Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
445
venv/Lib/site-packages/scipy/optimize/tests/test_nonlin.py
Normal file
445
venv/Lib/site-packages/scipy/optimize/tests/test_nonlin.py
Normal file
|
@ -0,0 +1,445 @@
|
|||
""" Unit tests for nonlinear solvers
|
||||
Author: Ondrej Certik
|
||||
May 2007
|
||||
"""
|
||||
from numpy.testing import assert_
|
||||
import pytest
|
||||
|
||||
from scipy.optimize import nonlin, root
|
||||
from numpy import diag, dot
|
||||
from numpy.linalg import inv
|
||||
import numpy as np
|
||||
|
||||
from .test_minpack import pressure_network
|
||||
|
||||
SOLVERS = {'anderson': nonlin.anderson, 'diagbroyden': nonlin.diagbroyden,
|
||||
'linearmixing': nonlin.linearmixing, 'excitingmixing': nonlin.excitingmixing,
|
||||
'broyden1': nonlin.broyden1, 'broyden2': nonlin.broyden2,
|
||||
'krylov': nonlin.newton_krylov}
|
||||
MUST_WORK = {'anderson': nonlin.anderson, 'broyden1': nonlin.broyden1,
|
||||
'broyden2': nonlin.broyden2, 'krylov': nonlin.newton_krylov}
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# Test problems
|
||||
#-------------------------------------------------------------------------------
|
||||
|
||||
|
||||
def F(x):
|
||||
x = np.asarray(x).T
|
||||
d = diag([3,2,1.5,1,0.5])
|
||||
c = 0.01
|
||||
f = -d @ x - c * float(x.T @ x) * x
|
||||
return f
|
||||
|
||||
|
||||
F.xin = [1,1,1,1,1]
|
||||
F.KNOWN_BAD = {}
|
||||
|
||||
|
||||
def F2(x):
|
||||
return x
|
||||
|
||||
|
||||
F2.xin = [1,2,3,4,5,6]
|
||||
F2.KNOWN_BAD = {'linearmixing': nonlin.linearmixing,
|
||||
'excitingmixing': nonlin.excitingmixing}
|
||||
|
||||
|
||||
def F2_lucky(x):
|
||||
return x
|
||||
|
||||
|
||||
F2_lucky.xin = [0,0,0,0,0,0]
|
||||
F2_lucky.KNOWN_BAD = {}
|
||||
|
||||
|
||||
def F3(x):
|
||||
A = np.array([[-2, 1, 0.], [1, -2, 1], [0, 1, -2]])
|
||||
b = np.array([1, 2, 3.])
|
||||
return A @ x - b
|
||||
|
||||
|
||||
F3.xin = [1,2,3]
|
||||
F3.KNOWN_BAD = {}
|
||||
|
||||
|
||||
def F4_powell(x):
|
||||
A = 1e4
|
||||
return [A*x[0]*x[1] - 1, np.exp(-x[0]) + np.exp(-x[1]) - (1 + 1/A)]
|
||||
|
||||
|
||||
F4_powell.xin = [-1, -2]
|
||||
F4_powell.KNOWN_BAD = {'linearmixing': nonlin.linearmixing,
|
||||
'excitingmixing': nonlin.excitingmixing,
|
||||
'diagbroyden': nonlin.diagbroyden}
|
||||
|
||||
|
||||
def F5(x):
|
||||
return pressure_network(x, 4, np.array([.5, .5, .5, .5]))
|
||||
|
||||
|
||||
F5.xin = [2., 0, 2, 0]
|
||||
F5.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing,
|
||||
'linearmixing': nonlin.linearmixing,
|
||||
'diagbroyden': nonlin.diagbroyden}
|
||||
|
||||
|
||||
def F6(x):
|
||||
x1, x2 = x
|
||||
J0 = np.array([[-4.256, 14.7],
|
||||
[0.8394989, 0.59964207]])
|
||||
v = np.array([(x1 + 3) * (x2**5 - 7) + 3*6,
|
||||
np.sin(x2 * np.exp(x1) - 1)])
|
||||
return -np.linalg.solve(J0, v)
|
||||
|
||||
|
||||
F6.xin = [-0.5, 1.4]
|
||||
F6.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing,
|
||||
'linearmixing': nonlin.linearmixing,
|
||||
'diagbroyden': nonlin.diagbroyden}
|
||||
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# Tests
|
||||
#-------------------------------------------------------------------------------
|
||||
|
||||
|
||||
class TestNonlin(object):
|
||||
"""
|
||||
Check the Broyden methods for a few test problems.
|
||||
|
||||
broyden1, broyden2, and newton_krylov must succeed for
|
||||
all functions. Some of the others don't -- tests in KNOWN_BAD are skipped.
|
||||
|
||||
"""
|
||||
|
||||
def _check_nonlin_func(self, f, func, f_tol=1e-2):
|
||||
x = func(f, f.xin, f_tol=f_tol, maxiter=200, verbose=0)
|
||||
assert_(np.absolute(f(x)).max() < f_tol)
|
||||
|
||||
def _check_root(self, f, method, f_tol=1e-2):
|
||||
res = root(f, f.xin, method=method,
|
||||
options={'ftol': f_tol, 'maxiter': 200, 'disp': 0})
|
||||
assert_(np.absolute(res.fun).max() < f_tol)
|
||||
|
||||
@pytest.mark.xfail
|
||||
def _check_func_fail(self, *a, **kw):
|
||||
pass
|
||||
|
||||
def test_problem_nonlin(self):
|
||||
for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]:
|
||||
for func in SOLVERS.values():
|
||||
if func in f.KNOWN_BAD.values():
|
||||
if func in MUST_WORK.values():
|
||||
self._check_func_fail(f, func)
|
||||
continue
|
||||
self._check_nonlin_func(f, func)
|
||||
|
||||
def test_tol_norm_called(self):
|
||||
# Check that supplying tol_norm keyword to nonlin_solve works
|
||||
self._tol_norm_used = False
|
||||
|
||||
def local_norm_func(x):
|
||||
self._tol_norm_used = True
|
||||
return np.absolute(x).max()
|
||||
|
||||
nonlin.newton_krylov(F, F.xin, f_tol=1e-2, maxiter=200, verbose=0,
|
||||
tol_norm=local_norm_func)
|
||||
assert_(self._tol_norm_used)
|
||||
|
||||
def test_problem_root(self):
|
||||
for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]:
|
||||
for meth in SOLVERS:
|
||||
if meth in f.KNOWN_BAD:
|
||||
if meth in MUST_WORK:
|
||||
self._check_func_fail(f, meth)
|
||||
continue
|
||||
self._check_root(f, meth)
|
||||
|
||||
|
||||
class TestSecant(object):
|
||||
"""Check that some Jacobian approximations satisfy the secant condition"""
|
||||
|
||||
xs = [np.array([1,2,3,4,5], float),
|
||||
np.array([2,3,4,5,1], float),
|
||||
np.array([3,4,5,1,2], float),
|
||||
np.array([4,5,1,2,3], float),
|
||||
np.array([9,1,9,1,3], float),
|
||||
np.array([0,1,9,1,3], float),
|
||||
np.array([5,5,7,1,1], float),
|
||||
np.array([1,2,7,5,1], float),]
|
||||
fs = [x**2 - 1 for x in xs]
|
||||
|
||||
def _check_secant(self, jac_cls, npoints=1, **kw):
|
||||
"""
|
||||
Check that the given Jacobian approximation satisfies secant
|
||||
conditions for last `npoints` points.
|
||||
"""
|
||||
jac = jac_cls(**kw)
|
||||
jac.setup(self.xs[0], self.fs[0], None)
|
||||
for j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
|
||||
jac.update(x, f)
|
||||
|
||||
for k in range(min(npoints, j+1)):
|
||||
dx = self.xs[j-k+1] - self.xs[j-k]
|
||||
df = self.fs[j-k+1] - self.fs[j-k]
|
||||
assert_(np.allclose(dx, jac.solve(df)))
|
||||
|
||||
# Check that the `npoints` secant bound is strict
|
||||
if j >= npoints:
|
||||
dx = self.xs[j-npoints+1] - self.xs[j-npoints]
|
||||
df = self.fs[j-npoints+1] - self.fs[j-npoints]
|
||||
assert_(not np.allclose(dx, jac.solve(df)))
|
||||
|
||||
def test_broyden1(self):
|
||||
self._check_secant(nonlin.BroydenFirst)
|
||||
|
||||
def test_broyden2(self):
|
||||
self._check_secant(nonlin.BroydenSecond)
|
||||
|
||||
def test_broyden1_update(self):
|
||||
# Check that BroydenFirst update works as for a dense matrix
|
||||
jac = nonlin.BroydenFirst(alpha=0.1)
|
||||
jac.setup(self.xs[0], self.fs[0], None)
|
||||
|
||||
B = np.identity(5) * (-1/0.1)
|
||||
|
||||
for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
|
||||
df = f - self.fs[last_j]
|
||||
dx = x - self.xs[last_j]
|
||||
B += (df - dot(B, dx))[:,None] * dx[None,:] / dot(dx, dx)
|
||||
jac.update(x, f)
|
||||
assert_(np.allclose(jac.todense(), B, rtol=1e-10, atol=1e-13))
|
||||
|
||||
def test_broyden2_update(self):
|
||||
# Check that BroydenSecond update works as for a dense matrix
|
||||
jac = nonlin.BroydenSecond(alpha=0.1)
|
||||
jac.setup(self.xs[0], self.fs[0], None)
|
||||
|
||||
H = np.identity(5) * (-0.1)
|
||||
|
||||
for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
|
||||
df = f - self.fs[last_j]
|
||||
dx = x - self.xs[last_j]
|
||||
H += (dx - dot(H, df))[:,None] * df[None,:] / dot(df, df)
|
||||
jac.update(x, f)
|
||||
assert_(np.allclose(jac.todense(), inv(H), rtol=1e-10, atol=1e-13))
|
||||
|
||||
def test_anderson(self):
|
||||
# Anderson mixing (with w0=0) satisfies secant conditions
|
||||
# for the last M iterates, see [Ey]_
|
||||
#
|
||||
# .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996).
|
||||
self._check_secant(nonlin.Anderson, M=3, w0=0, npoints=3)
|
||||
|
||||
|
||||
class TestLinear(object):
|
||||
"""Solve a linear equation;
|
||||
some methods find the exact solution in a finite number of steps"""
|
||||
|
||||
def _check(self, jac, N, maxiter, complex=False, **kw):
|
||||
np.random.seed(123)
|
||||
|
||||
A = np.random.randn(N, N)
|
||||
if complex:
|
||||
A = A + 1j*np.random.randn(N, N)
|
||||
b = np.random.randn(N)
|
||||
if complex:
|
||||
b = b + 1j*np.random.randn(N)
|
||||
|
||||
def func(x):
|
||||
return dot(A, x) - b
|
||||
|
||||
sol = nonlin.nonlin_solve(func, np.zeros(N), jac, maxiter=maxiter,
|
||||
f_tol=1e-6, line_search=None, verbose=0)
|
||||
assert_(np.allclose(dot(A, sol), b, atol=1e-6))
|
||||
|
||||
def test_broyden1(self):
|
||||
# Broyden methods solve linear systems exactly in 2*N steps
|
||||
self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, False)
|
||||
self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, True)
|
||||
|
||||
def test_broyden2(self):
|
||||
# Broyden methods solve linear systems exactly in 2*N steps
|
||||
self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, False)
|
||||
self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, True)
|
||||
|
||||
def test_anderson(self):
|
||||
# Anderson is rather similar to Broyden, if given enough storage space
|
||||
self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, False)
|
||||
self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, True)
|
||||
|
||||
def test_krylov(self):
|
||||
# Krylov methods solve linear systems exactly in N inner steps
|
||||
self._check(nonlin.KrylovJacobian, 20, 2, False, inner_m=10)
|
||||
self._check(nonlin.KrylovJacobian, 20, 2, True, inner_m=10)
|
||||
|
||||
|
||||
class TestJacobianDotSolve(object):
|
||||
"""Check that solve/dot methods in Jacobian approximations are consistent"""
|
||||
|
||||
def _func(self, x):
|
||||
return x**2 - 1 + np.dot(self.A, x)
|
||||
|
||||
def _check_dot(self, jac_cls, complex=False, tol=1e-6, **kw):
|
||||
np.random.seed(123)
|
||||
|
||||
N = 7
|
||||
|
||||
def rand(*a):
|
||||
q = np.random.rand(*a)
|
||||
if complex:
|
||||
q = q + 1j*np.random.rand(*a)
|
||||
return q
|
||||
|
||||
def assert_close(a, b, msg):
|
||||
d = abs(a - b).max()
|
||||
f = tol + abs(b).max()*tol
|
||||
if d > f:
|
||||
raise AssertionError('%s: err %g' % (msg, d))
|
||||
|
||||
self.A = rand(N, N)
|
||||
|
||||
# initialize
|
||||
x0 = np.random.rand(N)
|
||||
jac = jac_cls(**kw)
|
||||
jac.setup(x0, self._func(x0), self._func)
|
||||
|
||||
# check consistency
|
||||
for k in range(2*N):
|
||||
v = rand(N)
|
||||
|
||||
if hasattr(jac, '__array__'):
|
||||
Jd = np.array(jac)
|
||||
if hasattr(jac, 'solve'):
|
||||
Gv = jac.solve(v)
|
||||
Gv2 = np.linalg.solve(Jd, v)
|
||||
assert_close(Gv, Gv2, 'solve vs array')
|
||||
if hasattr(jac, 'rsolve'):
|
||||
Gv = jac.rsolve(v)
|
||||
Gv2 = np.linalg.solve(Jd.T.conj(), v)
|
||||
assert_close(Gv, Gv2, 'rsolve vs array')
|
||||
if hasattr(jac, 'matvec'):
|
||||
Jv = jac.matvec(v)
|
||||
Jv2 = np.dot(Jd, v)
|
||||
assert_close(Jv, Jv2, 'dot vs array')
|
||||
if hasattr(jac, 'rmatvec'):
|
||||
Jv = jac.rmatvec(v)
|
||||
Jv2 = np.dot(Jd.T.conj(), v)
|
||||
assert_close(Jv, Jv2, 'rmatvec vs array')
|
||||
|
||||
if hasattr(jac, 'matvec') and hasattr(jac, 'solve'):
|
||||
Jv = jac.matvec(v)
|
||||
Jv2 = jac.solve(jac.matvec(Jv))
|
||||
assert_close(Jv, Jv2, 'dot vs solve')
|
||||
|
||||
if hasattr(jac, 'rmatvec') and hasattr(jac, 'rsolve'):
|
||||
Jv = jac.rmatvec(v)
|
||||
Jv2 = jac.rmatvec(jac.rsolve(Jv))
|
||||
assert_close(Jv, Jv2, 'rmatvec vs rsolve')
|
||||
|
||||
x = rand(N)
|
||||
jac.update(x, self._func(x))
|
||||
|
||||
def test_broyden1(self):
|
||||
self._check_dot(nonlin.BroydenFirst, complex=False)
|
||||
self._check_dot(nonlin.BroydenFirst, complex=True)
|
||||
|
||||
def test_broyden2(self):
|
||||
self._check_dot(nonlin.BroydenSecond, complex=False)
|
||||
self._check_dot(nonlin.BroydenSecond, complex=True)
|
||||
|
||||
def test_anderson(self):
|
||||
self._check_dot(nonlin.Anderson, complex=False)
|
||||
self._check_dot(nonlin.Anderson, complex=True)
|
||||
|
||||
def test_diagbroyden(self):
|
||||
self._check_dot(nonlin.DiagBroyden, complex=False)
|
||||
self._check_dot(nonlin.DiagBroyden, complex=True)
|
||||
|
||||
def test_linearmixing(self):
|
||||
self._check_dot(nonlin.LinearMixing, complex=False)
|
||||
self._check_dot(nonlin.LinearMixing, complex=True)
|
||||
|
||||
def test_excitingmixing(self):
|
||||
self._check_dot(nonlin.ExcitingMixing, complex=False)
|
||||
self._check_dot(nonlin.ExcitingMixing, complex=True)
|
||||
|
||||
def test_krylov(self):
|
||||
self._check_dot(nonlin.KrylovJacobian, complex=False, tol=1e-3)
|
||||
self._check_dot(nonlin.KrylovJacobian, complex=True, tol=1e-3)
|
||||
|
||||
|
||||
class TestNonlinOldTests(object):
|
||||
""" Test case for a simple constrained entropy maximization problem
|
||||
(the machine translation example of Berger et al in
|
||||
Computational Linguistics, vol 22, num 1, pp 39--72, 1996.)
|
||||
"""
|
||||
|
||||
def test_broyden1(self):
|
||||
x = nonlin.broyden1(F,F.xin,iter=12,alpha=1)
|
||||
assert_(nonlin.norm(x) < 1e-9)
|
||||
assert_(nonlin.norm(F(x)) < 1e-9)
|
||||
|
||||
def test_broyden2(self):
|
||||
x = nonlin.broyden2(F,F.xin,iter=12,alpha=1)
|
||||
assert_(nonlin.norm(x) < 1e-9)
|
||||
assert_(nonlin.norm(F(x)) < 1e-9)
|
||||
|
||||
def test_anderson(self):
|
||||
x = nonlin.anderson(F,F.xin,iter=12,alpha=0.03,M=5)
|
||||
assert_(nonlin.norm(x) < 0.33)
|
||||
|
||||
def test_linearmixing(self):
|
||||
x = nonlin.linearmixing(F,F.xin,iter=60,alpha=0.5)
|
||||
assert_(nonlin.norm(x) < 1e-7)
|
||||
assert_(nonlin.norm(F(x)) < 1e-7)
|
||||
|
||||
def test_exciting(self):
|
||||
x = nonlin.excitingmixing(F,F.xin,iter=20,alpha=0.5)
|
||||
assert_(nonlin.norm(x) < 1e-5)
|
||||
assert_(nonlin.norm(F(x)) < 1e-5)
|
||||
|
||||
def test_diagbroyden(self):
|
||||
x = nonlin.diagbroyden(F,F.xin,iter=11,alpha=1)
|
||||
assert_(nonlin.norm(x) < 1e-8)
|
||||
assert_(nonlin.norm(F(x)) < 1e-8)
|
||||
|
||||
def test_root_broyden1(self):
|
||||
res = root(F, F.xin, method='broyden1',
|
||||
options={'nit': 12, 'jac_options': {'alpha': 1}})
|
||||
assert_(nonlin.norm(res.x) < 1e-9)
|
||||
assert_(nonlin.norm(res.fun) < 1e-9)
|
||||
|
||||
def test_root_broyden2(self):
|
||||
res = root(F, F.xin, method='broyden2',
|
||||
options={'nit': 12, 'jac_options': {'alpha': 1}})
|
||||
assert_(nonlin.norm(res.x) < 1e-9)
|
||||
assert_(nonlin.norm(res.fun) < 1e-9)
|
||||
|
||||
def test_root_anderson(self):
|
||||
res = root(F, F.xin, method='anderson',
|
||||
options={'nit': 12,
|
||||
'jac_options': {'alpha': 0.03, 'M': 5}})
|
||||
assert_(nonlin.norm(res.x) < 0.33)
|
||||
|
||||
def test_root_linearmixing(self):
|
||||
res = root(F, F.xin, method='linearmixing',
|
||||
options={'nit': 60,
|
||||
'jac_options': {'alpha': 0.5}})
|
||||
assert_(nonlin.norm(res.x) < 1e-7)
|
||||
assert_(nonlin.norm(res.fun) < 1e-7)
|
||||
|
||||
def test_root_excitingmixing(self):
|
||||
res = root(F, F.xin, method='excitingmixing',
|
||||
options={'nit': 20,
|
||||
'jac_options': {'alpha': 0.5}})
|
||||
assert_(nonlin.norm(res.x) < 1e-5)
|
||||
assert_(nonlin.norm(res.fun) < 1e-5)
|
||||
|
||||
def test_root_diagbroyden(self):
|
||||
res = root(F, F.xin, method='diagbroyden',
|
||||
options={'nit': 11,
|
||||
'jac_options': {'alpha': 1}})
|
||||
assert_(nonlin.norm(res.x) < 1e-8)
|
||||
assert_(nonlin.norm(res.fun) < 1e-8)
|
Loading…
Add table
Add a link
Reference in a new issue