Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
122
venv/Lib/site-packages/scipy/optimize/_trustregion_dogleg.py
Normal file
122
venv/Lib/site-packages/scipy/optimize/_trustregion_dogleg.py
Normal file
|
@ -0,0 +1,122 @@
|
|||
"""Dog-leg trust-region optimization."""
|
||||
import numpy as np
|
||||
import scipy.linalg
|
||||
from ._trustregion import (_minimize_trust_region, BaseQuadraticSubproblem)
|
||||
|
||||
__all__ = []
|
||||
|
||||
|
||||
def _minimize_dogleg(fun, x0, args=(), jac=None, hess=None,
|
||||
**trust_region_options):
|
||||
"""
|
||||
Minimization of scalar function of one or more variables using
|
||||
the dog-leg trust-region algorithm.
|
||||
|
||||
Options
|
||||
-------
|
||||
initial_trust_radius : float
|
||||
Initial trust-region radius.
|
||||
max_trust_radius : float
|
||||
Maximum value of the trust-region radius. No steps that are longer
|
||||
than this value will be proposed.
|
||||
eta : float
|
||||
Trust region related acceptance stringency for proposed steps.
|
||||
gtol : float
|
||||
Gradient norm must be less than `gtol` before successful
|
||||
termination.
|
||||
|
||||
"""
|
||||
if jac is None:
|
||||
raise ValueError('Jacobian is required for dogleg minimization')
|
||||
if hess is None:
|
||||
raise ValueError('Hessian is required for dogleg minimization')
|
||||
return _minimize_trust_region(fun, x0, args=args, jac=jac, hess=hess,
|
||||
subproblem=DoglegSubproblem,
|
||||
**trust_region_options)
|
||||
|
||||
|
||||
class DoglegSubproblem(BaseQuadraticSubproblem):
|
||||
"""Quadratic subproblem solved by the dogleg method"""
|
||||
|
||||
def cauchy_point(self):
|
||||
"""
|
||||
The Cauchy point is minimal along the direction of steepest descent.
|
||||
"""
|
||||
if self._cauchy_point is None:
|
||||
g = self.jac
|
||||
Bg = self.hessp(g)
|
||||
self._cauchy_point = -(np.dot(g, g) / np.dot(g, Bg)) * g
|
||||
return self._cauchy_point
|
||||
|
||||
def newton_point(self):
|
||||
"""
|
||||
The Newton point is a global minimum of the approximate function.
|
||||
"""
|
||||
if self._newton_point is None:
|
||||
g = self.jac
|
||||
B = self.hess
|
||||
cho_info = scipy.linalg.cho_factor(B)
|
||||
self._newton_point = -scipy.linalg.cho_solve(cho_info, g)
|
||||
return self._newton_point
|
||||
|
||||
def solve(self, trust_radius):
|
||||
"""
|
||||
Minimize a function using the dog-leg trust-region algorithm.
|
||||
|
||||
This algorithm requires function values and first and second derivatives.
|
||||
It also performs a costly Hessian decomposition for most iterations,
|
||||
and the Hessian is required to be positive definite.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
trust_radius : float
|
||||
We are allowed to wander only this far away from the origin.
|
||||
|
||||
Returns
|
||||
-------
|
||||
p : ndarray
|
||||
The proposed step.
|
||||
hits_boundary : bool
|
||||
True if the proposed step is on the boundary of the trust region.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The Hessian is required to be positive definite.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Jorge Nocedal and Stephen Wright,
|
||||
Numerical Optimization, second edition,
|
||||
Springer-Verlag, 2006, page 73.
|
||||
"""
|
||||
|
||||
# Compute the Newton point.
|
||||
# This is the optimum for the quadratic model function.
|
||||
# If it is inside the trust radius then return this point.
|
||||
p_best = self.newton_point()
|
||||
if scipy.linalg.norm(p_best) < trust_radius:
|
||||
hits_boundary = False
|
||||
return p_best, hits_boundary
|
||||
|
||||
# Compute the Cauchy point.
|
||||
# This is the predicted optimum along the direction of steepest descent.
|
||||
p_u = self.cauchy_point()
|
||||
|
||||
# If the Cauchy point is outside the trust region,
|
||||
# then return the point where the path intersects the boundary.
|
||||
p_u_norm = scipy.linalg.norm(p_u)
|
||||
if p_u_norm >= trust_radius:
|
||||
p_boundary = p_u * (trust_radius / p_u_norm)
|
||||
hits_boundary = True
|
||||
return p_boundary, hits_boundary
|
||||
|
||||
# Compute the intersection of the trust region boundary
|
||||
# and the line segment connecting the Cauchy and Newton points.
|
||||
# This requires solving a quadratic equation.
|
||||
# ||p_u + t*(p_best - p_u)||**2 == trust_radius**2
|
||||
# Solve this for positive time t using the quadratic formula.
|
||||
_, tb = self.get_boundaries_intersections(p_u, p_best - p_u,
|
||||
trust_radius)
|
||||
p_boundary = p_u + tb * (p_best - p_u)
|
||||
hits_boundary = True
|
||||
return p_boundary, hits_boundary
|
Loading…
Add table
Add a link
Reference in a new issue