Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
553
venv/Lib/site-packages/scipy/optimize/slsqp.py
Normal file
553
venv/Lib/site-packages/scipy/optimize/slsqp.py
Normal file
|
@ -0,0 +1,553 @@
|
|||
"""
|
||||
This module implements the Sequential Least Squares Programming optimization
|
||||
algorithm (SLSQP), originally developed by Dieter Kraft.
|
||||
See http://www.netlib.org/toms/733
|
||||
|
||||
Functions
|
||||
---------
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
approx_jacobian
|
||||
fmin_slsqp
|
||||
|
||||
"""
|
||||
|
||||
__all__ = ['approx_jacobian', 'fmin_slsqp']
|
||||
|
||||
import numpy as np
|
||||
from scipy.optimize._slsqp import slsqp
|
||||
from numpy import (zeros, array, linalg, append, asfarray, concatenate, finfo,
|
||||
sqrt, vstack, exp, inf, isfinite, atleast_1d)
|
||||
from .optimize import (OptimizeResult, _check_unknown_options,
|
||||
_prepare_scalar_function)
|
||||
from ._numdiff import approx_derivative
|
||||
from ._constraints import old_bound_to_new
|
||||
|
||||
|
||||
__docformat__ = "restructuredtext en"
|
||||
|
||||
_epsilon = sqrt(finfo(float).eps)
|
||||
|
||||
|
||||
def approx_jacobian(x, func, epsilon, *args):
|
||||
"""
|
||||
Approximate the Jacobian matrix of a callable function.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The state vector at which to compute the Jacobian matrix.
|
||||
func : callable f(x,*args)
|
||||
The vector-valued function.
|
||||
epsilon : float
|
||||
The perturbation used to determine the partial derivatives.
|
||||
args : sequence
|
||||
Additional arguments passed to func.
|
||||
|
||||
Returns
|
||||
-------
|
||||
An array of dimensions ``(lenf, lenx)`` where ``lenf`` is the length
|
||||
of the outputs of `func`, and ``lenx`` is the number of elements in
|
||||
`x`.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The approximation is done using forward differences.
|
||||
|
||||
"""
|
||||
# approx_derivative returns (m, n) == (lenf, lenx)
|
||||
jac = approx_derivative(func, x, method='2-point', abs_step=epsilon,
|
||||
args=args)
|
||||
# if func returns a scalar jac.shape will be (lenx,). Make sure
|
||||
# it's at least a 2D array.
|
||||
return np.atleast_2d(jac)
|
||||
|
||||
|
||||
def fmin_slsqp(func, x0, eqcons=(), f_eqcons=None, ieqcons=(), f_ieqcons=None,
|
||||
bounds=(), fprime=None, fprime_eqcons=None,
|
||||
fprime_ieqcons=None, args=(), iter=100, acc=1.0E-6,
|
||||
iprint=1, disp=None, full_output=0, epsilon=_epsilon,
|
||||
callback=None):
|
||||
"""
|
||||
Minimize a function using Sequential Least Squares Programming
|
||||
|
||||
Python interface function for the SLSQP Optimization subroutine
|
||||
originally implemented by Dieter Kraft.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable f(x,*args)
|
||||
Objective function. Must return a scalar.
|
||||
x0 : 1-D ndarray of float
|
||||
Initial guess for the independent variable(s).
|
||||
eqcons : list, optional
|
||||
A list of functions of length n such that
|
||||
eqcons[j](x,*args) == 0.0 in a successfully optimized
|
||||
problem.
|
||||
f_eqcons : callable f(x,*args), optional
|
||||
Returns a 1-D array in which each element must equal 0.0 in a
|
||||
successfully optimized problem. If f_eqcons is specified,
|
||||
eqcons is ignored.
|
||||
ieqcons : list, optional
|
||||
A list of functions of length n such that
|
||||
ieqcons[j](x,*args) >= 0.0 in a successfully optimized
|
||||
problem.
|
||||
f_ieqcons : callable f(x,*args), optional
|
||||
Returns a 1-D ndarray in which each element must be greater or
|
||||
equal to 0.0 in a successfully optimized problem. If
|
||||
f_ieqcons is specified, ieqcons is ignored.
|
||||
bounds : list, optional
|
||||
A list of tuples specifying the lower and upper bound
|
||||
for each independent variable [(xl0, xu0),(xl1, xu1),...]
|
||||
Infinite values will be interpreted as large floating values.
|
||||
fprime : callable `f(x,*args)`, optional
|
||||
A function that evaluates the partial derivatives of func.
|
||||
fprime_eqcons : callable `f(x,*args)`, optional
|
||||
A function of the form `f(x, *args)` that returns the m by n
|
||||
array of equality constraint normals. If not provided,
|
||||
the normals will be approximated. The array returned by
|
||||
fprime_eqcons should be sized as ( len(eqcons), len(x0) ).
|
||||
fprime_ieqcons : callable `f(x,*args)`, optional
|
||||
A function of the form `f(x, *args)` that returns the m by n
|
||||
array of inequality constraint normals. If not provided,
|
||||
the normals will be approximated. The array returned by
|
||||
fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ).
|
||||
args : sequence, optional
|
||||
Additional arguments passed to func and fprime.
|
||||
iter : int, optional
|
||||
The maximum number of iterations.
|
||||
acc : float, optional
|
||||
Requested accuracy.
|
||||
iprint : int, optional
|
||||
The verbosity of fmin_slsqp :
|
||||
|
||||
* iprint <= 0 : Silent operation
|
||||
* iprint == 1 : Print summary upon completion (default)
|
||||
* iprint >= 2 : Print status of each iterate and summary
|
||||
disp : int, optional
|
||||
Overrides the iprint interface (preferred).
|
||||
full_output : bool, optional
|
||||
If False, return only the minimizer of func (default).
|
||||
Otherwise, output final objective function and summary
|
||||
information.
|
||||
epsilon : float, optional
|
||||
The step size for finite-difference derivative estimates.
|
||||
callback : callable, optional
|
||||
Called after each iteration, as ``callback(x)``, where ``x`` is the
|
||||
current parameter vector.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray of float
|
||||
The final minimizer of func.
|
||||
fx : ndarray of float, if full_output is true
|
||||
The final value of the objective function.
|
||||
its : int, if full_output is true
|
||||
The number of iterations.
|
||||
imode : int, if full_output is true
|
||||
The exit mode from the optimizer (see below).
|
||||
smode : string, if full_output is true
|
||||
Message describing the exit mode from the optimizer.
|
||||
|
||||
See also
|
||||
--------
|
||||
minimize: Interface to minimization algorithms for multivariate
|
||||
functions. See the 'SLSQP' `method` in particular.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Exit modes are defined as follows ::
|
||||
|
||||
-1 : Gradient evaluation required (g & a)
|
||||
0 : Optimization terminated successfully
|
||||
1 : Function evaluation required (f & c)
|
||||
2 : More equality constraints than independent variables
|
||||
3 : More than 3*n iterations in LSQ subproblem
|
||||
4 : Inequality constraints incompatible
|
||||
5 : Singular matrix E in LSQ subproblem
|
||||
6 : Singular matrix C in LSQ subproblem
|
||||
7 : Rank-deficient equality constraint subproblem HFTI
|
||||
8 : Positive directional derivative for linesearch
|
||||
9 : Iteration limit reached
|
||||
|
||||
Examples
|
||||
--------
|
||||
Examples are given :ref:`in the tutorial <tutorial-sqlsp>`.
|
||||
|
||||
"""
|
||||
if disp is not None:
|
||||
iprint = disp
|
||||
|
||||
opts = {'maxiter': iter,
|
||||
'ftol': acc,
|
||||
'iprint': iprint,
|
||||
'disp': iprint != 0,
|
||||
'eps': epsilon,
|
||||
'callback': callback}
|
||||
|
||||
# Build the constraints as a tuple of dictionaries
|
||||
cons = ()
|
||||
# 1. constraints of the 1st kind (eqcons, ieqcons); no Jacobian; take
|
||||
# the same extra arguments as the objective function.
|
||||
cons += tuple({'type': 'eq', 'fun': c, 'args': args} for c in eqcons)
|
||||
cons += tuple({'type': 'ineq', 'fun': c, 'args': args} for c in ieqcons)
|
||||
# 2. constraints of the 2nd kind (f_eqcons, f_ieqcons) and their Jacobian
|
||||
# (fprime_eqcons, fprime_ieqcons); also take the same extra arguments
|
||||
# as the objective function.
|
||||
if f_eqcons:
|
||||
cons += ({'type': 'eq', 'fun': f_eqcons, 'jac': fprime_eqcons,
|
||||
'args': args}, )
|
||||
if f_ieqcons:
|
||||
cons += ({'type': 'ineq', 'fun': f_ieqcons, 'jac': fprime_ieqcons,
|
||||
'args': args}, )
|
||||
|
||||
res = _minimize_slsqp(func, x0, args, jac=fprime, bounds=bounds,
|
||||
constraints=cons, **opts)
|
||||
if full_output:
|
||||
return res['x'], res['fun'], res['nit'], res['status'], res['message']
|
||||
else:
|
||||
return res['x']
|
||||
|
||||
|
||||
def _minimize_slsqp(func, x0, args=(), jac=None, bounds=None,
|
||||
constraints=(),
|
||||
maxiter=100, ftol=1.0E-6, iprint=1, disp=False,
|
||||
eps=_epsilon, callback=None, finite_diff_rel_step=None,
|
||||
**unknown_options):
|
||||
"""
|
||||
Minimize a scalar function of one or more variables using Sequential
|
||||
Least Squares Programming (SLSQP).
|
||||
|
||||
Options
|
||||
-------
|
||||
ftol : float
|
||||
Precision goal for the value of f in the stopping criterion.
|
||||
eps : float
|
||||
Step size used for numerical approximation of the Jacobian.
|
||||
disp : bool
|
||||
Set to True to print convergence messages. If False,
|
||||
`verbosity` is ignored and set to 0.
|
||||
maxiter : int
|
||||
Maximum number of iterations.
|
||||
finite_diff_rel_step : None or array_like, optional
|
||||
If `jac in ['2-point', '3-point', 'cs']` the relative step size to
|
||||
use for numerical approximation of `jac`. The absolute step
|
||||
size is computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``,
|
||||
possibly adjusted to fit into the bounds. For ``method='3-point'``
|
||||
the sign of `h` is ignored. If None (default) then step is selected
|
||||
automatically.
|
||||
"""
|
||||
_check_unknown_options(unknown_options)
|
||||
iter = maxiter - 1
|
||||
acc = ftol
|
||||
epsilon = eps
|
||||
|
||||
if not disp:
|
||||
iprint = 0
|
||||
|
||||
# Constraints are triaged per type into a dictionary of tuples
|
||||
if isinstance(constraints, dict):
|
||||
constraints = (constraints, )
|
||||
|
||||
cons = {'eq': (), 'ineq': ()}
|
||||
for ic, con in enumerate(constraints):
|
||||
# check type
|
||||
try:
|
||||
ctype = con['type'].lower()
|
||||
except KeyError:
|
||||
raise KeyError('Constraint %d has no type defined.' % ic)
|
||||
except TypeError:
|
||||
raise TypeError('Constraints must be defined using a '
|
||||
'dictionary.')
|
||||
except AttributeError:
|
||||
raise TypeError("Constraint's type must be a string.")
|
||||
else:
|
||||
if ctype not in ['eq', 'ineq']:
|
||||
raise ValueError("Unknown constraint type '%s'." % con['type'])
|
||||
|
||||
# check function
|
||||
if 'fun' not in con:
|
||||
raise ValueError('Constraint %d has no function defined.' % ic)
|
||||
|
||||
# check Jacobian
|
||||
cjac = con.get('jac')
|
||||
if cjac is None:
|
||||
# approximate Jacobian function. The factory function is needed
|
||||
# to keep a reference to `fun`, see gh-4240.
|
||||
def cjac_factory(fun):
|
||||
def cjac(x, *args):
|
||||
if jac in ['2-point', '3-point', 'cs']:
|
||||
return approx_derivative(fun, x, method=jac, args=args,
|
||||
rel_step=finite_diff_rel_step)
|
||||
else:
|
||||
return approx_derivative(fun, x, method='2-point',
|
||||
abs_step=epsilon, args=args)
|
||||
|
||||
return cjac
|
||||
cjac = cjac_factory(con['fun'])
|
||||
|
||||
# update constraints' dictionary
|
||||
cons[ctype] += ({'fun': con['fun'],
|
||||
'jac': cjac,
|
||||
'args': con.get('args', ())}, )
|
||||
|
||||
exit_modes = {-1: "Gradient evaluation required (g & a)",
|
||||
0: "Optimization terminated successfully",
|
||||
1: "Function evaluation required (f & c)",
|
||||
2: "More equality constraints than independent variables",
|
||||
3: "More than 3*n iterations in LSQ subproblem",
|
||||
4: "Inequality constraints incompatible",
|
||||
5: "Singular matrix E in LSQ subproblem",
|
||||
6: "Singular matrix C in LSQ subproblem",
|
||||
7: "Rank-deficient equality constraint subproblem HFTI",
|
||||
8: "Positive directional derivative for linesearch",
|
||||
9: "Iteration limit reached"}
|
||||
|
||||
# Transform x0 into an array.
|
||||
x = asfarray(x0).flatten()
|
||||
|
||||
# SLSQP is sent 'old-style' bounds, 'new-style' bounds are required by
|
||||
# ScalarFunction
|
||||
if bounds is None or len(bounds) == 0:
|
||||
new_bounds = (-np.inf, np.inf)
|
||||
else:
|
||||
new_bounds = old_bound_to_new(bounds)
|
||||
|
||||
# clip the initial guess to bounds, otherwise ScalarFunction doesn't work
|
||||
x = np.clip(x, new_bounds[0], new_bounds[1])
|
||||
|
||||
# Set the parameters that SLSQP will need
|
||||
# meq, mieq: number of equality and inequality constraints
|
||||
meq = sum(map(len, [atleast_1d(c['fun'](x, *c['args']))
|
||||
for c in cons['eq']]))
|
||||
mieq = sum(map(len, [atleast_1d(c['fun'](x, *c['args']))
|
||||
for c in cons['ineq']]))
|
||||
# m = The total number of constraints
|
||||
m = meq + mieq
|
||||
# la = The number of constraints, or 1 if there are no constraints
|
||||
la = array([1, m]).max()
|
||||
# n = The number of independent variables
|
||||
n = len(x)
|
||||
|
||||
# Define the workspaces for SLSQP
|
||||
n1 = n + 1
|
||||
mineq = m - meq + n1 + n1
|
||||
len_w = (3*n1+m)*(n1+1)+(n1-meq+1)*(mineq+2) + 2*mineq+(n1+mineq)*(n1-meq) \
|
||||
+ 2*meq + n1 + ((n+1)*n)//2 + 2*m + 3*n + 3*n1 + 1
|
||||
len_jw = mineq
|
||||
w = zeros(len_w)
|
||||
jw = zeros(len_jw)
|
||||
|
||||
# Decompose bounds into xl and xu
|
||||
if bounds is None or len(bounds) == 0:
|
||||
xl = np.empty(n, dtype=float)
|
||||
xu = np.empty(n, dtype=float)
|
||||
xl.fill(np.nan)
|
||||
xu.fill(np.nan)
|
||||
else:
|
||||
bnds = array(bounds, float)
|
||||
if bnds.shape[0] != n:
|
||||
raise IndexError('SLSQP Error: the length of bounds is not '
|
||||
'compatible with that of x0.')
|
||||
|
||||
with np.errstate(invalid='ignore'):
|
||||
bnderr = bnds[:, 0] > bnds[:, 1]
|
||||
|
||||
if bnderr.any():
|
||||
raise ValueError('SLSQP Error: lb > ub in bounds %s.' %
|
||||
', '.join(str(b) for b in bnderr))
|
||||
xl, xu = bnds[:, 0], bnds[:, 1]
|
||||
|
||||
# Mark infinite bounds with nans; the Fortran code understands this
|
||||
infbnd = ~isfinite(bnds)
|
||||
xl[infbnd[:, 0]] = np.nan
|
||||
xu[infbnd[:, 1]] = np.nan
|
||||
|
||||
# ScalarFunction provides function and gradient evaluation
|
||||
sf = _prepare_scalar_function(func, x, jac=jac, args=args, epsilon=eps,
|
||||
finite_diff_rel_step=finite_diff_rel_step,
|
||||
bounds=new_bounds)
|
||||
|
||||
# Initialize the iteration counter and the mode value
|
||||
mode = array(0, int)
|
||||
acc = array(acc, float)
|
||||
majiter = array(iter, int)
|
||||
majiter_prev = 0
|
||||
|
||||
# Initialize internal SLSQP state variables
|
||||
alpha = array(0, float)
|
||||
f0 = array(0, float)
|
||||
gs = array(0, float)
|
||||
h1 = array(0, float)
|
||||
h2 = array(0, float)
|
||||
h3 = array(0, float)
|
||||
h4 = array(0, float)
|
||||
t = array(0, float)
|
||||
t0 = array(0, float)
|
||||
tol = array(0, float)
|
||||
iexact = array(0, int)
|
||||
incons = array(0, int)
|
||||
ireset = array(0, int)
|
||||
itermx = array(0, int)
|
||||
line = array(0, int)
|
||||
n1 = array(0, int)
|
||||
n2 = array(0, int)
|
||||
n3 = array(0, int)
|
||||
|
||||
# Print the header if iprint >= 2
|
||||
if iprint >= 2:
|
||||
print("%5s %5s %16s %16s" % ("NIT", "FC", "OBJFUN", "GNORM"))
|
||||
|
||||
# mode is zero on entry, so call objective, constraints and gradients
|
||||
# there should be no func evaluations here because it's cached from
|
||||
# ScalarFunction
|
||||
fx = sf.fun(x)
|
||||
try:
|
||||
fx = float(np.asarray(fx))
|
||||
except (TypeError, ValueError):
|
||||
raise ValueError("Objective function must return a scalar")
|
||||
g = append(sf.grad(x), 0.0)
|
||||
c = _eval_constraint(x, cons)
|
||||
a = _eval_con_normals(x, cons, la, n, m, meq, mieq)
|
||||
|
||||
while 1:
|
||||
# Call SLSQP
|
||||
slsqp(m, meq, x, xl, xu, fx, c, g, a, acc, majiter, mode, w, jw,
|
||||
alpha, f0, gs, h1, h2, h3, h4, t, t0, tol,
|
||||
iexact, incons, ireset, itermx, line,
|
||||
n1, n2, n3)
|
||||
|
||||
if mode == 1: # objective and constraint evaluation required
|
||||
fx = sf.fun(x)
|
||||
c = _eval_constraint(x, cons)
|
||||
|
||||
if mode == -1: # gradient evaluation required
|
||||
g = append(sf.grad(x), 0.0)
|
||||
a = _eval_con_normals(x, cons, la, n, m, meq, mieq)
|
||||
|
||||
if majiter > majiter_prev:
|
||||
# call callback if major iteration has incremented
|
||||
if callback is not None:
|
||||
callback(np.copy(x))
|
||||
|
||||
# Print the status of the current iterate if iprint > 2
|
||||
if iprint >= 2:
|
||||
print("%5i %5i % 16.6E % 16.6E" % (majiter, sf.nfev,
|
||||
fx, linalg.norm(g)))
|
||||
|
||||
# If exit mode is not -1 or 1, slsqp has completed
|
||||
if abs(mode) != 1:
|
||||
break
|
||||
|
||||
majiter_prev = int(majiter)
|
||||
|
||||
# Optimization loop complete. Print status if requested
|
||||
if iprint >= 1:
|
||||
print(exit_modes[int(mode)] + " (Exit mode " + str(mode) + ')')
|
||||
print(" Current function value:", fx)
|
||||
print(" Iterations:", majiter)
|
||||
print(" Function evaluations:", sf.nfev)
|
||||
print(" Gradient evaluations:", sf.ngev)
|
||||
|
||||
return OptimizeResult(x=x, fun=fx, jac=g[:-1], nit=int(majiter),
|
||||
nfev=sf.nfev, njev=sf.ngev, status=int(mode),
|
||||
message=exit_modes[int(mode)], success=(mode == 0))
|
||||
|
||||
|
||||
def _eval_constraint(x, cons):
|
||||
# Compute constraints
|
||||
if cons['eq']:
|
||||
c_eq = concatenate([atleast_1d(con['fun'](x, *con['args']))
|
||||
for con in cons['eq']])
|
||||
else:
|
||||
c_eq = zeros(0)
|
||||
|
||||
if cons['ineq']:
|
||||
c_ieq = concatenate([atleast_1d(con['fun'](x, *con['args']))
|
||||
for con in cons['ineq']])
|
||||
else:
|
||||
c_ieq = zeros(0)
|
||||
|
||||
# Now combine c_eq and c_ieq into a single matrix
|
||||
c = concatenate((c_eq, c_ieq))
|
||||
return c
|
||||
|
||||
|
||||
def _eval_con_normals(x, cons, la, n, m, meq, mieq):
|
||||
# Compute the normals of the constraints
|
||||
if cons['eq']:
|
||||
a_eq = vstack([con['jac'](x, *con['args'])
|
||||
for con in cons['eq']])
|
||||
else: # no equality constraint
|
||||
a_eq = zeros((meq, n))
|
||||
|
||||
if cons['ineq']:
|
||||
a_ieq = vstack([con['jac'](x, *con['args'])
|
||||
for con in cons['ineq']])
|
||||
else: # no inequality constraint
|
||||
a_ieq = zeros((mieq, n))
|
||||
|
||||
# Now combine a_eq and a_ieq into a single a matrix
|
||||
if m == 0: # no constraints
|
||||
a = zeros((la, n))
|
||||
else:
|
||||
a = vstack((a_eq, a_ieq))
|
||||
a = concatenate((a, zeros([la, 1])), 1)
|
||||
|
||||
return a
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# objective function
|
||||
def fun(x, r=[4, 2, 4, 2, 1]):
|
||||
""" Objective function """
|
||||
return exp(x[0]) * (r[0] * x[0]**2 + r[1] * x[1]**2 +
|
||||
r[2] * x[0] * x[1] + r[3] * x[1] +
|
||||
r[4])
|
||||
|
||||
# bounds
|
||||
bnds = array([[-inf]*2, [inf]*2]).T
|
||||
bnds[:, 0] = [0.1, 0.2]
|
||||
|
||||
# constraints
|
||||
def feqcon(x, b=1):
|
||||
""" Equality constraint """
|
||||
return array([x[0]**2 + x[1] - b])
|
||||
|
||||
def jeqcon(x, b=1):
|
||||
""" Jacobian of equality constraint """
|
||||
return array([[2*x[0], 1]])
|
||||
|
||||
def fieqcon(x, c=10):
|
||||
""" Inequality constraint """
|
||||
return array([x[0] * x[1] + c])
|
||||
|
||||
def jieqcon(x, c=10):
|
||||
""" Jacobian of inequality constraint """
|
||||
return array([[1, 1]])
|
||||
|
||||
# constraints dictionaries
|
||||
cons = ({'type': 'eq', 'fun': feqcon, 'jac': jeqcon, 'args': (1, )},
|
||||
{'type': 'ineq', 'fun': fieqcon, 'jac': jieqcon, 'args': (10,)})
|
||||
|
||||
# Bounds constraint problem
|
||||
print(' Bounds constraints '.center(72, '-'))
|
||||
print(' * fmin_slsqp')
|
||||
x, f = fmin_slsqp(fun, array([-1, 1]), bounds=bnds, disp=1,
|
||||
full_output=True)[:2]
|
||||
print(' * _minimize_slsqp')
|
||||
res = _minimize_slsqp(fun, array([-1, 1]), bounds=bnds,
|
||||
**{'disp': True})
|
||||
|
||||
# Equality and inequality constraints problem
|
||||
print(' Equality and inequality constraints '.center(72, '-'))
|
||||
print(' * fmin_slsqp')
|
||||
x, f = fmin_slsqp(fun, array([-1, 1]),
|
||||
f_eqcons=feqcon, fprime_eqcons=jeqcon,
|
||||
f_ieqcons=fieqcon, fprime_ieqcons=jieqcon,
|
||||
disp=1, full_output=True)[:2]
|
||||
print(' * _minimize_slsqp')
|
||||
res = _minimize_slsqp(fun, array([-1, 1]), constraints=cons,
|
||||
**{'disp': True})
|
Loading…
Add table
Add a link
Reference in a new issue