Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
375
venv/Lib/site-packages/scipy/sparse/linalg/isolve/minres.py
Normal file
375
venv/Lib/site-packages/scipy/sparse/linalg/isolve/minres.py
Normal file
|
@ -0,0 +1,375 @@
|
|||
from numpy import sqrt, inner, zeros, inf, finfo
|
||||
from numpy.linalg import norm
|
||||
|
||||
from .utils import make_system
|
||||
|
||||
__all__ = ['minres']
|
||||
|
||||
|
||||
def minres(A, b, x0=None, shift=0.0, tol=1e-5, maxiter=None,
|
||||
M=None, callback=None, show=False, check=False):
|
||||
"""
|
||||
Use MINimum RESidual iteration to solve Ax=b
|
||||
|
||||
MINRES minimizes norm(A*x - b) for a real symmetric matrix A. Unlike
|
||||
the Conjugate Gradient method, A can be indefinite or singular.
|
||||
|
||||
If shift != 0 then the method solves (A - shift*I)x = b
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : {sparse matrix, dense matrix, LinearOperator}
|
||||
The real symmetric N-by-N matrix of the linear system
|
||||
Alternatively, ``A`` can be a linear operator which can
|
||||
produce ``Ax`` using, e.g.,
|
||||
``scipy.sparse.linalg.LinearOperator``.
|
||||
b : {array, matrix}
|
||||
Right hand side of the linear system. Has shape (N,) or (N,1).
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : {array, matrix}
|
||||
The converged solution.
|
||||
info : integer
|
||||
Provides convergence information:
|
||||
0 : successful exit
|
||||
>0 : convergence to tolerance not achieved, number of iterations
|
||||
<0 : illegal input or breakdown
|
||||
|
||||
Other Parameters
|
||||
----------------
|
||||
x0 : {array, matrix}
|
||||
Starting guess for the solution.
|
||||
tol : float
|
||||
Tolerance to achieve. The algorithm terminates when the relative
|
||||
residual is below `tol`.
|
||||
maxiter : integer
|
||||
Maximum number of iterations. Iteration will stop after maxiter
|
||||
steps even if the specified tolerance has not been achieved.
|
||||
M : {sparse matrix, dense matrix, LinearOperator}
|
||||
Preconditioner for A. The preconditioner should approximate the
|
||||
inverse of A. Effective preconditioning dramatically improves the
|
||||
rate of convergence, which implies that fewer iterations are needed
|
||||
to reach a given error tolerance.
|
||||
callback : function
|
||||
User-supplied function to call after each iteration. It is called
|
||||
as callback(xk), where xk is the current solution vector.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from scipy.sparse import csc_matrix
|
||||
>>> from scipy.sparse.linalg import minres
|
||||
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
|
||||
>>> A = A + A.T
|
||||
>>> b = np.array([2, 4, -1], dtype=float)
|
||||
>>> x, exitCode = minres(A, b)
|
||||
>>> print(exitCode) # 0 indicates successful convergence
|
||||
0
|
||||
>>> np.allclose(A.dot(x), b)
|
||||
True
|
||||
|
||||
References
|
||||
----------
|
||||
Solution of sparse indefinite systems of linear equations,
|
||||
C. C. Paige and M. A. Saunders (1975),
|
||||
SIAM J. Numer. Anal. 12(4), pp. 617-629.
|
||||
https://web.stanford.edu/group/SOL/software/minres/
|
||||
|
||||
This file is a translation of the following MATLAB implementation:
|
||||
https://web.stanford.edu/group/SOL/software/minres/minres-matlab.zip
|
||||
|
||||
"""
|
||||
A, M, x, b, postprocess = make_system(A, M, x0, b)
|
||||
|
||||
matvec = A.matvec
|
||||
psolve = M.matvec
|
||||
|
||||
first = 'Enter minres. '
|
||||
last = 'Exit minres. '
|
||||
|
||||
n = A.shape[0]
|
||||
|
||||
if maxiter is None:
|
||||
maxiter = 5 * n
|
||||
|
||||
msg = [' beta2 = 0. If M = I, b and x are eigenvectors ', # -1
|
||||
' beta1 = 0. The exact solution is x0 ', # 0
|
||||
' A solution to Ax = b was found, given rtol ', # 1
|
||||
' A least-squares solution was found, given rtol ', # 2
|
||||
' Reasonable accuracy achieved, given eps ', # 3
|
||||
' x has converged to an eigenvector ', # 4
|
||||
' acond has exceeded 0.1/eps ', # 5
|
||||
' The iteration limit was reached ', # 6
|
||||
' A does not define a symmetric matrix ', # 7
|
||||
' M does not define a symmetric matrix ', # 8
|
||||
' M does not define a pos-def preconditioner '] # 9
|
||||
|
||||
if show:
|
||||
print(first + 'Solution of symmetric Ax = b')
|
||||
print(first + 'n = %3g shift = %23.14e' % (n,shift))
|
||||
print(first + 'itnlim = %3g rtol = %11.2e' % (maxiter,tol))
|
||||
print()
|
||||
|
||||
istop = 0
|
||||
itn = 0
|
||||
Anorm = 0
|
||||
Acond = 0
|
||||
rnorm = 0
|
||||
ynorm = 0
|
||||
|
||||
xtype = x.dtype
|
||||
|
||||
eps = finfo(xtype).eps
|
||||
|
||||
# Set up y and v for the first Lanczos vector v1.
|
||||
# y = beta1 P' v1, where P = C**(-1).
|
||||
# v is really P' v1.
|
||||
|
||||
r1 = b - A*x
|
||||
y = psolve(r1)
|
||||
|
||||
beta1 = inner(r1, y)
|
||||
|
||||
if beta1 < 0:
|
||||
raise ValueError('indefinite preconditioner')
|
||||
elif beta1 == 0:
|
||||
return (postprocess(x), 0)
|
||||
|
||||
beta1 = sqrt(beta1)
|
||||
|
||||
if check:
|
||||
# are these too strict?
|
||||
|
||||
# see if A is symmetric
|
||||
w = matvec(y)
|
||||
r2 = matvec(w)
|
||||
s = inner(w,w)
|
||||
t = inner(y,r2)
|
||||
z = abs(s - t)
|
||||
epsa = (s + eps) * eps**(1.0/3.0)
|
||||
if z > epsa:
|
||||
raise ValueError('non-symmetric matrix')
|
||||
|
||||
# see if M is symmetric
|
||||
r2 = psolve(y)
|
||||
s = inner(y,y)
|
||||
t = inner(r1,r2)
|
||||
z = abs(s - t)
|
||||
epsa = (s + eps) * eps**(1.0/3.0)
|
||||
if z > epsa:
|
||||
raise ValueError('non-symmetric preconditioner')
|
||||
|
||||
# Initialize other quantities
|
||||
oldb = 0
|
||||
beta = beta1
|
||||
dbar = 0
|
||||
epsln = 0
|
||||
qrnorm = beta1
|
||||
phibar = beta1
|
||||
rhs1 = beta1
|
||||
rhs2 = 0
|
||||
tnorm2 = 0
|
||||
gmax = 0
|
||||
gmin = finfo(xtype).max
|
||||
cs = -1
|
||||
sn = 0
|
||||
w = zeros(n, dtype=xtype)
|
||||
w2 = zeros(n, dtype=xtype)
|
||||
r2 = r1
|
||||
|
||||
if show:
|
||||
print()
|
||||
print()
|
||||
print(' Itn x(1) Compatible LS norm(A) cond(A) gbar/|A|')
|
||||
|
||||
while itn < maxiter:
|
||||
itn += 1
|
||||
|
||||
s = 1.0/beta
|
||||
v = s*y
|
||||
|
||||
y = matvec(v)
|
||||
y = y - shift * v
|
||||
|
||||
if itn >= 2:
|
||||
y = y - (beta/oldb)*r1
|
||||
|
||||
alfa = inner(v,y)
|
||||
y = y - (alfa/beta)*r2
|
||||
r1 = r2
|
||||
r2 = y
|
||||
y = psolve(r2)
|
||||
oldb = beta
|
||||
beta = inner(r2,y)
|
||||
if beta < 0:
|
||||
raise ValueError('non-symmetric matrix')
|
||||
beta = sqrt(beta)
|
||||
tnorm2 += alfa**2 + oldb**2 + beta**2
|
||||
|
||||
if itn == 1:
|
||||
if beta/beta1 <= 10*eps:
|
||||
istop = -1 # Terminate later
|
||||
|
||||
# Apply previous rotation Qk-1 to get
|
||||
# [deltak epslnk+1] = [cs sn][dbark 0 ]
|
||||
# [gbar k dbar k+1] [sn -cs][alfak betak+1].
|
||||
|
||||
oldeps = epsln
|
||||
delta = cs * dbar + sn * alfa # delta1 = 0 deltak
|
||||
gbar = sn * dbar - cs * alfa # gbar 1 = alfa1 gbar k
|
||||
epsln = sn * beta # epsln2 = 0 epslnk+1
|
||||
dbar = - cs * beta # dbar 2 = beta2 dbar k+1
|
||||
root = norm([gbar, dbar])
|
||||
Arnorm = phibar * root
|
||||
|
||||
# Compute the next plane rotation Qk
|
||||
|
||||
gamma = norm([gbar, beta]) # gammak
|
||||
gamma = max(gamma, eps)
|
||||
cs = gbar / gamma # ck
|
||||
sn = beta / gamma # sk
|
||||
phi = cs * phibar # phik
|
||||
phibar = sn * phibar # phibark+1
|
||||
|
||||
# Update x.
|
||||
|
||||
denom = 1.0/gamma
|
||||
w1 = w2
|
||||
w2 = w
|
||||
w = (v - oldeps*w1 - delta*w2) * denom
|
||||
x = x + phi*w
|
||||
|
||||
# Go round again.
|
||||
|
||||
gmax = max(gmax, gamma)
|
||||
gmin = min(gmin, gamma)
|
||||
z = rhs1 / gamma
|
||||
rhs1 = rhs2 - delta*z
|
||||
rhs2 = - epsln*z
|
||||
|
||||
# Estimate various norms and test for convergence.
|
||||
|
||||
Anorm = sqrt(tnorm2)
|
||||
ynorm = norm(x)
|
||||
epsa = Anorm * eps
|
||||
epsx = Anorm * ynorm * eps
|
||||
epsr = Anorm * ynorm * tol
|
||||
diag = gbar
|
||||
|
||||
if diag == 0:
|
||||
diag = epsa
|
||||
|
||||
qrnorm = phibar
|
||||
rnorm = qrnorm
|
||||
if ynorm == 0 or Anorm == 0:
|
||||
test1 = inf
|
||||
else:
|
||||
test1 = rnorm / (Anorm*ynorm) # ||r|| / (||A|| ||x||)
|
||||
if Anorm == 0:
|
||||
test2 = inf
|
||||
else:
|
||||
test2 = root / Anorm # ||Ar|| / (||A|| ||r||)
|
||||
|
||||
# Estimate cond(A).
|
||||
# In this version we look at the diagonals of R in the
|
||||
# factorization of the lower Hessenberg matrix, Q * H = R,
|
||||
# where H is the tridiagonal matrix from Lanczos with one
|
||||
# extra row, beta(k+1) e_k^T.
|
||||
|
||||
Acond = gmax/gmin
|
||||
|
||||
# See if any of the stopping criteria are satisfied.
|
||||
# In rare cases, istop is already -1 from above (Abar = const*I).
|
||||
|
||||
if istop == 0:
|
||||
t1 = 1 + test1 # These tests work if tol < eps
|
||||
t2 = 1 + test2
|
||||
if t2 <= 1:
|
||||
istop = 2
|
||||
if t1 <= 1:
|
||||
istop = 1
|
||||
|
||||
if itn >= maxiter:
|
||||
istop = 6
|
||||
if Acond >= 0.1/eps:
|
||||
istop = 4
|
||||
if epsx >= beta1:
|
||||
istop = 3
|
||||
# if rnorm <= epsx : istop = 2
|
||||
# if rnorm <= epsr : istop = 1
|
||||
if test2 <= tol:
|
||||
istop = 2
|
||||
if test1 <= tol:
|
||||
istop = 1
|
||||
|
||||
# See if it is time to print something.
|
||||
|
||||
prnt = False
|
||||
if n <= 40:
|
||||
prnt = True
|
||||
if itn <= 10:
|
||||
prnt = True
|
||||
if itn >= maxiter-10:
|
||||
prnt = True
|
||||
if itn % 10 == 0:
|
||||
prnt = True
|
||||
if qrnorm <= 10*epsx:
|
||||
prnt = True
|
||||
if qrnorm <= 10*epsr:
|
||||
prnt = True
|
||||
if Acond <= 1e-2/eps:
|
||||
prnt = True
|
||||
if istop != 0:
|
||||
prnt = True
|
||||
|
||||
if show and prnt:
|
||||
str1 = '%6g %12.5e %10.3e' % (itn, x[0], test1)
|
||||
str2 = ' %10.3e' % (test2,)
|
||||
str3 = ' %8.1e %8.1e %8.1e' % (Anorm, Acond, gbar/Anorm)
|
||||
|
||||
print(str1 + str2 + str3)
|
||||
|
||||
if itn % 10 == 0:
|
||||
print()
|
||||
|
||||
if callback is not None:
|
||||
callback(x)
|
||||
|
||||
if istop != 0:
|
||||
break # TODO check this
|
||||
|
||||
if show:
|
||||
print()
|
||||
print(last + ' istop = %3g itn =%5g' % (istop,itn))
|
||||
print(last + ' Anorm = %12.4e Acond = %12.4e' % (Anorm,Acond))
|
||||
print(last + ' rnorm = %12.4e ynorm = %12.4e' % (rnorm,ynorm))
|
||||
print(last + ' Arnorm = %12.4e' % (Arnorm,))
|
||||
print(last + msg[istop+1])
|
||||
|
||||
if istop == 6:
|
||||
info = maxiter
|
||||
else:
|
||||
info = 0
|
||||
|
||||
return (postprocess(x),info)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from numpy import arange
|
||||
from scipy.sparse import spdiags
|
||||
|
||||
n = 10
|
||||
|
||||
residuals = []
|
||||
|
||||
def cb(x):
|
||||
residuals.append(norm(b - A*x))
|
||||
|
||||
# A = poisson((10,),format='csr')
|
||||
A = spdiags([arange(1,n+1,dtype=float)], [0], n, n, format='csr')
|
||||
M = spdiags([1.0/arange(1,n+1,dtype=float)], [0], n, n, format='csr')
|
||||
A.psolve = M.matvec
|
||||
b = zeros(A.shape[0])
|
||||
x = minres(A,b,tol=1e-12,maxiter=None,callback=cb)
|
||||
# x = cg(A,b,x0=b,tol=1e-12,maxiter=None,callback=cb)[0]
|
Loading…
Add table
Add a link
Reference in a new issue