Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
257
venv/Lib/site-packages/scipy/optimize/_spectral.py
Normal file
257
venv/Lib/site-packages/scipy/optimize/_spectral.py
Normal file
|
@ -0,0 +1,257 @@
|
|||
"""
|
||||
Spectral Algorithm for Nonlinear Equations
|
||||
"""
|
||||
import collections
|
||||
|
||||
import numpy as np
|
||||
from scipy.optimize import OptimizeResult
|
||||
from scipy.optimize.optimize import _check_unknown_options
|
||||
from .linesearch import _nonmonotone_line_search_cruz, _nonmonotone_line_search_cheng
|
||||
|
||||
class _NoConvergence(Exception):
|
||||
pass
|
||||
|
||||
|
||||
def _root_df_sane(func, x0, args=(), ftol=1e-8, fatol=1e-300, maxfev=1000,
|
||||
fnorm=None, callback=None, disp=False, M=10, eta_strategy=None,
|
||||
sigma_eps=1e-10, sigma_0=1.0, line_search='cruz', **unknown_options):
|
||||
r"""
|
||||
Solve nonlinear equation with the DF-SANE method
|
||||
|
||||
Options
|
||||
-------
|
||||
ftol : float, optional
|
||||
Relative norm tolerance.
|
||||
fatol : float, optional
|
||||
Absolute norm tolerance.
|
||||
Algorithm terminates when ``||func(x)|| < fatol + ftol ||func(x_0)||``.
|
||||
fnorm : callable, optional
|
||||
Norm to use in the convergence check. If None, 2-norm is used.
|
||||
maxfev : int, optional
|
||||
Maximum number of function evaluations.
|
||||
disp : bool, optional
|
||||
Whether to print convergence process to stdout.
|
||||
eta_strategy : callable, optional
|
||||
Choice of the ``eta_k`` parameter, which gives slack for growth
|
||||
of ``||F||**2``. Called as ``eta_k = eta_strategy(k, x, F)`` with
|
||||
`k` the iteration number, `x` the current iterate and `F` the current
|
||||
residual. Should satisfy ``eta_k > 0`` and ``sum(eta, k=0..inf) < inf``.
|
||||
Default: ``||F||**2 / (1 + k)**2``.
|
||||
sigma_eps : float, optional
|
||||
The spectral coefficient is constrained to ``sigma_eps < sigma < 1/sigma_eps``.
|
||||
Default: 1e-10
|
||||
sigma_0 : float, optional
|
||||
Initial spectral coefficient.
|
||||
Default: 1.0
|
||||
M : int, optional
|
||||
Number of iterates to include in the nonmonotonic line search.
|
||||
Default: 10
|
||||
line_search : {'cruz', 'cheng'}
|
||||
Type of line search to employ. 'cruz' is the original one defined in
|
||||
[Martinez & Raydan. Math. Comp. 75, 1429 (2006)], 'cheng' is
|
||||
a modified search defined in [Cheng & Li. IMA J. Numer. Anal. 29, 814 (2009)].
|
||||
Default: 'cruz'
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] "Spectral residual method without gradient information for solving
|
||||
large-scale nonlinear systems of equations." W. La Cruz,
|
||||
J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006).
|
||||
.. [2] W. La Cruz, Opt. Meth. Software, 29, 24 (2014).
|
||||
.. [3] W. Cheng, D.-H. Li. IMA J. Numer. Anal. **29**, 814 (2009).
|
||||
|
||||
"""
|
||||
_check_unknown_options(unknown_options)
|
||||
|
||||
if line_search not in ('cheng', 'cruz'):
|
||||
raise ValueError("Invalid value %r for 'line_search'" % (line_search,))
|
||||
|
||||
nexp = 2
|
||||
|
||||
if eta_strategy is None:
|
||||
# Different choice from [1], as their eta is not invariant
|
||||
# vs. scaling of F.
|
||||
def eta_strategy(k, x, F):
|
||||
# Obtain squared 2-norm of the initial residual from the outer scope
|
||||
return f_0 / (1 + k)**2
|
||||
|
||||
if fnorm is None:
|
||||
def fnorm(F):
|
||||
# Obtain squared 2-norm of the current residual from the outer scope
|
||||
return f_k**(1.0/nexp)
|
||||
|
||||
def fmerit(F):
|
||||
return np.linalg.norm(F)**nexp
|
||||
|
||||
nfev = [0]
|
||||
f, x_k, x_shape, f_k, F_k, is_complex = _wrap_func(func, x0, fmerit, nfev, maxfev, args)
|
||||
|
||||
k = 0
|
||||
f_0 = f_k
|
||||
sigma_k = sigma_0
|
||||
|
||||
F_0_norm = fnorm(F_k)
|
||||
|
||||
# For the 'cruz' line search
|
||||
prev_fs = collections.deque([f_k], M)
|
||||
|
||||
# For the 'cheng' line search
|
||||
Q = 1.0
|
||||
C = f_0
|
||||
|
||||
converged = False
|
||||
message = "too many function evaluations required"
|
||||
|
||||
while True:
|
||||
F_k_norm = fnorm(F_k)
|
||||
|
||||
if disp:
|
||||
print("iter %d: ||F|| = %g, sigma = %g" % (k, F_k_norm, sigma_k))
|
||||
|
||||
if callback is not None:
|
||||
callback(x_k, F_k)
|
||||
|
||||
if F_k_norm < ftol * F_0_norm + fatol:
|
||||
# Converged!
|
||||
message = "successful convergence"
|
||||
converged = True
|
||||
break
|
||||
|
||||
# Control spectral parameter, from [2]
|
||||
if abs(sigma_k) > 1/sigma_eps:
|
||||
sigma_k = 1/sigma_eps * np.sign(sigma_k)
|
||||
elif abs(sigma_k) < sigma_eps:
|
||||
sigma_k = sigma_eps
|
||||
|
||||
# Line search direction
|
||||
d = -sigma_k * F_k
|
||||
|
||||
# Nonmonotone line search
|
||||
eta = eta_strategy(k, x_k, F_k)
|
||||
try:
|
||||
if line_search == 'cruz':
|
||||
alpha, xp, fp, Fp = _nonmonotone_line_search_cruz(f, x_k, d, prev_fs, eta=eta)
|
||||
elif line_search == 'cheng':
|
||||
alpha, xp, fp, Fp, C, Q = _nonmonotone_line_search_cheng(f, x_k, d, f_k, C, Q, eta=eta)
|
||||
except _NoConvergence:
|
||||
break
|
||||
|
||||
# Update spectral parameter
|
||||
s_k = xp - x_k
|
||||
y_k = Fp - F_k
|
||||
sigma_k = np.vdot(s_k, s_k) / np.vdot(s_k, y_k)
|
||||
|
||||
# Take step
|
||||
x_k = xp
|
||||
F_k = Fp
|
||||
f_k = fp
|
||||
|
||||
# Store function value
|
||||
if line_search == 'cruz':
|
||||
prev_fs.append(fp)
|
||||
|
||||
k += 1
|
||||
|
||||
x = _wrap_result(x_k, is_complex, shape=x_shape)
|
||||
F = _wrap_result(F_k, is_complex)
|
||||
|
||||
result = OptimizeResult(x=x, success=converged,
|
||||
message=message,
|
||||
fun=F, nfev=nfev[0], nit=k)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def _wrap_func(func, x0, fmerit, nfev_list, maxfev, args=()):
|
||||
"""
|
||||
Wrap a function and an initial value so that (i) complex values
|
||||
are wrapped to reals, and (ii) value for a merit function
|
||||
fmerit(x, f) is computed at the same time, (iii) iteration count
|
||||
is maintained and an exception is raised if it is exceeded.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable
|
||||
Function to wrap
|
||||
x0 : ndarray
|
||||
Initial value
|
||||
fmerit : callable
|
||||
Merit function fmerit(f) for computing merit value from residual.
|
||||
nfev_list : list
|
||||
List to store number of evaluations in. Should be [0] in the beginning.
|
||||
maxfev : int
|
||||
Maximum number of evaluations before _NoConvergence is raised.
|
||||
args : tuple
|
||||
Extra arguments to func
|
||||
|
||||
Returns
|
||||
-------
|
||||
wrap_func : callable
|
||||
Wrapped function, to be called as
|
||||
``F, fp = wrap_func(x0)``
|
||||
x0_wrap : ndarray of float
|
||||
Wrapped initial value; raveled to 1-D and complex
|
||||
values mapped to reals.
|
||||
x0_shape : tuple
|
||||
Shape of the initial value array
|
||||
f : float
|
||||
Merit function at F
|
||||
F : ndarray of float
|
||||
Residual at x0_wrap
|
||||
is_complex : bool
|
||||
Whether complex values were mapped to reals
|
||||
|
||||
"""
|
||||
x0 = np.asarray(x0)
|
||||
x0_shape = x0.shape
|
||||
F = np.asarray(func(x0, *args)).ravel()
|
||||
is_complex = np.iscomplexobj(x0) or np.iscomplexobj(F)
|
||||
x0 = x0.ravel()
|
||||
|
||||
nfev_list[0] = 1
|
||||
|
||||
if is_complex:
|
||||
def wrap_func(x):
|
||||
if nfev_list[0] >= maxfev:
|
||||
raise _NoConvergence()
|
||||
nfev_list[0] += 1
|
||||
z = _real2complex(x).reshape(x0_shape)
|
||||
v = np.asarray(func(z, *args)).ravel()
|
||||
F = _complex2real(v)
|
||||
f = fmerit(F)
|
||||
return f, F
|
||||
|
||||
x0 = _complex2real(x0)
|
||||
F = _complex2real(F)
|
||||
else:
|
||||
def wrap_func(x):
|
||||
if nfev_list[0] >= maxfev:
|
||||
raise _NoConvergence()
|
||||
nfev_list[0] += 1
|
||||
x = x.reshape(x0_shape)
|
||||
F = np.asarray(func(x, *args)).ravel()
|
||||
f = fmerit(F)
|
||||
return f, F
|
||||
|
||||
return wrap_func, x0, x0_shape, fmerit(F), F, is_complex
|
||||
|
||||
|
||||
def _wrap_result(result, is_complex, shape=None):
|
||||
"""
|
||||
Convert from real to complex and reshape result arrays.
|
||||
"""
|
||||
if is_complex:
|
||||
z = _real2complex(result)
|
||||
else:
|
||||
z = result
|
||||
if shape is not None:
|
||||
z = z.reshape(shape)
|
||||
return z
|
||||
|
||||
|
||||
def _real2complex(x):
|
||||
return np.ascontiguousarray(x, dtype=float).view(np.complex128)
|
||||
|
||||
|
||||
def _complex2real(z):
|
||||
return np.ascontiguousarray(z, dtype=complex).view(np.float64)
|
Loading…
Add table
Add a link
Reference in a new issue