Fixed database typo and removed unnecessary class identifier.

This commit is contained in:
Batuhan Berk Başoğlu 2020-10-14 10:10:37 -04:00
parent 00ad49a143
commit 45fb349a7d
5098 changed files with 952558 additions and 85 deletions

View file

@ -0,0 +1,6 @@
"""This module contains the equality constrained SQP solver."""
from .minimize_trustregion_constr import _minimize_trustregion_constr
__all__ = ['_minimize_trustregion_constr']

View file

@ -0,0 +1,390 @@
import numpy as np
import scipy.sparse as sps
class CanonicalConstraint(object):
"""Canonical constraint to use with trust-constr algorithm.
It represents the set of constraints of the form::
f_eq(x) = 0
f_ineq(x) <= 0
where ``f_eq`` and ``f_ineq`` are evaluated by a single function, see
below.
The class is supposed to be instantiated by factory methods, which
should prepare the parameters listed below.
Parameters
----------
n_eq, n_ineq : int
Number of equality and inequality constraints respectively.
fun : callable
Function defining the constraints. The signature is
``fun(x) -> c_eq, c_ineq``, where ``c_eq`` is ndarray with `n_eq`
components and ``c_ineq`` is ndarray with `n_ineq` components.
jac : callable
Function to evaluate the Jacobian of the constraint. The signature
is ``jac(x) -> J_eq, J_ineq``, where ``J_eq`` and ``J_ineq`` are
either ndarray of csr_matrix of shapes (n_eq, n) and (n_ineq, n),
respectively.
hess : callable
Function to evaluate the Hessian of the constraints multiplied
by Lagrange multipliers, that is
``dot(f_eq, v_eq) + dot(f_ineq, v_ineq)``. The signature is
``hess(x, v_eq, v_ineq) -> H``, where ``H`` has an implied
shape (n, n) and provide a matrix-vector product operation
``H.dot(p)``.
keep_feasible : ndarray, shape (n_ineq,)
Mask indicating which inequality constraints should be kept feasible.
"""
def __init__(self, n_eq, n_ineq, fun, jac, hess, keep_feasible):
self.n_eq = n_eq
self.n_ineq = n_ineq
self.fun = fun
self.jac = jac
self.hess = hess
self.keep_feasible = keep_feasible
@classmethod
def from_PreparedConstraint(cls, constraint):
"""Create an instance from `PreparedConstrained` object."""
lb, ub = constraint.bounds
cfun = constraint.fun
keep_feasible = constraint.keep_feasible
if np.all(lb == -np.inf) and np.all(ub == np.inf):
return cls.empty(cfun.n)
if np.all(lb == -np.inf) and np.all(ub == np.inf):
return cls.empty(cfun.n)
elif np.all(lb == ub):
return cls._equal_to_canonical(cfun, lb)
elif np.all(lb == -np.inf):
return cls._less_to_canonical(cfun, ub, keep_feasible)
elif np.all(ub == np.inf):
return cls._greater_to_canonical(cfun, lb, keep_feasible)
else:
return cls._interval_to_canonical(cfun, lb, ub, keep_feasible)
@classmethod
def empty(cls, n):
"""Create an "empty" instance.
This "empty" instance is required to allow working with unconstrained
problems as if they have some constraints.
"""
empty_fun = np.empty(0)
empty_jac = np.empty((0, n))
empty_hess = sps.csr_matrix((n, n))
def fun(x):
return empty_fun, empty_fun
def jac(x):
return empty_jac, empty_jac
def hess(x, v_eq, v_ineq):
return empty_hess
return cls(0, 0, fun, jac, hess, np.empty(0, dtype=np.bool_))
@classmethod
def concatenate(cls, canonical_constraints, sparse_jacobian):
"""Concatenate multiple `CanonicalConstraint` into one.
`sparse_jacobian` (bool) determines the Jacobian format of the
concatenated constraint. Note that items in `canonical_constraints`
must have their Jacobians in the same format.
"""
def fun(x):
if canonical_constraints:
eq_all, ineq_all = zip(
*[c.fun(x) for c in canonical_constraints])
else:
eq_all, ineq_all = [], []
return np.hstack(eq_all), np.hstack(ineq_all)
if sparse_jacobian:
vstack = sps.vstack
else:
vstack = np.vstack
def jac(x):
if canonical_constraints:
eq_all, ineq_all = zip(
*[c.jac(x) for c in canonical_constraints])
else:
eq_all, ineq_all = [], []
return vstack(eq_all), vstack(ineq_all)
def hess(x, v_eq, v_ineq):
hess_all = []
index_eq = 0
index_ineq = 0
for c in canonical_constraints:
vc_eq = v_eq[index_eq:index_eq + c.n_eq]
vc_ineq = v_ineq[index_ineq:index_ineq + c.n_ineq]
hess_all.append(c.hess(x, vc_eq, vc_ineq))
index_eq += c.n_eq
index_ineq += c.n_ineq
def matvec(p):
result = np.zeros_like(p)
for h in hess_all:
result += h.dot(p)
return result
n = x.shape[0]
return sps.linalg.LinearOperator((n, n), matvec, dtype=float)
n_eq = sum(c.n_eq for c in canonical_constraints)
n_ineq = sum(c.n_ineq for c in canonical_constraints)
keep_feasible = np.hstack([c.keep_feasible for c in
canonical_constraints])
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible)
@classmethod
def _equal_to_canonical(cls, cfun, value):
empty_fun = np.empty(0)
n = cfun.n
n_eq = value.shape[0]
n_ineq = 0
keep_feasible = np.empty(0, dtype=bool)
if cfun.sparse_jacobian:
empty_jac = sps.csr_matrix((0, n))
else:
empty_jac = np.empty((0, n))
def fun(x):
return cfun.fun(x) - value, empty_fun
def jac(x):
return cfun.jac(x), empty_jac
def hess(x, v_eq, v_ineq):
return cfun.hess(x, v_eq)
empty_fun = np.empty(0)
n = cfun.n
if cfun.sparse_jacobian:
empty_jac = sps.csr_matrix((0, n))
else:
empty_jac = np.empty((0, n))
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible)
@classmethod
def _less_to_canonical(cls, cfun, ub, keep_feasible):
empty_fun = np.empty(0)
n = cfun.n
if cfun.sparse_jacobian:
empty_jac = sps.csr_matrix((0, n))
else:
empty_jac = np.empty((0, n))
finite_ub = ub < np.inf
n_eq = 0
n_ineq = np.sum(finite_ub)
if np.all(finite_ub):
def fun(x):
return empty_fun, cfun.fun(x) - ub
def jac(x):
return empty_jac, cfun.jac(x)
def hess(x, v_eq, v_ineq):
return cfun.hess(x, v_ineq)
else:
finite_ub = np.nonzero(finite_ub)[0]
keep_feasible = keep_feasible[finite_ub]
ub = ub[finite_ub]
def fun(x):
return empty_fun, cfun.fun(x)[finite_ub] - ub
def jac(x):
return empty_jac, cfun.jac(x)[finite_ub]
def hess(x, v_eq, v_ineq):
v = np.zeros(cfun.m)
v[finite_ub] = v_ineq
return cfun.hess(x, v)
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible)
@classmethod
def _greater_to_canonical(cls, cfun, lb, keep_feasible):
empty_fun = np.empty(0)
n = cfun.n
if cfun.sparse_jacobian:
empty_jac = sps.csr_matrix((0, n))
else:
empty_jac = np.empty((0, n))
finite_lb = lb > -np.inf
n_eq = 0
n_ineq = np.sum(finite_lb)
if np.all(finite_lb):
def fun(x):
return empty_fun, lb - cfun.fun(x)
def jac(x):
return empty_jac, -cfun.jac(x)
def hess(x, v_eq, v_ineq):
return cfun.hess(x, -v_ineq)
else:
finite_lb = np.nonzero(finite_lb)[0]
keep_feasible = keep_feasible[finite_lb]
lb = lb[finite_lb]
def fun(x):
return empty_fun, lb - cfun.fun(x)[finite_lb]
def jac(x):
return empty_jac, -cfun.jac(x)[finite_lb]
def hess(x, v_eq, v_ineq):
v = np.zeros(cfun.m)
v[finite_lb] = -v_ineq
return cfun.hess(x, v)
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible)
@classmethod
def _interval_to_canonical(cls, cfun, lb, ub, keep_feasible):
lb_inf = lb == -np.inf
ub_inf = ub == np.inf
equal = lb == ub
less = lb_inf & ~ub_inf
greater = ub_inf & ~lb_inf
interval = ~equal & ~lb_inf & ~ub_inf
equal = np.nonzero(equal)[0]
less = np.nonzero(less)[0]
greater = np.nonzero(greater)[0]
interval = np.nonzero(interval)[0]
n_less = less.shape[0]
n_greater = greater.shape[0]
n_interval = interval.shape[0]
n_ineq = n_less + n_greater + 2 * n_interval
n_eq = equal.shape[0]
keep_feasible = np.hstack((keep_feasible[less],
keep_feasible[greater],
keep_feasible[interval],
keep_feasible[interval]))
def fun(x):
f = cfun.fun(x)
eq = f[equal] - lb[equal]
le = f[less] - ub[less]
ge = lb[greater] - f[greater]
il = f[interval] - ub[interval]
ig = lb[interval] - f[interval]
return eq, np.hstack((le, ge, il, ig))
def jac(x):
J = cfun.jac(x)
eq = J[equal]
le = J[less]
ge = -J[greater]
il = J[interval]
ig = -il
if sps.issparse(J):
ineq = sps.vstack((le, ge, il, ig))
else:
ineq = np.vstack((le, ge, il, ig))
return eq, ineq
def hess(x, v_eq, v_ineq):
n_start = 0
v_l = v_ineq[n_start:n_start + n_less]
n_start += n_less
v_g = v_ineq[n_start:n_start + n_greater]
n_start += n_greater
v_il = v_ineq[n_start:n_start + n_interval]
n_start += n_interval
v_ig = v_ineq[n_start:n_start + n_interval]
v = np.zeros_like(lb)
v[equal] = v_eq
v[less] = v_l
v[greater] = -v_g
v[interval] = v_il - v_ig
return cfun.hess(x, v)
return cls(n_eq, n_ineq, fun, jac, hess, keep_feasible)
def initial_constraints_as_canonical(n, prepared_constraints, sparse_jacobian):
"""Convert initial values of the constraints to the canonical format.
The purpose to avoid one additional call to the constraints at the initial
point. It takes saved values in `PreparedConstraint`, modififies and
concatenates them to the the canonical constraint format.
"""
c_eq = []
c_ineq = []
J_eq = []
J_ineq = []
for c in prepared_constraints:
f = c.fun.f
J = c.fun.J
lb, ub = c.bounds
if np.all(lb == ub):
c_eq.append(f - lb)
J_eq.append(J)
elif np.all(lb == -np.inf):
finite_ub = ub < np.inf
c_ineq.append(f[finite_ub] - ub[finite_ub])
J_ineq.append(J[finite_ub])
elif np.all(ub == np.inf):
finite_lb = lb > -np.inf
c_ineq.append(lb[finite_lb] - f[finite_lb])
J_ineq.append(-J[finite_lb])
else:
lb_inf = lb == -np.inf
ub_inf = ub == np.inf
equal = lb == ub
less = lb_inf & ~ub_inf
greater = ub_inf & ~lb_inf
interval = ~equal & ~lb_inf & ~ub_inf
c_eq.append(f[equal] - lb[equal])
c_ineq.append(f[less] - ub[less])
c_ineq.append(lb[greater] - f[greater])
c_ineq.append(f[interval] - ub[interval])
c_ineq.append(lb[interval] - f[interval])
J_eq.append(J[equal])
J_ineq.append(J[less])
J_ineq.append(-J[greater])
J_ineq.append(J[interval])
J_ineq.append(-J[interval])
c_eq = np.hstack(c_eq) if c_eq else np.empty(0)
c_ineq = np.hstack(c_ineq) if c_ineq else np.empty(0)
if sparse_jacobian:
vstack = sps.vstack
empty = sps.csr_matrix((0, n))
else:
vstack = np.vstack
empty = np.empty((0, n))
J_eq = vstack(J_eq) if J_eq else empty
J_ineq = vstack(J_ineq) if J_ineq else empty
return c_eq, c_ineq, J_eq, J_ineq

View file

@ -0,0 +1,217 @@
"""Byrd-Omojokun Trust-Region SQP method."""
from scipy.sparse import eye as speye
from .projections import projections
from .qp_subproblem import modified_dogleg, projected_cg, box_intersections
import numpy as np
from numpy.linalg import norm
__all__ = ['equality_constrained_sqp']
def default_scaling(x):
n, = np.shape(x)
return speye(n)
def equality_constrained_sqp(fun_and_constr, grad_and_jac, lagr_hess,
x0, fun0, grad0, constr0,
jac0, stop_criteria,
state,
initial_penalty,
initial_trust_radius,
factorization_method,
trust_lb=None,
trust_ub=None,
scaling=default_scaling):
"""Solve nonlinear equality-constrained problem using trust-region SQP.
Solve optimization problem:
minimize fun(x)
subject to: constr(x) = 0
using Byrd-Omojokun Trust-Region SQP method described in [1]_. Several
implementation details are based on [2]_ and [3]_, p. 549.
References
----------
.. [1] Lalee, Marucha, Jorge Nocedal, and Todd Plantenga. "On the
implementation of an algorithm for large-scale equality
constrained optimization." SIAM Journal on
Optimization 8.3 (1998): 682-706.
.. [2] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal.
"An interior point algorithm for large-scale nonlinear
programming." SIAM Journal on Optimization 9.4 (1999): 877-900.
.. [3] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
Second Edition (2006).
"""
PENALTY_FACTOR = 0.3 # Rho from formula (3.51), reference [2]_, p.891.
LARGE_REDUCTION_RATIO = 0.9
INTERMEDIARY_REDUCTION_RATIO = 0.3
SUFFICIENT_REDUCTION_RATIO = 1e-8 # Eta from reference [2]_, p.892.
TRUST_ENLARGEMENT_FACTOR_L = 7.0
TRUST_ENLARGEMENT_FACTOR_S = 2.0
MAX_TRUST_REDUCTION = 0.5
MIN_TRUST_REDUCTION = 0.1
SOC_THRESHOLD = 0.1
TR_FACTOR = 0.8 # Zeta from formula (3.21), reference [2]_, p.885.
BOX_FACTOR = 0.5
n, = np.shape(x0) # Number of parameters
# Set default lower and upper bounds.
if trust_lb is None:
trust_lb = np.full(n, -np.inf)
if trust_ub is None:
trust_ub = np.full(n, np.inf)
# Initial values
x = np.copy(x0)
trust_radius = initial_trust_radius
penalty = initial_penalty
# Compute Values
f = fun0
c = grad0
b = constr0
A = jac0
S = scaling(x)
# Get projections
Z, LS, Y = projections(A, factorization_method)
# Compute least-square lagrange multipliers
v = -LS.dot(c)
# Compute Hessian
H = lagr_hess(x, v)
# Update state parameters
optimality = norm(c + A.T.dot(v), np.inf)
constr_violation = norm(b, np.inf) if len(b) > 0 else 0
cg_info = {'niter': 0, 'stop_cond': 0,
'hits_boundary': False}
last_iteration_failed = False
while not stop_criteria(state, x, last_iteration_failed,
optimality, constr_violation,
trust_radius, penalty, cg_info):
# Normal Step - `dn`
# minimize 1/2*||A dn + b||^2
# subject to:
# ||dn|| <= TR_FACTOR * trust_radius
# BOX_FACTOR * lb <= dn <= BOX_FACTOR * ub.
dn = modified_dogleg(A, Y, b,
TR_FACTOR*trust_radius,
BOX_FACTOR*trust_lb,
BOX_FACTOR*trust_ub)
# Tangential Step - `dt`
# Solve the QP problem:
# minimize 1/2 dt.T H dt + dt.T (H dn + c)
# subject to:
# A dt = 0
# ||dt|| <= sqrt(trust_radius**2 - ||dn||**2)
# lb - dn <= dt <= ub - dn
c_t = H.dot(dn) + c
b_t = np.zeros_like(b)
trust_radius_t = np.sqrt(trust_radius**2 - np.linalg.norm(dn)**2)
lb_t = trust_lb - dn
ub_t = trust_ub - dn
dt, cg_info = projected_cg(H, c_t, Z, Y, b_t,
trust_radius_t,
lb_t, ub_t)
# Compute update (normal + tangential steps).
d = dn + dt
# Compute second order model: 1/2 d H d + c.T d + f.
quadratic_model = 1/2*(H.dot(d)).dot(d) + c.T.dot(d)
# Compute linearized constraint: l = A d + b.
linearized_constr = A.dot(d)+b
# Compute new penalty parameter according to formula (3.52),
# reference [2]_, p.891.
vpred = norm(b) - norm(linearized_constr)
# Guarantee `vpred` always positive,
# regardless of roundoff errors.
vpred = max(1e-16, vpred)
previous_penalty = penalty
if quadratic_model > 0:
new_penalty = quadratic_model / ((1-PENALTY_FACTOR)*vpred)
penalty = max(penalty, new_penalty)
# Compute predicted reduction according to formula (3.52),
# reference [2]_, p.891.
predicted_reduction = -quadratic_model + penalty*vpred
# Compute merit function at current point
merit_function = f + penalty*norm(b)
# Evaluate function and constraints at trial point
x_next = x + S.dot(d)
f_next, b_next = fun_and_constr(x_next)
# Compute merit function at trial point
merit_function_next = f_next + penalty*norm(b_next)
# Compute actual reduction according to formula (3.54),
# reference [2]_, p.892.
actual_reduction = merit_function - merit_function_next
# Compute reduction ratio
reduction_ratio = actual_reduction / predicted_reduction
# Second order correction (SOC), reference [2]_, p.892.
if reduction_ratio < SUFFICIENT_REDUCTION_RATIO and \
norm(dn) <= SOC_THRESHOLD * norm(dt):
# Compute second order correction
y = -Y.dot(b_next)
# Make sure increment is inside box constraints
_, t, intersect = box_intersections(d, y, trust_lb, trust_ub)
# Compute tentative point
x_soc = x + S.dot(d + t*y)
f_soc, b_soc = fun_and_constr(x_soc)
# Recompute actual reduction
merit_function_soc = f_soc + penalty*norm(b_soc)
actual_reduction_soc = merit_function - merit_function_soc
# Recompute reduction ratio
reduction_ratio_soc = actual_reduction_soc / predicted_reduction
if intersect and reduction_ratio_soc >= SUFFICIENT_REDUCTION_RATIO:
x_next = x_soc
f_next = f_soc
b_next = b_soc
reduction_ratio = reduction_ratio_soc
# Readjust trust region step, formula (3.55), reference [2]_, p.892.
if reduction_ratio >= LARGE_REDUCTION_RATIO:
trust_radius = max(TRUST_ENLARGEMENT_FACTOR_L * norm(d),
trust_radius)
elif reduction_ratio >= INTERMEDIARY_REDUCTION_RATIO:
trust_radius = max(TRUST_ENLARGEMENT_FACTOR_S * norm(d),
trust_radius)
# Reduce trust region step, according to reference [3]_, p.696.
elif reduction_ratio < SUFFICIENT_REDUCTION_RATIO:
trust_reduction = ((1-SUFFICIENT_REDUCTION_RATIO) /
(1-reduction_ratio))
new_trust_radius = trust_reduction * norm(d)
if new_trust_radius >= MAX_TRUST_REDUCTION * trust_radius:
trust_radius *= MAX_TRUST_REDUCTION
elif new_trust_radius >= MIN_TRUST_REDUCTION * trust_radius:
trust_radius = new_trust_radius
else:
trust_radius *= MIN_TRUST_REDUCTION
# Update iteration
if reduction_ratio >= SUFFICIENT_REDUCTION_RATIO:
x = x_next
f, b = f_next, b_next
c, A = grad_and_jac(x)
S = scaling(x)
# Get projections
Z, LS, Y = projections(A, factorization_method)
# Compute least-square lagrange multipliers
v = -LS.dot(c)
# Compute Hessian
H = lagr_hess(x, v)
# Set Flag
last_iteration_failed = False
# Otimality values
optimality = norm(c + A.T.dot(v), np.inf)
constr_violation = norm(b, np.inf) if len(b) > 0 else 0
else:
penalty = previous_penalty
last_iteration_failed = True
return x, state

View file

@ -0,0 +1,545 @@
import time
import numpy as np
from scipy.sparse.linalg import LinearOperator
from .._differentiable_functions import VectorFunction
from .._constraints import (
NonlinearConstraint, LinearConstraint, PreparedConstraint, strict_bounds)
from .._hessian_update_strategy import BFGS
from ..optimize import OptimizeResult
from .._differentiable_functions import ScalarFunction
from .equality_constrained_sqp import equality_constrained_sqp
from .canonical_constraint import (CanonicalConstraint,
initial_constraints_as_canonical)
from .tr_interior_point import tr_interior_point
from .report import BasicReport, SQPReport, IPReport
TERMINATION_MESSAGES = {
0: "The maximum number of function evaluations is exceeded.",
1: "`gtol` termination condition is satisfied.",
2: "`xtol` termination condition is satisfied.",
3: "`callback` function requested termination."
}
class HessianLinearOperator(object):
"""Build LinearOperator from hessp"""
def __init__(self, hessp, n):
self.hessp = hessp
self.n = n
def __call__(self, x, *args):
def matvec(p):
return self.hessp(x, p, *args)
return LinearOperator((self.n, self.n), matvec=matvec)
class LagrangianHessian(object):
"""The Hessian of the Lagrangian as LinearOperator.
The Lagrangian is computed as the objective function plus all the
constraints multiplied with some numbers (Lagrange multipliers).
"""
def __init__(self, n, objective_hess, constraints_hess):
self.n = n
self.objective_hess = objective_hess
self.constraints_hess = constraints_hess
def __call__(self, x, v_eq=np.empty(0), v_ineq=np.empty(0)):
H_objective = self.objective_hess(x)
H_constraints = self.constraints_hess(x, v_eq, v_ineq)
def matvec(p):
return H_objective.dot(p) + H_constraints.dot(p)
return LinearOperator((self.n, self.n), matvec)
def update_state_sqp(state, x, last_iteration_failed, objective, prepared_constraints,
start_time, tr_radius, constr_penalty, cg_info):
state.nit += 1
state.nfev = objective.nfev
state.njev = objective.ngev
state.nhev = objective.nhev
state.constr_nfev = [c.fun.nfev if isinstance(c.fun, VectorFunction) else 0
for c in prepared_constraints]
state.constr_njev = [c.fun.njev if isinstance(c.fun, VectorFunction) else 0
for c in prepared_constraints]
state.constr_nhev = [c.fun.nhev if isinstance(c.fun, VectorFunction) else 0
for c in prepared_constraints]
if not last_iteration_failed:
state.x = x
state.fun = objective.f
state.grad = objective.g
state.v = [c.fun.v for c in prepared_constraints]
state.constr = [c.fun.f for c in prepared_constraints]
state.jac = [c.fun.J for c in prepared_constraints]
# Compute Lagrangian Gradient
state.lagrangian_grad = np.copy(state.grad)
for c in prepared_constraints:
state.lagrangian_grad += c.fun.J.T.dot(c.fun.v)
state.optimality = np.linalg.norm(state.lagrangian_grad, np.inf)
# Compute maximum constraint violation
state.constr_violation = 0
for i in range(len(prepared_constraints)):
lb, ub = prepared_constraints[i].bounds
c = state.constr[i]
state.constr_violation = np.max([state.constr_violation,
np.max(lb - c),
np.max(c - ub)])
state.execution_time = time.time() - start_time
state.tr_radius = tr_radius
state.constr_penalty = constr_penalty
state.cg_niter += cg_info["niter"]
state.cg_stop_cond = cg_info["stop_cond"]
return state
def update_state_ip(state, x, last_iteration_failed, objective,
prepared_constraints, start_time,
tr_radius, constr_penalty, cg_info,
barrier_parameter, barrier_tolerance):
state = update_state_sqp(state, x, last_iteration_failed, objective,
prepared_constraints, start_time, tr_radius,
constr_penalty, cg_info)
state.barrier_parameter = barrier_parameter
state.barrier_tolerance = barrier_tolerance
return state
def _minimize_trustregion_constr(fun, x0, args, grad,
hess, hessp, bounds, constraints,
xtol=1e-8, gtol=1e-8,
barrier_tol=1e-8,
sparse_jacobian=None,
callback=None, maxiter=1000,
verbose=0, finite_diff_rel_step=None,
initial_constr_penalty=1.0, initial_tr_radius=1.0,
initial_barrier_parameter=0.1,
initial_barrier_tolerance=0.1,
factorization_method=None,
disp=False):
"""Minimize a scalar function subject to constraints.
Parameters
----------
gtol : float, optional
Tolerance for termination by the norm of the Lagrangian gradient.
The algorithm will terminate when both the infinity norm (i.e., max
abs value) of the Lagrangian gradient and the constraint violation
are smaller than ``gtol``. Default is 1e-8.
xtol : float, optional
Tolerance for termination by the change of the independent variable.
The algorithm will terminate when ``tr_radius < xtol``, where
``tr_radius`` is the radius of the trust region used in the algorithm.
Default is 1e-8.
barrier_tol : float, optional
Threshold on the barrier parameter for the algorithm termination.
When inequality constraints are present, the algorithm will terminate
only when the barrier parameter is less than `barrier_tol`.
Default is 1e-8.
sparse_jacobian : {bool, None}, optional
Determines how to represent Jacobians of the constraints. If bool,
then Jacobians of all the constraints will be converted to the
corresponding format. If None (default), then Jacobians won't be
converted, but the algorithm can proceed only if they all have the
same format.
initial_tr_radius: float, optional
Initial trust radius. The trust radius gives the maximum distance
between solution points in consecutive iterations. It reflects the
trust the algorithm puts in the local approximation of the optimization
problem. For an accurate local approximation the trust-region should be
large and for an approximation valid only close to the current point it
should be a small one. The trust radius is automatically updated throughout
the optimization process, with ``initial_tr_radius`` being its initial value.
Default is 1 (recommended in [1]_, p. 19).
initial_constr_penalty : float, optional
Initial constraints penalty parameter. The penalty parameter is used for
balancing the requirements of decreasing the objective function
and satisfying the constraints. It is used for defining the merit function:
``merit_function(x) = fun(x) + constr_penalty * constr_norm_l2(x)``,
where ``constr_norm_l2(x)`` is the l2 norm of a vector containing all
the constraints. The merit function is used for accepting or rejecting
trial points and ``constr_penalty`` weights the two conflicting goals
of reducing objective function and constraints. The penalty is automatically
updated throughout the optimization process, with
``initial_constr_penalty`` being its initial value. Default is 1
(recommended in [1]_, p 19).
initial_barrier_parameter, initial_barrier_tolerance: float, optional
Initial barrier parameter and initial tolerance for the barrier subproblem.
Both are used only when inequality constraints are present. For dealing with
optimization problems ``min_x f(x)`` subject to inequality constraints
``c(x) <= 0`` the algorithm introduces slack variables, solving the problem
``min_(x,s) f(x) + barrier_parameter*sum(ln(s))`` subject to the equality
constraints ``c(x) + s = 0`` instead of the original problem. This subproblem
is solved for decreasing values of ``barrier_parameter`` and with decreasing
tolerances for the termination, starting with ``initial_barrier_parameter``
for the barrier parameter and ``initial_barrier_tolerance`` for the
barrier tolerance. Default is 0.1 for both values (recommended in [1]_ p. 19).
Also note that ``barrier_parameter`` and ``barrier_tolerance`` are updated
with the same prefactor.
factorization_method : string or None, optional
Method to factorize the Jacobian of the constraints. Use None (default)
for the auto selection or one of:
- 'NormalEquation' (requires scikit-sparse)
- 'AugmentedSystem'
- 'QRFactorization'
- 'SVDFactorization'
The methods 'NormalEquation' and 'AugmentedSystem' can be used only
with sparse constraints. The projections required by the algorithm
will be computed using, respectively, the the normal equation and the
augmented system approaches explained in [1]_. 'NormalEquation'
computes the Cholesky factorization of ``A A.T`` and 'AugmentedSystem'
performs the LU factorization of an augmented system. They usually
provide similar results. 'AugmentedSystem' is used by default for
sparse matrices.
The methods 'QRFactorization' and 'SVDFactorization' can be used
only with dense constraints. They compute the required projections
using, respectively, QR and SVD factorizations. The 'SVDFactorization'
method can cope with Jacobian matrices with deficient row rank and will
be used whenever other factorization methods fail (which may imply the
conversion of sparse matrices to a dense format when required).
By default, 'QRFactorization' is used for dense matrices.
finite_diff_rel_step : None or array_like, optional
Relative step size for the finite difference approximation.
maxiter : int, optional
Maximum number of algorithm iterations. Default is 1000.
verbose : {0, 1, 2}, optional
Level of algorithm's verbosity:
* 0 (default) : work silently.
* 1 : display a termination report.
* 2 : display progress during iterations.
* 3 : display progress during iterations (more complete report).
disp : bool, optional
If True (default), then `verbose` will be set to 1 if it was 0.
Returns
-------
`OptimizeResult` with the fields documented below. Note the following:
1. All values corresponding to the constraints are ordered as they
were passed to the solver. And values corresponding to `bounds`
constraints are put *after* other constraints.
2. All numbers of function, Jacobian or Hessian evaluations correspond
to numbers of actual Python function calls. It means, for example,
that if a Jacobian is estimated by finite differences, then the
number of Jacobian evaluations will be zero and the number of
function evaluations will be incremented by all calls during the
finite difference estimation.
x : ndarray, shape (n,)
Solution found.
optimality : float
Infinity norm of the Lagrangian gradient at the solution.
constr_violation : float
Maximum constraint violation at the solution.
fun : float
Objective function at the solution.
grad : ndarray, shape (n,)
Gradient of the objective function at the solution.
lagrangian_grad : ndarray, shape (n,)
Gradient of the Lagrangian function at the solution.
nit : int
Total number of iterations.
nfev : integer
Number of the objective function evaluations.
njev : integer
Number of the objective function gradient evaluations.
nhev : integer
Number of the objective function Hessian evaluations.
cg_niter : int
Total number of the conjugate gradient method iterations.
method : {'equality_constrained_sqp', 'tr_interior_point'}
Optimization method used.
constr : list of ndarray
List of constraint values at the solution.
jac : list of {ndarray, sparse matrix}
List of the Jacobian matrices of the constraints at the solution.
v : list of ndarray
List of the Lagrange multipliers for the constraints at the solution.
For an inequality constraint a positive multiplier means that the upper
bound is active, a negative multiplier means that the lower bound is
active and if a multiplier is zero it means the constraint is not
active.
constr_nfev : list of int
Number of constraint evaluations for each of the constraints.
constr_njev : list of int
Number of Jacobian matrix evaluations for each of the constraints.
constr_nhev : list of int
Number of Hessian evaluations for each of the constraints.
tr_radius : float
Radius of the trust region at the last iteration.
constr_penalty : float
Penalty parameter at the last iteration, see `initial_constr_penalty`.
barrier_tolerance : float
Tolerance for the barrier subproblem at the last iteration.
Only for problems with inequality constraints.
barrier_parameter : float
Barrier parameter at the last iteration. Only for problems
with inequality constraints.
execution_time : float
Total execution time.
message : str
Termination message.
status : {0, 1, 2, 3}
Termination status:
* 0 : The maximum number of function evaluations is exceeded.
* 1 : `gtol` termination condition is satisfied.
* 2 : `xtol` termination condition is satisfied.
* 3 : `callback` function requested termination.
cg_stop_cond : int
Reason for CG subproblem termination at the last iteration:
* 0 : CG subproblem not evaluated.
* 1 : Iteration limit was reached.
* 2 : Reached the trust-region boundary.
* 3 : Negative curvature detected.
* 4 : Tolerance was satisfied.
References
----------
.. [1] Conn, A. R., Gould, N. I., & Toint, P. L.
Trust region methods. 2000. Siam. pp. 19.
"""
x0 = np.atleast_1d(x0).astype(float)
n_vars = np.size(x0)
if hess is None:
if callable(hessp):
hess = HessianLinearOperator(hessp, n_vars)
else:
hess = BFGS()
if disp and verbose == 0:
verbose = 1
if bounds is not None:
finite_diff_bounds = strict_bounds(bounds.lb, bounds.ub,
bounds.keep_feasible, n_vars)
else:
finite_diff_bounds = (-np.inf, np.inf)
# Define Objective Function
objective = ScalarFunction(fun, x0, args, grad, hess,
finite_diff_rel_step, finite_diff_bounds)
# Put constraints in list format when needed.
if isinstance(constraints, (NonlinearConstraint, LinearConstraint)):
constraints = [constraints]
# Prepare constraints.
prepared_constraints = [
PreparedConstraint(c, x0, sparse_jacobian, finite_diff_bounds)
for c in constraints]
# Check that all constraints are either sparse or dense.
n_sparse = sum(c.fun.sparse_jacobian for c in prepared_constraints)
if 0 < n_sparse < len(prepared_constraints):
raise ValueError("All constraints must have the same kind of the "
"Jacobian --- either all sparse or all dense. "
"You can set the sparsity globally by setting "
"`sparse_jacobian` to either True of False.")
if prepared_constraints:
sparse_jacobian = n_sparse > 0
if bounds is not None:
if sparse_jacobian is None:
sparse_jacobian = True
prepared_constraints.append(PreparedConstraint(bounds, x0,
sparse_jacobian))
# Concatenate initial constraints to the canonical form.
c_eq0, c_ineq0, J_eq0, J_ineq0 = initial_constraints_as_canonical(
n_vars, prepared_constraints, sparse_jacobian)
# Prepare all canonical constraints and concatenate it into one.
canonical_all = [CanonicalConstraint.from_PreparedConstraint(c)
for c in prepared_constraints]
if len(canonical_all) == 0:
canonical = CanonicalConstraint.empty(n_vars)
elif len(canonical_all) == 1:
canonical = canonical_all[0]
else:
canonical = CanonicalConstraint.concatenate(canonical_all,
sparse_jacobian)
# Generate the Hessian of the Lagrangian.
lagrangian_hess = LagrangianHessian(n_vars, objective.hess, canonical.hess)
# Choose appropriate method
if canonical.n_ineq == 0:
method = 'equality_constrained_sqp'
else:
method = 'tr_interior_point'
# Construct OptimizeResult
state = OptimizeResult(
nit=0, nfev=0, njev=0, nhev=0,
cg_niter=0, cg_stop_cond=0,
fun=objective.f, grad=objective.g,
lagrangian_grad=np.copy(objective.g),
constr=[c.fun.f for c in prepared_constraints],
jac=[c.fun.J for c in prepared_constraints],
constr_nfev=[0 for c in prepared_constraints],
constr_njev=[0 for c in prepared_constraints],
constr_nhev=[0 for c in prepared_constraints],
v=[c.fun.v for c in prepared_constraints],
method=method)
# Start counting
start_time = time.time()
# Define stop criteria
if method == 'equality_constrained_sqp':
def stop_criteria(state, x, last_iteration_failed,
optimality, constr_violation,
tr_radius, constr_penalty, cg_info):
state = update_state_sqp(state, x, last_iteration_failed,
objective, prepared_constraints,
start_time, tr_radius, constr_penalty,
cg_info)
if verbose == 2:
BasicReport.print_iteration(state.nit,
state.nfev,
state.cg_niter,
state.fun,
state.tr_radius,
state.optimality,
state.constr_violation)
elif verbose > 2:
SQPReport.print_iteration(state.nit,
state.nfev,
state.cg_niter,
state.fun,
state.tr_radius,
state.optimality,
state.constr_violation,
state.constr_penalty,
state.cg_stop_cond)
state.status = None
state.niter = state.nit # Alias for callback (backward-compatibility)
if callback is not None and callback(np.copy(state.x), state):
state.status = 3
elif state.optimality < gtol and state.constr_violation < gtol:
state.status = 1
elif state.tr_radius < xtol:
state.status = 2
elif state.nit >= maxiter:
state.status = 0
return state.status in (0, 1, 2, 3)
elif method == 'tr_interior_point':
def stop_criteria(state, x, last_iteration_failed, tr_radius,
constr_penalty, cg_info, barrier_parameter,
barrier_tolerance):
state = update_state_ip(state, x, last_iteration_failed,
objective, prepared_constraints,
start_time, tr_radius, constr_penalty,
cg_info, barrier_parameter, barrier_tolerance)
if verbose == 2:
BasicReport.print_iteration(state.nit,
state.nfev,
state.cg_niter,
state.fun,
state.tr_radius,
state.optimality,
state.constr_violation)
elif verbose > 2:
IPReport.print_iteration(state.nit,
state.nfev,
state.cg_niter,
state.fun,
state.tr_radius,
state.optimality,
state.constr_violation,
state.constr_penalty,
state.barrier_parameter,
state.cg_stop_cond)
state.status = None
state.niter = state.nit # Alias for callback (backward compatibility)
if callback is not None and callback(np.copy(state.x), state):
state.status = 3
elif state.optimality < gtol and state.constr_violation < gtol:
state.status = 1
elif (state.tr_radius < xtol
and state.barrier_parameter < barrier_tol):
state.status = 2
elif state.nit >= maxiter:
state.status = 0
return state.status in (0, 1, 2, 3)
if verbose == 2:
BasicReport.print_header()
elif verbose > 2:
if method == 'equality_constrained_sqp':
SQPReport.print_header()
elif method == 'tr_interior_point':
IPReport.print_header()
# Call inferior function to do the optimization
if method == 'equality_constrained_sqp':
def fun_and_constr(x):
f = objective.fun(x)
c_eq, _ = canonical.fun(x)
return f, c_eq
def grad_and_jac(x):
g = objective.grad(x)
J_eq, _ = canonical.jac(x)
return g, J_eq
_, result = equality_constrained_sqp(
fun_and_constr, grad_and_jac, lagrangian_hess,
x0, objective.f, objective.g,
c_eq0, J_eq0,
stop_criteria, state,
initial_constr_penalty, initial_tr_radius,
factorization_method)
elif method == 'tr_interior_point':
_, result = tr_interior_point(
objective.fun, objective.grad, lagrangian_hess,
n_vars, canonical.n_ineq, canonical.n_eq,
canonical.fun, canonical.jac,
x0, objective.f, objective.g,
c_ineq0, J_ineq0, c_eq0, J_eq0,
stop_criteria,
canonical.keep_feasible,
xtol, state, initial_barrier_parameter,
initial_barrier_tolerance,
initial_constr_penalty, initial_tr_radius,
factorization_method)
# Status 3 occurs when the callback function requests termination,
# this is assumed to not be a success.
result.success = True if result.status in (1, 2) else False
result.message = TERMINATION_MESSAGES[result.status]
# Alias (for backward compatibility with 1.1.0)
result.niter = result.nit
if verbose == 2:
BasicReport.print_footer()
elif verbose > 2:
if method == 'equality_constrained_sqp':
SQPReport.print_footer()
elif method == 'tr_interior_point':
IPReport.print_footer()
if verbose >= 1:
print(result.message)
print("Number of iterations: {}, function evaluations: {}, "
"CG iterations: {}, optimality: {:.2e}, "
"constraint violation: {:.2e}, execution time: {:4.2} s."
.format(result.nit, result.nfev, result.cg_niter,
result.optimality, result.constr_violation,
result.execution_time))
return result

View file

@ -0,0 +1,405 @@
"""Basic linear factorizations needed by the solver."""
from scipy.sparse import (bmat, csc_matrix, eye, issparse)
from scipy.sparse.linalg import LinearOperator
import scipy.linalg
import scipy.sparse.linalg
try:
from sksparse.cholmod import cholesky_AAt
sksparse_available = True
except ImportError:
import warnings
sksparse_available = False
import numpy as np
from warnings import warn
__all__ = [
'orthogonality',
'projections',
]
def orthogonality(A, g):
"""Measure orthogonality between a vector and the null space of a matrix.
Compute a measure of orthogonality between the null space
of the (possibly sparse) matrix ``A`` and a given vector ``g``.
The formula is a simplified (and cheaper) version of formula (3.13)
from [1]_.
``orth = norm(A g, ord=2)/(norm(A, ord='fro')*norm(g, ord=2))``.
References
----------
.. [1] Gould, Nicholas IM, Mary E. Hribar, and Jorge Nocedal.
"On the solution of equality constrained quadratic
programming problems arising in optimization."
SIAM Journal on Scientific Computing 23.4 (2001): 1376-1395.
"""
# Compute vector norms
norm_g = np.linalg.norm(g)
# Compute Froebnius norm of the matrix A
if issparse(A):
norm_A = scipy.sparse.linalg.norm(A, ord='fro')
else:
norm_A = np.linalg.norm(A, ord='fro')
# Check if norms are zero
if norm_g == 0 or norm_A == 0:
return 0
norm_A_g = np.linalg.norm(A.dot(g))
# Orthogonality measure
orth = norm_A_g / (norm_A*norm_g)
return orth
def normal_equation_projections(A, m, n, orth_tol, max_refin, tol):
"""Return linear operators for matrix A using ``NormalEquation`` approach.
"""
# Cholesky factorization
factor = cholesky_AAt(A)
# z = x - A.T inv(A A.T) A x
def null_space(x):
v = factor(A.dot(x))
z = x - A.T.dot(v)
# Iterative refinement to improve roundoff
# errors described in [2]_, algorithm 5.1.
k = 0
while orthogonality(A, z) > orth_tol:
if k >= max_refin:
break
# z_next = z - A.T inv(A A.T) A z
v = factor(A.dot(z))
z = z - A.T.dot(v)
k += 1
return z
# z = inv(A A.T) A x
def least_squares(x):
return factor(A.dot(x))
# z = A.T inv(A A.T) x
def row_space(x):
return A.T.dot(factor(x))
return null_space, least_squares, row_space
def augmented_system_projections(A, m, n, orth_tol, max_refin, tol):
"""Return linear operators for matrix A - ``AugmentedSystem``."""
# Form augmented system
K = csc_matrix(bmat([[eye(n), A.T], [A, None]]))
# LU factorization
# TODO: Use a symmetric indefinite factorization
# to solve the system twice as fast (because
# of the symmetry).
try:
solve = scipy.sparse.linalg.factorized(K)
except RuntimeError:
warn("Singular Jacobian matrix. Using dense SVD decomposition to "
"perform the factorizations.")
return svd_factorization_projections(A.toarray(),
m, n, orth_tol,
max_refin, tol)
# z = x - A.T inv(A A.T) A x
# is computed solving the extended system:
# [I A.T] * [ z ] = [x]
# [A O ] [aux] [0]
def null_space(x):
# v = [x]
# [0]
v = np.hstack([x, np.zeros(m)])
# lu_sol = [ z ]
# [aux]
lu_sol = solve(v)
z = lu_sol[:n]
# Iterative refinement to improve roundoff
# errors described in [2]_, algorithm 5.2.
k = 0
while orthogonality(A, z) > orth_tol:
if k >= max_refin:
break
# new_v = [x] - [I A.T] * [ z ]
# [0] [A O ] [aux]
new_v = v - K.dot(lu_sol)
# [I A.T] * [delta z ] = new_v
# [A O ] [delta aux]
lu_update = solve(new_v)
# [ z ] += [delta z ]
# [aux] [delta aux]
lu_sol += lu_update
z = lu_sol[:n]
k += 1
# return z = x - A.T inv(A A.T) A x
return z
# z = inv(A A.T) A x
# is computed solving the extended system:
# [I A.T] * [aux] = [x]
# [A O ] [ z ] [0]
def least_squares(x):
# v = [x]
# [0]
v = np.hstack([x, np.zeros(m)])
# lu_sol = [aux]
# [ z ]
lu_sol = solve(v)
# return z = inv(A A.T) A x
return lu_sol[n:m+n]
# z = A.T inv(A A.T) x
# is computed solving the extended system:
# [I A.T] * [ z ] = [0]
# [A O ] [aux] [x]
def row_space(x):
# v = [0]
# [x]
v = np.hstack([np.zeros(n), x])
# lu_sol = [ z ]
# [aux]
lu_sol = solve(v)
# return z = A.T inv(A A.T) x
return lu_sol[:n]
return null_space, least_squares, row_space
def qr_factorization_projections(A, m, n, orth_tol, max_refin, tol):
"""Return linear operators for matrix A using ``QRFactorization`` approach.
"""
# QRFactorization
Q, R, P = scipy.linalg.qr(A.T, pivoting=True, mode='economic')
if np.linalg.norm(R[-1, :], np.inf) < tol:
warn('Singular Jacobian matrix. Using SVD decomposition to ' +
'perform the factorizations.')
return svd_factorization_projections(A, m, n,
orth_tol,
max_refin,
tol)
# z = x - A.T inv(A A.T) A x
def null_space(x):
# v = P inv(R) Q.T x
aux1 = Q.T.dot(x)
aux2 = scipy.linalg.solve_triangular(R, aux1, lower=False)
v = np.zeros(m)
v[P] = aux2
z = x - A.T.dot(v)
# Iterative refinement to improve roundoff
# errors described in [2]_, algorithm 5.1.
k = 0
while orthogonality(A, z) > orth_tol:
if k >= max_refin:
break
# v = P inv(R) Q.T x
aux1 = Q.T.dot(z)
aux2 = scipy.linalg.solve_triangular(R, aux1, lower=False)
v[P] = aux2
# z_next = z - A.T v
z = z - A.T.dot(v)
k += 1
return z
# z = inv(A A.T) A x
def least_squares(x):
# z = P inv(R) Q.T x
aux1 = Q.T.dot(x)
aux2 = scipy.linalg.solve_triangular(R, aux1, lower=False)
z = np.zeros(m)
z[P] = aux2
return z
# z = A.T inv(A A.T) x
def row_space(x):
# z = Q inv(R.T) P.T x
aux1 = x[P]
aux2 = scipy.linalg.solve_triangular(R, aux1,
lower=False,
trans='T')
z = Q.dot(aux2)
return z
return null_space, least_squares, row_space
def svd_factorization_projections(A, m, n, orth_tol, max_refin, tol):
"""Return linear operators for matrix A using ``SVDFactorization`` approach.
"""
# SVD Factorization
U, s, Vt = scipy.linalg.svd(A, full_matrices=False)
# Remove dimensions related with very small singular values
U = U[:, s > tol]
Vt = Vt[s > tol, :]
s = s[s > tol]
# z = x - A.T inv(A A.T) A x
def null_space(x):
# v = U 1/s V.T x = inv(A A.T) A x
aux1 = Vt.dot(x)
aux2 = 1/s*aux1
v = U.dot(aux2)
z = x - A.T.dot(v)
# Iterative refinement to improve roundoff
# errors described in [2]_, algorithm 5.1.
k = 0
while orthogonality(A, z) > orth_tol:
if k >= max_refin:
break
# v = U 1/s V.T x = inv(A A.T) A x
aux1 = Vt.dot(z)
aux2 = 1/s*aux1
v = U.dot(aux2)
# z_next = z - A.T v
z = z - A.T.dot(v)
k += 1
return z
# z = inv(A A.T) A x
def least_squares(x):
# z = U 1/s V.T x = inv(A A.T) A x
aux1 = Vt.dot(x)
aux2 = 1/s*aux1
z = U.dot(aux2)
return z
# z = A.T inv(A A.T) x
def row_space(x):
# z = V 1/s U.T x
aux1 = U.T.dot(x)
aux2 = 1/s*aux1
z = Vt.T.dot(aux2)
return z
return null_space, least_squares, row_space
def projections(A, method=None, orth_tol=1e-12, max_refin=3, tol=1e-15):
"""Return three linear operators related with a given matrix A.
Parameters
----------
A : sparse matrix (or ndarray), shape (m, n)
Matrix ``A`` used in the projection.
method : string, optional
Method used for compute the given linear
operators. Should be one of:
- 'NormalEquation': The operators
will be computed using the
so-called normal equation approach
explained in [1]_. In order to do
so the Cholesky factorization of
``(A A.T)`` is computed. Exclusive
for sparse matrices.
- 'AugmentedSystem': The operators
will be computed using the
so-called augmented system approach
explained in [1]_. Exclusive
for sparse matrices.
- 'QRFactorization': Compute projections
using QR factorization. Exclusive for
dense matrices.
- 'SVDFactorization': Compute projections
using SVD factorization. Exclusive for
dense matrices.
orth_tol : float, optional
Tolerance for iterative refinements.
max_refin : int, optional
Maximum number of iterative refinements.
tol : float, optional
Tolerance for singular values.
Returns
-------
Z : LinearOperator, shape (n, n)
Null-space operator. For a given vector ``x``,
the null space operator is equivalent to apply
a projection matrix ``P = I - A.T inv(A A.T) A``
to the vector. It can be shown that this is
equivalent to project ``x`` into the null space
of A.
LS : LinearOperator, shape (m, n)
Least-squares operator. For a given vector ``x``,
the least-squares operator is equivalent to apply a
pseudoinverse matrix ``pinv(A.T) = inv(A A.T) A``
to the vector. It can be shown that this vector
``pinv(A.T) x`` is the least_square solution to
``A.T y = x``.
Y : LinearOperator, shape (n, m)
Row-space operator. For a given vector ``x``,
the row-space operator is equivalent to apply a
projection matrix ``Q = A.T inv(A A.T)``
to the vector. It can be shown that this
vector ``y = Q x`` the minimum norm solution
of ``A y = x``.
Notes
-----
Uses iterative refinements described in [1]
during the computation of ``Z`` in order to
cope with the possibility of large roundoff errors.
References
----------
.. [1] Gould, Nicholas IM, Mary E. Hribar, and Jorge Nocedal.
"On the solution of equality constrained quadratic
programming problems arising in optimization."
SIAM Journal on Scientific Computing 23.4 (2001): 1376-1395.
"""
m, n = np.shape(A)
# The factorization of an empty matrix
# only works for the sparse representation.
if m*n == 0:
A = csc_matrix(A)
# Check Argument
if issparse(A):
if method is None:
method = "AugmentedSystem"
if method not in ("NormalEquation", "AugmentedSystem"):
raise ValueError("Method not allowed for sparse matrix.")
if method == "NormalEquation" and not sksparse_available:
warnings.warn(("Only accepts 'NormalEquation' option when"
" scikit-sparse is available. Using "
"'AugmentedSystem' option instead."),
ImportWarning)
method = 'AugmentedSystem'
else:
if method is None:
method = "QRFactorization"
if method not in ("QRFactorization", "SVDFactorization"):
raise ValueError("Method not allowed for dense array.")
if method == 'NormalEquation':
null_space, least_squares, row_space \
= normal_equation_projections(A, m, n, orth_tol, max_refin, tol)
elif method == 'AugmentedSystem':
null_space, least_squares, row_space \
= augmented_system_projections(A, m, n, orth_tol, max_refin, tol)
elif method == "QRFactorization":
null_space, least_squares, row_space \
= qr_factorization_projections(A, m, n, orth_tol, max_refin, tol)
elif method == "SVDFactorization":
null_space, least_squares, row_space \
= svd_factorization_projections(A, m, n, orth_tol, max_refin, tol)
Z = LinearOperator((n, n), null_space)
LS = LinearOperator((m, n), least_squares)
Y = LinearOperator((n, m), row_space)
return Z, LS, Y

View file

@ -0,0 +1,637 @@
"""Equality-constrained quadratic programming solvers."""
from scipy.sparse import (linalg, bmat, csc_matrix)
from math import copysign
import numpy as np
from numpy.linalg import norm
__all__ = [
'eqp_kktfact',
'sphere_intersections',
'box_intersections',
'box_sphere_intersections',
'inside_box_boundaries',
'modified_dogleg',
'projected_cg'
]
# For comparison with the projected CG
def eqp_kktfact(H, c, A, b):
"""Solve equality-constrained quadratic programming (EQP) problem.
Solve ``min 1/2 x.T H x + x.t c`` subject to ``A x + b = 0``
using direct factorization of the KKT system.
Parameters
----------
H : sparse matrix, shape (n, n)
Hessian matrix of the EQP problem.
c : array_like, shape (n,)
Gradient of the quadratic objective function.
A : sparse matrix
Jacobian matrix of the EQP problem.
b : array_like, shape (m,)
Right-hand side of the constraint equation.
Returns
-------
x : array_like, shape (n,)
Solution of the KKT problem.
lagrange_multipliers : ndarray, shape (m,)
Lagrange multipliers of the KKT problem.
"""
n, = np.shape(c) # Number of parameters
m, = np.shape(b) # Number of constraints
# Karush-Kuhn-Tucker matrix of coefficients.
# Defined as in Nocedal/Wright "Numerical
# Optimization" p.452 in Eq. (16.4).
kkt_matrix = csc_matrix(bmat([[H, A.T], [A, None]]))
# Vector of coefficients.
kkt_vec = np.hstack([-c, -b])
# TODO: Use a symmetric indefinite factorization
# to solve the system twice as fast (because
# of the symmetry).
lu = linalg.splu(kkt_matrix)
kkt_sol = lu.solve(kkt_vec)
x = kkt_sol[:n]
lagrange_multipliers = -kkt_sol[n:n+m]
return x, lagrange_multipliers
def sphere_intersections(z, d, trust_radius,
entire_line=False):
"""Find the intersection between segment (or line) and spherical constraints.
Find the intersection between the segment (or line) defined by the
parametric equation ``x(t) = z + t*d`` and the ball
``||x|| <= trust_radius``.
Parameters
----------
z : array_like, shape (n,)
Initial point.
d : array_like, shape (n,)
Direction.
trust_radius : float
Ball radius.
entire_line : bool, optional
When ``True``, the function returns the intersection between the line
``x(t) = z + t*d`` (``t`` can assume any value) and the ball
``||x|| <= trust_radius``. When ``False``, the function returns the intersection
between the segment ``x(t) = z + t*d``, ``0 <= t <= 1``, and the ball.
Returns
-------
ta, tb : float
The line/segment ``x(t) = z + t*d`` is inside the ball for
for ``ta <= t <= tb``.
intersect : bool
When ``True``, there is a intersection between the line/segment
and the sphere. On the other hand, when ``False``, there is no
intersection.
"""
# Special case when d=0
if norm(d) == 0:
return 0, 0, False
# Check for inf trust_radius
if np.isinf(trust_radius):
if entire_line:
ta = -np.inf
tb = np.inf
else:
ta = 0
tb = 1
intersect = True
return ta, tb, intersect
a = np.dot(d, d)
b = 2 * np.dot(z, d)
c = np.dot(z, z) - trust_radius**2
discriminant = b*b - 4*a*c
if discriminant < 0:
intersect = False
return 0, 0, intersect
sqrt_discriminant = np.sqrt(discriminant)
# The following calculation is mathematically
# equivalent to:
# ta = (-b - sqrt_discriminant) / (2*a)
# tb = (-b + sqrt_discriminant) / (2*a)
# but produce smaller round off errors.
# Look at Matrix Computation p.97
# for a better justification.
aux = b + copysign(sqrt_discriminant, b)
ta = -aux / (2*a)
tb = -2*c / aux
ta, tb = sorted([ta, tb])
if entire_line:
intersect = True
else:
# Checks to see if intersection happens
# within vectors length.
if tb < 0 or ta > 1:
intersect = False
ta = 0
tb = 0
else:
intersect = True
# Restrict intersection interval
# between 0 and 1.
ta = max(0, ta)
tb = min(1, tb)
return ta, tb, intersect
def box_intersections(z, d, lb, ub,
entire_line=False):
"""Find the intersection between segment (or line) and box constraints.
Find the intersection between the segment (or line) defined by the
parametric equation ``x(t) = z + t*d`` and the rectangular box
``lb <= x <= ub``.
Parameters
----------
z : array_like, shape (n,)
Initial point.
d : array_like, shape (n,)
Direction.
lb : array_like, shape (n,)
Lower bounds to each one of the components of ``x``. Used
to delimit the rectangular box.
ub : array_like, shape (n, )
Upper bounds to each one of the components of ``x``. Used
to delimit the rectangular box.
entire_line : bool, optional
When ``True``, the function returns the intersection between the line
``x(t) = z + t*d`` (``t`` can assume any value) and the rectangular
box. When ``False``, the function returns the intersection between the segment
``x(t) = z + t*d``, ``0 <= t <= 1``, and the rectangular box.
Returns
-------
ta, tb : float
The line/segment ``x(t) = z + t*d`` is inside the box for
for ``ta <= t <= tb``.
intersect : bool
When ``True``, there is a intersection between the line (or segment)
and the rectangular box. On the other hand, when ``False``, there is no
intersection.
"""
# Make sure it is a numpy array
z = np.asarray(z)
d = np.asarray(d)
lb = np.asarray(lb)
ub = np.asarray(ub)
# Special case when d=0
if norm(d) == 0:
return 0, 0, False
# Get values for which d==0
zero_d = (d == 0)
# If the boundaries are not satisfied for some coordinate
# for which "d" is zero, there is no box-line intersection.
if (z[zero_d] < lb[zero_d]).any() or (z[zero_d] > ub[zero_d]).any():
intersect = False
return 0, 0, intersect
# Remove values for which d is zero
not_zero_d = np.logical_not(zero_d)
z = z[not_zero_d]
d = d[not_zero_d]
lb = lb[not_zero_d]
ub = ub[not_zero_d]
# Find a series of intervals (t_lb[i], t_ub[i]).
t_lb = (lb-z) / d
t_ub = (ub-z) / d
# Get the intersection of all those intervals.
ta = max(np.minimum(t_lb, t_ub))
tb = min(np.maximum(t_lb, t_ub))
# Check if intersection is feasible
if ta <= tb:
intersect = True
else:
intersect = False
# Checks to see if intersection happens within vectors length.
if not entire_line:
if tb < 0 or ta > 1:
intersect = False
ta = 0
tb = 0
else:
# Restrict intersection interval between 0 and 1.
ta = max(0, ta)
tb = min(1, tb)
return ta, tb, intersect
def box_sphere_intersections(z, d, lb, ub, trust_radius,
entire_line=False,
extra_info=False):
"""Find the intersection between segment (or line) and box/sphere constraints.
Find the intersection between the segment (or line) defined by the
parametric equation ``x(t) = z + t*d``, the rectangular box
``lb <= x <= ub`` and the ball ``||x|| <= trust_radius``.
Parameters
----------
z : array_like, shape (n,)
Initial point.
d : array_like, shape (n,)
Direction.
lb : array_like, shape (n,)
Lower bounds to each one of the components of ``x``. Used
to delimit the rectangular box.
ub : array_like, shape (n, )
Upper bounds to each one of the components of ``x``. Used
to delimit the rectangular box.
trust_radius : float
Ball radius.
entire_line : bool, optional
When ``True``, the function returns the intersection between the line
``x(t) = z + t*d`` (``t`` can assume any value) and the constraints.
When ``False``, the function returns the intersection between the segment
``x(t) = z + t*d``, ``0 <= t <= 1`` and the constraints.
extra_info : bool, optional
When ``True``, the function returns ``intersect_sphere`` and ``intersect_box``.
Returns
-------
ta, tb : float
The line/segment ``x(t) = z + t*d`` is inside the rectangular box and
inside the ball for for ``ta <= t <= tb``.
intersect : bool
When ``True``, there is a intersection between the line (or segment)
and both constraints. On the other hand, when ``False``, there is no
intersection.
sphere_info : dict, optional
Dictionary ``{ta, tb, intersect}`` containing the interval ``[ta, tb]``
for which the line intercepts the ball. And a boolean value indicating
whether the sphere is intersected by the line.
box_info : dict, optional
Dictionary ``{ta, tb, intersect}`` containing the interval ``[ta, tb]``
for which the line intercepts the box. And a boolean value indicating
whether the box is intersected by the line.
"""
ta_b, tb_b, intersect_b = box_intersections(z, d, lb, ub,
entire_line)
ta_s, tb_s, intersect_s = sphere_intersections(z, d,
trust_radius,
entire_line)
ta = np.maximum(ta_b, ta_s)
tb = np.minimum(tb_b, tb_s)
if intersect_b and intersect_s and ta <= tb:
intersect = True
else:
intersect = False
if extra_info:
sphere_info = {'ta': ta_s, 'tb': tb_s, 'intersect': intersect_s}
box_info = {'ta': ta_b, 'tb': tb_b, 'intersect': intersect_b}
return ta, tb, intersect, sphere_info, box_info
else:
return ta, tb, intersect
def inside_box_boundaries(x, lb, ub):
"""Check if lb <= x <= ub."""
return (lb <= x).all() and (x <= ub).all()
def reinforce_box_boundaries(x, lb, ub):
"""Return clipped value of x"""
return np.minimum(np.maximum(x, lb), ub)
def modified_dogleg(A, Y, b, trust_radius, lb, ub):
"""Approximately minimize ``1/2*|| A x + b ||^2`` inside trust-region.
Approximately solve the problem of minimizing ``1/2*|| A x + b ||^2``
subject to ``||x|| < Delta`` and ``lb <= x <= ub`` using a modification
of the classical dogleg approach.
Parameters
----------
A : LinearOperator (or sparse matrix or ndarray), shape (m, n)
Matrix ``A`` in the minimization problem. It should have
dimension ``(m, n)`` such that ``m < n``.
Y : LinearOperator (or sparse matrix or ndarray), shape (n, m)
LinearOperator that apply the projection matrix
``Q = A.T inv(A A.T)`` to the vector. The obtained vector
``y = Q x`` being the minimum norm solution of ``A y = x``.
b : array_like, shape (m,)
Vector ``b``in the minimization problem.
trust_radius: float
Trust radius to be considered. Delimits a sphere boundary
to the problem.
lb : array_like, shape (n,)
Lower bounds to each one of the components of ``x``.
It is expected that ``lb <= 0``, otherwise the algorithm
may fail. If ``lb[i] = -Inf``, the lower
bound for the ith component is just ignored.
ub : array_like, shape (n, )
Upper bounds to each one of the components of ``x``.
It is expected that ``ub >= 0``, otherwise the algorithm
may fail. If ``ub[i] = Inf``, the upper bound for the ith
component is just ignored.
Returns
-------
x : array_like, shape (n,)
Solution to the problem.
Notes
-----
Based on implementations described in pp. 885-886 from [1]_.
References
----------
.. [1] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal.
"An interior point algorithm for large-scale nonlinear
programming." SIAM Journal on Optimization 9.4 (1999): 877-900.
"""
# Compute minimum norm minimizer of 1/2*|| A x + b ||^2.
newton_point = -Y.dot(b)
# Check for interior point
if inside_box_boundaries(newton_point, lb, ub) \
and norm(newton_point) <= trust_radius:
x = newton_point
return x
# Compute gradient vector ``g = A.T b``
g = A.T.dot(b)
# Compute Cauchy point
# `cauchy_point = g.T g / (g.T A.T A g)``.
A_g = A.dot(g)
cauchy_point = -np.dot(g, g) / np.dot(A_g, A_g) * g
# Origin
origin_point = np.zeros_like(cauchy_point)
# Check the segment between cauchy_point and newton_point
# for a possible solution.
z = cauchy_point
p = newton_point - cauchy_point
_, alpha, intersect = box_sphere_intersections(z, p, lb, ub,
trust_radius)
if intersect:
x1 = z + alpha*p
else:
# Check the segment between the origin and cauchy_point
# for a possible solution.
z = origin_point
p = cauchy_point
_, alpha, _ = box_sphere_intersections(z, p, lb, ub,
trust_radius)
x1 = z + alpha*p
# Check the segment between origin and newton_point
# for a possible solution.
z = origin_point
p = newton_point
_, alpha, _ = box_sphere_intersections(z, p, lb, ub,
trust_radius)
x2 = z + alpha*p
# Return the best solution among x1 and x2.
if norm(A.dot(x1) + b) < norm(A.dot(x2) + b):
return x1
else:
return x2
def projected_cg(H, c, Z, Y, b, trust_radius=np.inf,
lb=None, ub=None, tol=None,
max_iter=None, max_infeasible_iter=None,
return_all=False):
"""Solve EQP problem with projected CG method.
Solve equality-constrained quadratic programming problem
``min 1/2 x.T H x + x.t c`` subject to ``A x + b = 0`` and,
possibly, to trust region constraints ``||x|| < trust_radius``
and box constraints ``lb <= x <= ub``.
Parameters
----------
H : LinearOperator (or sparse matrix or ndarray), shape (n, n)
Operator for computing ``H v``.
c : array_like, shape (n,)
Gradient of the quadratic objective function.
Z : LinearOperator (or sparse matrix or ndarray), shape (n, n)
Operator for projecting ``x`` into the null space of A.
Y : LinearOperator, sparse matrix, ndarray, shape (n, m)
Operator that, for a given a vector ``b``, compute smallest
norm solution of ``A x + b = 0``.
b : array_like, shape (m,)
Right-hand side of the constraint equation.
trust_radius : float, optional
Trust radius to be considered. By default, uses ``trust_radius=inf``,
which means no trust radius at all.
lb : array_like, shape (n,), optional
Lower bounds to each one of the components of ``x``.
If ``lb[i] = -Inf`` the lower bound for the i-th
component is just ignored (default).
ub : array_like, shape (n, ), optional
Upper bounds to each one of the components of ``x``.
If ``ub[i] = Inf`` the upper bound for the i-th
component is just ignored (default).
tol : float, optional
Tolerance used to interrupt the algorithm.
max_iter : int, optional
Maximum algorithm iterations. Where ``max_inter <= n-m``.
By default, uses ``max_iter = n-m``.
max_infeasible_iter : int, optional
Maximum infeasible (regarding box constraints) iterations the
algorithm is allowed to take.
By default, uses ``max_infeasible_iter = n-m``.
return_all : bool, optional
When ``true``, return the list of all vectors through the iterations.
Returns
-------
x : array_like, shape (n,)
Solution of the EQP problem.
info : Dict
Dictionary containing the following:
- niter : Number of iterations.
- stop_cond : Reason for algorithm termination:
1. Iteration limit was reached;
2. Reached the trust-region boundary;
3. Negative curvature detected;
4. Tolerance was satisfied.
- allvecs : List containing all intermediary vectors (optional).
- hits_boundary : True if the proposed step is on the boundary
of the trust region.
Notes
-----
Implementation of Algorithm 6.2 on [1]_.
In the absence of spherical and box constraints, for sufficient
iterations, the method returns a truly optimal result.
In the presence of those constraints, the value returned is only
a inexpensive approximation of the optimal value.
References
----------
.. [1] Gould, Nicholas IM, Mary E. Hribar, and Jorge Nocedal.
"On the solution of equality constrained quadratic
programming problems arising in optimization."
SIAM Journal on Scientific Computing 23.4 (2001): 1376-1395.
"""
CLOSE_TO_ZERO = 1e-25
n, = np.shape(c) # Number of parameters
m, = np.shape(b) # Number of constraints
# Initial Values
x = Y.dot(-b)
r = Z.dot(H.dot(x) + c)
g = Z.dot(r)
p = -g
# Store ``x`` value
if return_all:
allvecs = [x]
# Values for the first iteration
H_p = H.dot(p)
rt_g = norm(g)**2 # g.T g = r.T Z g = r.T g (ref [1]_ p.1389)
# If x > trust-region the problem does not have a solution.
tr_distance = trust_radius - norm(x)
if tr_distance < 0:
raise ValueError("Trust region problem does not have a solution.")
# If x == trust_radius, then x is the solution
# to the optimization problem, since x is the
# minimum norm solution to Ax=b.
elif tr_distance < CLOSE_TO_ZERO:
info = {'niter': 0, 'stop_cond': 2, 'hits_boundary': True}
if return_all:
allvecs.append(x)
info['allvecs'] = allvecs
return x, info
# Set default tolerance
if tol is None:
tol = max(min(0.01 * np.sqrt(rt_g), 0.1 * rt_g), CLOSE_TO_ZERO)
# Set default lower and upper bounds
if lb is None:
lb = np.full(n, -np.inf)
if ub is None:
ub = np.full(n, np.inf)
# Set maximum iterations
if max_iter is None:
max_iter = n-m
max_iter = min(max_iter, n-m)
# Set maximum infeasible iterations
if max_infeasible_iter is None:
max_infeasible_iter = n-m
hits_boundary = False
stop_cond = 1
counter = 0
last_feasible_x = np.zeros_like(x)
k = 0
for i in range(max_iter):
# Stop criteria - Tolerance : r.T g < tol
if rt_g < tol:
stop_cond = 4
break
k += 1
# Compute curvature
pt_H_p = H_p.dot(p)
# Stop criteria - Negative curvature
if pt_H_p <= 0:
if np.isinf(trust_radius):
raise ValueError("Negative curvature not allowed "
"for unrestricted problems.")
else:
# Find intersection with constraints
_, alpha, intersect = box_sphere_intersections(
x, p, lb, ub, trust_radius, entire_line=True)
# Update solution
if intersect:
x = x + alpha*p
# Reinforce variables are inside box constraints.
# This is only necessary because of roundoff errors.
x = reinforce_box_boundaries(x, lb, ub)
# Attribute information
stop_cond = 3
hits_boundary = True
break
# Get next step
alpha = rt_g / pt_H_p
x_next = x + alpha*p
# Stop criteria - Hits boundary
if np.linalg.norm(x_next) >= trust_radius:
# Find intersection with box constraints
_, theta, intersect = box_sphere_intersections(x, alpha*p, lb, ub,
trust_radius)
# Update solution
if intersect:
x = x + theta*alpha*p
# Reinforce variables are inside box constraints.
# This is only necessary because of roundoff errors.
x = reinforce_box_boundaries(x, lb, ub)
# Attribute information
stop_cond = 2
hits_boundary = True
break
# Check if ``x`` is inside the box and start counter if it is not.
if inside_box_boundaries(x_next, lb, ub):
counter = 0
else:
counter += 1
# Whenever outside box constraints keep looking for intersections.
if counter > 0:
_, theta, intersect = box_sphere_intersections(x, alpha*p, lb, ub,
trust_radius)
if intersect:
last_feasible_x = x + theta*alpha*p
# Reinforce variables are inside box constraints.
# This is only necessary because of roundoff errors.
last_feasible_x = reinforce_box_boundaries(last_feasible_x,
lb, ub)
counter = 0
# Stop after too many infeasible (regarding box constraints) iteration.
if counter > max_infeasible_iter:
break
# Store ``x_next`` value
if return_all:
allvecs.append(x_next)
# Update residual
r_next = r + alpha*H_p
# Project residual g+ = Z r+
g_next = Z.dot(r_next)
# Compute conjugate direction step d
rt_g_next = norm(g_next)**2 # g.T g = r.T g (ref [1]_ p.1389)
beta = rt_g_next / rt_g
p = - g_next + beta*p
# Prepare for next iteration
x = x_next
g = g_next
r = g_next
rt_g = norm(g)**2 # g.T g = r.T Z g = r.T g (ref [1]_ p.1389)
H_p = H.dot(p)
if not inside_box_boundaries(x, lb, ub):
x = last_feasible_x
hits_boundary = True
info = {'niter': k, 'stop_cond': stop_cond,
'hits_boundary': hits_boundary}
if return_all:
info['allvecs'] = allvecs
return x, info

View file

@ -0,0 +1,56 @@
"""Progress report printers."""
class ReportBase(object):
COLUMN_NAMES = NotImplemented
COLUMN_WIDTHS = NotImplemented
ITERATION_FORMATS = NotImplemented
@classmethod
def print_header(cls):
fmt = ("|"
+ "|".join(["{{:^{}}}".format(x) for x in cls.COLUMN_WIDTHS])
+ "|")
separators = ['-' * x for x in cls.COLUMN_WIDTHS]
print(fmt.format(*cls.COLUMN_NAMES))
print(fmt.format(*separators))
@classmethod
def print_iteration(cls, *args):
# args[3] is obj func. It should really be a float. However,
# trust-constr typically provides a length 1 array. We have to coerce
# it to a float, otherwise the string format doesn't work.
args = list(args)
args[3] = float(args[3])
iteration_format = ["{{:{}}}".format(x) for x in cls.ITERATION_FORMATS]
fmt = "|" + "|".join(iteration_format) + "|"
print(fmt.format(*args))
@classmethod
def print_footer(cls):
print()
class BasicReport(ReportBase):
COLUMN_NAMES = ["niter", "f evals", "CG iter", "obj func", "tr radius",
"opt", "c viol"]
COLUMN_WIDTHS = [7, 7, 7, 13, 10, 10, 10]
ITERATION_FORMATS = ["^7", "^7", "^7", "^+13.4e",
"^10.2e", "^10.2e", "^10.2e"]
class SQPReport(ReportBase):
COLUMN_NAMES = ["niter", "f evals", "CG iter", "obj func", "tr radius",
"opt", "c viol", "penalty", "CG stop"]
COLUMN_WIDTHS = [7, 7, 7, 13, 10, 10, 10, 10, 7]
ITERATION_FORMATS = ["^7", "^7", "^7", "^+13.4e", "^10.2e", "^10.2e",
"^10.2e", "^10.2e", "^7"]
class IPReport(ReportBase):
COLUMN_NAMES = ["niter", "f evals", "CG iter", "obj func", "tr radius",
"opt", "c viol", "penalty", "barrier param", "CG stop"]
COLUMN_WIDTHS = [7, 7, 7, 13, 10, 10, 10, 10, 13, 7]
ITERATION_FORMATS = ["^7", "^7", "^7", "^+13.4e", "^10.2e", "^10.2e",
"^10.2e", "^10.2e", "^13.2e", "^7"]

View file

@ -0,0 +1,11 @@
def configuration(parent_package='', top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration('_trustregion_constr', parent_package, top_path)
config.add_data_dir('tests')
return config
if __name__ == '__main__':
from numpy.distutils.core import setup
setup(**configuration(top_path='').todict())

View file

@ -0,0 +1,296 @@
import numpy as np
from numpy.testing import assert_array_equal, assert_equal
from scipy.optimize._constraints import (NonlinearConstraint, Bounds,
PreparedConstraint)
from scipy.optimize._trustregion_constr.canonical_constraint \
import CanonicalConstraint, initial_constraints_as_canonical
def create_quadratic_function(n, m, rng):
a = rng.rand(m)
A = rng.rand(m, n)
H = rng.rand(m, n, n)
HT = np.transpose(H, (1, 2, 0))
def fun(x):
return a + A.dot(x) + 0.5 * H.dot(x).dot(x)
def jac(x):
return A + H.dot(x)
def hess(x, v):
return HT.dot(v)
return fun, jac, hess
def test_bounds_cases():
# Test 1: no constraints.
user_constraint = Bounds(-np.inf, np.inf)
x0 = np.array([-1, 2])
prepared_constraint = PreparedConstraint(user_constraint, x0, False)
c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)
assert_equal(c.n_eq, 0)
assert_equal(c.n_ineq, 0)
c_eq, c_ineq = c.fun(x0)
assert_array_equal(c_eq, [])
assert_array_equal(c_ineq, [])
J_eq, J_ineq = c.jac(x0)
assert_array_equal(J_eq, np.empty((0, 2)))
assert_array_equal(J_ineq, np.empty((0, 2)))
assert_array_equal(c.keep_feasible, [])
# Test 2: infinite lower bound.
user_constraint = Bounds(-np.inf, [0, np.inf, 1], [False, True, True])
x0 = np.array([-1, -2, -3], dtype=float)
prepared_constraint = PreparedConstraint(user_constraint, x0, False)
c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)
assert_equal(c.n_eq, 0)
assert_equal(c.n_ineq, 2)
c_eq, c_ineq = c.fun(x0)
assert_array_equal(c_eq, [])
assert_array_equal(c_ineq, [-1, -4])
J_eq, J_ineq = c.jac(x0)
assert_array_equal(J_eq, np.empty((0, 3)))
assert_array_equal(J_ineq, np.array([[1, 0, 0], [0, 0, 1]]))
assert_array_equal(c.keep_feasible, [False, True])
# Test 3: infinite upper bound.
user_constraint = Bounds([0, 1, -np.inf], np.inf, [True, False, True])
x0 = np.array([1, 2, 3], dtype=float)
prepared_constraint = PreparedConstraint(user_constraint, x0, False)
c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)
assert_equal(c.n_eq, 0)
assert_equal(c.n_ineq, 2)
c_eq, c_ineq = c.fun(x0)
assert_array_equal(c_eq, [])
assert_array_equal(c_ineq, [-1, -1])
J_eq, J_ineq = c.jac(x0)
assert_array_equal(J_eq, np.empty((0, 3)))
assert_array_equal(J_ineq, np.array([[-1, 0, 0], [0, -1, 0]]))
assert_array_equal(c.keep_feasible, [True, False])
# Test 4: interval constraint.
user_constraint = Bounds([-1, -np.inf, 2, 3], [1, np.inf, 10, 3],
[False, True, True, True])
x0 = np.array([0, 10, 8, 5])
prepared_constraint = PreparedConstraint(user_constraint, x0, False)
c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)
assert_equal(c.n_eq, 1)
assert_equal(c.n_ineq, 4)
c_eq, c_ineq = c.fun(x0)
assert_array_equal(c_eq, [2])
assert_array_equal(c_ineq, [-1, -2, -1, -6])
J_eq, J_ineq = c.jac(x0)
assert_array_equal(J_eq, [[0, 0, 0, 1]])
assert_array_equal(J_ineq, [[1, 0, 0, 0],
[0, 0, 1, 0],
[-1, 0, 0, 0],
[0, 0, -1, 0]])
assert_array_equal(c.keep_feasible, [False, True, False, True])
def test_nonlinear_constraint():
n = 3
m = 5
rng = np.random.RandomState(0)
x0 = rng.rand(n)
fun, jac, hess = create_quadratic_function(n, m, rng)
f = fun(x0)
J = jac(x0)
lb = [-10, 3, -np.inf, -np.inf, -5]
ub = [10, 3, np.inf, 3, np.inf]
user_constraint = NonlinearConstraint(
fun, lb, ub, jac, hess, [True, False, False, True, False])
for sparse_jacobian in [False, True]:
prepared_constraint = PreparedConstraint(user_constraint, x0,
sparse_jacobian)
c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)
assert_array_equal(c.n_eq, 1)
assert_array_equal(c.n_ineq, 4)
c_eq, c_ineq = c.fun(x0)
assert_array_equal(c_eq, [f[1] - lb[1]])
assert_array_equal(c_ineq, [f[3] - ub[3], lb[4] - f[4],
f[0] - ub[0], lb[0] - f[0]])
J_eq, J_ineq = c.jac(x0)
if sparse_jacobian:
J_eq = J_eq.toarray()
J_ineq = J_ineq.toarray()
assert_array_equal(J_eq, J[1, None])
assert_array_equal(J_ineq, np.vstack((J[3], -J[4], J[0], -J[0])))
v_eq = rng.rand(c.n_eq)
v_ineq = rng.rand(c.n_ineq)
v = np.zeros(m)
v[1] = v_eq[0]
v[3] = v_ineq[0]
v[4] = -v_ineq[1]
v[0] = v_ineq[2] - v_ineq[3]
assert_array_equal(c.hess(x0, v_eq, v_ineq), hess(x0, v))
assert_array_equal(c.keep_feasible, [True, False, True, True])
def test_concatenation():
rng = np.random.RandomState(0)
n = 4
x0 = rng.rand(n)
f1 = x0
J1 = np.eye(n)
lb1 = [-1, -np.inf, -2, 3]
ub1 = [1, np.inf, np.inf, 3]
bounds = Bounds(lb1, ub1, [False, False, True, False])
fun, jac, hess = create_quadratic_function(n, 5, rng)
f2 = fun(x0)
J2 = jac(x0)
lb2 = [-10, 3, -np.inf, -np.inf, -5]
ub2 = [10, 3, np.inf, 5, np.inf]
nonlinear = NonlinearConstraint(
fun, lb2, ub2, jac, hess, [True, False, False, True, False])
for sparse_jacobian in [False, True]:
bounds_prepared = PreparedConstraint(bounds, x0, sparse_jacobian)
nonlinear_prepared = PreparedConstraint(nonlinear, x0, sparse_jacobian)
c1 = CanonicalConstraint.from_PreparedConstraint(bounds_prepared)
c2 = CanonicalConstraint.from_PreparedConstraint(nonlinear_prepared)
c = CanonicalConstraint.concatenate([c1, c2], sparse_jacobian)
assert_equal(c.n_eq, 2)
assert_equal(c.n_ineq, 7)
c_eq, c_ineq = c.fun(x0)
assert_array_equal(c_eq, [f1[3] - lb1[3], f2[1] - lb2[1]])
assert_array_equal(c_ineq, [lb1[2] - f1[2], f1[0] - ub1[0],
lb1[0] - f1[0], f2[3] - ub2[3],
lb2[4] - f2[4], f2[0] - ub2[0],
lb2[0] - f2[0]])
J_eq, J_ineq = c.jac(x0)
if sparse_jacobian:
J_eq = J_eq.toarray()
J_ineq = J_ineq.toarray()
assert_array_equal(J_eq, np.vstack((J1[3], J2[1])))
assert_array_equal(J_ineq, np.vstack((-J1[2], J1[0], -J1[0], J2[3],
-J2[4], J2[0], -J2[0])))
v_eq = rng.rand(c.n_eq)
v_ineq = rng.rand(c.n_ineq)
v = np.zeros(5)
v[1] = v_eq[1]
v[3] = v_ineq[3]
v[4] = -v_ineq[4]
v[0] = v_ineq[5] - v_ineq[6]
H = c.hess(x0, v_eq, v_ineq).dot(np.eye(n))
assert_array_equal(H, hess(x0, v))
assert_array_equal(c.keep_feasible,
[True, False, False, True, False, True, True])
def test_empty():
x = np.array([1, 2, 3])
c = CanonicalConstraint.empty(3)
assert_equal(c.n_eq, 0)
assert_equal(c.n_ineq, 0)
c_eq, c_ineq = c.fun(x)
assert_array_equal(c_eq, [])
assert_array_equal(c_ineq, [])
J_eq, J_ineq = c.jac(x)
assert_array_equal(J_eq, np.empty((0, 3)))
assert_array_equal(J_ineq, np.empty((0, 3)))
H = c.hess(x, None, None).toarray()
assert_array_equal(H, np.zeros((3, 3)))
def test_initial_constraints_as_canonical():
# rng is only used to generate the coefficients of the quadratic
# function that is used by the nonlinear constraint.
rng = np.random.RandomState(0)
x0 = np.array([0.5, 0.4, 0.3, 0.2])
n = len(x0)
lb1 = [-1, -np.inf, -2, 3]
ub1 = [1, np.inf, np.inf, 3]
bounds = Bounds(lb1, ub1, [False, False, True, False])
fun, jac, hess = create_quadratic_function(n, 5, rng)
lb2 = [-10, 3, -np.inf, -np.inf, -5]
ub2 = [10, 3, np.inf, 5, np.inf]
nonlinear = NonlinearConstraint(
fun, lb2, ub2, jac, hess, [True, False, False, True, False])
for sparse_jacobian in [False, True]:
bounds_prepared = PreparedConstraint(bounds, x0, sparse_jacobian)
nonlinear_prepared = PreparedConstraint(nonlinear, x0, sparse_jacobian)
f1 = bounds_prepared.fun.f
J1 = bounds_prepared.fun.J
f2 = nonlinear_prepared.fun.f
J2 = nonlinear_prepared.fun.J
c_eq, c_ineq, J_eq, J_ineq = initial_constraints_as_canonical(
n, [bounds_prepared, nonlinear_prepared], sparse_jacobian)
assert_array_equal(c_eq, [f1[3] - lb1[3], f2[1] - lb2[1]])
assert_array_equal(c_ineq, [lb1[2] - f1[2], f1[0] - ub1[0],
lb1[0] - f1[0], f2[3] - ub2[3],
lb2[4] - f2[4], f2[0] - ub2[0],
lb2[0] - f2[0]])
if sparse_jacobian:
J1 = J1.toarray()
J2 = J2.toarray()
J_eq = J_eq.toarray()
J_ineq = J_ineq.toarray()
assert_array_equal(J_eq, np.vstack((J1[3], J2[1])))
assert_array_equal(J_ineq, np.vstack((-J1[2], J1[0], -J1[0], J2[3],
-J2[4], J2[0], -J2[0])))
def test_initial_constraints_as_canonical_empty():
n = 3
for sparse_jacobian in [False, True]:
c_eq, c_ineq, J_eq, J_ineq = initial_constraints_as_canonical(
n, [], sparse_jacobian)
assert_array_equal(c_eq, [])
assert_array_equal(c_ineq, [])
if sparse_jacobian:
J_eq = J_eq.toarray()
J_ineq = J_ineq.toarray()
assert_array_equal(J_eq, np.empty((0, n)))
assert_array_equal(J_ineq, np.empty((0, n)))

View file

@ -0,0 +1,214 @@
import numpy as np
import scipy.linalg
from scipy.sparse import csc_matrix
from scipy.optimize._trustregion_constr.projections \
import projections, orthogonality
from numpy.testing import (TestCase, assert_array_almost_equal,
assert_equal, assert_allclose)
try:
from sksparse.cholmod import cholesky_AAt
sksparse_available = True
available_sparse_methods = ("NormalEquation", "AugmentedSystem")
except ImportError:
sksparse_available = False
available_sparse_methods = ("AugmentedSystem",)
available_dense_methods = ('QRFactorization', 'SVDFactorization')
class TestProjections(TestCase):
def test_nullspace_and_least_squares_sparse(self):
A_dense = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
At_dense = A_dense.T
A = csc_matrix(A_dense)
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
[1, 10, 3, 0, 1, 6, 7, 8],
[1.12, 10, 0, 0, 100000, 6, 0.7, 8])
for method in available_sparse_methods:
Z, LS, _ = projections(A, method)
for z in test_points:
# Test if x is in the null_space
x = Z.matvec(z)
assert_array_almost_equal(A.dot(x), 0)
# Test orthogonality
assert_array_almost_equal(orthogonality(A, x), 0)
# Test if x is the least square solution
x = LS.matvec(z)
x2 = scipy.linalg.lstsq(At_dense, z)[0]
assert_array_almost_equal(x, x2)
def test_iterative_refinements_sparse(self):
A_dense = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
A = csc_matrix(A_dense)
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
[1, 10, 3, 0, 1, 6, 7, 8],
[1.12, 10, 0, 0, 100000, 6, 0.7, 8],
[1, 0, 0, 0, 0, 1, 2, 3+1e-10])
for method in available_sparse_methods:
Z, LS, _ = projections(A, method, orth_tol=1e-18, max_refin=100)
for z in test_points:
# Test if x is in the null_space
x = Z.matvec(z)
atol = 1e-13 * abs(x).max()
assert_allclose(A.dot(x), 0, atol=atol)
# Test orthogonality
assert_allclose(orthogonality(A, x), 0, atol=1e-13)
def test_rowspace_sparse(self):
A_dense = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
A = csc_matrix(A_dense)
test_points = ([1, 2, 3],
[1, 10, 3],
[1.12, 10, 0])
for method in available_sparse_methods:
_, _, Y = projections(A, method)
for z in test_points:
# Test if x is solution of A x = z
x = Y.matvec(z)
assert_array_almost_equal(A.dot(x), z)
# Test if x is in the return row space of A
A_ext = np.vstack((A_dense, x))
assert_equal(np.linalg.matrix_rank(A_dense),
np.linalg.matrix_rank(A_ext))
def test_nullspace_and_least_squares_dense(self):
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
At = A.T
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
[1, 10, 3, 0, 1, 6, 7, 8],
[1.12, 10, 0, 0, 100000, 6, 0.7, 8])
for method in available_dense_methods:
Z, LS, _ = projections(A, method)
for z in test_points:
# Test if x is in the null_space
x = Z.matvec(z)
assert_array_almost_equal(A.dot(x), 0)
# Test orthogonality
assert_array_almost_equal(orthogonality(A, x), 0)
# Test if x is the least square solution
x = LS.matvec(z)
x2 = scipy.linalg.lstsq(At, z)[0]
assert_array_almost_equal(x, x2)
def test_compare_dense_and_sparse(self):
D = np.diag(range(1, 101))
A = np.hstack([D, D, D, D])
A_sparse = csc_matrix(A)
np.random.seed(0)
Z, LS, Y = projections(A)
Z_sparse, LS_sparse, Y_sparse = projections(A_sparse)
for k in range(20):
z = np.random.normal(size=(400,))
assert_array_almost_equal(Z.dot(z), Z_sparse.dot(z))
assert_array_almost_equal(LS.dot(z), LS_sparse.dot(z))
x = np.random.normal(size=(100,))
assert_array_almost_equal(Y.dot(x), Y_sparse.dot(x))
def test_compare_dense_and_sparse2(self):
D1 = np.diag([-1.7, 1, 0.5])
D2 = np.diag([1, -0.6, -0.3])
D3 = np.diag([-0.3, -1.5, 2])
A = np.hstack([D1, D2, D3])
A_sparse = csc_matrix(A)
np.random.seed(0)
Z, LS, Y = projections(A)
Z_sparse, LS_sparse, Y_sparse = projections(A_sparse)
for k in range(1):
z = np.random.normal(size=(9,))
assert_array_almost_equal(Z.dot(z), Z_sparse.dot(z))
assert_array_almost_equal(LS.dot(z), LS_sparse.dot(z))
x = np.random.normal(size=(3,))
assert_array_almost_equal(Y.dot(x), Y_sparse.dot(x))
def test_iterative_refinements_dense(self):
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
test_points = ([1, 2, 3, 4, 5, 6, 7, 8],
[1, 10, 3, 0, 1, 6, 7, 8],
[1, 0, 0, 0, 0, 1, 2, 3+1e-10])
for method in available_dense_methods:
Z, LS, _ = projections(A, method, orth_tol=1e-18, max_refin=10)
for z in test_points:
# Test if x is in the null_space
x = Z.matvec(z)
assert_array_almost_equal(A.dot(x), 0, decimal=14)
# Test orthogonality
assert_array_almost_equal(orthogonality(A, x), 0, decimal=16)
def test_rowspace_dense(self):
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
test_points = ([1, 2, 3],
[1, 10, 3],
[1.12, 10, 0])
for method in available_dense_methods:
_, _, Y = projections(A, method)
for z in test_points:
# Test if x is solution of A x = z
x = Y.matvec(z)
assert_array_almost_equal(A.dot(x), z)
# Test if x is in the return row space of A
A_ext = np.vstack((A, x))
assert_equal(np.linalg.matrix_rank(A),
np.linalg.matrix_rank(A_ext))
class TestOrthogonality(TestCase):
def test_dense_matrix(self):
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
test_vectors = ([-1.98931144, -1.56363389,
-0.84115584, 2.2864762,
5.599141, 0.09286976,
1.37040802, -0.28145812],
[697.92794044, -4091.65114008,
-3327.42316335, 836.86906951,
99434.98929065, -1285.37653682,
-4109.21503806, 2935.29289083])
test_expected_orth = (0, 0)
for i in range(len(test_vectors)):
x = test_vectors[i]
orth = test_expected_orth[i]
assert_array_almost_equal(orthogonality(A, x), orth)
def test_sparse_matrix(self):
A = np.array([[1, 2, 3, 4, 0, 5, 0, 7],
[0, 8, 7, 0, 1, 5, 9, 0],
[1, 0, 0, 0, 0, 1, 2, 3]])
A = csc_matrix(A)
test_vectors = ([-1.98931144, -1.56363389,
-0.84115584, 2.2864762,
5.599141, 0.09286976,
1.37040802, -0.28145812],
[697.92794044, -4091.65114008,
-3327.42316335, 836.86906951,
99434.98929065, -1285.37653682,
-4109.21503806, 2935.29289083])
test_expected_orth = (0, 0)
for i in range(len(test_vectors)):
x = test_vectors[i]
orth = test_expected_orth[i]
assert_array_almost_equal(orthogonality(A, x), orth)

View file

@ -0,0 +1,645 @@
import numpy as np
from scipy.sparse import csc_matrix
from scipy.optimize._trustregion_constr.qp_subproblem \
import (eqp_kktfact,
projected_cg,
box_intersections,
sphere_intersections,
box_sphere_intersections,
modified_dogleg)
from scipy.optimize._trustregion_constr.projections \
import projections
from numpy.testing import (TestCase, assert_array_almost_equal, assert_equal)
import pytest
class TestEQPDirectFactorization(TestCase):
# From Example 16.2 Nocedal/Wright "Numerical
# Optimization" p.452.
def test_nocedal_example(self):
H = csc_matrix([[6, 2, 1],
[2, 5, 2],
[1, 2, 4]])
A = csc_matrix([[1, 0, 1],
[0, 1, 1]])
c = np.array([-8, -3, -3])
b = -np.array([3, 0])
x, lagrange_multipliers = eqp_kktfact(H, c, A, b)
assert_array_almost_equal(x, [2, -1, 1])
assert_array_almost_equal(lagrange_multipliers, [3, -2])
class TestSphericalBoundariesIntersections(TestCase):
def test_2d_sphere_constraints(self):
# Interior inicial point
ta, tb, intersect = sphere_intersections([0, 0],
[1, 0], 0.5)
assert_array_almost_equal([ta, tb], [0, 0.5])
assert_equal(intersect, True)
# No intersection between line and circle
ta, tb, intersect = sphere_intersections([2, 0],
[0, 1], 1)
assert_equal(intersect, False)
# Outside initial point pointing toward outside the circle
ta, tb, intersect = sphere_intersections([2, 0],
[1, 0], 1)
assert_equal(intersect, False)
# Outside initial point pointing toward inside the circle
ta, tb, intersect = sphere_intersections([2, 0],
[-1, 0], 1.5)
assert_array_almost_equal([ta, tb], [0.5, 1])
assert_equal(intersect, True)
# Initial point on the boundary
ta, tb, intersect = sphere_intersections([2, 0],
[1, 0], 2)
assert_array_almost_equal([ta, tb], [0, 0])
assert_equal(intersect, True)
def test_2d_sphere_constraints_line_intersections(self):
# Interior initial point
ta, tb, intersect = sphere_intersections([0, 0],
[1, 0], 0.5,
entire_line=True)
assert_array_almost_equal([ta, tb], [-0.5, 0.5])
assert_equal(intersect, True)
# No intersection between line and circle
ta, tb, intersect = sphere_intersections([2, 0],
[0, 1], 1,
entire_line=True)
assert_equal(intersect, False)
# Outside initial point pointing toward outside the circle
ta, tb, intersect = sphere_intersections([2, 0],
[1, 0], 1,
entire_line=True)
assert_array_almost_equal([ta, tb], [-3, -1])
assert_equal(intersect, True)
# Outside initial point pointing toward inside the circle
ta, tb, intersect = sphere_intersections([2, 0],
[-1, 0], 1.5,
entire_line=True)
assert_array_almost_equal([ta, tb], [0.5, 3.5])
assert_equal(intersect, True)
# Initial point on the boundary
ta, tb, intersect = sphere_intersections([2, 0],
[1, 0], 2,
entire_line=True)
assert_array_almost_equal([ta, tb], [-4, 0])
assert_equal(intersect, True)
class TestBoxBoundariesIntersections(TestCase):
def test_2d_box_constraints(self):
# Box constraint in the direction of vector d
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[1, 1], [3, 3])
assert_array_almost_equal([ta, tb], [0.5, 1])
assert_equal(intersect, True)
# Negative direction
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[1, -3], [3, -1])
assert_equal(intersect, False)
# Some constraints are absent (set to +/- inf)
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[-np.inf, 1],
[np.inf, np.inf])
assert_array_almost_equal([ta, tb], [0.5, 1])
assert_equal(intersect, True)
# Intersect on the face of the box
ta, tb, intersect = box_intersections([1, 0], [0, 1],
[1, 1], [3, 3])
assert_array_almost_equal([ta, tb], [1, 1])
assert_equal(intersect, True)
# Interior initial point
ta, tb, intersect = box_intersections([0, 0], [4, 4],
[-2, -3], [3, 2])
assert_array_almost_equal([ta, tb], [0, 0.5])
assert_equal(intersect, True)
# No intersection between line and box constraints
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[-3, -3], [-1, -1])
assert_equal(intersect, False)
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[-3, 3], [-1, 1])
assert_equal(intersect, False)
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[-3, -np.inf],
[-1, np.inf])
assert_equal(intersect, False)
ta, tb, intersect = box_intersections([0, 0], [1, 100],
[1, 1], [3, 3])
assert_equal(intersect, False)
ta, tb, intersect = box_intersections([0.99, 0], [0, 2],
[1, 1], [3, 3])
assert_equal(intersect, False)
# Initial point on the boundary
ta, tb, intersect = box_intersections([2, 2], [0, 1],
[-2, -2], [2, 2])
assert_array_almost_equal([ta, tb], [0, 0])
assert_equal(intersect, True)
def test_2d_box_constraints_entire_line(self):
# Box constraint in the direction of vector d
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[1, 1], [3, 3],
entire_line=True)
assert_array_almost_equal([ta, tb], [0.5, 1.5])
assert_equal(intersect, True)
# Negative direction
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[1, -3], [3, -1],
entire_line=True)
assert_array_almost_equal([ta, tb], [-1.5, -0.5])
assert_equal(intersect, True)
# Some constraints are absent (set to +/- inf)
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[-np.inf, 1],
[np.inf, np.inf],
entire_line=True)
assert_array_almost_equal([ta, tb], [0.5, np.inf])
assert_equal(intersect, True)
# Intersect on the face of the box
ta, tb, intersect = box_intersections([1, 0], [0, 1],
[1, 1], [3, 3],
entire_line=True)
assert_array_almost_equal([ta, tb], [1, 3])
assert_equal(intersect, True)
# Interior initial pointoint
ta, tb, intersect = box_intersections([0, 0], [4, 4],
[-2, -3], [3, 2],
entire_line=True)
assert_array_almost_equal([ta, tb], [-0.5, 0.5])
assert_equal(intersect, True)
# No intersection between line and box constraints
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[-3, -3], [-1, -1],
entire_line=True)
assert_equal(intersect, False)
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[-3, 3], [-1, 1],
entire_line=True)
assert_equal(intersect, False)
ta, tb, intersect = box_intersections([2, 0], [0, 2],
[-3, -np.inf],
[-1, np.inf],
entire_line=True)
assert_equal(intersect, False)
ta, tb, intersect = box_intersections([0, 0], [1, 100],
[1, 1], [3, 3],
entire_line=True)
assert_equal(intersect, False)
ta, tb, intersect = box_intersections([0.99, 0], [0, 2],
[1, 1], [3, 3],
entire_line=True)
assert_equal(intersect, False)
# Initial point on the boundary
ta, tb, intersect = box_intersections([2, 2], [0, 1],
[-2, -2], [2, 2],
entire_line=True)
assert_array_almost_equal([ta, tb], [-4, 0])
assert_equal(intersect, True)
def test_3d_box_constraints(self):
# Simple case
ta, tb, intersect = box_intersections([1, 1, 0], [0, 0, 1],
[1, 1, 1], [3, 3, 3])
assert_array_almost_equal([ta, tb], [1, 1])
assert_equal(intersect, True)
# Negative direction
ta, tb, intersect = box_intersections([1, 1, 0], [0, 0, -1],
[1, 1, 1], [3, 3, 3])
assert_equal(intersect, False)
# Interior point
ta, tb, intersect = box_intersections([2, 2, 2], [0, -1, 1],
[1, 1, 1], [3, 3, 3])
assert_array_almost_equal([ta, tb], [0, 1])
assert_equal(intersect, True)
def test_3d_box_constraints_entire_line(self):
# Simple case
ta, tb, intersect = box_intersections([1, 1, 0], [0, 0, 1],
[1, 1, 1], [3, 3, 3],
entire_line=True)
assert_array_almost_equal([ta, tb], [1, 3])
assert_equal(intersect, True)
# Negative direction
ta, tb, intersect = box_intersections([1, 1, 0], [0, 0, -1],
[1, 1, 1], [3, 3, 3],
entire_line=True)
assert_array_almost_equal([ta, tb], [-3, -1])
assert_equal(intersect, True)
# Interior point
ta, tb, intersect = box_intersections([2, 2, 2], [0, -1, 1],
[1, 1, 1], [3, 3, 3],
entire_line=True)
assert_array_almost_equal([ta, tb], [-1, 1])
assert_equal(intersect, True)
class TestBoxSphereBoundariesIntersections(TestCase):
def test_2d_box_constraints(self):
# Both constraints are active
ta, tb, intersect = box_sphere_intersections([1, 1], [-2, 2],
[-1, -2], [1, 2], 2,
entire_line=False)
assert_array_almost_equal([ta, tb], [0, 0.5])
assert_equal(intersect, True)
# None of the constraints are active
ta, tb, intersect = box_sphere_intersections([1, 1], [-1, 1],
[-1, -3], [1, 3], 10,
entire_line=False)
assert_array_almost_equal([ta, tb], [0, 1])
assert_equal(intersect, True)
# Box constraints are active
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
[-1, -3], [1, 3], 10,
entire_line=False)
assert_array_almost_equal([ta, tb], [0, 0.5])
assert_equal(intersect, True)
# Spherical constraints are active
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
[-1, -3], [1, 3], 2,
entire_line=False)
assert_array_almost_equal([ta, tb], [0, 0.25])
assert_equal(intersect, True)
# Infeasible problems
ta, tb, intersect = box_sphere_intersections([2, 2], [-4, 4],
[-1, -3], [1, 3], 2,
entire_line=False)
assert_equal(intersect, False)
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
[2, 4], [2, 4], 2,
entire_line=False)
assert_equal(intersect, False)
def test_2d_box_constraints_entire_line(self):
# Both constraints are active
ta, tb, intersect = box_sphere_intersections([1, 1], [-2, 2],
[-1, -2], [1, 2], 2,
entire_line=True)
assert_array_almost_equal([ta, tb], [0, 0.5])
assert_equal(intersect, True)
# None of the constraints are active
ta, tb, intersect = box_sphere_intersections([1, 1], [-1, 1],
[-1, -3], [1, 3], 10,
entire_line=True)
assert_array_almost_equal([ta, tb], [0, 2])
assert_equal(intersect, True)
# Box constraints are active
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
[-1, -3], [1, 3], 10,
entire_line=True)
assert_array_almost_equal([ta, tb], [0, 0.5])
assert_equal(intersect, True)
# Spherical constraints are active
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
[-1, -3], [1, 3], 2,
entire_line=True)
assert_array_almost_equal([ta, tb], [0, 0.25])
assert_equal(intersect, True)
# Infeasible problems
ta, tb, intersect = box_sphere_intersections([2, 2], [-4, 4],
[-1, -3], [1, 3], 2,
entire_line=True)
assert_equal(intersect, False)
ta, tb, intersect = box_sphere_intersections([1, 1], [-4, 4],
[2, 4], [2, 4], 2,
entire_line=True)
assert_equal(intersect, False)
class TestModifiedDogleg(TestCase):
def test_cauchypoint_equalsto_newtonpoint(self):
A = np.array([[1, 8]])
b = np.array([-16])
_, _, Y = projections(A)
newton_point = np.array([0.24615385, 1.96923077])
# Newton point inside boundaries
x = modified_dogleg(A, Y, b, 2, [-np.inf, -np.inf], [np.inf, np.inf])
assert_array_almost_equal(x, newton_point)
# Spherical constraint active
x = modified_dogleg(A, Y, b, 1, [-np.inf, -np.inf], [np.inf, np.inf])
assert_array_almost_equal(x, newton_point/np.linalg.norm(newton_point))
# Box constraints active
x = modified_dogleg(A, Y, b, 2, [-np.inf, -np.inf], [0.1, np.inf])
assert_array_almost_equal(x, (newton_point/newton_point[0]) * 0.1)
def test_3d_example(self):
A = np.array([[1, 8, 1],
[4, 2, 2]])
b = np.array([-16, 2])
Z, LS, Y = projections(A)
newton_point = np.array([-1.37090909, 2.23272727, -0.49090909])
cauchy_point = np.array([0.11165723, 1.73068711, 0.16748585])
origin = np.zeros_like(newton_point)
# newton_point inside boundaries
x = modified_dogleg(A, Y, b, 3, [-np.inf, -np.inf, -np.inf],
[np.inf, np.inf, np.inf])
assert_array_almost_equal(x, newton_point)
# line between cauchy_point and newton_point contains best point
# (spherical constraint is active).
x = modified_dogleg(A, Y, b, 2, [-np.inf, -np.inf, -np.inf],
[np.inf, np.inf, np.inf])
z = cauchy_point
d = newton_point-cauchy_point
t = ((x-z)/(d))
assert_array_almost_equal(t, np.full(3, 0.40807330))
assert_array_almost_equal(np.linalg.norm(x), 2)
# line between cauchy_point and newton_point contains best point
# (box constraint is active).
x = modified_dogleg(A, Y, b, 5, [-1, -np.inf, -np.inf],
[np.inf, np.inf, np.inf])
z = cauchy_point
d = newton_point-cauchy_point
t = ((x-z)/(d))
assert_array_almost_equal(t, np.full(3, 0.7498195))
assert_array_almost_equal(x[0], -1)
# line between origin and cauchy_point contains best point
# (spherical constraint is active).
x = modified_dogleg(A, Y, b, 1, [-np.inf, -np.inf, -np.inf],
[np.inf, np.inf, np.inf])
z = origin
d = cauchy_point
t = ((x-z)/(d))
assert_array_almost_equal(t, np.full(3, 0.573936265))
assert_array_almost_equal(np.linalg.norm(x), 1)
# line between origin and newton_point contains best point
# (box constraint is active).
x = modified_dogleg(A, Y, b, 2, [-np.inf, -np.inf, -np.inf],
[np.inf, 1, np.inf])
z = origin
d = newton_point
t = ((x-z)/(d))
assert_array_almost_equal(t, np.full(3, 0.4478827364))
assert_array_almost_equal(x[1], 1)
class TestProjectCG(TestCase):
# From Example 16.2 Nocedal/Wright "Numerical
# Optimization" p.452.
def test_nocedal_example(self):
H = csc_matrix([[6, 2, 1],
[2, 5, 2],
[1, 2, 4]])
A = csc_matrix([[1, 0, 1],
[0, 1, 1]])
c = np.array([-8, -3, -3])
b = -np.array([3, 0])
Z, _, Y = projections(A)
x, info = projected_cg(H, c, Z, Y, b)
assert_equal(info["stop_cond"], 4)
assert_equal(info["hits_boundary"], False)
assert_array_almost_equal(x, [2, -1, 1])
def test_compare_with_direct_fact(self):
H = csc_matrix([[6, 2, 1, 3],
[2, 5, 2, 4],
[1, 2, 4, 5],
[3, 4, 5, 7]])
A = csc_matrix([[1, 0, 1, 0],
[0, 1, 1, 1]])
c = np.array([-2, -3, -3, 1])
b = -np.array([3, 0])
Z, _, Y = projections(A)
x, info = projected_cg(H, c, Z, Y, b, tol=0)
x_kkt, _ = eqp_kktfact(H, c, A, b)
assert_equal(info["stop_cond"], 1)
assert_equal(info["hits_boundary"], False)
assert_array_almost_equal(x, x_kkt)
def test_trust_region_infeasible(self):
H = csc_matrix([[6, 2, 1, 3],
[2, 5, 2, 4],
[1, 2, 4, 5],
[3, 4, 5, 7]])
A = csc_matrix([[1, 0, 1, 0],
[0, 1, 1, 1]])
c = np.array([-2, -3, -3, 1])
b = -np.array([3, 0])
trust_radius = 1
Z, _, Y = projections(A)
with pytest.raises(ValueError):
projected_cg(H, c, Z, Y, b, trust_radius=trust_radius)
def test_trust_region_barely_feasible(self):
H = csc_matrix([[6, 2, 1, 3],
[2, 5, 2, 4],
[1, 2, 4, 5],
[3, 4, 5, 7]])
A = csc_matrix([[1, 0, 1, 0],
[0, 1, 1, 1]])
c = np.array([-2, -3, -3, 1])
b = -np.array([3, 0])
trust_radius = 2.32379000772445021283
Z, _, Y = projections(A)
x, info = projected_cg(H, c, Z, Y, b,
tol=0,
trust_radius=trust_radius)
assert_equal(info["stop_cond"], 2)
assert_equal(info["hits_boundary"], True)
assert_array_almost_equal(np.linalg.norm(x), trust_radius)
assert_array_almost_equal(x, -Y.dot(b))
def test_hits_boundary(self):
H = csc_matrix([[6, 2, 1, 3],
[2, 5, 2, 4],
[1, 2, 4, 5],
[3, 4, 5, 7]])
A = csc_matrix([[1, 0, 1, 0],
[0, 1, 1, 1]])
c = np.array([-2, -3, -3, 1])
b = -np.array([3, 0])
trust_radius = 3
Z, _, Y = projections(A)
x, info = projected_cg(H, c, Z, Y, b,
tol=0,
trust_radius=trust_radius)
assert_equal(info["stop_cond"], 2)
assert_equal(info["hits_boundary"], True)
assert_array_almost_equal(np.linalg.norm(x), trust_radius)
def test_negative_curvature_unconstrained(self):
H = csc_matrix([[1, 2, 1, 3],
[2, 0, 2, 4],
[1, 2, 0, 2],
[3, 4, 2, 0]])
A = csc_matrix([[1, 0, 1, 0],
[0, 1, 0, 1]])
c = np.array([-2, -3, -3, 1])
b = -np.array([3, 0])
Z, _, Y = projections(A)
with pytest.raises(ValueError):
projected_cg(H, c, Z, Y, b, tol=0)
def test_negative_curvature(self):
H = csc_matrix([[1, 2, 1, 3],
[2, 0, 2, 4],
[1, 2, 0, 2],
[3, 4, 2, 0]])
A = csc_matrix([[1, 0, 1, 0],
[0, 1, 0, 1]])
c = np.array([-2, -3, -3, 1])
b = -np.array([3, 0])
Z, _, Y = projections(A)
trust_radius = 1000
x, info = projected_cg(H, c, Z, Y, b,
tol=0,
trust_radius=trust_radius)
assert_equal(info["stop_cond"], 3)
assert_equal(info["hits_boundary"], True)
assert_array_almost_equal(np.linalg.norm(x), trust_radius)
# The box constraints are inactive at the solution but
# are active during the iterations.
def test_inactive_box_constraints(self):
H = csc_matrix([[6, 2, 1, 3],
[2, 5, 2, 4],
[1, 2, 4, 5],
[3, 4, 5, 7]])
A = csc_matrix([[1, 0, 1, 0],
[0, 1, 1, 1]])
c = np.array([-2, -3, -3, 1])
b = -np.array([3, 0])
Z, _, Y = projections(A)
x, info = projected_cg(H, c, Z, Y, b,
tol=0,
lb=[0.5, -np.inf,
-np.inf, -np.inf],
return_all=True)
x_kkt, _ = eqp_kktfact(H, c, A, b)
assert_equal(info["stop_cond"], 1)
assert_equal(info["hits_boundary"], False)
assert_array_almost_equal(x, x_kkt)
# The box constraints active and the termination is
# by maximum iterations (infeasible iteraction).
def test_active_box_constraints_maximum_iterations_reached(self):
H = csc_matrix([[6, 2, 1, 3],
[2, 5, 2, 4],
[1, 2, 4, 5],
[3, 4, 5, 7]])
A = csc_matrix([[1, 0, 1, 0],
[0, 1, 1, 1]])
c = np.array([-2, -3, -3, 1])
b = -np.array([3, 0])
Z, _, Y = projections(A)
x, info = projected_cg(H, c, Z, Y, b,
tol=0,
lb=[0.8, -np.inf,
-np.inf, -np.inf],
return_all=True)
assert_equal(info["stop_cond"], 1)
assert_equal(info["hits_boundary"], True)
assert_array_almost_equal(A.dot(x), -b)
assert_array_almost_equal(x[0], 0.8)
# The box constraints are active and the termination is
# because it hits boundary (without infeasible iteraction).
def test_active_box_constraints_hits_boundaries(self):
H = csc_matrix([[6, 2, 1, 3],
[2, 5, 2, 4],
[1, 2, 4, 5],
[3, 4, 5, 7]])
A = csc_matrix([[1, 0, 1, 0],
[0, 1, 1, 1]])
c = np.array([-2, -3, -3, 1])
b = -np.array([3, 0])
trust_radius = 3
Z, _, Y = projections(A)
x, info = projected_cg(H, c, Z, Y, b,
tol=0,
ub=[np.inf, np.inf, 1.6, np.inf],
trust_radius=trust_radius,
return_all=True)
assert_equal(info["stop_cond"], 2)
assert_equal(info["hits_boundary"], True)
assert_array_almost_equal(x[2], 1.6)
# The box constraints are active and the termination is
# because it hits boundary (infeasible iteraction).
def test_active_box_constraints_hits_boundaries_infeasible_iter(self):
H = csc_matrix([[6, 2, 1, 3],
[2, 5, 2, 4],
[1, 2, 4, 5],
[3, 4, 5, 7]])
A = csc_matrix([[1, 0, 1, 0],
[0, 1, 1, 1]])
c = np.array([-2, -3, -3, 1])
b = -np.array([3, 0])
trust_radius = 4
Z, _, Y = projections(A)
x, info = projected_cg(H, c, Z, Y, b,
tol=0,
ub=[np.inf, 0.1, np.inf, np.inf],
trust_radius=trust_radius,
return_all=True)
assert_equal(info["stop_cond"], 2)
assert_equal(info["hits_boundary"], True)
assert_array_almost_equal(x[1], 0.1)
# The box constraints are active and the termination is
# because it hits boundary (no infeasible iteraction).
def test_active_box_constraints_negative_curvature(self):
H = csc_matrix([[1, 2, 1, 3],
[2, 0, 2, 4],
[1, 2, 0, 2],
[3, 4, 2, 0]])
A = csc_matrix([[1, 0, 1, 0],
[0, 1, 0, 1]])
c = np.array([-2, -3, -3, 1])
b = -np.array([3, 0])
Z, _, Y = projections(A)
trust_radius = 1000
x, info = projected_cg(H, c, Z, Y, b,
tol=0,
ub=[np.inf, np.inf, 100, np.inf],
trust_radius=trust_radius)
assert_equal(info["stop_cond"], 3)
assert_equal(info["hits_boundary"], True)
assert_array_almost_equal(x[2], 100)

View file

@ -0,0 +1,10 @@
from scipy.optimize import minimize, Bounds
def test_gh10880():
# checks that verbose reporting works with trust-constr
bnds = Bounds(1, 2)
opts = {'maxiter': 1000, 'verbose': 2}
minimize(lambda x: x**2, x0=2., method='trust-constr', bounds=bnds, options=opts)
opts = {'maxiter': 1000, 'verbose': 3}
minimize(lambda x: x**2, x0=2., method='trust-constr', bounds=bnds, options=opts)

View file

@ -0,0 +1,346 @@
"""Trust-region interior point method.
References
----------
.. [1] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal.
"An interior point algorithm for large-scale nonlinear
programming." SIAM Journal on Optimization 9.4 (1999): 877-900.
.. [2] Byrd, Richard H., Guanghui Liu, and Jorge Nocedal.
"On the local behavior of an interior point method for
nonlinear programming." Numerical analysis 1997 (1997): 37-56.
.. [3] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
Second Edition (2006).
"""
import scipy.sparse as sps
import numpy as np
from .equality_constrained_sqp import equality_constrained_sqp
from scipy.sparse.linalg import LinearOperator
__all__ = ['tr_interior_point']
class BarrierSubproblem:
"""
Barrier optimization problem:
minimize fun(x) - barrier_parameter*sum(log(s))
subject to: constr_eq(x) = 0
constr_ineq(x) + s = 0
"""
def __init__(self, x0, s0, fun, grad, lagr_hess, n_vars, n_ineq, n_eq,
constr, jac, barrier_parameter, tolerance,
enforce_feasibility, global_stop_criteria,
xtol, fun0, grad0, constr_ineq0, jac_ineq0, constr_eq0,
jac_eq0):
# Store parameters
self.n_vars = n_vars
self.x0 = x0
self.s0 = s0
self.fun = fun
self.grad = grad
self.lagr_hess = lagr_hess
self.constr = constr
self.jac = jac
self.barrier_parameter = barrier_parameter
self.tolerance = tolerance
self.n_eq = n_eq
self.n_ineq = n_ineq
self.enforce_feasibility = enforce_feasibility
self.global_stop_criteria = global_stop_criteria
self.xtol = xtol
self.fun0 = self._compute_function(fun0, constr_ineq0, s0)
self.grad0 = self._compute_gradient(grad0)
self.constr0 = self._compute_constr(constr_ineq0, constr_eq0, s0)
self.jac0 = self._compute_jacobian(jac_eq0, jac_ineq0, s0)
self.terminate = False
def update(self, barrier_parameter, tolerance):
self.barrier_parameter = barrier_parameter
self.tolerance = tolerance
def get_slack(self, z):
return z[self.n_vars:self.n_vars+self.n_ineq]
def get_variables(self, z):
return z[:self.n_vars]
def function_and_constraints(self, z):
"""Returns barrier function and constraints at given point.
For z = [x, s], returns barrier function:
function(z) = fun(x) - barrier_parameter*sum(log(s))
and barrier constraints:
constraints(z) = [ constr_eq(x) ]
[ constr_ineq(x) + s ]
"""
# Get variables and slack variables
x = self.get_variables(z)
s = self.get_slack(z)
# Compute function and constraints
f = self.fun(x)
c_eq, c_ineq = self.constr(x)
# Return objective function and constraints
return (self._compute_function(f, c_ineq, s),
self._compute_constr(c_ineq, c_eq, s))
def _compute_function(self, f, c_ineq, s):
# Use technique from Nocedal and Wright book, ref [3]_, p.576,
# to guarantee constraints from `enforce_feasibility`
# stay feasible along iterations.
s[self.enforce_feasibility] = -c_ineq[self.enforce_feasibility]
log_s = [np.log(s_i) if s_i > 0 else -np.inf for s_i in s]
# Compute barrier objective function
return f - self.barrier_parameter*np.sum(log_s)
def _compute_constr(self, c_ineq, c_eq, s):
# Compute barrier constraint
return np.hstack((c_eq,
c_ineq + s))
def scaling(self, z):
"""Returns scaling vector.
Given by:
scaling = [ones(n_vars), s]
"""
s = self.get_slack(z)
diag_elements = np.hstack((np.ones(self.n_vars), s))
# Diagonal matrix
def matvec(vec):
return diag_elements*vec
return LinearOperator((self.n_vars+self.n_ineq,
self.n_vars+self.n_ineq),
matvec)
def gradient_and_jacobian(self, z):
"""Returns scaled gradient.
Return scaled gradient:
gradient = [ grad(x) ]
[ -barrier_parameter*ones(n_ineq) ]
and scaled Jacobian matrix:
jacobian = [ jac_eq(x) 0 ]
[ jac_ineq(x) S ]
Both of them scaled by the previously defined scaling factor.
"""
# Get variables and slack variables
x = self.get_variables(z)
s = self.get_slack(z)
# Compute first derivatives
g = self.grad(x)
J_eq, J_ineq = self.jac(x)
# Return gradient and Jacobian
return (self._compute_gradient(g),
self._compute_jacobian(J_eq, J_ineq, s))
def _compute_gradient(self, g):
return np.hstack((g, -self.barrier_parameter*np.ones(self.n_ineq)))
def _compute_jacobian(self, J_eq, J_ineq, s):
if self.n_ineq == 0:
return J_eq
else:
if sps.issparse(J_eq) or sps.issparse(J_ineq):
# It is expected that J_eq and J_ineq
# are already `csr_matrix` because of
# the way ``BoxConstraint``, ``NonlinearConstraint``
# and ``LinearConstraint`` are defined.
J_eq = sps.csr_matrix(J_eq)
J_ineq = sps.csr_matrix(J_ineq)
return self._assemble_sparse_jacobian(J_eq, J_ineq, s)
else:
S = np.diag(s)
zeros = np.zeros((self.n_eq, self.n_ineq))
# Convert to matrix
if sps.issparse(J_ineq):
J_ineq = J_ineq.toarray()
if sps.issparse(J_eq):
J_eq = J_eq.toarray()
# Concatenate matrices
return np.block([[J_eq, zeros],
[J_ineq, S]])
def _assemble_sparse_jacobian(self, J_eq, J_ineq, s):
"""Assemble sparse Jacobian given its components.
Given ``J_eq``, ``J_ineq`` and ``s`` returns:
jacobian = [ J_eq, 0 ]
[ J_ineq, diag(s) ]
It is equivalent to:
sps.bmat([[ J_eq, None ],
[ J_ineq, diag(s) ]], "csr")
but significantly more efficient for this
given structure.
"""
n_vars, n_ineq, n_eq = self.n_vars, self.n_ineq, self.n_eq
J_aux = sps.vstack([J_eq, J_ineq], "csr")
indptr, indices, data = J_aux.indptr, J_aux.indices, J_aux.data
new_indptr = indptr + np.hstack((np.zeros(n_eq, dtype=int),
np.arange(n_ineq+1, dtype=int)))
size = indices.size+n_ineq
new_indices = np.empty(size)
new_data = np.empty(size)
mask = np.full(size, False, bool)
mask[new_indptr[-n_ineq:]-1] = True
new_indices[mask] = n_vars+np.arange(n_ineq)
new_indices[~mask] = indices
new_data[mask] = s
new_data[~mask] = data
J = sps.csr_matrix((new_data, new_indices, new_indptr),
(n_eq + n_ineq, n_vars + n_ineq))
return J
def lagrangian_hessian_x(self, z, v):
"""Returns Lagrangian Hessian (in relation to `x`) -> Hx"""
x = self.get_variables(z)
# Get lagrange multipliers relatated to nonlinear equality constraints
v_eq = v[:self.n_eq]
# Get lagrange multipliers relatated to nonlinear ineq. constraints
v_ineq = v[self.n_eq:self.n_eq+self.n_ineq]
lagr_hess = self.lagr_hess
return lagr_hess(x, v_eq, v_ineq)
def lagrangian_hessian_s(self, z, v):
"""Returns scaled Lagrangian Hessian (in relation to`s`) -> S Hs S"""
s = self.get_slack(z)
# Using the primal formulation:
# S Hs S = diag(s)*diag(barrier_parameter/s**2)*diag(s).
# Reference [1]_ p. 882, formula (3.1)
primal = self.barrier_parameter
# Using the primal-dual formulation
# S Hs S = diag(s)*diag(v/s)*diag(s)
# Reference [1]_ p. 883, formula (3.11)
primal_dual = v[-self.n_ineq:]*s
# Uses the primal-dual formulation for
# positives values of v_ineq, and primal
# formulation for the remaining ones.
return np.where(v[-self.n_ineq:] > 0, primal_dual, primal)
def lagrangian_hessian(self, z, v):
"""Returns scaled Lagrangian Hessian"""
# Compute Hessian in relation to x and s
Hx = self.lagrangian_hessian_x(z, v)
if self.n_ineq > 0:
S_Hs_S = self.lagrangian_hessian_s(z, v)
# The scaled Lagragian Hessian is:
# [ Hx 0 ]
# [ 0 S Hs S ]
def matvec(vec):
vec_x = self.get_variables(vec)
vec_s = self.get_slack(vec)
if self.n_ineq > 0:
return np.hstack((Hx.dot(vec_x), S_Hs_S*vec_s))
else:
return Hx.dot(vec_x)
return LinearOperator((self.n_vars+self.n_ineq,
self.n_vars+self.n_ineq),
matvec)
def stop_criteria(self, state, z, last_iteration_failed,
optimality, constr_violation,
trust_radius, penalty, cg_info):
"""Stop criteria to the barrier problem.
The criteria here proposed is similar to formula (2.3)
from [1]_, p.879.
"""
x = self.get_variables(z)
if self.global_stop_criteria(state, x,
last_iteration_failed,
trust_radius, penalty,
cg_info,
self.barrier_parameter,
self.tolerance):
self.terminate = True
return True
else:
g_cond = (optimality < self.tolerance and
constr_violation < self.tolerance)
x_cond = trust_radius < self.xtol
return g_cond or x_cond
def tr_interior_point(fun, grad, lagr_hess, n_vars, n_ineq, n_eq,
constr, jac, x0, fun0, grad0,
constr_ineq0, jac_ineq0, constr_eq0,
jac_eq0, stop_criteria,
enforce_feasibility, xtol, state,
initial_barrier_parameter,
initial_tolerance,
initial_penalty,
initial_trust_radius,
factorization_method):
"""Trust-region interior points method.
Solve problem:
minimize fun(x)
subject to: constr_ineq(x) <= 0
constr_eq(x) = 0
using trust-region interior point method described in [1]_.
"""
# BOUNDARY_PARAMETER controls the decrease on the slack
# variables. Represents ``tau`` from [1]_ p.885, formula (3.18).
BOUNDARY_PARAMETER = 0.995
# BARRIER_DECAY_RATIO controls the decay of the barrier parameter
# and of the subproblem toloerance. Represents ``theta`` from [1]_ p.879.
BARRIER_DECAY_RATIO = 0.2
# TRUST_ENLARGEMENT controls the enlargement on trust radius
# after each iteration
TRUST_ENLARGEMENT = 5
# Default enforce_feasibility
if enforce_feasibility is None:
enforce_feasibility = np.zeros(n_ineq, bool)
# Initial Values
barrier_parameter = initial_barrier_parameter
tolerance = initial_tolerance
trust_radius = initial_trust_radius
# Define initial value for the slack variables
s0 = np.maximum(-1.5*constr_ineq0, np.ones(n_ineq))
# Define barrier subproblem
subprob = BarrierSubproblem(
x0, s0, fun, grad, lagr_hess, n_vars, n_ineq, n_eq, constr, jac,
barrier_parameter, tolerance, enforce_feasibility,
stop_criteria, xtol, fun0, grad0, constr_ineq0, jac_ineq0,
constr_eq0, jac_eq0)
# Define initial parameter for the first iteration.
z = np.hstack((x0, s0))
fun0_subprob, constr0_subprob = subprob.fun0, subprob.constr0
grad0_subprob, jac0_subprob = subprob.grad0, subprob.jac0
# Define trust region bounds
trust_lb = np.hstack((np.full(subprob.n_vars, -np.inf),
np.full(subprob.n_ineq, -BOUNDARY_PARAMETER)))
trust_ub = np.full(subprob.n_vars+subprob.n_ineq, np.inf)
# Solves a sequence of barrier problems
while True:
# Solve SQP subproblem
z, state = equality_constrained_sqp(
subprob.function_and_constraints,
subprob.gradient_and_jacobian,
subprob.lagrangian_hessian,
z, fun0_subprob, grad0_subprob,
constr0_subprob, jac0_subprob, subprob.stop_criteria,
state, initial_penalty, trust_radius,
factorization_method, trust_lb, trust_ub, subprob.scaling)
if subprob.terminate:
break
# Update parameters
trust_radius = max(initial_trust_radius,
TRUST_ENLARGEMENT*state.tr_radius)
# TODO: Use more advanced strategies from [2]_
# to update this parameters.
barrier_parameter *= BARRIER_DECAY_RATIO
tolerance *= BARRIER_DECAY_RATIO
# Update Barrier Problem
subprob.update(barrier_parameter, tolerance)
# Compute initial values for next iteration
fun0_subprob, constr0_subprob = subprob.function_and_constraints(z)
grad0_subprob, jac0_subprob = subprob.gradient_and_jacobian(z)
# Get x and s
x = subprob.get_variables(z)
return x, state