Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,777 @@
|
|||
import sys
|
||||
import threading
|
||||
|
||||
import numpy as np
|
||||
from numpy import array, finfo, arange, eye, all, unique, ones, dot
|
||||
import numpy.random as random
|
||||
from numpy.testing import (
|
||||
assert_array_almost_equal, assert_almost_equal,
|
||||
assert_equal, assert_array_equal, assert_, assert_allclose,
|
||||
assert_warns, suppress_warnings)
|
||||
import pytest
|
||||
from pytest import raises as assert_raises
|
||||
|
||||
import scipy.linalg
|
||||
from scipy.linalg import norm, inv
|
||||
from scipy.sparse import (spdiags, SparseEfficiencyWarning, csc_matrix,
|
||||
csr_matrix, identity, isspmatrix, dok_matrix, lil_matrix, bsr_matrix)
|
||||
from scipy.sparse.linalg import SuperLU
|
||||
from scipy.sparse.linalg.dsolve import (spsolve, use_solver, splu, spilu,
|
||||
MatrixRankWarning, _superlu, spsolve_triangular, factorized)
|
||||
import scipy.sparse
|
||||
|
||||
from scipy._lib._testutils import check_free_memory
|
||||
|
||||
|
||||
sup_sparse_efficiency = suppress_warnings()
|
||||
sup_sparse_efficiency.filter(SparseEfficiencyWarning)
|
||||
|
||||
# scikits.umfpack is not a SciPy dependency but it is optionally used in
|
||||
# dsolve, so check whether it's available
|
||||
try:
|
||||
import scikits.umfpack as umfpack
|
||||
has_umfpack = True
|
||||
except ImportError:
|
||||
has_umfpack = False
|
||||
|
||||
def toarray(a):
|
||||
if isspmatrix(a):
|
||||
return a.toarray()
|
||||
else:
|
||||
return a
|
||||
|
||||
|
||||
def setup_bug_8278():
|
||||
N = 2 ** 6
|
||||
h = 1/N
|
||||
Ah1D = scipy.sparse.diags([-1, 2, -1], [-1, 0, 1],
|
||||
shape=(N-1, N-1))/(h**2)
|
||||
eyeN = scipy.sparse.eye(N - 1)
|
||||
A = (scipy.sparse.kron(eyeN, scipy.sparse.kron(eyeN, Ah1D))
|
||||
+ scipy.sparse.kron(eyeN, scipy.sparse.kron(Ah1D, eyeN))
|
||||
+ scipy.sparse.kron(Ah1D, scipy.sparse.kron(eyeN, eyeN)))
|
||||
b = np.random.rand((N-1)**3)
|
||||
return A, b
|
||||
|
||||
|
||||
class TestFactorized(object):
|
||||
def setup_method(self):
|
||||
n = 5
|
||||
d = arange(n) + 1
|
||||
self.n = n
|
||||
self.A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n).tocsc()
|
||||
random.seed(1234)
|
||||
|
||||
def _check_singular(self):
|
||||
A = csc_matrix((5,5), dtype='d')
|
||||
b = ones(5)
|
||||
assert_array_almost_equal(0. * b, factorized(A)(b))
|
||||
|
||||
def _check_non_singular(self):
|
||||
# Make a diagonal dominant, to make sure it is not singular
|
||||
n = 5
|
||||
a = csc_matrix(random.rand(n, n))
|
||||
b = ones(n)
|
||||
|
||||
expected = splu(a).solve(b)
|
||||
assert_array_almost_equal(factorized(a)(b), expected)
|
||||
|
||||
def test_singular_without_umfpack(self):
|
||||
use_solver(useUmfpack=False)
|
||||
with assert_raises(RuntimeError, match="Factor is exactly singular"):
|
||||
self._check_singular()
|
||||
|
||||
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
||||
def test_singular_with_umfpack(self):
|
||||
use_solver(useUmfpack=True)
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(RuntimeWarning, "divide by zero encountered in double_scalars")
|
||||
assert_warns(umfpack.UmfpackWarning, self._check_singular)
|
||||
|
||||
def test_non_singular_without_umfpack(self):
|
||||
use_solver(useUmfpack=False)
|
||||
self._check_non_singular()
|
||||
|
||||
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
||||
def test_non_singular_with_umfpack(self):
|
||||
use_solver(useUmfpack=True)
|
||||
self._check_non_singular()
|
||||
|
||||
def test_cannot_factorize_nonsquare_matrix_without_umfpack(self):
|
||||
use_solver(useUmfpack=False)
|
||||
msg = "can only factor square matrices"
|
||||
with assert_raises(ValueError, match=msg):
|
||||
factorized(self.A[:, :4])
|
||||
|
||||
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
||||
def test_factorizes_nonsquare_matrix_with_umfpack(self):
|
||||
use_solver(useUmfpack=True)
|
||||
# does not raise
|
||||
factorized(self.A[:,:4])
|
||||
|
||||
def test_call_with_incorrectly_sized_matrix_without_umfpack(self):
|
||||
use_solver(useUmfpack=False)
|
||||
solve = factorized(self.A)
|
||||
b = random.rand(4)
|
||||
B = random.rand(4, 3)
|
||||
BB = random.rand(self.n, 3, 9)
|
||||
|
||||
with assert_raises(ValueError, match="is of incompatible size"):
|
||||
solve(b)
|
||||
with assert_raises(ValueError, match="is of incompatible size"):
|
||||
solve(B)
|
||||
with assert_raises(ValueError,
|
||||
match="object too deep for desired array"):
|
||||
solve(BB)
|
||||
|
||||
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
||||
def test_call_with_incorrectly_sized_matrix_with_umfpack(self):
|
||||
use_solver(useUmfpack=True)
|
||||
solve = factorized(self.A)
|
||||
b = random.rand(4)
|
||||
B = random.rand(4, 3)
|
||||
BB = random.rand(self.n, 3, 9)
|
||||
|
||||
# does not raise
|
||||
solve(b)
|
||||
msg = "object too deep for desired array"
|
||||
with assert_raises(ValueError, match=msg):
|
||||
solve(B)
|
||||
with assert_raises(ValueError, match=msg):
|
||||
solve(BB)
|
||||
|
||||
def test_call_with_cast_to_complex_without_umfpack(self):
|
||||
use_solver(useUmfpack=False)
|
||||
solve = factorized(self.A)
|
||||
b = random.rand(4)
|
||||
for t in [np.complex64, np.complex128]:
|
||||
with assert_raises(TypeError, match="Cannot cast array data"):
|
||||
solve(b.astype(t))
|
||||
|
||||
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
||||
def test_call_with_cast_to_complex_with_umfpack(self):
|
||||
use_solver(useUmfpack=True)
|
||||
solve = factorized(self.A)
|
||||
b = random.rand(4)
|
||||
for t in [np.complex64, np.complex128]:
|
||||
assert_warns(np.ComplexWarning, solve, b.astype(t))
|
||||
|
||||
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
||||
def test_assume_sorted_indices_flag(self):
|
||||
# a sparse matrix with unsorted indices
|
||||
unsorted_inds = np.array([2, 0, 1, 0])
|
||||
data = np.array([10, 16, 5, 0.4])
|
||||
indptr = np.array([0, 1, 2, 4])
|
||||
A = csc_matrix((data, unsorted_inds, indptr), (3, 3))
|
||||
b = ones(3)
|
||||
|
||||
# should raise when incorrectly assuming indices are sorted
|
||||
use_solver(useUmfpack=True, assumeSortedIndices=True)
|
||||
with assert_raises(RuntimeError,
|
||||
match="UMFPACK_ERROR_invalid_matrix"):
|
||||
factorized(A)
|
||||
|
||||
# should sort indices and succeed when not assuming indices are sorted
|
||||
use_solver(useUmfpack=True, assumeSortedIndices=False)
|
||||
expected = splu(A.copy()).solve(b)
|
||||
|
||||
assert_equal(A.has_sorted_indices, 0)
|
||||
assert_array_almost_equal(factorized(A)(b), expected)
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
||||
def test_bug_8278(self):
|
||||
check_free_memory(8000)
|
||||
use_solver(useUmfpack=True)
|
||||
A, b = setup_bug_8278()
|
||||
A = A.tocsc()
|
||||
f = factorized(A)
|
||||
x = f(b)
|
||||
assert_array_almost_equal(A @ x, b)
|
||||
|
||||
|
||||
class TestLinsolve(object):
|
||||
def setup_method(self):
|
||||
use_solver(useUmfpack=False)
|
||||
|
||||
def test_singular(self):
|
||||
A = csc_matrix((5,5), dtype='d')
|
||||
b = array([1, 2, 3, 4, 5],dtype='d')
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(MatrixRankWarning, "Matrix is exactly singular")
|
||||
x = spsolve(A, b)
|
||||
assert_(not np.isfinite(x).any())
|
||||
|
||||
def test_singular_gh_3312(self):
|
||||
# "Bad" test case that leads SuperLU to call LAPACK with invalid
|
||||
# arguments. Check that it fails moderately gracefully.
|
||||
ij = np.array([(17, 0), (17, 6), (17, 12), (10, 13)], dtype=np.int32)
|
||||
v = np.array([0.284213, 0.94933781, 0.15767017, 0.38797296])
|
||||
A = csc_matrix((v, ij.T), shape=(20, 20))
|
||||
b = np.arange(20)
|
||||
|
||||
try:
|
||||
# should either raise a runtimeerror or return value
|
||||
# appropriate for singular input
|
||||
x = spsolve(A, b)
|
||||
assert_(not np.isfinite(x).any())
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
def test_twodiags(self):
|
||||
A = spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5)
|
||||
b = array([1, 2, 3, 4, 5])
|
||||
|
||||
# condition number of A
|
||||
cond_A = norm(A.todense(),2) * norm(inv(A.todense()),2)
|
||||
|
||||
for t in ['f','d','F','D']:
|
||||
eps = finfo(t).eps # floating point epsilon
|
||||
b = b.astype(t)
|
||||
|
||||
for format in ['csc','csr']:
|
||||
Asp = A.astype(t).asformat(format)
|
||||
|
||||
x = spsolve(Asp,b)
|
||||
|
||||
assert_(norm(b - Asp*x) < 10 * cond_A * eps)
|
||||
|
||||
def test_bvector_smoketest(self):
|
||||
Adense = array([[0., 1., 1.],
|
||||
[1., 0., 1.],
|
||||
[0., 0., 1.]])
|
||||
As = csc_matrix(Adense)
|
||||
random.seed(1234)
|
||||
x = random.randn(3)
|
||||
b = As*x
|
||||
x2 = spsolve(As, b)
|
||||
|
||||
assert_array_almost_equal(x, x2)
|
||||
|
||||
def test_bmatrix_smoketest(self):
|
||||
Adense = array([[0., 1., 1.],
|
||||
[1., 0., 1.],
|
||||
[0., 0., 1.]])
|
||||
As = csc_matrix(Adense)
|
||||
random.seed(1234)
|
||||
x = random.randn(3, 4)
|
||||
Bdense = As.dot(x)
|
||||
Bs = csc_matrix(Bdense)
|
||||
x2 = spsolve(As, Bs)
|
||||
assert_array_almost_equal(x, x2.todense())
|
||||
|
||||
@sup_sparse_efficiency
|
||||
def test_non_square(self):
|
||||
# A is not square.
|
||||
A = ones((3, 4))
|
||||
b = ones((4, 1))
|
||||
assert_raises(ValueError, spsolve, A, b)
|
||||
# A2 and b2 have incompatible shapes.
|
||||
A2 = csc_matrix(eye(3))
|
||||
b2 = array([1.0, 2.0])
|
||||
assert_raises(ValueError, spsolve, A2, b2)
|
||||
|
||||
@sup_sparse_efficiency
|
||||
def test_example_comparison(self):
|
||||
row = array([0,0,1,2,2,2])
|
||||
col = array([0,2,2,0,1,2])
|
||||
data = array([1,2,3,-4,5,6])
|
||||
sM = csr_matrix((data,(row,col)), shape=(3,3), dtype=float)
|
||||
M = sM.todense()
|
||||
|
||||
row = array([0,0,1,1,0,0])
|
||||
col = array([0,2,1,1,0,0])
|
||||
data = array([1,1,1,1,1,1])
|
||||
sN = csr_matrix((data, (row,col)), shape=(3,3), dtype=float)
|
||||
N = sN.todense()
|
||||
|
||||
sX = spsolve(sM, sN)
|
||||
X = scipy.linalg.solve(M, N)
|
||||
|
||||
assert_array_almost_equal(X, sX.todense())
|
||||
|
||||
@sup_sparse_efficiency
|
||||
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
||||
def test_shape_compatibility(self):
|
||||
use_solver(useUmfpack=True)
|
||||
A = csc_matrix([[1., 0], [0, 2]])
|
||||
bs = [
|
||||
[1, 6],
|
||||
array([1, 6]),
|
||||
[[1], [6]],
|
||||
array([[1], [6]]),
|
||||
csc_matrix([[1], [6]]),
|
||||
csr_matrix([[1], [6]]),
|
||||
dok_matrix([[1], [6]]),
|
||||
bsr_matrix([[1], [6]]),
|
||||
array([[1., 2., 3.], [6., 8., 10.]]),
|
||||
csc_matrix([[1., 2., 3.], [6., 8., 10.]]),
|
||||
csr_matrix([[1., 2., 3.], [6., 8., 10.]]),
|
||||
dok_matrix([[1., 2., 3.], [6., 8., 10.]]),
|
||||
bsr_matrix([[1., 2., 3.], [6., 8., 10.]]),
|
||||
]
|
||||
|
||||
for b in bs:
|
||||
x = np.linalg.solve(A.toarray(), toarray(b))
|
||||
for spmattype in [csc_matrix, csr_matrix, dok_matrix, lil_matrix]:
|
||||
x1 = spsolve(spmattype(A), b, use_umfpack=True)
|
||||
x2 = spsolve(spmattype(A), b, use_umfpack=False)
|
||||
|
||||
# check solution
|
||||
if x.ndim == 2 and x.shape[1] == 1:
|
||||
# interprets also these as "vectors"
|
||||
x = x.ravel()
|
||||
|
||||
assert_array_almost_equal(toarray(x1), x, err_msg=repr((b, spmattype, 1)))
|
||||
assert_array_almost_equal(toarray(x2), x, err_msg=repr((b, spmattype, 2)))
|
||||
|
||||
# dense vs. sparse output ("vectors" are always dense)
|
||||
if isspmatrix(b) and x.ndim > 1:
|
||||
assert_(isspmatrix(x1), repr((b, spmattype, 1)))
|
||||
assert_(isspmatrix(x2), repr((b, spmattype, 2)))
|
||||
else:
|
||||
assert_(isinstance(x1, np.ndarray), repr((b, spmattype, 1)))
|
||||
assert_(isinstance(x2, np.ndarray), repr((b, spmattype, 2)))
|
||||
|
||||
# check output shape
|
||||
if x.ndim == 1:
|
||||
# "vector"
|
||||
assert_equal(x1.shape, (A.shape[1],))
|
||||
assert_equal(x2.shape, (A.shape[1],))
|
||||
else:
|
||||
# "matrix"
|
||||
assert_equal(x1.shape, x.shape)
|
||||
assert_equal(x2.shape, x.shape)
|
||||
|
||||
A = csc_matrix((3, 3))
|
||||
b = csc_matrix((1, 3))
|
||||
assert_raises(ValueError, spsolve, A, b)
|
||||
|
||||
@sup_sparse_efficiency
|
||||
def test_ndarray_support(self):
|
||||
A = array([[1., 2.], [2., 0.]])
|
||||
x = array([[1., 1.], [0.5, -0.5]])
|
||||
b = array([[2., 0.], [2., 2.]])
|
||||
|
||||
assert_array_almost_equal(x, spsolve(A, b))
|
||||
|
||||
def test_gssv_badinput(self):
|
||||
N = 10
|
||||
d = arange(N) + 1.0
|
||||
A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), N, N)
|
||||
|
||||
for spmatrix in (csc_matrix, csr_matrix):
|
||||
A = spmatrix(A)
|
||||
b = np.arange(N)
|
||||
|
||||
def not_c_contig(x):
|
||||
return x.repeat(2)[::2]
|
||||
|
||||
def not_1dim(x):
|
||||
return x[:,None]
|
||||
|
||||
def bad_type(x):
|
||||
return x.astype(bool)
|
||||
|
||||
def too_short(x):
|
||||
return x[:-1]
|
||||
|
||||
badops = [not_c_contig, not_1dim, bad_type, too_short]
|
||||
|
||||
for badop in badops:
|
||||
msg = "%r %r" % (spmatrix, badop)
|
||||
# Not C-contiguous
|
||||
assert_raises((ValueError, TypeError), _superlu.gssv,
|
||||
N, A.nnz, badop(A.data), A.indices, A.indptr,
|
||||
b, int(spmatrix == csc_matrix), err_msg=msg)
|
||||
assert_raises((ValueError, TypeError), _superlu.gssv,
|
||||
N, A.nnz, A.data, badop(A.indices), A.indptr,
|
||||
b, int(spmatrix == csc_matrix), err_msg=msg)
|
||||
assert_raises((ValueError, TypeError), _superlu.gssv,
|
||||
N, A.nnz, A.data, A.indices, badop(A.indptr),
|
||||
b, int(spmatrix == csc_matrix), err_msg=msg)
|
||||
|
||||
def test_sparsity_preservation(self):
|
||||
ident = csc_matrix([
|
||||
[1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]])
|
||||
b = csc_matrix([
|
||||
[0, 1],
|
||||
[1, 0],
|
||||
[0, 0]])
|
||||
x = spsolve(ident, b)
|
||||
assert_equal(ident.nnz, 3)
|
||||
assert_equal(b.nnz, 2)
|
||||
assert_equal(x.nnz, 2)
|
||||
assert_allclose(x.A, b.A, atol=1e-12, rtol=1e-12)
|
||||
|
||||
def test_dtype_cast(self):
|
||||
A_real = scipy.sparse.csr_matrix([[1, 2, 0],
|
||||
[0, 0, 3],
|
||||
[4, 0, 5]])
|
||||
A_complex = scipy.sparse.csr_matrix([[1, 2, 0],
|
||||
[0, 0, 3],
|
||||
[4, 0, 5 + 1j]])
|
||||
b_real = np.array([1,1,1])
|
||||
b_complex = np.array([1,1,1]) + 1j*np.array([1,1,1])
|
||||
x = spsolve(A_real, b_real)
|
||||
assert_(np.issubdtype(x.dtype, np.floating))
|
||||
x = spsolve(A_real, b_complex)
|
||||
assert_(np.issubdtype(x.dtype, np.complexfloating))
|
||||
x = spsolve(A_complex, b_real)
|
||||
assert_(np.issubdtype(x.dtype, np.complexfloating))
|
||||
x = spsolve(A_complex, b_complex)
|
||||
assert_(np.issubdtype(x.dtype, np.complexfloating))
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
||||
def test_bug_8278(self):
|
||||
check_free_memory(8000)
|
||||
use_solver(useUmfpack=True)
|
||||
A, b = setup_bug_8278()
|
||||
x = spsolve(A, b)
|
||||
assert_array_almost_equal(A @ x, b)
|
||||
|
||||
|
||||
class TestSplu(object):
|
||||
def setup_method(self):
|
||||
use_solver(useUmfpack=False)
|
||||
n = 40
|
||||
d = arange(n) + 1
|
||||
self.n = n
|
||||
self.A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n)
|
||||
random.seed(1234)
|
||||
|
||||
def _smoketest(self, spxlu, check, dtype):
|
||||
if np.issubdtype(dtype, np.complexfloating):
|
||||
A = self.A + 1j*self.A.T
|
||||
else:
|
||||
A = self.A
|
||||
|
||||
A = A.astype(dtype)
|
||||
lu = spxlu(A)
|
||||
|
||||
rng = random.RandomState(1234)
|
||||
|
||||
# Input shapes
|
||||
for k in [None, 1, 2, self.n, self.n+2]:
|
||||
msg = "k=%r" % (k,)
|
||||
|
||||
if k is None:
|
||||
b = rng.rand(self.n)
|
||||
else:
|
||||
b = rng.rand(self.n, k)
|
||||
|
||||
if np.issubdtype(dtype, np.complexfloating):
|
||||
b = b + 1j*rng.rand(*b.shape)
|
||||
b = b.astype(dtype)
|
||||
|
||||
x = lu.solve(b)
|
||||
check(A, b, x, msg)
|
||||
|
||||
x = lu.solve(b, 'T')
|
||||
check(A.T, b, x, msg)
|
||||
|
||||
x = lu.solve(b, 'H')
|
||||
check(A.T.conj(), b, x, msg)
|
||||
|
||||
@sup_sparse_efficiency
|
||||
def test_splu_smoketest(self):
|
||||
self._internal_test_splu_smoketest()
|
||||
|
||||
def _internal_test_splu_smoketest(self):
|
||||
# Check that splu works at all
|
||||
def check(A, b, x, msg=""):
|
||||
eps = np.finfo(A.dtype).eps
|
||||
r = A * x
|
||||
assert_(abs(r - b).max() < 1e3*eps, msg)
|
||||
|
||||
self._smoketest(splu, check, np.float32)
|
||||
self._smoketest(splu, check, np.float64)
|
||||
self._smoketest(splu, check, np.complex64)
|
||||
self._smoketest(splu, check, np.complex128)
|
||||
|
||||
@sup_sparse_efficiency
|
||||
def test_spilu_smoketest(self):
|
||||
self._internal_test_spilu_smoketest()
|
||||
|
||||
def _internal_test_spilu_smoketest(self):
|
||||
errors = []
|
||||
|
||||
def check(A, b, x, msg=""):
|
||||
r = A * x
|
||||
err = abs(r - b).max()
|
||||
assert_(err < 1e-2, msg)
|
||||
if b.dtype in (np.float64, np.complex128):
|
||||
errors.append(err)
|
||||
|
||||
self._smoketest(spilu, check, np.float32)
|
||||
self._smoketest(spilu, check, np.float64)
|
||||
self._smoketest(spilu, check, np.complex64)
|
||||
self._smoketest(spilu, check, np.complex128)
|
||||
|
||||
assert_(max(errors) > 1e-5)
|
||||
|
||||
@sup_sparse_efficiency
|
||||
def test_spilu_drop_rule(self):
|
||||
# Test passing in the drop_rule argument to spilu.
|
||||
A = identity(2)
|
||||
|
||||
rules = [
|
||||
b'basic,area'.decode('ascii'), # unicode
|
||||
b'basic,area', # ascii
|
||||
[b'basic', b'area'.decode('ascii')]
|
||||
]
|
||||
for rule in rules:
|
||||
# Argument should be accepted
|
||||
assert_(isinstance(spilu(A, drop_rule=rule), SuperLU))
|
||||
|
||||
def test_splu_nnz0(self):
|
||||
A = csc_matrix((5,5), dtype='d')
|
||||
assert_raises(RuntimeError, splu, A)
|
||||
|
||||
def test_spilu_nnz0(self):
|
||||
A = csc_matrix((5,5), dtype='d')
|
||||
assert_raises(RuntimeError, spilu, A)
|
||||
|
||||
def test_splu_basic(self):
|
||||
# Test basic splu functionality.
|
||||
n = 30
|
||||
rng = random.RandomState(12)
|
||||
a = rng.rand(n, n)
|
||||
a[a < 0.95] = 0
|
||||
# First test with a singular matrix
|
||||
a[:, 0] = 0
|
||||
a_ = csc_matrix(a)
|
||||
# Matrix is exactly singular
|
||||
assert_raises(RuntimeError, splu, a_)
|
||||
|
||||
# Make a diagonal dominant, to make sure it is not singular
|
||||
a += 4*eye(n)
|
||||
a_ = csc_matrix(a)
|
||||
lu = splu(a_)
|
||||
b = ones(n)
|
||||
x = lu.solve(b)
|
||||
assert_almost_equal(dot(a, x), b)
|
||||
|
||||
def test_splu_perm(self):
|
||||
# Test the permutation vectors exposed by splu.
|
||||
n = 30
|
||||
a = random.random((n, n))
|
||||
a[a < 0.95] = 0
|
||||
# Make a diagonal dominant, to make sure it is not singular
|
||||
a += 4*eye(n)
|
||||
a_ = csc_matrix(a)
|
||||
lu = splu(a_)
|
||||
# Check that the permutation indices do belong to [0, n-1].
|
||||
for perm in (lu.perm_r, lu.perm_c):
|
||||
assert_(all(perm > -1))
|
||||
assert_(all(perm < n))
|
||||
assert_equal(len(unique(perm)), len(perm))
|
||||
|
||||
# Now make a symmetric, and test that the two permutation vectors are
|
||||
# the same
|
||||
# Note: a += a.T relies on undefined behavior.
|
||||
a = a + a.T
|
||||
a_ = csc_matrix(a)
|
||||
lu = splu(a_)
|
||||
assert_array_equal(lu.perm_r, lu.perm_c)
|
||||
|
||||
@pytest.mark.parametrize("splu_fun, rtol", [(splu, 1e-7), (spilu, 1e-1)])
|
||||
def test_natural_permc(self, splu_fun, rtol):
|
||||
# Test that the "NATURAL" permc_spec does not permute the matrix
|
||||
np.random.seed(42)
|
||||
n = 500
|
||||
p = 0.01
|
||||
A = scipy.sparse.random(n, n, p)
|
||||
x = np.random.rand(n)
|
||||
# Make A diagonal dominant to make sure it is not singular
|
||||
A += (n+1)*scipy.sparse.identity(n)
|
||||
A_ = csc_matrix(A)
|
||||
b = A_ @ x
|
||||
|
||||
# without permc_spec, permutation is not identity
|
||||
lu = splu_fun(A_)
|
||||
assert_(np.any(lu.perm_c != np.arange(n)))
|
||||
|
||||
# with permc_spec="NATURAL", permutation is identity
|
||||
lu = splu_fun(A_, permc_spec="NATURAL")
|
||||
assert_array_equal(lu.perm_c, np.arange(n))
|
||||
|
||||
# Also, lu decomposition is valid
|
||||
x2 = lu.solve(b)
|
||||
assert_allclose(x, x2, rtol=rtol)
|
||||
|
||||
@pytest.mark.skipif(not hasattr(sys, 'getrefcount'), reason="no sys.getrefcount")
|
||||
def test_lu_refcount(self):
|
||||
# Test that we are keeping track of the reference count with splu.
|
||||
n = 30
|
||||
a = random.random((n, n))
|
||||
a[a < 0.95] = 0
|
||||
# Make a diagonal dominant, to make sure it is not singular
|
||||
a += 4*eye(n)
|
||||
a_ = csc_matrix(a)
|
||||
lu = splu(a_)
|
||||
|
||||
# And now test that we don't have a refcount bug
|
||||
rc = sys.getrefcount(lu)
|
||||
for attr in ('perm_r', 'perm_c'):
|
||||
perm = getattr(lu, attr)
|
||||
assert_equal(sys.getrefcount(lu), rc + 1)
|
||||
del perm
|
||||
assert_equal(sys.getrefcount(lu), rc)
|
||||
|
||||
def test_bad_inputs(self):
|
||||
A = self.A.tocsc()
|
||||
|
||||
assert_raises(ValueError, splu, A[:,:4])
|
||||
assert_raises(ValueError, spilu, A[:,:4])
|
||||
|
||||
for lu in [splu(A), spilu(A)]:
|
||||
b = random.rand(42)
|
||||
B = random.rand(42, 3)
|
||||
BB = random.rand(self.n, 3, 9)
|
||||
assert_raises(ValueError, lu.solve, b)
|
||||
assert_raises(ValueError, lu.solve, B)
|
||||
assert_raises(ValueError, lu.solve, BB)
|
||||
assert_raises(TypeError, lu.solve,
|
||||
b.astype(np.complex64))
|
||||
assert_raises(TypeError, lu.solve,
|
||||
b.astype(np.complex128))
|
||||
|
||||
@sup_sparse_efficiency
|
||||
def test_superlu_dlamch_i386_nan(self):
|
||||
# SuperLU 4.3 calls some functions returning floats without
|
||||
# declaring them. On i386@linux call convention, this fails to
|
||||
# clear floating point registers after call. As a result, NaN
|
||||
# can appear in the next floating point operation made.
|
||||
#
|
||||
# Here's a test case that triggered the issue.
|
||||
n = 8
|
||||
d = np.arange(n) + 1
|
||||
A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n)
|
||||
A = A.astype(np.float32)
|
||||
spilu(A)
|
||||
A = A + 1j*A
|
||||
B = A.A
|
||||
assert_(not np.isnan(B).any())
|
||||
|
||||
@sup_sparse_efficiency
|
||||
def test_lu_attr(self):
|
||||
|
||||
def check(dtype, complex_2=False):
|
||||
A = self.A.astype(dtype)
|
||||
|
||||
if complex_2:
|
||||
A = A + 1j*A.T
|
||||
|
||||
n = A.shape[0]
|
||||
lu = splu(A)
|
||||
|
||||
# Check that the decomposition is as advertized
|
||||
|
||||
Pc = np.zeros((n, n))
|
||||
Pc[np.arange(n), lu.perm_c] = 1
|
||||
|
||||
Pr = np.zeros((n, n))
|
||||
Pr[lu.perm_r, np.arange(n)] = 1
|
||||
|
||||
Ad = A.toarray()
|
||||
lhs = Pr.dot(Ad).dot(Pc)
|
||||
rhs = (lu.L * lu.U).toarray()
|
||||
|
||||
eps = np.finfo(dtype).eps
|
||||
|
||||
assert_allclose(lhs, rhs, atol=100*eps)
|
||||
|
||||
check(np.float32)
|
||||
check(np.float64)
|
||||
check(np.complex64)
|
||||
check(np.complex128)
|
||||
check(np.complex64, True)
|
||||
check(np.complex128, True)
|
||||
|
||||
@pytest.mark.slow
|
||||
@sup_sparse_efficiency
|
||||
def test_threads_parallel(self):
|
||||
oks = []
|
||||
|
||||
def worker():
|
||||
try:
|
||||
self.test_splu_basic()
|
||||
self._internal_test_splu_smoketest()
|
||||
self._internal_test_spilu_smoketest()
|
||||
oks.append(True)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
threads = [threading.Thread(target=worker)
|
||||
for k in range(20)]
|
||||
for t in threads:
|
||||
t.start()
|
||||
for t in threads:
|
||||
t.join()
|
||||
|
||||
assert_equal(len(oks), 20)
|
||||
|
||||
|
||||
class TestSpsolveTriangular(object):
|
||||
def setup_method(self):
|
||||
use_solver(useUmfpack=False)
|
||||
|
||||
def test_singular(self):
|
||||
n = 5
|
||||
A = csr_matrix((n, n))
|
||||
b = np.arange(n)
|
||||
for lower in (True, False):
|
||||
assert_raises(scipy.linalg.LinAlgError, spsolve_triangular, A, b, lower=lower)
|
||||
|
||||
@sup_sparse_efficiency
|
||||
def test_bad_shape(self):
|
||||
# A is not square.
|
||||
A = np.zeros((3, 4))
|
||||
b = ones((4, 1))
|
||||
assert_raises(ValueError, spsolve_triangular, A, b)
|
||||
# A2 and b2 have incompatible shapes.
|
||||
A2 = csr_matrix(eye(3))
|
||||
b2 = array([1.0, 2.0])
|
||||
assert_raises(ValueError, spsolve_triangular, A2, b2)
|
||||
|
||||
@sup_sparse_efficiency
|
||||
def test_input_types(self):
|
||||
A = array([[1., 0.], [1., 2.]])
|
||||
b = array([[2., 0.], [2., 2.]])
|
||||
for matrix_type in (array, csc_matrix, csr_matrix):
|
||||
x = spsolve_triangular(matrix_type(A), b, lower=True)
|
||||
assert_array_almost_equal(A.dot(x), b)
|
||||
|
||||
@pytest.mark.slow
|
||||
@sup_sparse_efficiency
|
||||
def test_random(self):
|
||||
def random_triangle_matrix(n, lower=True):
|
||||
A = scipy.sparse.random(n, n, density=0.1, format='coo')
|
||||
if lower:
|
||||
A = scipy.sparse.tril(A)
|
||||
else:
|
||||
A = scipy.sparse.triu(A)
|
||||
A = A.tocsr(copy=False)
|
||||
for i in range(n):
|
||||
A[i, i] = np.random.rand() + 1
|
||||
return A
|
||||
|
||||
np.random.seed(1234)
|
||||
for lower in (True, False):
|
||||
for n in (10, 10**2, 10**3):
|
||||
A = random_triangle_matrix(n, lower=lower)
|
||||
for m in (1, 10):
|
||||
for b in (np.random.rand(n, m),
|
||||
np.random.randint(-9, 9, (n, m)),
|
||||
np.random.randint(-9, 9, (n, m)) +
|
||||
np.random.randint(-9, 9, (n, m)) * 1j):
|
||||
x = spsolve_triangular(A, b, lower=lower)
|
||||
assert_array_almost_equal(A.dot(x), b)
|
||||
x = spsolve_triangular(A, b, lower=lower,
|
||||
unit_diagonal=True)
|
||||
A.setdiag(1)
|
||||
assert_array_almost_equal(A.dot(x), b)
|
Loading…
Add table
Add a link
Reference in a new issue