Fixed database typo and removed unnecessary class identifier.

This commit is contained in:
Batuhan Berk Başoğlu 2020-10-14 10:10:37 -04:00
parent 00ad49a143
commit 45fb349a7d
5098 changed files with 952558 additions and 85 deletions

View file

@ -0,0 +1,99 @@
import numpy as np
from numpy.testing import assert_equal, assert_array_almost_equal
from scipy.sparse import csgraph
def test_weak_connections():
Xde = np.array([[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])
Xsp = csgraph.csgraph_from_dense(Xde, null_value=0)
for X in Xsp, Xde:
n_components, labels =\
csgraph.connected_components(X, directed=True,
connection='weak')
assert_equal(n_components, 2)
assert_array_almost_equal(labels, [0, 0, 1])
def test_strong_connections():
X1de = np.array([[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])
X2de = X1de + X1de.T
X1sp = csgraph.csgraph_from_dense(X1de, null_value=0)
X2sp = csgraph.csgraph_from_dense(X2de, null_value=0)
for X in X1sp, X1de:
n_components, labels =\
csgraph.connected_components(X, directed=True,
connection='strong')
assert_equal(n_components, 3)
labels.sort()
assert_array_almost_equal(labels, [0, 1, 2])
for X in X2sp, X2de:
n_components, labels =\
csgraph.connected_components(X, directed=True,
connection='strong')
assert_equal(n_components, 2)
labels.sort()
assert_array_almost_equal(labels, [0, 0, 1])
def test_strong_connections2():
X = np.array([[0, 0, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0]])
n_components, labels =\
csgraph.connected_components(X, directed=True,
connection='strong')
assert_equal(n_components, 5)
labels.sort()
assert_array_almost_equal(labels, [0, 1, 2, 2, 3, 4])
def test_weak_connections2():
X = np.array([[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0]])
n_components, labels =\
csgraph.connected_components(X, directed=True,
connection='weak')
assert_equal(n_components, 2)
labels.sort()
assert_array_almost_equal(labels, [0, 0, 1, 1, 1, 1])
def test_ticket1876():
# Regression test: this failed in the original implementation
# There should be two strongly-connected components; previously gave one
g = np.array([[0, 1, 1, 0],
[1, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 1, 0]])
n_components, labels = csgraph.connected_components(g, connection='strong')
assert_equal(n_components, 2)
assert_equal(labels[0], labels[1])
assert_equal(labels[2], labels[3])
def test_fully_connected_graph():
# Fully connected dense matrices raised an exception.
# https://github.com/scipy/scipy/issues/3818
g = np.ones((4, 4))
n_components, labels = csgraph.connected_components(g)
assert_equal(n_components, 1)

View file

@ -0,0 +1,61 @@
import numpy as np
from numpy.testing import assert_array_almost_equal
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import csgraph_from_dense, csgraph_to_dense
def test_csgraph_from_dense():
np.random.seed(1234)
G = np.random.random((10, 10))
some_nulls = (G < 0.4)
all_nulls = (G < 0.8)
for null_value in [0, np.nan, np.inf]:
G[all_nulls] = null_value
with np.errstate(invalid="ignore"):
G_csr = csgraph_from_dense(G, null_value=0)
G[all_nulls] = 0
assert_array_almost_equal(G, G_csr.toarray())
for null_value in [np.nan, np.inf]:
G[all_nulls] = 0
G[some_nulls] = null_value
with np.errstate(invalid="ignore"):
G_csr = csgraph_from_dense(G, null_value=0)
G[all_nulls] = 0
assert_array_almost_equal(G, G_csr.toarray())
def test_csgraph_to_dense():
np.random.seed(1234)
G = np.random.random((10, 10))
nulls = (G < 0.8)
G[nulls] = np.inf
G_csr = csgraph_from_dense(G)
for null_value in [0, 10, -np.inf, np.inf]:
G[nulls] = null_value
assert_array_almost_equal(G, csgraph_to_dense(G_csr, null_value))
def test_multiple_edges():
# create a random sqare matrix with an even number of elements
np.random.seed(1234)
X = np.random.random((10, 10))
Xcsr = csr_matrix(X)
# now double-up every other column
Xcsr.indices[::2] = Xcsr.indices[1::2]
# normal sparse toarray() will sum the duplicated edges
Xdense = Xcsr.toarray()
assert_array_almost_equal(Xdense[:, 1::2],
X[:, ::2] + X[:, 1::2])
# csgraph_to_dense chooses the minimum of each duplicated edge
Xdense = csgraph_to_dense(Xcsr)
assert_array_almost_equal(Xdense[:, 1::2],
np.minimum(X[:, ::2], X[:, 1::2]))

View file

@ -0,0 +1,124 @@
import numpy as np
from numpy.testing import assert_array_equal
import pytest
from scipy.sparse import csr_matrix, csc_matrix
from scipy.sparse.csgraph import maximum_flow
def test_raises_on_dense_input():
with pytest.raises(TypeError):
graph = np.array([[0, 1], [0, 0]])
maximum_flow(graph, 0, 1)
def test_raises_on_csc_input():
with pytest.raises(TypeError):
graph = csc_matrix([[0, 1], [0, 0]])
maximum_flow(graph, 0, 1)
def test_raises_on_floating_point_input():
with pytest.raises(ValueError):
graph = csr_matrix([[0, 1.5], [0, 0]], dtype=np.float64)
maximum_flow(graph, 0, 1)
def test_raises_when_source_is_sink():
with pytest.raises(ValueError):
graph = csr_matrix([[0, 1], [0, 0]])
maximum_flow(graph, 0, 0)
@pytest.mark.parametrize('source', [-1, 2, 3])
def test_raises_when_source_is_out_of_bounds(source):
with pytest.raises(ValueError):
graph = csr_matrix([[0, 1], [0, 0]])
maximum_flow(graph, source, 1)
@pytest.mark.parametrize('sink', [-1, 2, 3])
def test_raises_when_sink_is_out_of_bounds(sink):
with pytest.raises(ValueError):
graph = csr_matrix([[0, 1], [0, 0]])
maximum_flow(graph, 0, sink)
def test_simple_graph():
# This graph looks as follows:
# (0) --5--> (1)
graph = csr_matrix([[0, 5], [0, 0]])
res = maximum_flow(graph, 0, 1)
assert res.flow_value == 5
expected_residual = np.array([[0, 5], [-5, 0]])
assert_array_equal(res.residual.toarray(), expected_residual)
def test_bottle_neck_graph():
# This graph cannot use the full capacity between 0 and 1:
# (0) --5--> (1) --3--> (2)
graph = csr_matrix([[0, 5, 0], [0, 0, 3], [0, 0, 0]])
res = maximum_flow(graph, 0, 2)
assert res.flow_value == 3
expected_residual = np.array([[0, 3, 0], [-3, 0, 3], [0, -3, 0]])
assert_array_equal(res.residual.toarray(), expected_residual)
def test_backwards_flow():
# This example causes backwards flow between vertices 3 and 4,
# and so this test ensures that we handle that accordingly. See
# https://stackoverflow.com/q/38843963/5085211
# for more information.
graph = csr_matrix([[0, 10, 0, 0, 10, 0, 0, 0],
[0, 0, 10, 0, 0, 0, 0, 0],
[0, 0, 0, 10, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 10],
[0, 0, 0, 10, 0, 10, 0, 0],
[0, 0, 0, 0, 0, 0, 10, 0],
[0, 0, 0, 0, 0, 0, 0, 10],
[0, 0, 0, 0, 0, 0, 0, 0]])
res = maximum_flow(graph, 0, 7)
assert res.flow_value == 20
expected_residual = np.array([[0, 10, 0, 0, 10, 0, 0, 0],
[-10, 0, 10, 0, 0, 0, 0, 0],
[0, -10, 0, 10, 0, 0, 0, 0],
[0, 0, -10, 0, 0, 0, 0, 10],
[-10, 0, 0, 0, 0, 10, 0, 0],
[0, 0, 0, 0, -10, 0, 10, 0],
[0, 0, 0, 0, 0, -10, 0, 10],
[0, 0, 0, -10, 0, 0, -10, 0]])
assert_array_equal(res.residual.toarray(), expected_residual)
def test_example_from_clrs_chapter_26_1():
# See page 659 in CLRS second edition, but note that the maximum flow
# we find is slightly different than the one in CLRS; we push a flow of
# 12 to v_1 instead of v_2.
graph = csr_matrix([[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0]])
res = maximum_flow(graph, 0, 5)
assert res.flow_value == 23
expected_residual = np.array([[0, 12, 11, 0, 0, 0],
[-12, 0, 0, 12, 0, 0],
[-11, 0, 0, 0, 11, 0],
[0, -12, 0, 0, -7, 19],
[0, 0, -11, 7, 0, 4],
[0, 0, 0, -19, -4, 0]])
assert_array_equal(res.residual.toarray(), expected_residual)
def test_disconnected_graph():
# This tests the following disconnected graph:
# (0) --5--> (1) (2) --3--> (3)
graph = csr_matrix([[0, 5, 0, 0],
[0, 0, 0, 0],
[0, 0, 9, 3],
[0, 0, 0, 0]])
res = maximum_flow(graph, 0, 3)
assert res.flow_value == 0
expected_residual = np.zeros((4, 4), dtype=np.int32)
assert_array_equal(res.residual.toarray(), expected_residual)

View file

@ -0,0 +1,134 @@
# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# Jake Vanderplas <vanderplas@astro.washington.edu>
# License: BSD
import numpy as np
from numpy.testing import assert_allclose, assert_array_almost_equal
from pytest import raises as assert_raises
from scipy import sparse
from scipy.sparse import csgraph
def _explicit_laplacian(x, normed=False):
if sparse.issparse(x):
x = x.todense()
x = np.asarray(x)
y = -1.0 * x
for j in range(y.shape[0]):
y[j,j] = x[j,j+1:].sum() + x[j,:j].sum()
if normed:
d = np.diag(y).copy()
d[d == 0] = 1.0
y /= d[:,None]**.5
y /= d[None,:]**.5
return y
def _check_symmetric_graph_laplacian(mat, normed):
if not hasattr(mat, 'shape'):
mat = eval(mat, dict(np=np, sparse=sparse))
if sparse.issparse(mat):
sp_mat = mat
mat = sp_mat.todense()
else:
sp_mat = sparse.csr_matrix(mat)
laplacian = csgraph.laplacian(mat, normed=normed)
n_nodes = mat.shape[0]
if not normed:
assert_array_almost_equal(laplacian.sum(axis=0), np.zeros(n_nodes))
assert_array_almost_equal(laplacian.T, laplacian)
assert_array_almost_equal(laplacian,
csgraph.laplacian(sp_mat, normed=normed).todense())
assert_array_almost_equal(laplacian,
_explicit_laplacian(mat, normed=normed))
def test_laplacian_value_error():
for t in int, float, complex:
for m in ([1, 1],
[[[1]]],
[[1, 2, 3], [4, 5, 6]],
[[1, 2], [3, 4], [5, 5]]):
A = np.array(m, dtype=t)
assert_raises(ValueError, csgraph.laplacian, A)
def test_symmetric_graph_laplacian():
symmetric_mats = ('np.arange(10) * np.arange(10)[:, np.newaxis]',
'np.ones((7, 7))',
'np.eye(19)',
'sparse.diags([1, 1], [-1, 1], shape=(4,4))',
'sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense()',
'np.asarray(sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense())',
'np.vander(np.arange(4)) + np.vander(np.arange(4)).T')
for mat_str in symmetric_mats:
for normed in True, False:
_check_symmetric_graph_laplacian(mat_str, normed)
def _assert_allclose_sparse(a, b, **kwargs):
# helper function that can deal with sparse matrices
if sparse.issparse(a):
a = a.toarray()
if sparse.issparse(b):
b = a.toarray()
assert_allclose(a, b, **kwargs)
def _check_laplacian(A, desired_L, desired_d, normed, use_out_degree):
for arr_type in np.array, sparse.csr_matrix, sparse.coo_matrix:
for t in int, float, complex:
adj = arr_type(A, dtype=t)
L = csgraph.laplacian(adj, normed=normed, return_diag=False,
use_out_degree=use_out_degree)
_assert_allclose_sparse(L, desired_L, atol=1e-12)
L, d = csgraph.laplacian(adj, normed=normed, return_diag=True,
use_out_degree=use_out_degree)
_assert_allclose_sparse(L, desired_L, atol=1e-12)
_assert_allclose_sparse(d, desired_d, atol=1e-12)
def test_asymmetric_laplacian():
# adjacency matrix
A = [[0, 1, 0],
[4, 2, 0],
[0, 0, 0]]
# Laplacian matrix using out-degree
L = [[1, -1, 0],
[-4, 4, 0],
[0, 0, 0]]
d = [1, 4, 0]
_check_laplacian(A, L, d, normed=False, use_out_degree=True)
# normalized Laplacian matrix using out-degree
L = [[1, -0.5, 0],
[-2, 1, 0],
[0, 0, 0]]
d = [1, 2, 1]
_check_laplacian(A, L, d, normed=True, use_out_degree=True)
# Laplacian matrix using in-degree
L = [[4, -1, 0],
[-4, 1, 0],
[0, 0, 0]]
d = [4, 1, 0]
_check_laplacian(A, L, d, normed=False, use_out_degree=False)
# normalized Laplacian matrix using in-degree
L = [[1, -0.5, 0],
[-2, 1, 0],
[0, 0, 0]]
d = [2, 1, 1]
_check_laplacian(A, L, d, normed=True, use_out_degree=False)
def test_sparse_formats():
for fmt in ('csr', 'csc', 'coo', 'lil', 'dok', 'dia', 'bsr'):
mat = sparse.diags([1, 1], [-1, 1], shape=(4,4), format=fmt)
for normed in True, False:
_check_symmetric_graph_laplacian(mat, normed)

View file

@ -0,0 +1,145 @@
import numpy as np
from numpy.testing import assert_array_equal, assert_equal
import pytest
from scipy.sparse import csr_matrix, coo_matrix, diags
from scipy.sparse.csgraph import maximum_bipartite_matching
def test_raises_on_dense_input():
with pytest.raises(TypeError):
graph = np.array([[0, 1], [0, 0]])
maximum_bipartite_matching(graph)
def test_empty_graph():
graph = csr_matrix((0, 0))
x = maximum_bipartite_matching(graph, perm_type='row')
y = maximum_bipartite_matching(graph, perm_type='column')
expected_matching = np.array([])
assert_array_equal(expected_matching, x)
assert_array_equal(expected_matching, y)
def test_empty_left_partition():
graph = csr_matrix((2, 0))
x = maximum_bipartite_matching(graph, perm_type='row')
y = maximum_bipartite_matching(graph, perm_type='column')
assert_array_equal(np.array([]), x)
assert_array_equal(np.array([-1, -1]), y)
def test_empty_right_partition():
graph = csr_matrix((0, 3))
x = maximum_bipartite_matching(graph, perm_type='row')
y = maximum_bipartite_matching(graph, perm_type='column')
assert_array_equal(np.array([-1, -1, -1]), x)
assert_array_equal(np.array([]), y)
def test_graph_with_no_edges():
graph = csr_matrix((2, 2))
x = maximum_bipartite_matching(graph, perm_type='row')
y = maximum_bipartite_matching(graph, perm_type='column')
assert_array_equal(np.array([-1, -1]), x)
assert_array_equal(np.array([-1, -1]), y)
def test_graph_that_causes_augmentation():
# In this graph, column 1 is initially assigned to row 1, but it should be
# reassigned to make room for row 2.
graph = csr_matrix([[1, 1], [1, 0]])
x = maximum_bipartite_matching(graph, perm_type='column')
y = maximum_bipartite_matching(graph, perm_type='row')
expected_matching = np.array([1, 0])
assert_array_equal(expected_matching, x)
assert_array_equal(expected_matching, y)
def test_graph_with_more_rows_than_columns():
graph = csr_matrix([[1, 1], [1, 0], [0, 1]])
x = maximum_bipartite_matching(graph, perm_type='column')
y = maximum_bipartite_matching(graph, perm_type='row')
assert_array_equal(np.array([0, -1, 1]), x)
assert_array_equal(np.array([0, 2]), y)
def test_graph_with_more_columns_than_rows():
graph = csr_matrix([[1, 1, 0], [0, 0, 1]])
x = maximum_bipartite_matching(graph, perm_type='column')
y = maximum_bipartite_matching(graph, perm_type='row')
assert_array_equal(np.array([0, 2]), x)
assert_array_equal(np.array([0, -1, 1]), y)
def test_explicit_zeros_count_as_edges():
data = [0, 0]
indices = [1, 0]
indptr = [0, 1, 2]
graph = csr_matrix((data, indices, indptr), shape=(2, 2))
x = maximum_bipartite_matching(graph, perm_type='row')
y = maximum_bipartite_matching(graph, perm_type='column')
expected_matching = np.array([1, 0])
assert_array_equal(expected_matching, x)
assert_array_equal(expected_matching, y)
def test_feasibility_of_result():
# This is a regression test for GitHub issue #11458
data = np.ones(50, dtype=int)
indices = [11, 12, 19, 22, 23, 5, 22, 3, 8, 10, 5, 6, 11, 12, 13, 5, 13,
14, 20, 22, 3, 15, 3, 13, 14, 11, 12, 19, 22, 23, 5, 22, 3, 8,
10, 5, 6, 11, 12, 13, 5, 13, 14, 20, 22, 3, 15, 3, 13, 14]
indptr = [0, 5, 7, 10, 10, 15, 20, 22, 22, 23, 25, 30, 32, 35, 35, 40, 45,
47, 47, 48, 50]
graph = csr_matrix((data, indices, indptr), shape=(20, 25))
x = maximum_bipartite_matching(graph, perm_type='row')
y = maximum_bipartite_matching(graph, perm_type='column')
assert (x != -1).sum() == 13
assert (y != -1).sum() == 13
# Ensure that each element of the matching is in fact an edge in the graph.
for u, v in zip(range(graph.shape[0]), y):
if v != -1:
assert graph[u, v]
for u, v in zip(x, range(graph.shape[1])):
if u != -1:
assert graph[u, v]
def test_large_random_graph_with_one_edge_incident_to_each_vertex():
np.random.seed(42)
A = diags(np.ones(25), offsets=0, format='csr')
rand_perm = np.random.permutation(25)
rand_perm2 = np.random.permutation(25)
Rrow = np.arange(25)
Rcol = rand_perm
Rdata = np.ones(25, dtype=int)
Rmat = coo_matrix((Rdata, (Rrow, Rcol))).tocsr()
Crow = rand_perm2
Ccol = np.arange(25)
Cdata = np.ones(25, dtype=int)
Cmat = coo_matrix((Cdata, (Crow, Ccol))).tocsr()
# Randomly permute identity matrix
B = Rmat * A * Cmat
# Row permute
perm = maximum_bipartite_matching(B, perm_type='row')
Rrow = np.arange(25)
Rcol = perm
Rdata = np.ones(25, dtype=int)
Rmat = coo_matrix((Rdata, (Rrow, Rcol))).tocsr()
C1 = Rmat * B
# Column permute
perm2 = maximum_bipartite_matching(B, perm_type='column')
Crow = perm2
Ccol = np.arange(25)
Cdata = np.ones(25, dtype=int)
Cmat = coo_matrix((Cdata, (Crow, Ccol))).tocsr()
C2 = B * Cmat
# Should get identity matrix back
assert_equal(any(C1.diagonal() == 0), False)
assert_equal(any(C2.diagonal() == 0), False)

View file

@ -0,0 +1,70 @@
import numpy as np
from numpy.testing import assert_equal
from scipy.sparse.csgraph import reverse_cuthill_mckee, structural_rank
from scipy.sparse import csc_matrix, csr_matrix, coo_matrix
def test_graph_reverse_cuthill_mckee():
A = np.array([[1, 0, 0, 0, 1, 0, 0, 0],
[0, 1, 1, 0, 0, 1, 0, 1],
[0, 1, 1, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 1, 0],
[1, 0, 1, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 1, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0, 1]], dtype=int)
graph = csr_matrix(A)
perm = reverse_cuthill_mckee(graph)
correct_perm = np.array([6, 3, 7, 5, 1, 2, 4, 0])
assert_equal(perm, correct_perm)
# Test int64 indices input
graph.indices = graph.indices.astype('int64')
graph.indptr = graph.indptr.astype('int64')
perm = reverse_cuthill_mckee(graph, True)
assert_equal(perm, correct_perm)
def test_graph_reverse_cuthill_mckee_ordering():
data = np.ones(63,dtype=int)
rows = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2,
2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5,
6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9,
9, 10, 10, 10, 10, 10, 11, 11, 11, 11,
12, 12, 12, 13, 13, 13, 13, 14, 14, 14,
14, 15, 15, 15, 15, 15])
cols = np.array([0, 2, 5, 8, 10, 1, 3, 9, 11, 0, 2,
7, 10, 1, 3, 11, 4, 6, 12, 14, 0, 7, 13,
15, 4, 6, 14, 2, 5, 7, 15, 0, 8, 10, 13,
1, 9, 11, 0, 2, 8, 10, 15, 1, 3, 9, 11,
4, 12, 14, 5, 8, 13, 15, 4, 6, 12, 14,
5, 7, 10, 13, 15])
graph = coo_matrix((data, (rows,cols))).tocsr()
perm = reverse_cuthill_mckee(graph)
correct_perm = np.array([12, 14, 4, 6, 10, 8, 2, 15,
0, 13, 7, 5, 9, 11, 1, 3])
assert_equal(perm, correct_perm)
def test_graph_structural_rank():
# Test square matrix #1
A = csc_matrix([[1, 1, 0],
[1, 0, 1],
[0, 1, 0]])
assert_equal(structural_rank(A), 3)
# Test square matrix #2
rows = np.array([0,0,0,0,0,1,1,2,2,3,3,3,3,3,3,4,4,5,5,6,6,7,7])
cols = np.array([0,1,2,3,4,2,5,2,6,0,1,3,5,6,7,4,5,5,6,2,6,2,4])
data = np.ones_like(rows)
B = coo_matrix((data,(rows,cols)), shape=(8,8))
assert_equal(structural_rank(B), 6)
#Test non-square matrix
C = csc_matrix([[1, 0, 2, 0],
[2, 0, 4, 0]])
assert_equal(structural_rank(C), 2)
#Test tall matrix
assert_equal(structural_rank(C.T), 2)

View file

@ -0,0 +1,334 @@
import numpy as np
from numpy.testing import assert_array_almost_equal, assert_array_equal
from pytest import raises as assert_raises
from scipy.sparse.csgraph import (shortest_path, dijkstra, johnson,
bellman_ford, construct_dist_matrix,
NegativeCycleError)
import scipy.sparse
import pytest
directed_G = np.array([[0, 3, 3, 0, 0],
[0, 0, 0, 2, 4],
[0, 0, 0, 0, 0],
[1, 0, 0, 0, 0],
[2, 0, 0, 2, 0]], dtype=float)
undirected_G = np.array([[0, 3, 3, 1, 2],
[3, 0, 0, 2, 4],
[3, 0, 0, 0, 0],
[1, 2, 0, 0, 2],
[2, 4, 0, 2, 0]], dtype=float)
unweighted_G = (directed_G > 0).astype(float)
directed_SP = [[0, 3, 3, 5, 7],
[3, 0, 6, 2, 4],
[np.inf, np.inf, 0, np.inf, np.inf],
[1, 4, 4, 0, 8],
[2, 5, 5, 2, 0]]
directed_sparse_zero_G = scipy.sparse.csr_matrix(([0, 1, 2, 3, 1],
([0, 1, 2, 3, 4],
[1, 2, 0, 4, 3])),
shape = (5, 5))
directed_sparse_zero_SP = [[0, 0, 1, np.inf, np.inf],
[3, 0, 1, np.inf, np.inf],
[2, 2, 0, np.inf, np.inf],
[np.inf, np.inf, np.inf, 0, 3],
[np.inf, np.inf, np.inf, 1, 0]]
undirected_sparse_zero_G = scipy.sparse.csr_matrix(([0, 0, 1, 1, 2, 2, 1, 1],
([0, 1, 1, 2, 2, 0, 3, 4],
[1, 0, 2, 1, 0, 2, 4, 3])),
shape = (5, 5))
undirected_sparse_zero_SP = [[0, 0, 1, np.inf, np.inf],
[0, 0, 1, np.inf, np.inf],
[1, 1, 0, np.inf, np.inf],
[np.inf, np.inf, np.inf, 0, 1],
[np.inf, np.inf, np.inf, 1, 0]]
directed_pred = np.array([[-9999, 0, 0, 1, 1],
[3, -9999, 0, 1, 1],
[-9999, -9999, -9999, -9999, -9999],
[3, 0, 0, -9999, 1],
[4, 0, 0, 4, -9999]], dtype=float)
undirected_SP = np.array([[0, 3, 3, 1, 2],
[3, 0, 6, 2, 4],
[3, 6, 0, 4, 5],
[1, 2, 4, 0, 2],
[2, 4, 5, 2, 0]], dtype=float)
undirected_SP_limit_2 = np.array([[0, np.inf, np.inf, 1, 2],
[np.inf, 0, np.inf, 2, np.inf],
[np.inf, np.inf, 0, np.inf, np.inf],
[1, 2, np.inf, 0, 2],
[2, np.inf, np.inf, 2, 0]], dtype=float)
undirected_SP_limit_0 = np.ones((5, 5), dtype=float) - np.eye(5)
undirected_SP_limit_0[undirected_SP_limit_0 > 0] = np.inf
undirected_pred = np.array([[-9999, 0, 0, 0, 0],
[1, -9999, 0, 1, 1],
[2, 0, -9999, 0, 0],
[3, 3, 0, -9999, 3],
[4, 4, 0, 4, -9999]], dtype=float)
methods = ['auto', 'FW', 'D', 'BF', 'J']
def test_dijkstra_limit():
limits = [0, 2, np.inf]
results = [undirected_SP_limit_0,
undirected_SP_limit_2,
undirected_SP]
def check(limit, result):
SP = dijkstra(undirected_G, directed=False, limit=limit)
assert_array_almost_equal(SP, result)
for limit, result in zip(limits, results):
check(limit, result)
def test_directed():
def check(method):
SP = shortest_path(directed_G, method=method, directed=True,
overwrite=False)
assert_array_almost_equal(SP, directed_SP)
for method in methods:
check(method)
def test_undirected():
def check(method, directed_in):
if directed_in:
SP1 = shortest_path(directed_G, method=method, directed=False,
overwrite=False)
assert_array_almost_equal(SP1, undirected_SP)
else:
SP2 = shortest_path(undirected_G, method=method, directed=True,
overwrite=False)
assert_array_almost_equal(SP2, undirected_SP)
for method in methods:
for directed_in in (True, False):
check(method, directed_in)
def test_directed_sparse_zero():
# test directed sparse graph with zero-weight edge and two connected components
def check(method):
SP = shortest_path(directed_sparse_zero_G, method=method, directed=True,
overwrite=False)
assert_array_almost_equal(SP, directed_sparse_zero_SP)
for method in methods:
check(method)
def test_undirected_sparse_zero():
def check(method, directed_in):
if directed_in:
SP1 = shortest_path(directed_sparse_zero_G, method=method, directed=False,
overwrite=False)
assert_array_almost_equal(SP1, undirected_sparse_zero_SP)
else:
SP2 = shortest_path(undirected_sparse_zero_G, method=method, directed=True,
overwrite=False)
assert_array_almost_equal(SP2, undirected_sparse_zero_SP)
for method in methods:
for directed_in in (True, False):
check(method, directed_in)
@pytest.mark.parametrize('directed, SP_ans',
((True, directed_SP),
(False, undirected_SP)))
@pytest.mark.parametrize('indices', ([0, 2, 4], [0, 4], [3, 4], [0, 0]))
def test_dijkstra_indices_min_only(directed, SP_ans, indices):
SP_ans = np.array(SP_ans)
indices = np.array(indices, dtype=np.int64)
min_ind_ans = indices[np.argmin(SP_ans[indices, :], axis=0)]
min_d_ans = np.zeros(SP_ans.shape[0], SP_ans.dtype)
for k in range(SP_ans.shape[0]):
min_d_ans[k] = SP_ans[min_ind_ans[k], k]
min_ind_ans[np.isinf(min_d_ans)] = -9999
SP, pred, sources = dijkstra(directed_G,
directed=directed,
indices=indices,
min_only=True,
return_predecessors=True)
assert_array_almost_equal(SP, min_d_ans)
assert_array_equal(min_ind_ans, sources)
SP = dijkstra(directed_G,
directed=directed,
indices=indices,
min_only=True,
return_predecessors=False)
assert_array_almost_equal(SP, min_d_ans)
@pytest.mark.parametrize('n', (10, 100, 1000))
def test_shortest_path_min_only_random(n):
np.random.seed(1234)
data = scipy.sparse.rand(n, n, density=0.5, format='lil',
random_state=42, dtype=np.float64)
data.setdiag(np.zeros(n, dtype=np.bool_))
# choose some random vertices
v = np.arange(n)
np.random.shuffle(v)
indices = v[:int(n*.1)]
ds, pred, sources = dijkstra(data,
directed=False,
indices=indices,
min_only=True,
return_predecessors=True)
for k in range(n):
p = pred[k]
s = sources[k]
while(p != -9999):
assert(sources[p] == s)
p = pred[p]
def test_shortest_path_indices():
indices = np.arange(4)
def check(func, indshape):
outshape = indshape + (5,)
SP = func(directed_G, directed=False,
indices=indices.reshape(indshape))
assert_array_almost_equal(SP, undirected_SP[indices].reshape(outshape))
for indshape in [(4,), (4, 1), (2, 2)]:
for func in (dijkstra, bellman_ford, johnson, shortest_path):
check(func, indshape)
assert_raises(ValueError, shortest_path, directed_G, method='FW',
indices=indices)
def test_predecessors():
SP_res = {True: directed_SP,
False: undirected_SP}
pred_res = {True: directed_pred,
False: undirected_pred}
def check(method, directed):
SP, pred = shortest_path(directed_G, method, directed=directed,
overwrite=False,
return_predecessors=True)
assert_array_almost_equal(SP, SP_res[directed])
assert_array_almost_equal(pred, pred_res[directed])
for method in methods:
for directed in (True, False):
check(method, directed)
def test_construct_shortest_path():
def check(method, directed):
SP1, pred = shortest_path(directed_G,
directed=directed,
overwrite=False,
return_predecessors=True)
SP2 = construct_dist_matrix(directed_G, pred, directed=directed)
assert_array_almost_equal(SP1, SP2)
for method in methods:
for directed in (True, False):
check(method, directed)
def test_unweighted_path():
def check(method, directed):
SP1 = shortest_path(directed_G,
directed=directed,
overwrite=False,
unweighted=True)
SP2 = shortest_path(unweighted_G,
directed=directed,
overwrite=False,
unweighted=False)
assert_array_almost_equal(SP1, SP2)
for method in methods:
for directed in (True, False):
check(method, directed)
def test_negative_cycles():
# create a small graph with a negative cycle
graph = np.ones([5, 5])
graph.flat[::6] = 0
graph[1, 2] = -2
def check(method, directed):
assert_raises(NegativeCycleError, shortest_path, graph, method,
directed)
for method in ['FW', 'J', 'BF']:
for directed in (True, False):
check(method, directed)
def test_masked_input():
np.ma.masked_equal(directed_G, 0)
def check(method):
SP = shortest_path(directed_G, method=method, directed=True,
overwrite=False)
assert_array_almost_equal(SP, directed_SP)
for method in methods:
check(method)
def test_overwrite():
G = np.array([[0, 3, 3, 1, 2],
[3, 0, 0, 2, 4],
[3, 0, 0, 0, 0],
[1, 2, 0, 0, 2],
[2, 4, 0, 2, 0]], dtype=float)
foo = G.copy()
shortest_path(foo, overwrite=False)
assert_array_equal(foo, G)
@pytest.mark.parametrize('method', methods)
def test_buffer(method):
# Smoke test that sparse matrices with read-only buffers (e.g., those from
# joblib workers) do not cause::
#
# ValueError: buffer source array is read-only
#
G = scipy.sparse.csr_matrix([[1.]])
G.data.flags['WRITEABLE'] = False
shortest_path(G, method=method)
def test_NaN_warnings():
with pytest.warns(None) as record:
shortest_path(np.array([[0, 1], [np.nan, 0]]))
for r in record:
assert r.category is not RuntimeWarning
def test_sparse_matrices():
# Test that using lil,csr and csc sparse matrix do not cause error
G_dense = np.array([[0, 3, 0, 0, 0],
[0, 0, -1, 0, 0],
[0, 0, 0, 2, 0],
[0, 0, 0, 0, 4],
[0, 0, 0, 0, 0]], dtype=float)
SP = shortest_path(G_dense)
G_csr = scipy.sparse.csr_matrix(G_dense)
G_csc = scipy.sparse.csc_matrix(G_dense)
G_lil = scipy.sparse.lil_matrix(G_dense)
assert_array_almost_equal(SP, shortest_path(G_csr))
assert_array_almost_equal(SP, shortest_path(G_csc))
assert_array_almost_equal(SP, shortest_path(G_lil))

View file

@ -0,0 +1,65 @@
"""Test the minimum spanning tree function"""
import numpy as np
from numpy.testing import assert_
import numpy.testing as npt
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import minimum_spanning_tree
def test_minimum_spanning_tree():
# Create a graph with two connected components.
graph = [[0,1,0,0,0],
[1,0,0,0,0],
[0,0,0,8,5],
[0,0,8,0,1],
[0,0,5,1,0]]
graph = np.asarray(graph)
# Create the expected spanning tree.
expected = [[0,1,0,0,0],
[0,0,0,0,0],
[0,0,0,0,5],
[0,0,0,0,1],
[0,0,0,0,0]]
expected = np.asarray(expected)
# Ensure minimum spanning tree code gives this expected output.
csgraph = csr_matrix(graph)
mintree = minimum_spanning_tree(csgraph)
npt.assert_array_equal(mintree.todense(), expected,
'Incorrect spanning tree found.')
# Ensure that the original graph was not modified.
npt.assert_array_equal(csgraph.todense(), graph,
'Original graph was modified.')
# Now let the algorithm modify the csgraph in place.
mintree = minimum_spanning_tree(csgraph, overwrite=True)
npt.assert_array_equal(mintree.todense(), expected,
'Graph was not properly modified to contain MST.')
np.random.seed(1234)
for N in (5, 10, 15, 20):
# Create a random graph.
graph = 3 + np.random.random((N, N))
csgraph = csr_matrix(graph)
# The spanning tree has at most N - 1 edges.
mintree = minimum_spanning_tree(csgraph)
assert_(mintree.nnz < N)
# Set the sub diagonal to 1 to create a known spanning tree.
idx = np.arange(N-1)
graph[idx,idx+1] = 1
csgraph = csr_matrix(graph)
mintree = minimum_spanning_tree(csgraph)
# We expect to see this pattern in the spanning tree and otherwise
# have this zero.
expected = np.zeros((N, N))
expected[idx, idx+1] = 1
npt.assert_array_equal(mintree.todense(), expected,
'Incorrect spanning tree found.')

View file

@ -0,0 +1,68 @@
import numpy as np
from numpy.testing import assert_array_almost_equal
from scipy.sparse.csgraph import (breadth_first_tree, depth_first_tree,
csgraph_to_dense, csgraph_from_dense)
def test_graph_breadth_first():
csgraph = np.array([[0, 1, 2, 0, 0],
[1, 0, 0, 0, 3],
[2, 0, 0, 7, 0],
[0, 0, 7, 0, 1],
[0, 3, 0, 1, 0]])
csgraph = csgraph_from_dense(csgraph, null_value=0)
bfirst = np.array([[0, 1, 2, 0, 0],
[0, 0, 0, 0, 3],
[0, 0, 0, 7, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
for directed in [True, False]:
bfirst_test = breadth_first_tree(csgraph, 0, directed)
assert_array_almost_equal(csgraph_to_dense(bfirst_test),
bfirst)
def test_graph_depth_first():
csgraph = np.array([[0, 1, 2, 0, 0],
[1, 0, 0, 0, 3],
[2, 0, 0, 7, 0],
[0, 0, 7, 0, 1],
[0, 3, 0, 1, 0]])
csgraph = csgraph_from_dense(csgraph, null_value=0)
dfirst = np.array([[0, 1, 0, 0, 0],
[0, 0, 0, 0, 3],
[0, 0, 0, 0, 0],
[0, 0, 7, 0, 0],
[0, 0, 0, 1, 0]])
for directed in [True, False]:
dfirst_test = depth_first_tree(csgraph, 0, directed)
assert_array_almost_equal(csgraph_to_dense(dfirst_test),
dfirst)
def test_graph_breadth_first_trivial_graph():
csgraph = np.array([[0]])
csgraph = csgraph_from_dense(csgraph, null_value=0)
bfirst = np.array([[0]])
for directed in [True, False]:
bfirst_test = breadth_first_tree(csgraph, 0, directed)
assert_array_almost_equal(csgraph_to_dense(bfirst_test),
bfirst)
def test_graph_depth_first_trivial_graph():
csgraph = np.array([[0]])
csgraph = csgraph_from_dense(csgraph, null_value=0)
bfirst = np.array([[0]])
for directed in [True, False]:
bfirst_test = depth_first_tree(csgraph, 0, directed)
assert_array_almost_equal(csgraph_to_dense(bfirst_test),
bfirst)