+02 1.042563150975229149e+02 2.019924784676414902e+02 1.136537158101241971e+02 1.091264020137841158e+02 1.352770409719844054e+02 2.178414513482917414e+02 1.831380105899948489e+02 1.114225947990316570e+02 1.736029819106907439e+02 1.354612112967272424e+02 1.996055424300992627e+02 2.905125217944571432e+02 2.980326934372309893e+02 1.560898949881966473e+02 1.943286005606112212e+02 2.429797193518882636e+02 2.652714760000731076e+02 2.863852813340179182e+02 1.838252831614893239e+02 1.814799327205894315e+02 2.338290144642930954e+02
2.526381992552952340e+02 2.089745531365245483e+02 1.869938021147821701e+02 2.864405091884094645e+02 1.736924996547539877e+02 1.479914815134324613e+02 2.132537252074255321e+02 1.830098172980584934e+02 2.476607236946428827e+02 1.066503395377639265e+02 1.405219898965278276e+02 2.743866427972425299e+02 2.269305408710248173e+02 2.791638036143738191e+02 1.824422387811073634e+02 1.852994662516045423e+02 2.777032940597408128e+02 2.109153407914434126e+02 2.214759900082639490e+02 1.857033490029854761e+02 1.302118293337227328e+02 1.889562709124264188e+02 1.844813915245081546e+02 2.875482403705134402e+02 2.022892465111445404e+02 2.230217175841083872e+02 2.843056043891419904e+02 2.350834055358549222e+02 2.080929758762673032e+02 2.770814576487081240e+02
2.389430507965955428e+02 2.463651891862864147e+02 2.369578462650186452e+02 1.902366989508459199e+02 2.003468797600664004e+02 2.681735461841141728e+02 2.362787745532336601e+02 2.323782975776413480e+02 2.525302892415198812e+02 2.828059530799229151e+02 2.840327053185673662e+02 1.223941816187275435e+02 1.056255174412387134e+02 1.386503050117574105e+02 1.384325506562210535e+02 1.176641636239777426e+02 1.670688688422628161e+02 2.506322552784647826e+02 1.181229702988334083e+02 2.607048520072489737e+02 1.667476448166365515e+02 1.310085831735554223e+02 1.553111545647699927e+02 2.907454039462255651e+02 2.844644695877585718e+02 1.989933906493695019e+02 2.662036190025202131e+02 1.792754658114438371e+02 1.073664330563030944e+02 2.793141822468826376e+02
2.640306978448612654e+02 2.458161373226257069e+02 1.015510894380497575e+02 1.527048938693112916e+02 2.893334394723561900e+02 2.994916089563248534e+02 1.054055716033572452e+02 2.278819528330843127e+02 1.890909183007994443e+02 2.134436011261824433e+02 2.654189934957544210e+02 1.780852604264427725e+02 2.222277079756825628e+02 2.689688042831336361e+02 2.232046857529678050e+02 1.778434593737022169e+02 1.336418515516146783e+02 2.739064893378349552e+02 2.065065746675076355e+02 1.329712924393647313e+02 2.176938186185978736e+02 1.918043587714230114e+02 2.280421349429639122e+02 1.182282112372680842e+02 1.370131137248831692e+02 1.716251366233928195e+02 2.412427837766657888e+02 2.738208811966829899e+02 1.471415247536169488e+02 1.638288393831292353e+02
2.669085627842696908e+02 2.477147782526785136e+02 1.718200513884793565e+02 2.299346472745743597e+02 2.016242169414389309e+02 1.631378839470685307e+02 1.859938403107781255e+02 1.609729169019194330e+02 1.536303039404505171e+02 2.234728543554556950e+02 1.953401084257108096e+02 2.920381588589057174e+02 2.034966688752892310e+02 1.019427894404581139e+02 2.980736970140829953e+02 1.738263823108001418e+02 1.531314323312329293e+02 1.400030133312995702e+02 1.802287961283190043e+02 1.719909696301723443e+02 1.974918793689569725e+02 1.666882741246514001e+02 2.879569025675030502e+02 1.334044307903087088e+02 1.016937569869423896e+02 1.660343944328368764e+02 2.214967229035601974e+02 2.539424882366704992e+02 1.211914878013190133e+02 2.835892388637473687e+02
1.704109091340931741e+02 1.337843054639438378e+02 1.570106251098002588e+02 2.123587857442842335e+02 2.788290802167920219e+02 2.795601449888932848e+02 1.220747715539721696e+02 1.179984498565524405e+02 1.552783750686872963e+02 1.257256444039083192e+02 2.312614004137946893e+02 1.971625968209403084e+02 1.208837070227885135e+02 2.231693789143681386e+02 2.332576722664892941e+02 1.659208209363902711e+02 1.979623049620595907e+02 2.497459328714609512e+02 2.540243570817084446e+02 1.309045902221261599e+02 2.376613837929333499e+02 2.140333351750954023e+02 2.231625169053620539e+02 2.869160136215916737e+02 1.282002159167354023e+02 1.029173927424986488e+02 2.432034421383394545e+02 1.495648010251883306e+02 1.971910657968611247e+02 1.358409247687675361e+02
1.833826243837603442e+02 2.960483510370855811e+02 2.343723986770386318e+02 1.560358896543934293e+02 2.499669478251469172e+02 1.762005778153444169e+02 1.918050503412152921e+02 2.089352602085182866e+02 2.770127170480132008e+02 1.268157216157417224e+02 2.670673189640755822e+02 1.547628252866769287e+02 2.602514896343354849e+02 1.557532905756793866e+02 2.574076233589491949e+02 2.646855654359934533e+02 1.749681240869035719e+02 2.465698370051858035e+02 1.076897610845538082e+02 2.337637497458482301e+02 1.791847918196868932e+02 1.967068388721293104e+02 2.340964493346380095e+02 2.762770912600988140e+02 1.174465260954359564e+02 2.950490567997024982e+02 1.354710376622284116e+02 2.342233227246520642e+02 1.617966271393036379e+02 2.107879984327653915e+02
2.493754578342164336e+02 2.275093847135933061e+02 1.466148442335522191e+02 2.261697123059220189e+02 1.213252451599347950e+02 1.628949300801819504e+02 2.100466501082228206e+02 1.508908296808102989e+02 1.488199564735201079e+02 1.727131563468088302e+02 2.306747713688439205e+02 2.570279850661015644e+02 2.309125192178541113e+02 2.422081718543400370e+02 1.769407234272878782e+02 2.688532243604371956e+02 2.276780878660686085e+02 1.065345319601523641e+02 1.535069430280279050e+02 1.717902253122074967e+02 2.876755354986605084e+02 1.683056100689713332e+02 1.120105413679224569e+02 1.755508096146901664e+02 2.095863991316655870e+02 1.523590730880595174e+02 2.944635547123552897e+02 1.444697311944634066e+02 2.165062978405008494e+02 1.410128743297030098e+02
1.434402193906418006e+02 2.368914090178307106e+02 1.963465933374949941e+02 1.914557752364961516e+02 2.870767419320768568e+02 2.044699144835463187e+02 1.223520556576680036e+02 2.352284247043744472e+02 2.917945011866975165e+02 2.225925999946875322e+02 2.240309397680480288e+02 2.048455962243571093e+02 1.188048963943729035e+02 2.200553599997707579e+02 1.885605934416515765e+02 2.863412817843446874e+02 2.913876692311304737e+02 2.446563674684449552e+02 2.981153955140326843e+02 1.111775924383378253e+02 2.239868361016714857e+02 2.540473271011064469e+02 1.343930974769885438e+02 2.368686732696482409e+02 1.175691554116390591e+02 1.014879352562223715e+02 1.330784448687188046e+02 2.045426156006566885e+02 1.168174380391246245e+02 1.704438548713551995e+02
2.696784010384477597e+02 2.991318545155386346e+02 2.120364825583467336e+02 1.950895785161033018e+02 1.216112431291165592e+02 2.438998438799096391e+02 1.588292735755803733e+02 2.347670069791354024e+02 1.862846309471772770e+02 2.258642611266068343e+02 1.423367506635381119e+02 2.692888471853933083e+02 2.950212092401994255e+02 2.331327670110776467e+02 1.542291422318579635e+02 2.809064569107727038e+02 2.358857646534314654e+02 2.378124255062788563e+02 2.664164586086786812e+02 1.387157904298663880e+02 2.297158046581682243e+02 2.386372312695162634e+02 1.246509391338716171e+02 2.338956320284196408e+02 1.820257170558419944e+02 1.957425768708682767e+02 1.680974560138464540e+02 1.288235048549348676e+02 1.483029350020115089e+02 1.744880718659300669e+02
2.512494238114035738e+02 1.112846425403449615e+02 2.472643304237797395e+02 1.241745840646870818e+02 1.808849124644312099e+02 2.524760780760417731e+02 1.836118621524309447e+02 1.408362492891266982e+02 1.099623406752946693e+02 2.383967522197594064e+02 2.436606913384966049e+02 2.770699525768120566e+02 2.597573569531676867e+02 2.935649366424795517e+02 2.702790297508025219e+02 2.563597369995835606e+02 2.279477293752616447e+02 2.477470305460766440e+02 1.962131167814513333e+02 2.859744526791636190e+02 2.703401534622389590e+02 2.763052603711840902e+02 2.934416645125817809e+02 2.193475948646207030e+02 2.822891098008749395e+02 1.085391177109117820e+02 1.782208012387337703e+02 2.335496863699061976e+02 1.715066387390946829e+02 1.948062204233656303e+02
2.879262290016004613e+02 1.676743911135137068e+02 1.403503828589753937e+02 2.744454339345198832e+02 2.935124358491533485e+02 2.920282649929100671e+02 1.390240222956847447e+02 2.426642861805074745e+02 1.217336684570653489e+02 1.311823750440439085e+02 1.647679902066092836e+02 2.962811279981685288e+02 2.945746172932865647e+02 2.005257587949587332e+02 2.072045953580022228e+02 2.893049469033056766e+02 1.913962360581630833e+02 1.823675529874825543e+02 1.830342103129283373e+02 1.222396004373517400e+02 2.248239872372262482e+02 1.170253438297526429e+02 2.853825568202013301e+02 2.214973458763422514e+02 2.563932510909227176e+02 2.144837192650675206e+02 1.793062298958048473e+02 2.920176466690815005e+02 1.515607839109829627e+02 1.981203765908239802e+02
1.733053660232129403e+02 1.312183264386245583e+02 1.276233157677672807e+02 2.020942572504836789e+02 2.314817368496994732e+02 2.242589617101967008e+02 2.160504620978007893e+02 2.360595788588375399e+02 2.952977074031120992e+02 2.334652590044975682e+02 1.243453875174208747e+02 1.916144242306085630e+02 1.092365115042800596e+02 1.478765005471206280e+02 2.191946613400726278e+02 2.879274886834762697e+02 2.733443652356662597e+02 1.858481832262083344e+02 2.193747651131673706e+02 2.695165737089945424e+02 2.960753121523491700e+02 1.890691006834304631e+02 2.638343907584013550e+02 1.510492177865631334e+02 1.878288206285384661e+02 2.726561149875388992e+02 1.704246795027074199e+02 1.006381753343381718e+02 2.153734239260733148e+02 2.551451126036402854e+02
1.591849792872858984e+02 1.304671215023752779e+02 1.427456440770346831e+02 2.882324895344759170e+02 1.680635293254793510e+02 1.205800311663507642e+02 2.861305963205076637e+02 1.219224106654408928e+02 2.467003871618023538e+02 2.830287806498602095e+02 1.445950870572595193e+02 2.496562286252286640e+02 1.464987579205844099e+02 2.848280464142704318e+02 2.785616857190397013e+02 1.837468579783306950e+02 1.246964377230690673e+02 1.251791080124520050e+02 1.496399061799681363e+02 1.375936265087168522e+02 2.547928467777094852e+02 2.554856419260690927e+02 1.285559318166884850e+02 2.092144446410586909e+02 2.868951534942014518e+02 1.178319347908447270e+02 1.347784205269015274e+02 2.851299399919766984e+02 1.754694686670390809e+02 1.016886128619324694e+02
2.606618423405234353e+02 2.125366732076933545e+02 2.822772640751277322e+02 1.096405633955119185e+02 2.437561663288932721e+02 2.129146561548243994e+02 1.148823764090175530e+02 1.516868774610028368e+02 2.090025176018670265e+02 1.817684320186263562e+02 1.584667226055155709e+02 1.501973711988126468e+02 2.530199923706828713e+02 1.847948752811591930e+02 1.778871618489498303e+02 1.664551902511519188e+02 1.100020157933824265e+02 1.352000835393275509e+02 1.710981737682794801e+02 1.530513645967782566e+02 2.588476693974693035e+02 1.775587245068043956e+02 2.006331886716666588e+02 1.389709403689849694e+02 2.489553638298030194e+02 1.673604491791948021e+02 1.991154502489720812e+02 2.423848982654565418e+02 2.882603768001737308e+02 1.620650086718309240e+02
2.723642490909132903e+02 1.680927290528325670e+02 1.005734627393615455e+02 1.598916606218045047e+02 1.672547346703738071e+02 2.361420151042074451e+02 2.741857058408131707e+02 2.533004150866734392e+02 2.036092771261417340e+02 1.091915011443997230e+02 1.145604210422382323e+02 1.209982156413156247e+02 2.749595368914399387e+02 2.177794513808643160e+02 2.054163746311436967e+02 2.185860861470465579e+02 1.504022045473846845e+02 1.713704456854883347e+02 2.175221629008602804e+02 1.230663148243889253e+02 2.419648244223723168e+02 1.383010418990747326e+02 2.040260833828849059e+02 2.966316994044250919e+02 1.630596872908637351e+02 2.562534082821714492e+02 2.549425872735235998e+02 1.983522705781282127e+02 1.524860865223137694e+02 2.736848821358530586e+02
1.277021385004174192e+02 2.448445434866889343e+02 1.296687360965440803e+02 1.874271582575348702e+02 1.145742775945452792e+02 1.884744688522491742e+02 1.336298647132909423e+02 1.523816963142488419e+02 2.658270705367647224e+02 1.781637174983711134e+02 1.154610011723892171e+02 2.005342781476718415e+02 1.303166615041172918e+02 2.397284110571510496e+02 1.612912854182502542e+02 2.821645080329541315e+02 2.544831471501324813e+02 2.622237400581972224e+02 1.417212269902922230e+02 2.054005404298748658e+02 1.092142219674599062e+02 1.652051184306486107e+02 2.825679563619778492e+02 2.056286073102957630e+02 1.772062144904277545e+02 1.163520479257007310e+02 1.006186351926139366e+02 1.734025793931427586e+02 1.446958902579306709e+02 2.025820689614877779e+02
1.798382687901162740e+02 1.604629760861514001e+02 2.668981169240885265e+02 2.763242846779806996e+02 1.318105471716862098e+02 2.191362245125996537e+02 2.770758446308884686e+02 2.308910816293108326e+02 2.956895796828827656e+02 1.566426856848869988e+02 2.326210561246332418e+02 1.206555816723871715e+02 2.603144096756907970e+02 1.172571782204154829e+02 2.219493974369055991e+02 2.385109304229506790e+02 2.599678734377965839e+02 2.850516346518521686e+02 1.472948582444382168e+02 2.234296740595885922e+02 1.427895312415343199e+02 2.848238578369252423e+02 2.260232767550441508e+02 1.544648385858973541e+02 1.163971462755376791e+02 1.762731012775239492e+02 1.089523563056807660e+02 1.663966154222005116e+02 1.342495772836978745e+02 2.922401077696804350e+02
2.806557294060240224e+02 1.077657131130299604e+02 1.622983596366119059e+02 1.723469481204717795e+02 2.678046848873893850e+02 1.442059922525422451e+02 2.629931208031973711e+02 2.741083495447689415e+02 1.194142462414748707e+02 1.688961325073638022e+02 2.967954354880449728e+02 1.822107331135221671e+02 1.292333403080546645e+02 1.856814508383810391e+02 2.103923137448445573e+02 2.517859299913771451e+02 2.551152596962431574e+02 2.077883190793959898e+02 2.986930461834413677e+02 1.196764061335889551e+02 2.378823960447958257e+02 1.692017967083341432e+02 1.471250494556689432e+02 2.608355254883699672e+02 1.757172426071724942e+02 2.629426236813185369e+02 1.040244734248400533e+02 1.533558690719498827e+02 2.011860465194789072e+02 1.720545334339216765e+02
2.966488050331527688e+02 1.809989340563203086e+02 1.871527370563514978e+02 2.315558973515319394e+02 2.657682292004950000e+02 2.237816732699509998e+02 2.282045922056215090e+02 1.846236325909775928e+02 1.644827554373339353e+02 2.760250360653360531e+02 2.492622345937652995e+02 1.483432536002697191e+02 1.527550390024584601e+02 1.573429964258168070e+02 2.090721206423400247e+02 2.535819867756219708e+02 2.420536340362719159e+02 1.691914404667937788e+02 2.388696721384086459e+02 2.593840245957078423e+02 1.331872961625781500e+02 1.116342264469163581e+02 1.680964276125217793e+02 1.555020753508222526e+02 2.422052215908822177e+02 2.626184375196450560e+02 2.674230788003709449e+02 1.948146659156083729e+02 2.663681889818526543e+02 2.795342087705012659e+02
1.674728956867265310e+02 2.635505920196726493e+02 1.395353777027027604e+02 1.883233466008314565e+02 1.249441512057495913e+02 2.512189370435067417e+02 2.719913755602378842e+02 1.237326636617429614e+02 2.939951219495833357e+02 1.686366002602222807e+02 1.800181056076297068e+02 2.288525977776352818e+02 2.717306800175948638e+02 1.565292507387619594e+02 1.445460932655216766e+02 2.092313282690445249e+02 2.370375511382032698e+02 2.880525812713749474e+02 1.172567175017127141e+02 1.112412797274302250e+02 2.246954385922853135e+02 2.812359340959551446e+02 1.004168603505609241e+02 1.005387863078678805e+02 1.815971195408835683e+02 2.811251817522295937e+02 2.605765849402707772e+02 2.298114360271968621e+02 2.557293814584297706e+02 2.542416589790913122e+02
2.943583269632734414e+02 1.442274778682184717e+02 2.700917391987959491e+02 2.527420049761408904e+02 1.527279900348522688e+02 1.841979337126335281e+02 2.902442440856567600e+02 2.889101481258517765e+02 1.828125218264408716e+02 1.133179379993730862e+02 1.484787634874768116e+02 2.676352293304336740e+02 1.452118425579454311e+02 2.636966617786087568e+02 1.313546620759107100e+02 1.834019443937838787e+02 2.892465421328221282e+02 2.575015388377624959e+02 1.970702343003932242e+02 2.507528167727347181e+02 1.724897096143170074e+02 2.664268628760375464e+02 1.365257050051324370e+02 1.198011035974838308e+02 1.176831988053894520e+02 1.070946883963453899e+02 1.964638491125322446e+02 2.570844982939356100e+02 1.593905150913052466e+02 1.202569936867807598e+02
2.734271498156417692e+02 2.352133531486530842e+02 2.590835237087205769e+02 2.260994493040042528e+02 1.805421354394846105e+02 2.728408805160995598e+02 2.367263522625478913e+02 2.580210451062748689e+02 1.204524877415260562e+02 2.946465680607327613e+02 1.547220269335912803e+02 1.186203172746691337e+02 1.923878728892914864e+02 1.094127410697402354e+02 2.222837240826847278e+02 1.529333599077602628e+02 1.861450256630199647e+02 2.125583079944122176e+02 1.527591657960447264e+02 2.694001797345342766e+02 1.986063989766776388e+02 2.192493126389772442e+02 2.986827335637019587e+02 2.790660387254000625e+02 2.781487003899754313e+02 2.564198676846006606e+02 2.597551240338123648e+02 2.358970425952163907e+02 1.951628676328612357e+02 1.078208269500064347e+02
1.190762776130697205e+02 2.951075493308472346e+02 1.091043363430719069e+02 2.824365312299846664e+02 2.445811468414383398e+02 2.538090805786315514e+02 1.230092364266577363e+02 2.633887649939744051e+02 1.865216093980499181e+02 1.540388898662323243e+02 2.047343894245035756e+02 1.431412534309083640e+02 2.857794001060171922e+02 1.492366175285521592e+02 1.380934567887849198e+02 1.331831467466375898e+02 1.149412013934811796e+02 2.205070844660474734e+02 2.939252657951740844e+02 2.049464694042562769e+02 2.047902832862141054e+02 1.810793422252176015e+02 2.005356992447976836e+02 1.381400138775680375e+02 2.582445444487385657e+02 1.698212931623984616e+02 2.252085951830697468e+02 1.808378144669676999e+02 1.307311344108444473e+02 1.050024101356033697e+02
1.722314120162143354e+02 2.530014253763471856e+02 1.298340795948372772e+02 2.948664870226410812e+02 2.383106068289312702e+02 1.822969205106659558e+02 2.285226769051377005e+02 2.759417691711663565e+02 2.120970517474504220e+02 2.831046044310812704e+02 2.320579821788242612e+02 1.286125039667014960e+02 1.609837368065715282e+02 2.931112965353385107e+02 1.441758663366052531e+02 2.810263276191118962e+02 1.239857273771131077e+02 2.399447548605567988e+02 1.460208836055017514e+02 1.205325462037979491e+02 2.112513935912650993e+02 1.036793750016967692e+02 1.113202625217208777e+02 1.646612561683649574e+02 1.018350908838390581e+02 1.263835026124204859e+02 2.766683711501553944e+02 1.682407929561517506e+02 2.677103056024840271e+02 2.147294480454548307e+02
2.763536852866382105e+02 1.511976958084401872e+02 1.026794659371155944e+02 1.805990415690671398e+02 2.442493962549426385e+02 1.881796213041043018e+02 1.028768312506858535e+02 2.787706953534510603e+02 2.589640601731795755e+02 1.730107396932538677e+02 2.218419822849910190e+02 2.651646152747807719e+02 1.476149140151474342e+02 1.986450675254654072e+02 1.050693447352362853e+02 1.819666738706916931e+02 2.873544952103893593e+02 1.472060704631180954e+02 1.297023844405691761e+02 2.824778443572924971e+02 2.918073394139615289e+02 2.128134400148996974e+02 2.223096450508596149e+02 2.761940547406351811e+02 1.348708672340777639e+02 1.857009592938832441e+02 1.062906640064134649e+02 2.104442283262811202e+02 2.812954268214299418e+02 2.739038950945439979e+02
1.837264129055918147e+02 2.399207190527903322e+02 2.843910623120511900e+02 1.773207161532972975e+02 2.056581469496123873e+02 1.558029517788254168e+02 1.458438122541016924e+02 1.893030782939712253e+02 1.139027557376393673e+02 2.228775749423569437e+02 1.367670384452707140e+02 2.854480456674787092e+02 2.424985140340279202e+02 2.940521113211518696e+02 1.330693282221190259e+02 1.212599008475133076e+02 2.754747741586869552e+02 1.062856492128348549e+02 1.212724485003486166e+02 2.100514698158626743e+02 2.547262582240854272e+02 1.999488755181088777e+02 2.578561029518564283e+02 2.784200494851090752e+02 2.728829168298310606e+02 2.071711407548560544e+02 1.708729380756020362e+02 2.726254883308487251e+02 1.104364015278258364e+02 1.175773277008901090e+02
2.554381337818412305e+02 1.634513906120204183e+02 2.309962436793083214e+02 2.460443770945291249e+02 1.618890365991254896e+02 1.046310291743186980e+02 2.772116654811295575e+02 2.098555252827713957e+02 2.309383801112169863e+02 2.845300950466865402e+02 1.268119123926061320e+02 1.697885006171669602e+02 1.901887742560337529e+02 2.605757830463372215e+02 2.755463791239279772e+02 1.771647294768940810e+02 2.403902735905423356e+02 1.774352552408031443e+02 1.796883744424403631e+02 2.736192366006921475e+02 2.118505050785533967e+02 1.873353967662169453e+02 1.802980863638028950e+02 1.869858546159753132e+02 1.200946851663063342e+02 2.350811068219035178e+02 2.018941614745772313e+02 1.010158706413519525e+02 1.661546933057649937e+02 2.570882207683835077e+02
2.856134023048114159e+02 1.356279054667102741e+02 1.225310201562991494e+02 1.529777144242077327e+02 2.936506440162480658e+02 2.589580133771784176e+02 1.864782805190425279e+02 1.931182124516369640e+02 2.913608028278327993e+02 1.555662042949096531e+02 1.173676742008071301e+02 2.242990267171766732e+02 2.651338851871976203e+02 1.128980005738893482e+02 1.283582653966309408e+02 2.071495534530326097e+02 1.241509031508031740e+02 2.393403040292282640e+02 2.829812266966206380e+02 2.294799861563923287e+02 2.129576840814710295e+02 2.165539860914115877e+02 1.357366103660294243e+02 2.396252028023287153e+02 1.395106368224716107e+02 1.700689743264745744e+02 1.253435651632085950e+02 1.508112259783626428e+02 2.310267786371028933e+02 2.311667616985857876e+02

View file

@ -0,0 +1,100 @@
-67 65 82 64 51 1 -12 2 -84 -52 12 82 -45 -84 -41 31 -49 36 -70 40 -74 -99 32 64 -6 43 -53 -43 43 96
-58 20 25 99 -25 78 -6 59 -23 30 36 25 -8 83 -43 -7 -8 42 -90 96 46 88 31 12 68 -21 -6 7 78 -19
-66 -51 0 13 42 -43 -30 -29 20 10 -24 -5 -42 38 -56 6 1 -80 -65 -91 89 64 -21 49 -84 41 6 -78 71 -2
-50 -84 -50 -66 46 -88 -10 -28 -25 6 -7 10 -35 86 41 -17 72 -67 13 -67 -76 -84 -15 35 67 40 90 38 -1 -47
-51 27 -48 26 -73 -46 -68 -56 -38 -4 49 -64 57 -86 -80 70 50 34 84 97 -76 3 -54 -89 -7 -53 15 36 -28 85
2 -59 4 30 70 -42 -26 -1 27 -90 -18 95 -10 -36 43 24 86 -8 -100 92 80 -40 17 -93 -81 54 -8 84 -53 38
-80 0 -71 -41 -33 9 -61 0 26 80 64 67 74 68 -72 78 -72 -52 -19 37 -33 -24 -11 -71 -53 -16 25 56 -74 0
71 -23 49 -36 -43 -70 82 69 -100 -27 50 20 30 84 -33 90 49 39 -52 -51 -86 -76 -72 -88 12 91 -96 -61 -87 -47
21 39 1 78 68 -80 -54 71 17 -94 34 -20 14 -5 -24 55 -84 -50 -90 -24 -79 -81 53 -50 22 -13 -92 78 -22 -50
-47 -73 77 -93 -20 51 -37 -14 -37 -18 -8 -14 -71 29 -27 -5 54 77 -7 -2 15 -23 98 -34 -65 -78 -77 -90 -5 -35
92 -33 71 24 43 -19 50 -40 -48 -33 -51 -14 23 40 -78 -14 -76 1 52 69 93 5 -13 30 -60 -20 -54 49 -52 93
32 -86 21 -41 -86 -38 97 -35 -37 -89 -15 -18 -46 -37 8 63 -63 -61 57 50 43 -27 -45 98 -56 -81 16 -38 -25 -28
-18 19 -52 -86 92 -72 23 35 20 57 69 -22 52 -66 -74 -29 -1 -10 -97 22 -97 -93 -70 87 85 -31 42 -29 -10 -36
78 80 -93 68 41 84 -37 -62 38 -9 99 -60 90 47 -33 -40 -59 97 -28 9 35 -6 -60 -83 -39 -97 -25 -78 95 40
79 -35 -45 -46 69 10 29 -88 98 -44 66 11 45 -58 -11 -25 51 -44 54 30 59 98 35 -28 93 86 99 19 -27 -83
80 77 -72 57 -35 -27 86 -67 11 77 -28 -89 -30 -31 -72 64 -95 -75 92 -32 -96 -14 6 -83 -66 -58 71 -17 58 -53
-1 17 -72 82 -57 -48 -7 -44 -80 85 -99 -9 27 -11 24 13 86 18 67 -9 12 77 98 49 49 12 -82 45 31 -68
-13 -75 -26 17 91 12 -95 -62 -54 -60 22 50 86 58 -11 -11 -21 31 16 -15 67 90 1 80 -57 -98 35 -54 51 91
28 -75 -31 49 0 73 75 -66 50 -77 -20 82 -40 -90 -28 32 -44 89 -75 -33 -11 -19 -55 79 18 2 -39 -49 78 -72
14 56 78 69 -40 -20 -39 71 99 -89 60 -82 -1 -77 -42 94 -41 35 72 11 -13 89 -52 -41 -93 43 -39 -61 68 -4
88 18 -90 -75 -49 46 -28 -48 -69 -64 77 -8 91 -65 62 -27 -19 34 10 78 82 49 -34 63 78 -88 -17 -37 -85 91
4 36 -77 -75 -12 70 42 8 7 -31 -69 -74 -65 18 85 -92 91 16 -15 24 -74 -56 71 -70 -90 20 13 73 -68 -65
92 22 -31 -73 -59 -78 -20 -11 -61 36 -40 34 -96 -12 51 -45 -12 12 -3 -42 -71 68 -8 -91 50 -73 -96 -46 -38 -4
-87 44 -58 -83 70 -81 32 29 -79 45 -64 -52 57 73 -80 69 7 -22 31 -71 -34 -33 47 79 -17 6 -77 -89 3 50
85 2 73 -88 -99 -13 -76 1 -90 51 30 -52 75 -2 -8 10 -83 -40 -5 -79 82 19 79 94 49 4 66 -76 6 -48
29 -34 66 -93 45 -1 -98 92 -92 29 -10 64 -23 -81 -73 -62 -18 37 -29 -50 -52 90 -28 24 -4 -67 -33 25 -78 93
57 -46 36 -16 34 -59 -96 -86 64 2 28 42 -32 6 -17 37 38 -40 -92 55 -22 -42 11 -77 12 81 -89 -39 -30 -39
-72 -68 -41 -5 93 55 24 -6 84 77 30 33 -51 -62 6 -5 -83 60 -1 -64 7 -7 -92 31 5 -21 -34 -14 21 -33
26 -75 -36 -54 -21 -38 -49 -20 82 73 -84 -5 -69 84 -87 12 7 -67 -40 -50 -35 -65 80 -83 -2 1 34 -16 91 82
61 -21 1 -64 -56 -61 74 16 0 38 51 34 -35 37 -28 -52 -14 61 14 58 50 27 -43 -27 14 56 -16 -78 50 -89
45 -47 -61 68 -41 -70 14 -51 49 -84 64 -65 88 -39 -88 28 -55 -18 81 -2 -1 -45 65 -6 62 16 71 71 -1 47
47 60 22 -42 -5 -74 12 66 89 -82 -85 65 74 0 -18 56 -39 84 -65 -42 -33 -60 23 33 -8 -72 3 -64 -3 -25
-70 11 -19 -12 -1 -50 -89 -61 78 28 55 92 -17 86 -17 -45 -31 68 -24 -99 -59 27 79 -2 21 -80 54 9 14 -70
-38 52 -99 50 -46 -63 -74 -41 -43 -62 -81 38 -99 17 -94 -6 44 -20 -13 -30 71 -43 43 -28 -8 57 -93 98 4 42
-17 -27 -60 -22 86 -49 39 -83 72 -16 82 74 73 -29 16 -59 81 -60 -96 51 -62 -55 -79 -31 -15 -67 -18 -83 -61 -86
28 37 -44 7 -17 -10 -65 8 -78 -17 -46 -5 -35 -86 13 -16 27 24 60 -12 -48 -45 16 -33 70 -45 -63 -60 21 70
-75 -89 -93 -93 62 -44 -39 46 31 57 72 30 -65 29 66 -53 2 -2 71 -90 -73 -40 -63 32 68 30 25 98 38 92
88 3 5 73 -2 -61 -94 79 99 94 71 -83 -40 80 -79 -14 -34 -99 -52 27 23 13 13 -35 -74 13 43 -19 2 -62
92 -47 -27 9 -68 -86 -57 43 9 -81 -9 69 52 -28 80 -13 -6 -44 -81 -89 -10 30 -64 86 -76 -11 -100 15 12 -62
76 -42 39 70 74 79 84 -52 18 -58 78 53 89 58 -32 20 -51 35 12 37 -70 -21 5 97 67 -25 -25 -10 2 30
-84 26 -60 -34 11 -27 47 85 -89 29 54 -53 66 -9 12 4 92 70 2 -12 -55 72 -62 -79 -8 68 -19 12 -8 -100
78 -97 -76 86 -47 42 99 -3 9 49 -84 86 26 43 -26 90 23 -66 -37 -35 25 -12 -42 -12 96 -15 48 87 -95 -12
-60 57 -30 -4 -84 24 -82 -5 34 56 76 81 -64 23 32 34 -41 -48 -6 77 -42 64 87 92 82 59 9 -71 -56 -45
-74 -90 -27 93 33 15 -35 -73 78 23 17 -28 9 63 9 35 15 32 0 -4 -32 54 -76 14 -14 -8 16 -43 -81 57
-2 22 85 -33 -48 74 64 -59 -27 17 -65 27 -50 -81 41 -69 -26 -29 -83 48 -81 51 58 -62 -63 -55 -63 39 32 -34
98 -99 13 25 -10 43 -62 50 82 -90 -51 40 -71 82 27 -73 19 -62 37 10 -21 45 -94 -45 -41 -3 44 86 -2 27
-80 -89 -57 87 -42 19 32 -49 37 -4 -30 54 46 -3 -92 89 60 37 -86 38 61 93 45 -45 -86 54 21 45 50 -53
7 -68 71 -6 41 -72 67 45 15 46 85 59 82 19 65 75 -62 -35 47 -51 23 41 -54 27 -99 14 9 69 60 62
99 -51 83 -47 -19 -57 -22 51 -52 52 92 80 69 1 -31 0 -19 -54 73 -5 3 82 -86 -84 -95 -83 -92 -52 -90 -79
43 -75 62 99 66 -43 -38 -21 23 35 -63 -61 -46 5 3 -90 -28 55 87 89 -29 -46 23 -61 -5 10 -70 -63 50 -14
39 38 10 66 -24 -45 55 -33 31 29 44 31 73 44 6 69 -21 -58 -3 93 -51 86 -16 -88 88 -30 75 78 -20 -12
-11 11 -19 40 82 6 10 22 90 -78 -88 -49 72 69 -62 42 -23 22 -38 -98 0 -3 -43 20 9 18 -67 -7 22 21
99 80 -55 74 43 -31 60 -26 -29 -6 75 60 92 -42 85 18 1 1 -74 -44 -12 72 -57 -98 99 62 45 -40 -39 -75
50 30 -18 -29 -80 -59 -96 46 -99 -76 -13 -75 -93 -95 -45 62 -37 53 -96 57 -40 3 14 -45 -84 58 75 16 37 -6
1 -47 87 -99 -22 -22 -20 71 -91 13 35 -80 75 65 -87 16 -37 99 -60 49 52 18 55 -11 18 24 -65 -80 8 -79
-8 -87 86 -9 -64 -76 59 -52 -89 18 13 70 44 93 99 62 39 49 83 28 72 -71 -13 -71 -22 44 -87 73 -68 80
41 -26 44 -63 -26 -83 -44 63 -51 -48 52 -8 55 73 -45 84 40 45 32 -34 -78 -46 -79 57 -40 11 34 -75 -20 91
94 9 -35 -5 3 59 -63 2 -7 -72 -34 -70 78 99 -29 37 11 91 61 29 85 -15 59 79 47 41 19 -18 -92 47
-59 -89 57 -72 -79 88 -85 18 -35 -96 -57 33 83 70 -55 -16 -21 72 -53 89 -44 -86 9 -44 -26 78 2 -93 -75 6
55 73 89 80 -69 -93 -39 -88 62 49 91 -68 87 -26 40 16 -49 -53 -57 23 -97 39 -78 44 -15 1 60 -87 43 -42
-2 -23 -74 -80 -59 52 -58 68 64 97 -86 -41 -88 35 49 3 -40 90 34 -2 3 13 -95 8 -1 6 75 92 19 -31
57 76 65 3 37 -72 -43 57 64 -23 41 87 26 76 -18 -32 28 47 11 47 -33 -12 4 81 -92 -47 -81 43 -2 5
68 74 66 -89 -95 -40 -78 -58 -54 -20 2 20 94 -35 58 -20 41 77 0 95 39 14 36 -40 -85 -60 -63 82 0 58
-61 -99 61 10 -2 -31 -70 37 -77 -10 85 95 -28 70 -81 -78 -68 -33 -77 77 -6 42 -100 -68 -59 -86 -42 -74 35 -32
64 -1 -1 -64 51 11 -65 47 -87 -8 5 58 22 -80 68 -25 24 59 -25 -75 95 -22 -73 27 86 -39 -98 -1 -17 -32
94 -50 -53 -62 -53 46 50 38 -95 -77 40 -38 -23 -14 -68 -20 -47 23 -8 -12 -92 -69 -97 30 94 -45 47 -81 82 -60
28 67 -48 4 74 27 -30 12 -32 35 91 -83 30 -55 -7 79 97 11 93 -45 -79 31 78 65 84 -23 -26 17 -61 43
44 60 -88 72 31 98 55 -4 66 -14 10 -81 -40 66 -15 21 69 -98 34 3 75 18 98 -6 47 -39 31 -19 30 -51
-6 18 -93 31 51 -20 -16 -33 -38 -19 71 4 -53 23 97 1 -28 -72 -44 -48 45 33 -76 86 64 49 -45 -34 -9 -76
-19 8 28 -27 -51 -58 -36 63 -92 -95 70 41 -38 -49 -95 -100 43 97 -60 -5 -56 45 -13 -3 20 -10 -21 -85 -5 63
-74 -74 -74 -39 -57 -12 51 11 -11 -22 -26 -54 71 24 -37 77 -90 77 75 86 -53 3 69 -99 -82 -59 30 81 -21 -86
67 63 87 -15 60 -82 87 51 -39 -49 -16 74 51 17 6 47 98 89 -20 -98 97 -61 18 34 37 -36 37 -96 90 44
53 -8 37 -76 -61 70 -77 -11 98 -80 12 -80 6 -89 8 -59 -69 -100 -52 -30 95 -58 61 29 52 -64 -51 10 16 -58
54 -10 49 62 76 -25 80 36 13 5 59 -65 14 41 26 -78 23 -45 -51 -85 91 -43 -61 -37 94 27 -11 49 98 48
53 -51 27 34 28 -53 18 17 31 -31 59 71 -34 25 54 -84 -34 -24 76 38 -36 15 -1 56 2 -12 0 26 -38 -62
4 -94 -63 -21 -95 -42 -12 86 14 -86 -1 80 -48 62 -47 -52 3 91 -86 11 79 32 -24 -33 -54 19 -17 28 -33 -97
-18 41 84 1 -83 48 -99 -64 26 -52 3 -64 68 -98 93 -79 -97 11 88 74 41 -31 -42 -35 -66 18 97 -30 19 -93
-19 42 61 -91 -20 59 -11 -64 -60 85 -6 -71 33 -52 46 51 -86 -77 74 -4 74 -81 1 -39 -30 12 -12 20 66 60
86 1 -67 -91 -92 -22 91 -90 -45 26 53 -6 99 46 -29 -40 -99 57 -45 -47 -3 -86 90 -78 -33 73 90 -51 -75 2
88 -34 -2 30 -18 35 -23 90 99 -49 90 -79 94 -38 48 67 -35 -58 81 -24 18 -54 83 65 -58 -12 13 89 -59 57
92 -99 94 -73 97 -78 -93 98 -78 95 -21 -17 -11 -92 69 -60 86 9 -36 -18 -33 -39 -65 74 -65 37 -49 87 -28 -81
-95 2 -18 20 93 54 86 -63 -5 -89 17 -9 75 -66 -64 -82 -46 -48 82 5 -89 19 -32 -45 53 -47 21 -9 40 34
86 87 55 -41 49 -10 -6 -7 -99 23 90 -50 -9 -81 77 65 29 -21 22 -82 19 48 -24 -72 75 -66 -69 -17 72 6
13 37 96 31 -65 -54 -91 -27 84 52 -9 -28 85 96 14 63 -34 -29 -85 78 -75 -44 -30 -5 4 72 -45 6 13 71
96 -69 67 59 69 46 80 42 81 30 89 -45 -10 -44 25 31 89 16 -36 86 31 92 1 5 -2 92 -11 77 20 40
-48 98 -100 30 54 9 84 -88 5 48 93 56 -94 -89 81 33 44 -30 -95 -98 29 -33 13 -26 -59 -80 -68 -40 12 11
82 -63 -30 -67 54 -68 50 -63 -91 -68 -45 -66 -58 16 -25 9 -50 -59 -55 4 -2 0 -63 67 30 -21 -8 55 21 -68
9 -8 56 -6 84 81 -63 -35 81 56 -50 -54 96 -51 86 0 66 -4 -18 65 -26 -57 8 78 -54 17 18 86 21 68
9 38 33 16 3 86 -57 28 -6 -44 -42 -2 3 -71 -86 23 34 -29 33 -30 67 63 -11 76 -65 92 30 -66 61 1
-72 -85 -1 64 -79 -78 -1 15 -35 -32 80 33 -36 -82 24 -65 -23 29 38 -31 87 55 -18 -52 -77 -22 -11 54 62 -48
65 -77 50 16 41 -94 -21 16 85 24 60 86 -78 -13 69 46 55 5 -27 -18 -6 -1 59 -62 -58 -99 -49 -84 89 18
-21 -15 -55 60 78 98 67 94 58 -5 -36 42 36 73 13 72 -78 -68 41 -37 -33 -46 -80 40 13 -44 -71 -8 15 -77
16 -93 -42 -10 14 57 -54 -3 -44 -21 30 -93 71 25 -60 -94 93 5 -94 -84 -72 1 -50 -34 23 -15 15 18 72 -29
-22 -82 -30 -87 -88 -25 46 32 -30 -55 -79 -85 71 -89 -57 -88 21 53 -100 -64 -92 -97 56 -51 -17 -34 -31 6 -68 84
-53 -51 90 -38 -61 57 -63 67 22 22 70 44 43 97 20 -62 -74 72 83 -32 35 -66 -29 5 -88 55 -94 94 -19 55
57 51 29 -42 -21 63 -57 7 -48 -87 -60 -55 -77 -53 -1 -85 64 60 53 71 41 59 -61 -73 -12 86 90 10 -60 -38
2 -9 14 67 -2 70 11 -78 26 -55 -86 -25 99 66 63 64 46 59 66 -37 -78 -70 63 1 -20 2 46 50 34 19
-87 -40 75 -11 -88 -80 -95 -20 -92 -28 83 24 88 -39 83 -36 -61 56 99 -73 -59 -85 -49 -10 91 12 -79 -18 -15 6
35 -74 -4 -15 40 -87 81 -22 -12 -46 14 9 98 -35 -2 -12 57 -74 -52 71 70 -70 -61 -47 89 44 33 -100 54 42
-4 -34 80 -12 -15 -9 -8 -29 89 -55 -33 89 16 -33 -73 -82 98 27 88 59 48 20 -67 -21 -86 11 -50 46 64 -8

View file

@ -0,0 +1,100 @@
52 34 59 34 64 20 89 69 26 93 95 32 17 93 77 49 51 60 51 27 60 10 61 2 16 30 41 68 65 0
43 74 11 37 32 61 72 29 47 21 7 47 68 58 22 33 29 37 14 45 71 1 67 79 69 9 6 6 95 78
86 20 68 67 43 5 77 70 96 37 79 71 35 30 22 4 56 28 33 50 97 17 85 52 21 5 57 19 35 97
15 21 99 4 54 39 15 29 68 21 50 76 64 51 79 0 24 5 65 95 90 51 99 82 9 80 61 32 2 38
46 97 53 96 51 84 18 42 30 52 82 77 72 59 1 67 72 16 14 63 70 94 20 27 38 70 86 95 41 75
2 35 45 63 92 76 81 60 62 72 90 46 47 33 1 30 54 22 50 85 63 61 22 79 45 53 45 33 8 28
43 41 14 79 2 77 95 16 74 19 17 78 47 12 68 55 3 2 77 10 35 86 52 33 47 26 98 42 48 86
18 32 85 4 91 10 69 68 15 42 58 77 88 64 91 43 56 30 92 11 52 23 43 92 65 50 68 8 80 81
20 57 38 44 62 10 80 25 32 11 70 32 13 50 41 55 44 0 28 83 5 1 34 94 55 52 56 24 76 21
36 43 59 28 10 59 4 41 64 98 54 66 44 3 37 41 67 10 85 23 58 35 58 34 35 79 46 18 1 51
72 63 85 51 23 91 3 56 35 72 38 26 91 0 68 98 27 10 12 71 30 1 14 47 47 88 17 68 78 46
53 47 1 89 95 53 11 45 46 6 91 20 57 35 58 79 60 3 21 45 4 18 59 96 36 12 13 83 52 46
33 91 82 24 97 28 50 43 65 22 14 44 32 57 33 10 34 77 58 6 27 90 26 77 62 81 87 96 0 32
96 44 59 3 47 18 0 91 83 68 48 26 67 82 39 18 88 47 80 0 57 40 30 7 57 74 49 37 57 65
18 44 0 46 47 30 65 79 53 8 26 42 80 76 30 61 82 93 78 25 89 49 55 15 86 63 35 74 41 11
18 14 40 90 91 79 80 36 33 72 25 56 73 28 65 27 62 17 60 84 23 70 32 26 77 97 47 94 72 1
82 36 68 10 83 83 40 42 51 55 82 6 37 69 93 82 64 13 54 30 45 36 87 59 1 80 39 93 11 61
78 34 53 39 64 52 52 22 33 69 71 82 57 37 78 52 62 31 87 68 70 5 85 94 41 75 38 45 84 22
36 23 51 15 61 76 88 85 36 96 21 60 34 61 72 60 69 81 5 17 16 82 30 61 39 96 40 70 42 71
45 30 60 50 78 90 36 40 11 85 42 14 61 3 66 53 68 14 41 30 97 74 79 91 64 8 1 53 52 33
55 24 35 4 49 51 44 70 93 78 25 65 1 29 96 12 93 94 13 65 4 47 84 10 90 12 36 48 21 36
17 74 61 54 21 83 35 97 47 90 57 11 16 39 95 78 23 40 23 55 17 51 20 73 98 93 50 32 58 4
84 76 78 33 50 29 11 20 5 93 63 22 91 92 44 85 62 25 63 92 36 26 57 33 8 74 69 64 78 91
58 34 91 71 37 84 28 90 28 37 97 7 26 44 59 18 58 64 31 83 16 17 50 36 65 81 19 63 66 64
20 71 1 35 87 5 47 27 6 95 86 75 74 9 94 93 26 5 61 3 97 88 0 57 21 64 46 24 86 12
23 53 31 39 37 77 29 51 85 10 41 91 67 82 50 91 53 72 75 81 50 63 52 92 83 49 92 50 26 9
38 43 13 87 11 45 28 16 27 61 70 52 77 9 57 42 73 22 32 95 23 91 93 63 16 44 26 9 93 83
77 68 21 96 44 45 9 2 14 2 67 90 55 82 67 21 18 64 31 16 2 27 86 42 34 72 22 98 91 33
89 66 87 76 0 32 81 39 55 76 23 56 51 53 75 79 30 86 1 66 64 14 46 84 92 19 95 47 77 97
88 79 61 26 66 92 54 22 15 25 26 0 76 27 17 59 48 4 42 61 65 91 0 62 55 79 29 88 10 11
24 89 91 39 56 36 16 86 41 31 14 35 7 71 77 74 33 11 49 7 96 83 31 63 90 49 96 22 58 86
45 7 93 44 50 54 83 80 3 36 11 38 14 17 10 84 96 94 26 34 26 75 72 0 41 89 96 47 39 88
0 95 2 22 68 38 0 3 51 6 13 10 14 49 75 69 25 39 63 67 12 80 37 77 10 90 60 35 84 37
98 56 99 75 49 66 3 33 65 86 1 79 91 23 69 98 91 73 95 45 64 26 99 75 49 77 71 55 42 18
80 39 26 94 85 42 91 27 14 57 36 34 10 44 38 77 23 39 54 25 32 5 17 9 66 3 67 94 20 11
88 80 30 77 72 67 16 75 84 87 60 89 21 94 24 11 63 8 79 89 37 18 6 82 76 70 81 95 67 95
92 36 55 55 43 18 76 94 30 74 95 38 45 95 54 87 22 57 4 65 15 90 90 38 73 24 67 24 36 25
98 30 34 68 11 48 42 38 80 23 12 91 77 22 65 2 88 31 70 12 46 63 17 63 27 76 21 71 70 7
76 29 56 12 41 66 22 96 8 6 7 13 27 10 77 90 2 76 30 24 81 88 19 16 93 13 30 24 98 96
45 94 89 41 52 14 71 88 80 74 7 85 44 69 65 88 4 15 84 97 86 5 53 15 39 34 9 10 45 20
95 47 45 96 71 10 36 10 90 49 7 68 14 46 97 89 82 58 69 34 93 77 90 9 27 91 29 27 22 17
80 6 29 26 34 59 10 55 32 53 18 72 39 40 29 35 52 64 2 64 38 83 16 46 53 20 19 8 10 67
47 44 79 32 58 82 26 69 0 26 4 73 95 98 61 96 20 38 3 92 6 5 25 24 42 49 15 92 80 16
74 37 86 84 47 15 56 36 43 59 72 72 74 73 49 54 26 5 40 80 78 48 4 65 31 70 14 91 88 72
91 45 73 62 83 40 49 3 27 79 80 90 3 3 58 44 7 66 77 42 37 25 20 91 47 63 71 7 72 22
51 3 36 90 45 84 18 55 75 78 42 62 86 63 65 67 46 75 1 79 2 85 85 60 36 92 34 89 66 99
36 99 0 63 89 65 54 58 52 28 98 27 67 1 45 71 35 52 55 55 44 23 46 89 83 37 8 2 92 75
51 13 71 2 9 95 23 60 24 98 86 43 32 16 75 70 92 78 26 84 29 14 35 55 61 89 73 59 76 44
59 57 28 92 33 50 70 94 89 67 70 38 53 16 35 70 35 92 39 78 88 80 71 1 93 21 87 64 49 84
29 6 17 45 38 65 41 48 81 69 34 12 2 14 41 71 16 92 69 27 61 74 58 20 75 19 39 66 57 82
12 8 14 85 97 31 58 31 20 76 6 42 29 95 60 94 15 84 86 69 73 52 73 57 12 66 89 65 60 84
20 74 96 34 83 41 8 37 22 36 30 25 20 8 58 73 9 75 76 73 84 38 16 24 95 95 68 66 43 19
33 15 25 80 48 69 63 39 16 45 6 77 14 46 38 15 64 85 49 5 59 28 9 4 23 68 59 26 1 75
35 45 3 6 34 59 55 51 81 59 59 93 18 41 8 44 88 7 86 4 88 90 24 54 73 62 89 13 44 92
72 60 68 83 39 32 30 15 98 92 69 94 51 48 9 0 4 1 30 92 40 1 61 82 66 4 39 10 93 87
12 20 34 72 33 31 67 71 67 47 98 76 53 29 17 17 13 31 43 76 25 37 8 39 9 5 96 41 87 66
96 30 2 57 57 10 14 17 86 76 35 94 42 54 18 24 19 34 12 42 18 11 83 65 86 38 45 17 60 70
19 62 71 99 35 60 96 30 44 80 78 15 14 5 32 43 10 26 81 72 41 98 30 87 75 8 53 33 25 95
22 0 38 57 88 7 47 83 49 41 52 1 14 93 41 3 18 42 15 57 28 74 97 2 18 48 64 25 77 69
36 95 65 81 44 41 6 74 62 16 72 81 15 72 31 5 22 17 19 6 7 15 82 10 31 93 11 45 41 11
22 76 14 62 34 65 82 5 57 51 51 5 1 6 17 43 28 31 90 99 48 14 96 49 95 40 87 85 40 51
95 13 99 46 52 80 4 18 95 94 0 46 10 80 3 34 60 15 86 10 28 59 6 35 14 93 18 8 3 65
57 37 6 31 45 85 42 34 47 92 48 40 7 17 5 74 67 62 0 74 58 21 23 3 5 24 50 54 99 19
24 14 10 4 36 33 88 51 40 66 40 56 65 23 43 13 82 62 27 88 89 91 36 37 19 11 50 39 96 68
82 7 39 80 52 90 57 17 61 15 51 71 82 15 21 44 4 46 75 50 78 18 63 75 98 45 6 16 57 25
0 26 56 74 62 84 71 42 25 86 68 10 73 0 71 6 15 99 1 51 45 42 5 49 3 35 84 29 15 36
60 78 76 3 95 73 36 57 35 44 50 42 85 57 18 69 37 42 75 79 15 12 74 72 51 36 79 3 58 71
69 24 16 96 17 25 21 94 71 78 74 39 7 96 3 12 13 16 7 99 65 72 12 28 75 44 55 8 75 67
3 13 92 9 92 83 69 91 65 92 29 63 46 1 4 62 29 85 47 93 81 3 15 23 63 50 17 9 13 13
9 18 46 53 0 86 10 41 87 89 24 25 70 73 8 23 27 76 66 46 58 39 28 1 99 64 59 13 7 68
72 57 90 50 47 57 34 27 94 39 23 31 74 77 45 74 18 49 96 8 95 50 20 81 73 55 72 2 32 15
87 77 74 5 99 86 5 65 97 39 17 74 48 87 20 66 28 2 18 58 49 22 79 23 36 30 64 20 71 32
35 43 66 96 63 77 18 90 47 86 94 19 88 79 23 12 38 4 56 42 36 2 77 1 3 17 64 52 31 24
80 2 4 39 61 60 74 83 28 28 61 10 71 82 44 29 55 30 1 58 81 79 34 41 85 82 84 55 22 12
76 77 58 92 90 0 54 28 77 68 58 12 1 81 37 28 19 60 71 59 25 83 8 49 52 11 28 65 59 70
14 1 92 90 5 48 28 78 1 42 54 43 60 83 72 19 28 33 12 52 18 15 56 95 39 33 37 70 53 23
53 76 26 31 18 81 83 79 25 1 82 43 50 24 63 49 5 23 66 37 80 41 63 77 2 28 15 21 32 93
80 41 81 7 37 95 19 42 57 30 12 25 29 34 41 45 87 8 20 95 63 16 99 55 16 61 16 36 81 25
32 30 2 81 23 25 88 30 37 76 52 77 79 58 21 58 10 0 13 32 72 80 3 75 75 25 21 9 79 18
26 13 36 63 43 2 50 41 65 18 88 44 82 75 73 24 1 30 54 68 15 18 22 50 41 99 27 96 51 53
22 4 76 11 85 88 28 75 1 2 92 66 63 3 58 43 53 5 1 24 99 90 87 87 41 1 85 37 98 92
16 39 13 88 60 55 35 11 34 23 23 85 79 41 79 87 65 78 47 83 88 78 35 84 30 61 37 58 25 55
27 33 15 76 82 79 73 92 93 78 18 38 22 96 63 92 41 9 50 96 14 55 8 60 15 61 97 56 43 22
42 34 94 11 35 70 50 49 36 34 59 14 87 84 88 83 4 69 29 99 35 24 2 18 97 97 74 88 91 49
33 25 71 12 60 2 48 22 81 33 27 95 54 25 53 14 20 43 26 96 98 37 64 27 72 33 78 45 22 61
61 21 91 38 92 47 26 90 78 96 58 41 21 72 81 61 55 9 55 60 28 25 25 74 73 81 64 16 49 39
90 89 12 93 91 23 82 36 63 58 73 81 49 32 60 39 4 84 73 16 18 26 58 85 46 28 82 91 72 7
79 41 28 76 33 70 47 6 18 64 40 54 45 61 28 63 87 83 38 9 65 68 62 45 80 63 89 29 20 40
20 59 58 23 61 79 35 19 78 2 26 48 90 34 69 31 31 42 92 33 18 74 28 47 45 52 36 89 19 40
58 13 72 24 31 26 73 72 84 29 85 99 20 32 54 92 8 80 86 58 23 80 59 21 76 75 90 76 92 57
74 53 80 51 8 88 84 63 82 99 97 77 38 9 51 61 37 20 68 47 65 21 53 82 85 96 62 65 35 4
71 82 14 18 88 79 38 76 66 27 10 10 62 54 80 21 6 57 83 33 52 10 97 37 6 38 12 51 0 84
95 30 75 92 84 30 55 57 32 44 53 24 77 81 34 84 69 85 91 33 50 72 62 79 62 12 59 75 99 81
38 42 47 1 11 34 27 77 70 85 89 84 79 15 14 54 78 93 72 68 63 39 98 72 55 32 93 0 13 21
3 15 10 15 3 31 84 89 53 5 60 41 66 77 45 12 68 68 50 68 99 64 46 54 30 56 2 90 99 78
66 10 27 89 42 16 9 98 16 2 68 51 0 22 73 60 69 96 37 69 30 36 20 21 51 26 65 13 74 86
94 58 34 97 77 88 90 75 47 30 6 36 89 66 48 9 20 6 52 45 0 37 99 46 11 53 53 72 94 40
5 71 50 96 89 71 80 43 27 95 49 9 74 28 62 65 64 97 2 55 58 11 69 0 31 22 73 20 66 11
63 39 84 62 64 5 56 92 26 86 19 20 56 85 42 48 56 51 54 29 26 95 72 38 70 61 16 54 57 19
76 97 40 99 73 68 98 92 97 62 73 1 29 72 18 70 90 4 98 95 70 36 65 45 86 36 88 38 64 54

View file

@ -0,0 +1,27 @@
# The facets of a self-dual 4-dim regular polytope
# with 24 octahedron facets. Taken from cddlib.
# Format b + Ax >= 0
1 1 1 1 1
1 1 1 1 -1
1 1 1 -1 1
1 1 1 -1 -1
1 1 -1 1 1
1 1 -1 1 -1
1 1 -1 -1 1
1 1 -1 -1 -1
1 -1 1 1 1
1 -1 1 1 -1
1 -1 1 -1 1
1 -1 1 -1 -1
1 -1 -1 1 1
1 -1 -1 1 -1
1 -1 -1 -1 1
1 -1 -1 -1 -1
1 2 0 0 0
1 0 2 0 0
1 0 0 2 0
1 0 0 0 2
1 -2 0 0 0
1 0 -2 0 0
1 0 0 -2 0
1 0 0 0 -2

View file

@ -0,0 +1,54 @@
import pytest
from numpy.testing import assert_, assert_array_equal, suppress_warnings
try:
import matplotlib
matplotlib.rcParams['backend'] = 'Agg'
import matplotlib.pyplot as plt
has_matplotlib = True
except Exception:
has_matplotlib = False
from scipy.spatial import \
delaunay_plot_2d, voronoi_plot_2d, convex_hull_plot_2d, \
Delaunay, Voronoi, ConvexHull
@pytest.mark.skipif(not has_matplotlib, reason="Matplotlib not available")
class TestPlotting:
points = [(0,0), (0,1), (1,0), (1,1)]
def test_delaunay(self):
# Smoke test
fig = plt.figure()
obj = Delaunay(self.points)
s_before = obj.simplices.copy()
with suppress_warnings() as sup:
# filter can be removed when matplotlib 1.x is dropped
sup.filter(message="The ishold function was deprecated in version")
r = delaunay_plot_2d(obj, ax=fig.gca())
assert_array_equal(obj.simplices, s_before) # shouldn't modify
assert_(r is fig)
delaunay_plot_2d(obj, ax=fig.gca())
def test_voronoi(self):
# Smoke test
fig = plt.figure()
obj = Voronoi(self.points)
with suppress_warnings() as sup:
# filter can be removed when matplotlib 1.x is dropped
sup.filter(message="The ishold function was deprecated in version")
r = voronoi_plot_2d(obj, ax=fig.gca())
assert_(r is fig)
voronoi_plot_2d(obj)
voronoi_plot_2d(obj, show_vertices=False)
def test_convex_hull(self):
# Smoke test
fig = plt.figure()
tri = ConvexHull(self.points)
with suppress_warnings() as sup:
# filter can be removed when matplotlib 1.x is dropped
sup.filter(message="The ishold function was deprecated in version")
r = convex_hull_plot_2d(tri, ax=fig.gca())
assert_(r is fig)
convex_hull_plot_2d(tri)

View file

@ -0,0 +1,116 @@
import numpy as np
from numpy.testing import assert_allclose, assert_equal, assert_almost_equal
from pytest import raises as assert_raises
from scipy.spatial import procrustes
class TestProcrustes(object):
def setup_method(self):
"""creates inputs"""
# an L
self.data1 = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd')
# a larger, shifted, mirrored L
self.data2 = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd')
# an L shifted up 1, right 1, and with point 4 shifted an extra .5
# to the right
# pointwise distance disparity with data1: 3*(2) + (1 + 1.5^2)
self.data3 = np.array([[2, 4], [2, 3], [2, 2], [3, 2.5]], 'd')
# data4, data5 are standardized (trace(A*A') = 1).
# procrustes should return an identical copy if they are used
# as the first matrix argument.
shiftangle = np.pi / 8
self.data4 = np.array([[1, 0], [0, 1], [-1, 0],
[0, -1]], 'd') / np.sqrt(4)
self.data5 = np.array([[np.cos(shiftangle), np.sin(shiftangle)],
[np.cos(np.pi / 2 - shiftangle),
np.sin(np.pi / 2 - shiftangle)],
[-np.cos(shiftangle),
-np.sin(shiftangle)],
[-np.cos(np.pi / 2 - shiftangle),
-np.sin(np.pi / 2 - shiftangle)]],
'd') / np.sqrt(4)
def test_procrustes(self):
# tests procrustes' ability to match two matrices.
#
# the second matrix is a rotated, shifted, scaled, and mirrored version
# of the first, in two dimensions only
#
# can shift, mirror, and scale an 'L'?
a, b, disparity = procrustes(self.data1, self.data2)
assert_allclose(b, a)
assert_almost_equal(disparity, 0.)
# if first mtx is standardized, leaves first mtx unchanged?
m4, m5, disp45 = procrustes(self.data4, self.data5)
assert_equal(m4, self.data4)
# at worst, data3 is an 'L' with one point off by .5
m1, m3, disp13 = procrustes(self.data1, self.data3)
#assert_(disp13 < 0.5 ** 2)
def test_procrustes2(self):
# procrustes disparity should not depend on order of matrices
m1, m3, disp13 = procrustes(self.data1, self.data3)
m3_2, m1_2, disp31 = procrustes(self.data3, self.data1)
assert_almost_equal(disp13, disp31)
# try with 3d, 8 pts per
rand1 = np.array([[2.61955202, 0.30522265, 0.55515826],
[0.41124708, -0.03966978, -0.31854548],
[0.91910318, 1.39451809, -0.15295084],
[2.00452023, 0.50150048, 0.29485268],
[0.09453595, 0.67528885, 0.03283872],
[0.07015232, 2.18892599, -1.67266852],
[0.65029688, 1.60551637, 0.80013549],
[-0.6607528, 0.53644208, 0.17033891]])
rand3 = np.array([[0.0809969, 0.09731461, -0.173442],
[-1.84888465, -0.92589646, -1.29335743],
[0.67031855, -1.35957463, 0.41938621],
[0.73967209, -0.20230757, 0.52418027],
[0.17752796, 0.09065607, 0.29827466],
[0.47999368, -0.88455717, -0.57547934],
[-0.11486344, -0.12608506, -0.3395779],
[-0.86106154, -0.28687488, 0.9644429]])
res1, res3, disp13 = procrustes(rand1, rand3)
res3_2, res1_2, disp31 = procrustes(rand3, rand1)
assert_almost_equal(disp13, disp31)
def test_procrustes_shape_mismatch(self):
assert_raises(ValueError, procrustes,
np.array([[1, 2], [3, 4]]),
np.array([[5, 6, 7], [8, 9, 10]]))
def test_procrustes_empty_rows_or_cols(self):
empty = np.array([[]])
assert_raises(ValueError, procrustes, empty, empty)
def test_procrustes_no_variation(self):
assert_raises(ValueError, procrustes,
np.array([[42, 42], [42, 42]]),
np.array([[45, 45], [45, 45]]))
def test_procrustes_bad_number_of_dimensions(self):
# fewer dimensions in one dataset
assert_raises(ValueError, procrustes,
np.array([1, 1, 2, 3, 5, 8]),
np.array([[1, 2], [3, 4]]))
# fewer dimensions in both datasets
assert_raises(ValueError, procrustes,
np.array([1, 1, 2, 3, 5, 8]),
np.array([1, 1, 2, 3, 5, 8]))
# zero dimensions
assert_raises(ValueError, procrustes, np.array(7), np.array(11))
# extra dimensions
assert_raises(ValueError, procrustes,
np.array([[[11], [7]]]),
np.array([[[5, 13]]]))

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,150 @@
import numpy as np
from numpy.testing import (assert_almost_equal,
assert_array_equal,
assert_equal,
assert_)
import pytest
from scipy.spatial.distance import directed_hausdorff
from scipy.spatial import distance
from scipy._lib._util import check_random_state
class TestHausdorff(object):
# Test various properties of the directed Hausdorff code.
def setup_method(self):
np.random.seed(1234)
random_angles = np.random.random(100) * np.pi * 2
random_columns = np.column_stack(
(random_angles, random_angles, np.zeros(100)))
random_columns[..., 0] = np.cos(random_columns[..., 0])
random_columns[..., 1] = np.sin(random_columns[..., 1])
random_columns_2 = np.column_stack(
(random_angles, random_angles, np.zeros(100)))
random_columns_2[1:, 0] = np.cos(random_columns_2[1:, 0]) * 2.0
random_columns_2[1:, 1] = np.sin(random_columns_2[1:, 1]) * 2.0
# move one point farther out so we don't have two perfect circles
random_columns_2[0, 0] = np.cos(random_columns_2[0, 0]) * 3.3
random_columns_2[0, 1] = np.sin(random_columns_2[0, 1]) * 3.3
self.path_1 = random_columns
self.path_2 = random_columns_2
self.path_1_4d = np.insert(self.path_1, 3, 5, axis=1)
self.path_2_4d = np.insert(self.path_2, 3, 27, axis=1)
def test_symmetry(self):
# Ensure that the directed (asymmetric) Hausdorff distance is
# actually asymmetric
forward = directed_hausdorff(self.path_1, self.path_2)[0]
reverse = directed_hausdorff(self.path_2, self.path_1)[0]
assert_(forward != reverse)
def test_brute_force_comparison_forward(self):
# Ensure that the algorithm for directed_hausdorff gives the
# same result as the simple / brute force approach in the
# forward direction.
actual = directed_hausdorff(self.path_1, self.path_2)[0]
# brute force over rows:
expected = max(np.amin(distance.cdist(self.path_1, self.path_2),
axis=1))
assert_almost_equal(actual, expected, decimal=9)
def test_brute_force_comparison_reverse(self):
# Ensure that the algorithm for directed_hausdorff gives the
# same result as the simple / brute force approach in the
# reverse direction.
actual = directed_hausdorff(self.path_2, self.path_1)[0]
# brute force over columns:
expected = max(np.amin(distance.cdist(self.path_1, self.path_2),
axis=0))
assert_almost_equal(actual, expected, decimal=9)
def test_degenerate_case(self):
# The directed Hausdorff distance must be zero if both input
# data arrays match.
actual = directed_hausdorff(self.path_1, self.path_1)[0]
assert_almost_equal(actual, 0.0, decimal=9)
def test_2d_data_forward(self):
# Ensure that 2D data is handled properly for a simple case
# relative to brute force approach.
actual = directed_hausdorff(self.path_1[..., :2],
self.path_2[..., :2])[0]
expected = max(np.amin(distance.cdist(self.path_1[..., :2],
self.path_2[..., :2]),
axis=1))
assert_almost_equal(actual, expected, decimal=9)
def test_4d_data_reverse(self):
# Ensure that 4D data is handled properly for a simple case
# relative to brute force approach.
actual = directed_hausdorff(self.path_2_4d, self.path_1_4d)[0]
# brute force over columns:
expected = max(np.amin(distance.cdist(self.path_1_4d, self.path_2_4d),
axis=0))
assert_almost_equal(actual, expected, decimal=9)
def test_indices(self):
# Ensure that correct point indices are returned -- they should
# correspond to the Hausdorff pair
path_simple_1 = np.array([[-1,-12],[0,0], [1,1], [3,7], [1,2]])
path_simple_2 = np.array([[0,0], [1,1], [4,100], [10,9]])
actual = directed_hausdorff(path_simple_2, path_simple_1)[1:]
expected = (2, 3)
assert_array_equal(actual, expected)
def test_random_state(self):
# ensure that the global random state is not modified because
# the directed Hausdorff algorithm uses randomization
rs = check_random_state(None)
old_global_state = rs.get_state()
directed_hausdorff(self.path_1, self.path_2)
rs2 = check_random_state(None)
new_global_state = rs2.get_state()
assert_equal(new_global_state, old_global_state)
def test_random_state_None_int(self):
# check that seed values of None or int do not alter global
# random state
for seed in [None, 27870671]:
rs = check_random_state(None)
old_global_state = rs.get_state()
directed_hausdorff(self.path_1, self.path_2, seed)
rs2 = check_random_state(None)
new_global_state = rs2.get_state()
assert_equal(new_global_state, old_global_state)
def test_invalid_dimensions(self):
# Ensure that a ValueError is raised when the number of columns
# is not the same
np.random.seed(1234)
A = np.random.rand(3, 2)
B = np.random.rand(4, 5)
with pytest.raises(ValueError):
directed_hausdorff(A, B)
@pytest.mark.parametrize("A, B, seed, expected", [
# the two cases from gh-11332
([(0,0)],
[(0,1), (0,0)],
0,
(0.0, 0, 1)),
([(0,0)],
[(0,1), (0,0)],
1,
(0.0, 0, 1)),
# slightly more complex case
([(-5, 3), (0,0)],
[(0,1), (0,0), (-5, 3)],
77098,
# the maximum minimum distance will
# be the last one found, but a unique
# solution is not guaranteed more broadly
(0.0, 1, 1)),
])
def test_subsets(self, A, B, seed, expected):
# verify fix for gh-11332
actual = directed_hausdorff(u=A, v=B, seed=seed)
# check distance
assert_almost_equal(actual[0], expected[0], decimal=9)
# check indices
assert actual[1:] == expected[1:]

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,383 @@
from __future__ import division, absolute_import, print_function
import numpy as np
from numpy.testing import assert_allclose
import pytest
from scipy.spatial import geometric_slerp
def _generate_spherical_points(ndim=3, n_pts=2):
# generate uniform points on sphere
# see: https://stackoverflow.com/a/23785326
# tentatively extended to arbitrary dims
# for 0-sphere it will always produce antipodes
np.random.seed(123)
points = np.random.normal(size=(n_pts, ndim))
points /= np.linalg.norm(points, axis=1)[:, np.newaxis]
return points[0], points[1]
class TestGeometricSlerp(object):
# Test various properties of the geometric slerp code
@pytest.mark.parametrize("n_dims", [2, 3, 5, 7, 9])
@pytest.mark.parametrize("n_pts", [0, 3, 17])
def test_shape_property(self, n_dims, n_pts):
# geometric_slerp output shape should match
# input dimensionality & requested number
# of interpolation points
start, end = _generate_spherical_points(n_dims, 2)
actual = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, n_pts))
assert actual.shape == (n_pts, n_dims)
@pytest.mark.parametrize("n_dims", [2, 3, 5, 7, 9])
@pytest.mark.parametrize("n_pts", [3, 17])
def test_include_ends(self, n_dims, n_pts):
# geometric_slerp should return a data structure
# that includes the start and end coordinates
# when t includes 0 and 1 ends
# this is convenient for plotting surfaces represented
# by interpolations for example
# the generator doesn't work so well for the unit
# sphere (it always produces antipodes), so use
# custom values there
start, end = _generate_spherical_points(n_dims, 2)
actual = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, n_pts))
assert_allclose(actual[0], start)
assert_allclose(actual[-1], end)
@pytest.mark.parametrize("start, end", [
# both arrays are not flat
(np.zeros((1, 3)), np.ones((1, 3))),
# only start array is not flat
(np.zeros((1, 3)), np.ones(3)),
# only end array is not flat
(np.zeros(1), np.ones((3, 1))),
])
def test_input_shape_flat(self, start, end):
# geometric_slerp should handle input arrays that are
# not flat appropriately
with pytest.raises(ValueError, match='one-dimensional'):
geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 10))
@pytest.mark.parametrize("start, end", [
# 7-D and 3-D ends
(np.zeros(7), np.ones(3)),
# 2-D and 1-D ends
(np.zeros(2), np.ones(1)),
# empty, "3D" will also get caught this way
(np.array([]), np.ones(3)),
])
def test_input_dim_mismatch(self, start, end):
# geometric_slerp must appropriately handle cases where
# an interpolation is attempted across two different
# dimensionalities
with pytest.raises(ValueError, match='dimensions'):
geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 10))
@pytest.mark.parametrize("start, end", [
# both empty
(np.array([]), np.array([])),
])
def test_input_at_least1d(self, start, end):
# empty inputs to geometric_slerp must
# be handled appropriately when not detected
# by mismatch
with pytest.raises(ValueError, match='at least two-dim'):
geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 10))
@pytest.mark.parametrize("start, end, expected", [
# North and South Poles are definitely antipodes
# but should be handled gracefully now
(np.array([0, 0, 1.0]), np.array([0, 0, -1.0]), "warning"),
# this case will issue a warning & be handled
# gracefully as well;
# North Pole was rotated very slightly
# using r = R.from_euler('x', 0.035, degrees=True)
# to achieve Euclidean distance offset from diameter by
# 9.328908379124812e-08, within the default tol
(np.array([0.00000000e+00,
-6.10865200e-04,
9.99999813e-01]), np.array([0, 0, -1.0]), "warning"),
# this case should succeed without warning because a
# sufficiently large
# rotation was applied to North Pole point to shift it
# to a Euclidean distance of 2.3036691931821451e-07
# from South Pole, which is larger than tol
(np.array([0.00000000e+00,
-9.59930941e-04,
9.99999539e-01]), np.array([0, 0, -1.0]), "success"),
])
def test_handle_antipodes(self, start, end, expected):
# antipodal points must be handled appropriately;
# there are an infinite number of possible geodesic
# interpolations between them in higher dims
if expected == "warning":
with pytest.warns(UserWarning, match='antipodes'):
res = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 10))
else:
res = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 10))
# antipodes or near-antipodes should still produce
# slerp paths on the surface of the sphere (but they
# may be ambiguous):
assert_allclose(np.linalg.norm(res, axis=1), 1.0)
@pytest.mark.parametrize("start, end, expected", [
# 2-D with n_pts=4 (two new interpolation points)
# this is an actual circle
(np.array([1, 0]),
np.array([0, 1]),
np.array([[1, 0],
[np.sqrt(3) / 2, 0.5], # 30 deg on unit circle
[0.5, np.sqrt(3) / 2], # 60 deg on unit circle
[0, 1]])),
# likewise for 3-D (add z = 0 plane)
# this is an ordinary sphere
(np.array([1, 0, 0]),
np.array([0, 1, 0]),
np.array([[1, 0, 0],
[np.sqrt(3) / 2, 0.5, 0],
[0.5, np.sqrt(3) / 2, 0],
[0, 1, 0]])),
# for 5-D, pad more columns with constants
# zeros are easiest--non-zero values on unit
# circle are more difficult to reason about
# at higher dims
(np.array([1, 0, 0, 0, 0]),
np.array([0, 1, 0, 0, 0]),
np.array([[1, 0, 0, 0, 0],
[np.sqrt(3) / 2, 0.5, 0, 0, 0],
[0.5, np.sqrt(3) / 2, 0, 0, 0],
[0, 1, 0, 0, 0]])),
])
def test_straightforward_examples(self, start, end, expected):
# some straightforward interpolation tests, sufficiently
# simple to use the unit circle to deduce expected values;
# for larger dimensions, pad with constants so that the
# data is N-D but simpler to reason about
actual = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 4))
assert_allclose(actual, expected, atol=1e-16)
@pytest.mark.parametrize("t", [
# both interval ends clearly violate limits
np.linspace(-20, 20, 300),
# only one interval end violating limit slightly
np.linspace(-0.0001, 0.0001, 17),
])
def test_t_values_limits(self, t):
# geometric_slerp() should appropriately handle
# interpolation parameters < 0 and > 1
with pytest.raises(ValueError, match='interpolation parameter'):
_ = geometric_slerp(start=np.array([1, 0]),
end=np.array([0, 1]),
t=t)
@pytest.mark.parametrize("start, end", [
(np.array([1]),
np.array([0])),
(np.array([0]),
np.array([1])),
(np.array([-17.7]),
np.array([165.9])),
])
def test_0_sphere_handling(self, start, end):
# it does not make sense to interpolate the set of
# two points that is the 0-sphere
with pytest.raises(ValueError, match='at least two-dim'):
_ = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 4))
@pytest.mark.parametrize("tol", [
# an integer currently raises
5,
# string raises
"7",
# list and arrays also raise
[5, 6, 7], np.array(9.0),
])
def test_tol_type(self, tol):
# geometric_slerp() should raise if tol is not
# a suitable float type
with pytest.raises(ValueError, match='must be a float'):
_ = geometric_slerp(start=np.array([1, 0]),
end=np.array([0, 1]),
t=np.linspace(0, 1, 5),
tol=tol)
@pytest.mark.parametrize("tol", [
-5e-6,
-7e-10,
])
def test_tol_sign(self, tol):
# geometric_slerp() currently handles negative
# tol values, as long as they are floats
_ = geometric_slerp(start=np.array([1, 0]),
end=np.array([0, 1]),
t=np.linspace(0, 1, 5),
tol=tol)
@pytest.mark.parametrize("start, end", [
# 1-sphere (circle) with one point at origin
# and the other on the circle
(np.array([1, 0]), np.array([0, 0])),
# 2-sphere (normal sphere) with both points
# just slightly off sphere by the same amount
# in different directions
(np.array([1 + 1e-6, 0, 0]),
np.array([0, 1 - 1e-6, 0])),
# same thing in 4-D
(np.array([1 + 1e-6, 0, 0, 0]),
np.array([0, 1 - 1e-6, 0, 0])),
])
def test_unit_sphere_enforcement(self, start, end):
# geometric_slerp() should raise on input that clearly
# cannot be on an n-sphere of radius 1
with pytest.raises(ValueError, match='unit n-sphere'):
geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 5))
@pytest.mark.parametrize("start, end", [
# 1-sphere 45 degree case
(np.array([1, 0]),
np.array([np.sqrt(2) / 2.,
np.sqrt(2) / 2.])),
# 2-sphere 135 degree case
(np.array([1, 0]),
np.array([-np.sqrt(2) / 2.,
np.sqrt(2) / 2.])),
])
@pytest.mark.parametrize("t_func", [
np.linspace, np.logspace])
def test_order_handling(self, start, end, t_func):
# geometric_slerp() should handle scenarios with
# ascending and descending t value arrays gracefully;
# results should simply be reversed
# for scrambled / unsorted parameters, the same values
# should be returned, just in scrambled order
num_t_vals = 20
np.random.seed(789)
forward_t_vals = t_func(0, 10, num_t_vals)
# normalize to max of 1
forward_t_vals /= forward_t_vals.max()
reverse_t_vals = np.flipud(forward_t_vals)
shuffled_indices = np.arange(num_t_vals)
np.random.shuffle(shuffled_indices)
scramble_t_vals = forward_t_vals.copy()[shuffled_indices]
forward_results = geometric_slerp(start=start,
end=end,
t=forward_t_vals)
reverse_results = geometric_slerp(start=start,
end=end,
t=reverse_t_vals)
scrambled_results = geometric_slerp(start=start,
end=end,
t=scramble_t_vals)
# check fidelity to input order
assert_allclose(forward_results, np.flipud(reverse_results))
assert_allclose(forward_results[shuffled_indices],
scrambled_results)
@pytest.mark.parametrize("t", [
# string:
"15, 5, 7",
# complex numbers currently produce a warning
# but not sure we need to worry about it too much:
# [3 + 1j, 5 + 2j],
])
def test_t_values_conversion(self, t):
with pytest.raises(ValueError):
_ = geometric_slerp(start=np.array([1]),
end=np.array([0]),
t=t)
def test_accept_arraylike(self):
# array-like support requested by reviewer
# in gh-10380
actual = geometric_slerp([1, 0], [0, 1], [0, 1/3, 0.5, 2/3, 1])
# expected values are based on visual inspection
# of the unit circle for the progressions along
# the circumference provided in t
expected = np.array([[1, 0],
[np.sqrt(3) / 2, 0.5],
[np.sqrt(2) / 2,
np.sqrt(2) / 2],
[0.5, np.sqrt(3) / 2],
[0, 1]], dtype=np.float64)
# Tyler's original Cython implementation of geometric_slerp
# can pass at atol=0 here, but on balance we will accept
# 1e-16 for an implementation that avoids Cython and
# makes up accuracy ground elsewhere
assert_allclose(actual, expected, atol=1e-16)
def test_scalar_t(self):
# when t is a scalar, return value is a single
# interpolated point of the appropriate dimensionality
# requested by reviewer in gh-10380
actual = geometric_slerp([1, 0], [0, 1], 0.5)
expected = np.array([np.sqrt(2) / 2,
np.sqrt(2) / 2], dtype=np.float64)
assert actual.shape == (2,)
assert_allclose(actual, expected)
@pytest.mark.parametrize('start', [
np.array([1, 0, 0]),
np.array([0, 1]),
])
def test_degenerate_input(self, start):
# handle start == end with repeated value
# like np.linspace
expected = [start] * 5
actual = geometric_slerp(start=start,
end=start,
t=np.linspace(0, 1, 5))
assert_allclose(actual, expected)
@pytest.mark.parametrize('k', np.logspace(-10, -1, 10))
def test_numerical_stability_pi(self, k):
# geometric_slerp should have excellent numerical
# stability for angles approaching pi between
# the start and end points
angle = np.pi - k
ts = np.linspace(0, 1, 100)
P = np.array([1, 0, 0, 0])
Q = np.array([np.cos(angle), np.sin(angle), 0, 0])
# the test should only be enforced for cases where
# geometric_slerp determines that the input is actually
# on the unit sphere
with np.testing.suppress_warnings() as sup:
sup.filter(UserWarning)
result = geometric_slerp(P, Q, ts, 1e-18)
norms = np.linalg.norm(result, axis=1)
error = np.max(np.abs(norms - 1))
assert error < 4e-15

View file

@ -0,0 +1,365 @@
import numpy as np
import itertools
from numpy.testing import (assert_equal,
assert_almost_equal,
assert_array_equal,
assert_array_almost_equal,
suppress_warnings)
import pytest
from pytest import raises as assert_raises
from pytest import warns as assert_warns
from scipy.spatial import SphericalVoronoi, distance
from scipy.optimize import linear_sum_assignment
from scipy.constants import golden as phi
from scipy.special import gamma
TOL = 1E-10
def _generate_tetrahedron():
return np.array([[1, 1, 1], [1, -1, -1], [-1, 1, -1], [-1, -1, 1]])
def _generate_cube():
return np.array(list(itertools.product([-1, 1.], repeat=3)))
def _generate_octahedron():
return np.array([[-1, 0, 0], [+1, 0, 0], [0, -1, 0],
[0, +1, 0], [0, 0, -1], [0, 0, +1]])
def _generate_dodecahedron():
x1 = _generate_cube()
x2 = np.array([[0, -phi, -1 / phi],
[0, -phi, +1 / phi],
[0, +phi, -1 / phi],
[0, +phi, +1 / phi]])
x3 = np.array([[-1 / phi, 0, -phi],
[+1 / phi, 0, -phi],
[-1 / phi, 0, +phi],
[+1 / phi, 0, +phi]])
x4 = np.array([[-phi, -1 / phi, 0],
[-phi, +1 / phi, 0],
[+phi, -1 / phi, 0],
[+phi, +1 / phi, 0]])
return np.concatenate((x1, x2, x3, x4))
def _generate_icosahedron():
x = np.array([[0, -1, -phi],
[0, -1, +phi],
[0, +1, -phi],
[0, +1, +phi]])
return np.concatenate([np.roll(x, i, axis=1) for i in range(3)])
def _generate_polytope(name):
polygons = ["triangle", "square", "pentagon", "hexagon", "heptagon",
"octagon", "nonagon", "decagon", "undecagon", "dodecagon"]
polyhedra = ["tetrahedron", "cube", "octahedron", "dodecahedron",
"icosahedron"]
if name not in polygons and name not in polyhedra:
raise ValueError("unrecognized polytope")
if name in polygons:
n = polygons.index(name) + 3
thetas = np.linspace(0, 2 * np.pi, n, endpoint=False)
p = np.vstack([np.cos(thetas), np.sin(thetas)]).T
elif name == "tetrahedron":
p = _generate_tetrahedron()
elif name == "cube":
p = _generate_cube()
elif name == "octahedron":
p = _generate_octahedron()
elif name == "dodecahedron":
p = _generate_dodecahedron()
elif name == "icosahedron":
p = _generate_icosahedron()
return p / np.linalg.norm(p, axis=1, keepdims=True)
def _hypersphere_area(dim, radius):
# https://en.wikipedia.org/wiki/N-sphere#Closed_forms
return 2 * np.pi**(dim / 2) / gamma(dim / 2) * radius**(dim - 1)
def _sample_sphere(n, dim, seed=None):
# Sample points uniformly at random from the hypersphere
rng = np.random.RandomState(seed=seed)
points = rng.randn(n, dim)
points /= np.linalg.norm(points, axis=1, keepdims=True)
return points
class TestSphericalVoronoi(object):
def setup_method(self):
self.points = np.array([
[-0.78928481, -0.16341094, 0.59188373],
[-0.66839141, 0.73309634, 0.12578818],
[0.32535778, -0.92476944, -0.19734181],
[-0.90177102, -0.03785291, -0.43055335],
[0.71781344, 0.68428936, 0.12842096],
[-0.96064876, 0.23492353, -0.14820556],
[0.73181537, -0.22025898, -0.6449281],
[0.79979205, 0.54555747, 0.25039913]]
)
# Issue #9386
self.hemisphere_points = np.array([
[0.88610999, -0.42383021, 0.18755541],
[0.51980039, -0.72622668, 0.4498915],
[0.56540011, -0.81629197, -0.11827989],
[0.69659682, -0.69972598, 0.15854467]])
# Issue #8859
phi = np.linspace(0, 2 * np.pi, 10, endpoint=False) # azimuth angle
theta = np.linspace(0.001, np.pi * 0.4, 5) # polar angle
theta = theta[np.newaxis, :].T
phiv, thetav = np.meshgrid(phi, theta)
phiv = np.reshape(phiv, (50, 1))
thetav = np.reshape(thetav, (50, 1))
x = np.cos(phiv) * np.sin(thetav)
y = np.sin(phiv) * np.sin(thetav)
z = np.cos(thetav)
self.hemisphere_points2 = np.concatenate([x, y, z], axis=1)
def test_constructor(self):
center = np.array([1, 2, 3])
radius = 2
s1 = SphericalVoronoi(self.points)
# user input checks in SphericalVoronoi now require
# the radius / center to match the generators so adjust
# accordingly here
s2 = SphericalVoronoi(self.points * radius, radius)
s3 = SphericalVoronoi(self.points + center, center=center)
s4 = SphericalVoronoi(self.points * radius + center, radius, center)
assert_array_equal(s1.center, np.array([0, 0, 0]))
assert_equal(s1.radius, 1)
assert_array_equal(s2.center, np.array([0, 0, 0]))
assert_equal(s2.radius, 2)
assert_array_equal(s3.center, center)
assert_equal(s3.radius, 1)
assert_array_equal(s4.center, center)
assert_equal(s4.radius, radius)
def test_vertices_regions_translation_invariance(self):
sv_origin = SphericalVoronoi(self.points)
center = np.array([1, 1, 1])
sv_translated = SphericalVoronoi(self.points + center, center=center)
assert_equal(sv_origin.regions, sv_translated.regions)
assert_array_almost_equal(sv_origin.vertices + center,
sv_translated.vertices)
def test_vertices_regions_scaling_invariance(self):
sv_unit = SphericalVoronoi(self.points)
sv_scaled = SphericalVoronoi(self.points * 2, 2)
assert_equal(sv_unit.regions, sv_scaled.regions)
assert_array_almost_equal(sv_unit.vertices * 2,
sv_scaled.vertices)
def test_old_radius_api(self):
sv_unit = SphericalVoronoi(self.points, radius=1)
with suppress_warnings() as sup:
sup.filter(DeprecationWarning, "`radius` is `None`")
sv = SphericalVoronoi(self.points, None)
assert_array_almost_equal(sv_unit.vertices, sv.vertices)
def test_old_radius_api_warning(self):
with assert_warns(DeprecationWarning):
SphericalVoronoi(self.points, None)
def test_sort_vertices_of_regions(self):
sv = SphericalVoronoi(self.points)
unsorted_regions = sv.regions
sv.sort_vertices_of_regions()
assert_equal(sorted(sv.regions), sorted(unsorted_regions))
def test_sort_vertices_of_regions_flattened(self):
expected = sorted([[0, 6, 5, 2, 3], [2, 3, 10, 11, 8, 7], [0, 6, 4, 1],
[4, 8, 7, 5, 6], [9, 11, 10], [2, 7, 5],
[1, 4, 8, 11, 9], [0, 3, 10, 9, 1]])
expected = list(itertools.chain(*sorted(expected))) # type: ignore
sv = SphericalVoronoi(self.points)
sv.sort_vertices_of_regions()
actual = list(itertools.chain(*sorted(sv.regions)))
assert_array_equal(actual, expected)
def test_sort_vertices_of_regions_dimensionality(self):
points = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[0.5, 0.5, 0.5, 0.5]])
with pytest.raises(TypeError, match="three-dimensional"):
sv = SphericalVoronoi(points)
sv.sort_vertices_of_regions()
def test_num_vertices(self):
# for any n >= 3, a spherical Voronoi diagram has 2n - 4
# vertices; this is a direct consequence of Euler's formula
# as explained by Dinis and Mamede (2010) Proceedings of the
# 2010 International Symposium on Voronoi Diagrams in Science
# and Engineering
sv = SphericalVoronoi(self.points)
expected = self.points.shape[0] * 2 - 4
actual = sv.vertices.shape[0]
assert_equal(actual, expected)
def test_voronoi_circles(self):
sv = SphericalVoronoi(self.points)
for vertex in sv.vertices:
distances = distance.cdist(sv.points, np.array([vertex]))
closest = np.array(sorted(distances)[0:3])
assert_almost_equal(closest[0], closest[1], 7, str(vertex))
assert_almost_equal(closest[0], closest[2], 7, str(vertex))
def test_duplicate_point_handling(self):
# an exception should be raised for degenerate generators
# related to Issue# 7046
self.degenerate = np.concatenate((self.points, self.points))
with assert_raises(ValueError):
SphericalVoronoi(self.degenerate)
def test_incorrect_radius_handling(self):
# an exception should be raised if the radius provided
# cannot possibly match the input generators
with assert_raises(ValueError):
SphericalVoronoi(self.points, radius=0.98)
def test_incorrect_center_handling(self):
# an exception should be raised if the center provided
# cannot possibly match the input generators
with assert_raises(ValueError):
SphericalVoronoi(self.points, center=[0.1, 0, 0])
def test_single_hemisphere_handling(self):
# Test solution of Issues #9386, #8859
for points in [self.hemisphere_points, self.hemisphere_points2]:
sv = SphericalVoronoi(points)
triangles = sv.points[sv._simplices]
dots = np.einsum('ij,ij->i', sv.vertices, triangles[:, 0])
circumradii = np.arccos(np.clip(dots, -1, 1))
assert np.max(circumradii) > np.pi / 2
@pytest.mark.parametrize("n", [1, 2, 10])
@pytest.mark.parametrize("center", [(0, 0, 0), (1, 2, 3)])
def test_rank_deficient(self, n, center):
thetas = np.linspace(0, 2 * np.pi, n, endpoint=False)
points = np.vstack([np.sin(thetas), np.cos(thetas), np.zeros(n)]).T
with pytest.raises(ValueError, match="Rank of input points"):
SphericalVoronoi(points + center, center=center)
@pytest.mark.parametrize("dim", range(2, 7))
def test_higher_dimensions(self, dim):
n = 100
points = _sample_sphere(n, dim, seed=0)
sv = SphericalVoronoi(points)
assert sv.vertices.shape[1] == dim
assert len(sv.regions) == n
# verify Euler characteristic
cell_counts = []
simplices = np.sort(sv._simplices)
for i in range(1, dim + 1):
cells = []
for indices in itertools.combinations(range(dim), i):
cells.append(simplices[:, list(indices)])
cells = np.unique(np.concatenate(cells), axis=0)
cell_counts.append(len(cells))
expected_euler = 1 + (-1)**(dim-1)
actual_euler = sum([(-1)**i * e for i, e in enumerate(cell_counts)])
assert expected_euler == actual_euler
@pytest.mark.parametrize("dim", range(2, 7))
def test_cross_polytope_regions(self, dim):
# The hypercube is the dual of the cross-polytope, so the voronoi
# vertices of the cross-polytope lie on the points of the hypercube.
# generate points of the cross-polytope
points = np.concatenate((-np.eye(dim), np.eye(dim)))
sv = SphericalVoronoi(points)
assert all([len(e) == 2**(dim - 1) for e in sv.regions])
# generate points of the hypercube
expected = np.vstack(list(itertools.product([-1, 1], repeat=dim)))
expected = expected.astype(np.float64) / np.sqrt(dim)
# test that Voronoi vertices are correctly placed
dist = distance.cdist(sv.vertices, expected)
res = linear_sum_assignment(dist)
assert dist[res].sum() < TOL
@pytest.mark.parametrize("dim", range(2, 4))
def test_hypercube_regions(self, dim):
# The cross-polytope is the dual of the hypercube, so the voronoi
# vertices of the hypercube lie on the points of the cross-polytope.
# generate points of the hypercube
points = np.vstack(list(itertools.product([-1, 1], repeat=dim)))
points = points.astype(np.float64) / np.sqrt(dim)
sv = SphericalVoronoi(points)
# generate points of the cross-polytope
expected = np.concatenate((-np.eye(dim), np.eye(dim)))
# test that Voronoi vertices are correctly placed
dist = distance.cdist(sv.vertices, expected)
res = linear_sum_assignment(dist)
assert dist[res].sum() < TOL
@pytest.mark.parametrize("n", [10, 500])
@pytest.mark.parametrize("dim", [2, 3])
@pytest.mark.parametrize("radius", [0.5, 1, 2])
@pytest.mark.parametrize("shift", [False, True])
@pytest.mark.parametrize("single_hemisphere", [False, True])
def test_area_reconstitution(self, n, dim, radius, shift,
single_hemisphere):
points = _sample_sphere(n, dim, seed=0)
# move all points to one side of the sphere for single-hemisphere test
if single_hemisphere:
points[:, 0] = np.abs(points[:, 0])
center = (np.arange(dim) + 1) * shift
points = radius * points + center
sv = SphericalVoronoi(points, radius=radius, center=center)
areas = sv.calculate_areas()
assert_almost_equal(areas.sum(), _hypersphere_area(dim, radius))
@pytest.mark.parametrize("poly", ["triangle", "dodecagon",
"tetrahedron", "cube", "octahedron",
"dodecahedron", "icosahedron"])
def test_equal_area_reconstitution(self, poly):
points = _generate_polytope(poly)
n, dim = points.shape
sv = SphericalVoronoi(points)
areas = sv.calculate_areas()
assert_almost_equal(areas, _hypersphere_area(dim, 1) / n)
def test_area_unsupported_dimension(self):
dim = 4
points = np.concatenate((-np.eye(dim), np.eye(dim)))
sv = SphericalVoronoi(points)
with pytest.raises(TypeError, match="Only supported"):
sv.calculate_areas()
@pytest.mark.parametrize("radius", [1, 1.])
@pytest.mark.parametrize("center", [None, (1, 2, 3), (1., 2., 3.)])
def test_attribute_types(self, radius, center):
points = radius * self.points
if center is not None:
points += center
sv = SphericalVoronoi(points, radius=radius, center=center)
assert sv.points.dtype is np.dtype(np.float64)
assert sv.center.dtype is np.dtype(np.float64)
assert isinstance(sv.radius, float)

View file

@ -0,0 +1,26 @@
"""
Spatial Transformations (:mod:`scipy.spatial.transform`)
========================================================
.. currentmodule:: scipy.spatial.transform
This package implements various spatial transformations. For now,
only rotations are supported.
Rotations in 3 dimensions
-------------------------
.. autosummary::
:toctree: generated/
Rotation
Slerp
RotationSpline
"""
from .rotation import Rotation, Slerp
from ._rotation_spline import RotationSpline
__all__ = ['Rotation', 'Slerp', 'RotationSpline']
from scipy._lib._testutils import PytestTester
test = PytestTester(__name__)
del PytestTester

View file

@ -0,0 +1,140 @@
import numpy as np
from scipy.constants import golden as phi
def icosahedral(cls):
g1 = tetrahedral(cls).as_quat()
a = 0.5
b = 0.5 / phi
c = phi / 2
g2 = np.array([[+a, +b, +c, 0],
[+a, +b, -c, 0],
[+a, +c, 0, +b],
[+a, +c, 0, -b],
[+a, -b, +c, 0],
[+a, -b, -c, 0],
[+a, -c, 0, +b],
[+a, -c, 0, -b],
[+a, 0, +b, +c],
[+a, 0, +b, -c],
[+a, 0, -b, +c],
[+a, 0, -b, -c],
[+b, +a, 0, +c],
[+b, +a, 0, -c],
[+b, +c, +a, 0],
[+b, +c, -a, 0],
[+b, -a, 0, +c],
[+b, -a, 0, -c],
[+b, -c, +a, 0],
[+b, -c, -a, 0],
[+b, 0, +c, +a],
[+b, 0, +c, -a],
[+b, 0, -c, +a],
[+b, 0, -c, -a],
[+c, +a, +b, 0],
[+c, +a, -b, 0],
[+c, +b, 0, +a],
[+c, +b, 0, -a],
[+c, -a, +b, 0],
[+c, -a, -b, 0],
[+c, -b, 0, +a],
[+c, -b, 0, -a],
[+c, 0, +a, +b],
[+c, 0, +a, -b],
[+c, 0, -a, +b],
[+c, 0, -a, -b],
[0, +a, +c, +b],
[0, +a, +c, -b],
[0, +a, -c, +b],
[0, +a, -c, -b],
[0, +b, +a, +c],
[0, +b, +a, -c],
[0, +b, -a, +c],
[0, +b, -a, -c],
[0, +c, +b, +a],
[0, +c, +b, -a],
[0, +c, -b, +a],
[0, +c, -b, -a]])
return cls.from_quat(np.concatenate((g1, g2)))
def octahedral(cls):
g1 = tetrahedral(cls).as_quat()
c = np.sqrt(2) / 2
g2 = np.array([[+c, 0, 0, +c],
[0, +c, 0, +c],
[0, 0, +c, +c],
[0, 0, -c, +c],
[0, -c, 0, +c],
[-c, 0, 0, +c],
[0, +c, +c, 0],
[0, -c, +c, 0],
[+c, 0, +c, 0],
[-c, 0, +c, 0],
[+c, +c, 0, 0],
[-c, +c, 0, 0]])
return cls.from_quat(np.concatenate((g1, g2)))
def tetrahedral(cls):
g1 = np.eye(4)
c = 0.5
g2 = np.array([[c, -c, -c, +c],
[c, -c, +c, +c],
[c, +c, -c, +c],
[c, +c, +c, +c],
[c, -c, -c, -c],
[c, -c, +c, -c],
[c, +c, -c, -c],
[c, +c, +c, -c]])
return cls.from_quat(np.concatenate((g1, g2)))
def dicyclic(cls, n, axis=2):
g1 = cyclic(cls, n, axis).as_rotvec()
thetas = np.linspace(0, np.pi, n, endpoint=False)
rv = np.pi * np.vstack([np.zeros(n), np.cos(thetas), np.sin(thetas)]).T
g2 = np.roll(rv, axis, axis=1)
return cls.from_rotvec(np.concatenate((g1, g2)))
def cyclic(cls, n, axis=2):
thetas = np.linspace(0, 2 * np.pi, n, endpoint=False)
rv = np.vstack([thetas, np.zeros(n), np.zeros(n)]).T
return cls.from_rotvec(np.roll(rv, axis, axis=1))
def create_group(cls, group, axis='Z'):
if not isinstance(group, str):
raise ValueError("`group` argument must be a string")
permitted_axes = ['x', 'y', 'z', 'X', 'Y', 'Z']
if axis not in permitted_axes:
raise ValueError("`axis` must be one of " + ", ".join(permitted_axes))
if group in ['I', 'O', 'T']:
symbol = group
order = 1
elif group[:1] in ['C', 'D'] and group[1:].isdigit():
symbol = group[:1]
order = int(group[1:])
else:
raise ValueError("`group` must be one of 'I', 'O', 'T', 'Dn', 'Cn'")
if order < 1:
raise ValueError("Group order must be positive")
axis = 'xyz'.index(axis.lower())
if symbol == 'I':
return icosahedral(cls)
elif symbol == 'O':
return octahedral(cls)
elif symbol == 'T':
return tetrahedral(cls)
elif symbol == 'D':
return dicyclic(cls, order, axis=axis)
elif symbol == 'C':
return cyclic(cls, order, axis=axis)
else:
assert False

View file

@ -0,0 +1,456 @@
import numpy as np
from scipy.linalg import solve_banded
from .rotation import Rotation
def _create_skew_matrix(x):
"""Create skew-symmetric matrices corresponding to vectors.
Parameters
----------
x : ndarray, shape (n, 3)
Set of vectors.
Returns
-------
ndarray, shape (n, 3, 3)
"""
result = np.zeros((len(x), 3, 3))
result[:, 0, 1] = -x[:, 2]
result[:, 0, 2] = x[:, 1]
result[:, 1, 0] = x[:, 2]
result[:, 1, 2] = -x[:, 0]
result[:, 2, 0] = -x[:, 1]
result[:, 2, 1] = x[:, 0]
return result
def _matrix_vector_product_of_stacks(A, b):
"""Compute the product of stack of matrices and vectors."""
return np.einsum("ijk,ik->ij", A, b)
def _angular_rate_to_rotvec_dot_matrix(rotvecs):
"""Compute matrices to transform angular rates to rot. vector derivatives.
The matrices depend on the current attitude represented as a rotation
vector.
Parameters
----------
rotvecs : ndarray, shape (n, 3)
Set of rotation vectors.
Returns
-------
ndarray, shape (n, 3, 3)
"""
norm = np.linalg.norm(rotvecs, axis=1)
k = np.empty_like(norm)
mask = norm > 1e-4
nm = norm[mask]
k[mask] = (1 - 0.5 * nm / np.tan(0.5 * nm)) / nm**2
mask = ~mask
nm = norm[mask]
k[mask] = 1/12 + 1/720 * nm**2
skew = _create_skew_matrix(rotvecs)
result = np.empty((len(rotvecs), 3, 3))
result[:] = np.identity(3)
result[:] += 0.5 * skew
result[:] += k[:, None, None] * np.matmul(skew, skew)
return result
def _rotvec_dot_to_angular_rate_matrix(rotvecs):
"""Compute matrices to transform rot. vector derivatives to angular rates.
The matrices depend on the current attitude represented as a rotation
vector.
Parameters
----------
rotvecs : ndarray, shape (n, 3)
Set of rotation vectors.
Returns
-------
ndarray, shape (n, 3, 3)
"""
norm = np.linalg.norm(rotvecs, axis=1)
k1 = np.empty_like(norm)
k2 = np.empty_like(norm)
mask = norm > 1e-4
nm = norm[mask]
k1[mask] = (1 - np.cos(nm)) / nm ** 2
k2[mask] = (nm - np.sin(nm)) / nm ** 3
mask = ~mask
nm = norm[mask]
k1[mask] = 0.5 - nm ** 2 / 24
k2[mask] = 1 / 6 - nm ** 2 / 120
skew = _create_skew_matrix(rotvecs)
result = np.empty((len(rotvecs), 3, 3))
result[:] = np.identity(3)
result[:] -= k1[:, None, None] * skew
result[:] += k2[:, None, None] * np.matmul(skew, skew)
return result
def _angular_acceleration_nonlinear_term(rotvecs, rotvecs_dot):
"""Compute the non-linear term in angular acceleration.
The angular acceleration contains a quadratic term with respect to
the derivative of the rotation vector. This function computes that.
Parameters
----------
rotvecs : ndarray, shape (n, 3)
Set of rotation vectors.
rotvecs_dot: ndarray, shape (n, 3)
Set of rotation vector derivatives.
Returns
-------
ndarray, shape (n, 3)
"""
norm = np.linalg.norm(rotvecs, axis=1)
dp = np.sum(rotvecs * rotvecs_dot, axis=1)
cp = np.cross(rotvecs, rotvecs_dot)
ccp = np.cross(rotvecs, cp)
dccp = np.cross(rotvecs_dot, cp)
k1 = np.empty_like(norm)
k2 = np.empty_like(norm)
k3 = np.empty_like(norm)
mask = norm > 1e-4
nm = norm[mask]
k1[mask] = (-nm * np.sin(nm) - 2 * (np.cos(nm) - 1)) / nm ** 4
k2[mask] = (-2 * nm + 3 * np.sin(nm) - nm * np.cos(nm)) / nm ** 5
k3[mask] = (nm - np.sin(nm)) / nm ** 3
mask = ~mask
nm = norm[mask]
k1[mask] = 1/12 - nm ** 2 / 180
k2[mask] = -1/60 + nm ** 2 / 12604
k3[mask] = 1/6 - nm ** 2 / 120
dp = dp[:, None]
k1 = k1[:, None]
k2 = k2[:, None]
k3 = k3[:, None]
return dp * (k1 * cp + k2 * ccp) + k3 * dccp
def _compute_angular_rate(rotvecs, rotvecs_dot):
"""Compute angular rates given rotation vectors and its derivatives.
Parameters
----------
rotvecs : ndarray, shape (n, 3)
Set of rotation vectors.
rotvecs_dot : ndarray, shape (n, 3)
Set of rotation vector derivatives.
Returns
-------
ndarray, shape (n, 3)
"""
return _matrix_vector_product_of_stacks(
_rotvec_dot_to_angular_rate_matrix(rotvecs), rotvecs_dot)
def _compute_angular_acceleration(rotvecs, rotvecs_dot, rotvecs_dot_dot):
"""Compute angular acceleration given rotation vector and its derivatives.
Parameters
----------
rotvecs : ndarray, shape (n, 3)
Set of rotation vectors.
rotvecs_dot : ndarray, shape (n, 3)
Set of rotation vector derivatives.
rotvecs_dot_dot : ndarray, shape (n, 3)
Set of rotation vector second derivatives.
Returns
-------
ndarray, shape (n, 3)
"""
return (_compute_angular_rate(rotvecs, rotvecs_dot_dot) +
_angular_acceleration_nonlinear_term(rotvecs, rotvecs_dot))
def _create_block_3_diagonal_matrix(A, B, d):
"""Create a 3-diagonal block matrix as banded.
The matrix has the following structure:
DB...
ADB..
.ADB.
..ADB
...AD
The blocks A, B and D are 3-by-3 matrices. The D matrices has the form
d * I.
Parameters
----------
A : ndarray, shape (n, 3, 3)
Stack of A blocks.
B : ndarray, shape (n, 3, 3)
Stack of B blocks.
d : ndarray, shape (n + 1,)
Values for diagonal blocks.
Returns
-------
ndarray, shape (11, 3 * (n + 1))
Matrix in the banded form as used by `scipy.linalg.solve_banded`.
"""
ind = np.arange(3)
ind_blocks = np.arange(len(A))
A_i = np.empty_like(A, dtype=int)
A_i[:] = ind[:, None]
A_i += 3 * (1 + ind_blocks[:, None, None])
A_j = np.empty_like(A, dtype=int)
A_j[:] = ind
A_j += 3 * ind_blocks[:, None, None]
B_i = np.empty_like(B, dtype=int)
B_i[:] = ind[:, None]
B_i += 3 * ind_blocks[:, None, None]
B_j = np.empty_like(B, dtype=int)
B_j[:] = ind
B_j += 3 * (1 + ind_blocks[:, None, None])
diag_i = diag_j = np.arange(3 * len(d))
i = np.hstack((A_i.ravel(), B_i.ravel(), diag_i))
j = np.hstack((A_j.ravel(), B_j.ravel(), diag_j))
values = np.hstack((A.ravel(), B.ravel(), np.repeat(d, 3)))
u = 5
l = 5
result = np.zeros((u + l + 1, 3 * len(d)))
result[u + i - j, j] = values
return result
class RotationSpline(object):
"""Interpolate rotations with continuous angular rate and acceleration.
The rotation vectors between each consecutive orientation are cubic
functions of time and it is guaranteed that angular rate and acceleration
are continuous. Such interpolation are analogous to cubic spline
interpolation.
Refer to [1]_ for math and implementation details.
Parameters
----------
times : array_like, shape (N,)
Times of the known rotations. At least 2 times must be specified.
rotations : `Rotation` instance
Rotations to perform the interpolation between. Must contain N
rotations.
Methods
-------
__call__
References
----------
.. [1] `Smooth Attitude Interpolation
<https://github.com/scipy/scipy/files/2932755/attitude_interpolation.pdf>`_
Examples
--------
>>> from scipy.spatial.transform import Rotation, RotationSpline
Define the sequence of times and rotations from the Euler angles:
>>> times = [0, 10, 20, 40]
>>> angles = [[-10, 20, 30], [0, 15, 40], [-30, 45, 30], [20, 45, 90]]
>>> rotations = Rotation.from_euler('XYZ', angles, degrees=True)
Create the interpolator object:
>>> spline = RotationSpline(times, rotations)
Interpolate the Euler angles, angular rate and acceleration:
>>> angular_rate = np.rad2deg(spline(times, 1))
>>> angular_acceleration = np.rad2deg(spline(times, 2))
>>> times_plot = np.linspace(times[0], times[-1], 100)
>>> angles_plot = spline(times_plot).as_euler('XYZ', degrees=True)
>>> angular_rate_plot = np.rad2deg(spline(times_plot, 1))
>>> angular_acceleration_plot = np.rad2deg(spline(times_plot, 2))
On this plot you see that Euler angles are continuous and smooth:
>>> import matplotlib.pyplot as plt
>>> plt.plot(times_plot, angles_plot)
>>> plt.plot(times, angles, 'x')
>>> plt.title("Euler angles")
>>> plt.show()
The angular rate is also smooth:
>>> plt.plot(times_plot, angular_rate_plot)
>>> plt.plot(times, angular_rate, 'x')
>>> plt.title("Angular rate")
>>> plt.show()
The angular acceleration is continuous, but not smooth. Also note that
the angular acceleration is not a piecewise-linear function, because
it is different from the second derivative of the rotation vector (which
is a piecewise-linear function as in the cubic spline).
>>> plt.plot(times_plot, angular_acceleration_plot)
>>> plt.plot(times, angular_acceleration, 'x')
>>> plt.title("Angular acceleration")
>>> plt.show()
"""
# Parameters for the solver for angular rate.
MAX_ITER = 10
TOL = 1e-9
def _solve_for_angular_rates(self, dt, angular_rates, rotvecs):
angular_rate_first = angular_rates[0].copy()
A = _angular_rate_to_rotvec_dot_matrix(rotvecs)
A_inv = _rotvec_dot_to_angular_rate_matrix(rotvecs)
M = _create_block_3_diagonal_matrix(
2 * A_inv[1:-1] / dt[1:-1, None, None],
2 * A[1:-1] / dt[1:-1, None, None],
4 * (1 / dt[:-1] + 1 / dt[1:]))
b0 = 6 * (rotvecs[:-1] * dt[:-1, None] ** -2 +
rotvecs[1:] * dt[1:, None] ** -2)
b0[0] -= 2 / dt[0] * A_inv[0].dot(angular_rate_first)
b0[-1] -= 2 / dt[-1] * A[-1].dot(angular_rates[-1])
for iteration in range(self.MAX_ITER):
rotvecs_dot = _matrix_vector_product_of_stacks(A, angular_rates)
delta_beta = _angular_acceleration_nonlinear_term(
rotvecs[:-1], rotvecs_dot[:-1])
b = b0 - delta_beta
angular_rates_new = solve_banded((5, 5), M, b.ravel())
angular_rates_new = angular_rates_new.reshape((-1, 3))
delta = np.abs(angular_rates_new - angular_rates[:-1])
angular_rates[:-1] = angular_rates_new
if np.all(delta < self.TOL * (1 + np.abs(angular_rates_new))):
break
rotvecs_dot = _matrix_vector_product_of_stacks(A, angular_rates)
angular_rates = np.vstack((angular_rate_first, angular_rates[:-1]))
return angular_rates, rotvecs_dot
def __init__(self, times, rotations):
from scipy.interpolate import PPoly
if len(rotations) == 1:
raise ValueError("`rotations` must contain at least 2 rotations.")
times = np.asarray(times, dtype=float)
if times.ndim != 1:
raise ValueError("`times` must be 1-dimensional.")
if len(times) != len(rotations):
raise ValueError("Expected number of rotations to be equal to "
"number of timestamps given, got {} rotations "
"and {} timestamps."
.format(len(rotations), len(times)))
dt = np.diff(times)
if np.any(dt <= 0):
raise ValueError("Values in `times` must be in a strictly "
"increasing order.")
rotvecs = (rotations[:-1].inv() * rotations[1:]).as_rotvec()
angular_rates = rotvecs / dt[:, None]
if len(rotations) == 2:
rotvecs_dot = angular_rates
else:
angular_rates, rotvecs_dot = self._solve_for_angular_rates(
dt, angular_rates, rotvecs)
dt = dt[:, None]
coeff = np.empty((4, len(times) - 1, 3))
coeff[0] = (-2 * rotvecs + dt * angular_rates
+ dt * rotvecs_dot) / dt ** 3
coeff[1] = (3 * rotvecs - 2 * dt * angular_rates
- dt * rotvecs_dot) / dt ** 2
coeff[2] = angular_rates
coeff[3] = 0
self.times = times
self.rotations = rotations
self.interpolator = PPoly(coeff, times)
def __call__(self, times, order=0):
"""Compute interpolated values.
Parameters
----------
times : float or array_like
Times of interest.
order : {0, 1, 2}, optional
Order of differentiation:
* 0 (default) : return Rotation
* 1 : return the angular rate in rad/sec
* 2 : return the angular acceleration in rad/sec/sec
Returns
-------
Interpolated Rotation, angular rate or acceleration.
"""
if order not in [0, 1, 2]:
raise ValueError("`order` must be 0, 1 or 2.")
times = np.asarray(times, dtype=float)
if times.ndim > 1:
raise ValueError("`times` must be at most 1-dimensional.")
singe_time = times.ndim == 0
times = np.atleast_1d(times)
rotvecs = self.interpolator(times)
if order == 0:
index = np.searchsorted(self.times, times, side='right')
index -= 1
index[index < 0] = 0
n_segments = len(self.times) - 1
index[index > n_segments - 1] = n_segments - 1
result = self.rotations[index] * Rotation.from_rotvec(rotvecs)
elif order == 1:
rotvecs_dot = self.interpolator(times, 1)
result = _compute_angular_rate(rotvecs, rotvecs_dot)
elif order == 2:
rotvecs_dot = self.interpolator(times, 1)
rotvecs_dot_dot = self.interpolator(times, 2)
result = _compute_angular_acceleration(rotvecs, rotvecs_dot,
rotvecs_dot_dot)
else:
assert False
if singe_time:
result = result[0]
return result

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,9 @@
def configuration(parent_package='', top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration('transform', parent_package, top_path)
config.add_data_dir('tests')
return config

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,169 @@
import pytest
import numpy as np
from numpy.testing import assert_array_almost_equal
from scipy.spatial.transform import Rotation
from scipy.optimize import linear_sum_assignment
from scipy.spatial.distance import cdist
from scipy.constants import golden as phi
from scipy.spatial import cKDTree
TOL = 1E-12
NS = range(1, 13)
NAMES = ["I", "O", "T"] + ["C%d" % n for n in NS] + ["D%d" % n for n in NS]
SIZES = [60, 24, 12] + list(NS) + [2 * n for n in NS]
def _calculate_rmsd(P, Q):
"""Calculates the root-mean-square distance between the points of P and Q.
The distance is taken as the minimum over all possible matchings. It is
zero if P and Q are identical and non-zero if not.
"""
distance_matrix = cdist(P, Q, metric='sqeuclidean')
matching = linear_sum_assignment(distance_matrix)
return np.sqrt(distance_matrix[matching].sum())
def _generate_pyramid(n, axis):
thetas = np.linspace(0, 2 * np.pi, n + 1)[:-1]
P = np.vstack([np.zeros(n), np.cos(thetas), np.sin(thetas)]).T
P = np.concatenate((P, [[1, 0, 0]]))
return np.roll(P, axis, axis=1)
def _generate_prism(n, axis):
thetas = np.linspace(0, 2 * np.pi, n + 1)[:-1]
bottom = np.vstack([-np.ones(n), np.cos(thetas), np.sin(thetas)]).T
top = np.vstack([+np.ones(n), np.cos(thetas), np.sin(thetas)]).T
P = np.concatenate((bottom, top))
return np.roll(P, axis, axis=1)
def _generate_icosahedron():
x = np.array([[0, -1, -phi],
[0, -1, +phi],
[0, +1, -phi],
[0, +1, +phi]])
return np.concatenate([np.roll(x, i, axis=1) for i in range(3)])
def _generate_octahedron():
return np.array([[-1, 0, 0], [+1, 0, 0], [0, -1, 0],
[0, +1, 0], [0, 0, -1], [0, 0, +1]])
def _generate_tetrahedron():
return np.array([[1, 1, 1], [1, -1, -1], [-1, 1, -1], [-1, -1, 1]])
@pytest.mark.parametrize("name", [-1, None, True, np.array(['C3'])])
def test_group_type(name):
with pytest.raises(ValueError,
match="must be a string"):
Rotation.create_group(name)
@pytest.mark.parametrize("name", ["Q", " ", "CA", "C ", "DA", "D ", "I2", ""])
def test_group_name(name):
with pytest.raises(ValueError,
match="must be one of 'I', 'O', 'T', 'Dn', 'Cn'"):
Rotation.create_group(name)
@pytest.mark.parametrize("name", ["C0", "D0"])
def test_group_order_positive(name):
with pytest.raises(ValueError,
match="Group order must be positive"):
Rotation.create_group(name)
@pytest.mark.parametrize("axis", ['A', 'b', 0, 1, 2, 4, False, None])
def test_axis_valid(axis):
with pytest.raises(ValueError,
match="`axis` must be one of"):
Rotation.create_group("C1", axis)
def test_icosahedral():
"""The icosahedral group fixes the rotations of an icosahedron. Here we
test that the icosahedron is invariant after application of the elements
of the rotation group."""
P = _generate_icosahedron()
for g in Rotation.create_group("I"):
g = Rotation.from_quat(g.as_quat())
assert _calculate_rmsd(P, g.apply(P)) < TOL
def test_octahedral():
"""Test that the octahedral group correctly fixes the rotations of an
octahedron."""
P = _generate_octahedron()
for g in Rotation.create_group("O"):
assert _calculate_rmsd(P, g.apply(P)) < TOL
def test_tetrahedral():
"""Test that the tetrahedral group correctly fixes the rotations of a
tetrahedron."""
P = _generate_tetrahedron()
for g in Rotation.create_group("T"):
assert _calculate_rmsd(P, g.apply(P)) < TOL
@pytest.mark.parametrize("n", NS)
@pytest.mark.parametrize("axis", 'XYZ')
def test_dicyclic(n, axis):
"""Test that the dicyclic group correctly fixes the rotations of a
prism."""
P = _generate_prism(n, axis='XYZ'.index(axis))
for g in Rotation.create_group("D%d" % n, axis=axis):
assert _calculate_rmsd(P, g.apply(P)) < TOL
@pytest.mark.parametrize("n", NS)
@pytest.mark.parametrize("axis", 'XYZ')
def test_cyclic(n, axis):
"""Test that the cyclic group correctly fixes the rotations of a
pyramid."""
P = _generate_pyramid(n, axis='XYZ'.index(axis))
for g in Rotation.create_group("C%d" % n, axis=axis):
assert _calculate_rmsd(P, g.apply(P)) < TOL
@pytest.mark.parametrize("name, size", zip(NAMES, SIZES))
def test_group_sizes(name, size):
assert len(Rotation.create_group(name)) == size
@pytest.mark.parametrize("name, size", zip(NAMES, SIZES))
def test_group_no_duplicates(name, size):
g = Rotation.create_group(name)
kdtree = cKDTree(g.as_quat())
assert len(kdtree.query_pairs(1E-3)) == 0
@pytest.mark.parametrize("name, size", zip(NAMES, SIZES))
def test_group_symmetry(name, size):
g = Rotation.create_group(name)
q = np.concatenate((-g.as_quat(), g.as_quat()))
distance = np.sort(cdist(q, q))
deltas = np.max(distance, axis=0) - np.min(distance, axis=0)
assert (deltas < TOL).all()
@pytest.mark.parametrize("name", NAMES)
def test_reduction(name):
"""Test that the elements of the rotation group are correctly
mapped onto the identity rotation."""
g = Rotation.create_group(name)
f = g.reduce(g)
assert_array_almost_equal(f.magnitude(), np.zeros(len(g)))
@pytest.mark.parametrize("name", NAMES)
def test_single_reduction(name):
g = Rotation.create_group(name)
f = g[-1].reduce(g)
assert_array_almost_equal(f.magnitude(), 0)
assert f.as_quat().shape == (4,)

View file

@ -0,0 +1,161 @@
from itertools import product
import numpy as np
from numpy.testing import assert_allclose
from pytest import raises
from scipy.spatial.transform import Rotation, RotationSpline
from scipy.spatial.transform._rotation_spline import (
_angular_rate_to_rotvec_dot_matrix,
_rotvec_dot_to_angular_rate_matrix,
_matrix_vector_product_of_stacks,
_angular_acceleration_nonlinear_term,
_create_block_3_diagonal_matrix)
def test_angular_rate_to_rotvec_conversions():
np.random.seed(0)
rv = np.random.randn(4, 3)
A = _angular_rate_to_rotvec_dot_matrix(rv)
A_inv = _rotvec_dot_to_angular_rate_matrix(rv)
# When the rotation vector is aligned with the angular rate, then
# the rotation vector rate and angular rate are the same.
assert_allclose(_matrix_vector_product_of_stacks(A, rv), rv)
assert_allclose(_matrix_vector_product_of_stacks(A_inv, rv), rv)
# A and A_inv must be reciprocal to each other.
I_stack = np.empty((4, 3, 3))
I_stack[:] = np.eye(3)
assert_allclose(np.matmul(A, A_inv), I_stack, atol=1e-15)
def test_angular_rate_nonlinear_term():
# The only simple test is to check that the term is zero when
# the rotation vector
np.random.seed(0)
rv = np.random.rand(4, 3)
assert_allclose(_angular_acceleration_nonlinear_term(rv, rv), 0,
atol=1e-19)
def test_create_block_3_diagonal_matrix():
np.random.seed(0)
A = np.empty((4, 3, 3))
A[:] = np.arange(1, 5)[:, None, None]
B = np.empty((4, 3, 3))
B[:] = -np.arange(1, 5)[:, None, None]
d = 10 * np.arange(10, 15)
banded = _create_block_3_diagonal_matrix(A, B, d)
# Convert the banded matrix to the full matrix.
k, l = list(zip(*product(np.arange(banded.shape[0]),
np.arange(banded.shape[1]))))
k = np.asarray(k)
l = np.asarray(l)
i = k - 5 + l
j = l
values = banded.ravel()
mask = (i >= 0) & (i < 15)
i = i[mask]
j = j[mask]
values = values[mask]
full = np.zeros((15, 15))
full[i, j] = values
zero = np.zeros((3, 3))
eye = np.eye(3)
# Create the reference full matrix in the most straightforward manner.
ref = np.block([
[d[0] * eye, B[0], zero, zero, zero],
[A[0], d[1] * eye, B[1], zero, zero],
[zero, A[1], d[2] * eye, B[2], zero],
[zero, zero, A[2], d[3] * eye, B[3]],
[zero, zero, zero, A[3], d[4] * eye],
])
assert_allclose(full, ref, atol=1e-19)
def test_spline_2_rotations():
times = [0, 10]
rotations = Rotation.from_euler('xyz', [[0, 0, 0], [10, -20, 30]],
degrees=True)
spline = RotationSpline(times, rotations)
rv = (rotations[0].inv() * rotations[1]).as_rotvec()
rate = rv / (times[1] - times[0])
times_check = np.array([-1, 5, 12])
dt = times_check - times[0]
rv_ref = rate * dt[:, None]
assert_allclose(spline(times_check).as_rotvec(), rv_ref)
assert_allclose(spline(times_check, 1), np.resize(rate, (3, 3)))
assert_allclose(spline(times_check, 2), 0, atol=1e-16)
def test_constant_attitude():
times = np.arange(10)
rotations = Rotation.from_rotvec(np.ones((10, 3)))
spline = RotationSpline(times, rotations)
times_check = np.linspace(-1, 11)
assert_allclose(spline(times_check).as_rotvec(), 1, rtol=1e-15)
assert_allclose(spline(times_check, 1), 0, atol=1e-19)
assert_allclose(spline(times_check, 2), 0, atol=1e-19)
assert_allclose(spline(5.5).as_rotvec(), 1, rtol=1e-15)
assert_allclose(spline(5.5, 1), 0, atol=1e-19)
assert_allclose(spline(5.5, 2), 0, atol=1e-19)
def test_spline_properties():
times = np.array([0, 5, 15, 27])
angles = [[-5, 10, 27], [3, 5, 38], [-12, 10, 25], [-15, 20, 11]]
rotations = Rotation.from_euler('xyz', angles, degrees=True)
spline = RotationSpline(times, rotations)
assert_allclose(spline(times).as_euler('xyz', degrees=True), angles)
assert_allclose(spline(0).as_euler('xyz', degrees=True), angles[0])
h = 1e-8
rv0 = spline(times).as_rotvec()
rvm = spline(times - h).as_rotvec()
rvp = spline(times + h).as_rotvec()
assert_allclose(rv0, 0.5 * (rvp + rvm), rtol=1e-15)
r0 = spline(times, 1)
rm = spline(times - h, 1)
rp = spline(times + h, 1)
assert_allclose(r0, 0.5 * (rm + rp), rtol=1e-14)
a0 = spline(times, 2)
am = spline(times - h, 2)
ap = spline(times + h, 2)
assert_allclose(a0, am, rtol=1e-7)
assert_allclose(a0, ap, rtol=1e-7)
def test_error_handling():
raises(ValueError, RotationSpline, [1.0], Rotation.random())
r = Rotation.random(10)
t = np.arange(10).reshape(5, 2)
raises(ValueError, RotationSpline, t, r)
t = np.arange(9)
raises(ValueError, RotationSpline, t, r)
t = np.arange(10)
t[5] = 0
raises(ValueError, RotationSpline, t, r)
t = np.arange(10)
s = RotationSpline(t, r)
raises(ValueError, s, 10, -1)
raises(ValueError, s, np.arange(10).reshape(5, 2))