Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
450
venv/Lib/site-packages/scipy/optimize/_remove_redundancy.py
Normal file
450
venv/Lib/site-packages/scipy/optimize/_remove_redundancy.py
Normal file
|
|
@ -0,0 +1,450 @@
|
|||
"""
|
||||
Routines for removing redundant (linearly dependent) equations from linear
|
||||
programming equality constraints.
|
||||
"""
|
||||
# Author: Matt Haberland
|
||||
|
||||
import numpy as np
|
||||
from scipy.linalg import svd
|
||||
import scipy
|
||||
from scipy.linalg.blas import dtrsm
|
||||
|
||||
|
||||
def _row_count(A):
|
||||
"""
|
||||
Counts the number of nonzeros in each row of input array A.
|
||||
Nonzeros are defined as any element with absolute value greater than
|
||||
tol = 1e-13. This value should probably be an input to the function.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : 2-D array
|
||||
An array representing a matrix
|
||||
|
||||
Returns
|
||||
-------
|
||||
rowcount : 1-D array
|
||||
Number of nonzeros in each row of A
|
||||
|
||||
"""
|
||||
tol = 1e-13
|
||||
return np.array((abs(A) > tol).sum(axis=1)).flatten()
|
||||
|
||||
|
||||
def _get_densest(A, eligibleRows):
|
||||
"""
|
||||
Returns the index of the densest row of A. Ignores rows that are not
|
||||
eligible for consideration.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : 2-D array
|
||||
An array representing a matrix
|
||||
eligibleRows : 1-D logical array
|
||||
Values indicate whether the corresponding row of A is eligible
|
||||
to be considered
|
||||
|
||||
Returns
|
||||
-------
|
||||
i_densest : int
|
||||
Index of the densest row in A eligible for consideration
|
||||
|
||||
"""
|
||||
rowCounts = _row_count(A)
|
||||
return np.argmax(rowCounts * eligibleRows)
|
||||
|
||||
|
||||
def _remove_zero_rows(A, b):
|
||||
"""
|
||||
Eliminates trivial equations from system of equations defined by Ax = b
|
||||
and identifies trivial infeasibilities
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : 2-D array
|
||||
An array representing the left-hand side of a system of equations
|
||||
b : 1-D array
|
||||
An array representing the right-hand side of a system of equations
|
||||
|
||||
Returns
|
||||
-------
|
||||
A : 2-D array
|
||||
An array representing the left-hand side of a system of equations
|
||||
b : 1-D array
|
||||
An array representing the right-hand side of a system of equations
|
||||
status: int
|
||||
An integer indicating the status of the removal operation
|
||||
0: No infeasibility identified
|
||||
2: Trivially infeasible
|
||||
message : str
|
||||
A string descriptor of the exit status of the optimization.
|
||||
|
||||
"""
|
||||
status = 0
|
||||
message = ""
|
||||
i_zero = _row_count(A) == 0
|
||||
A = A[np.logical_not(i_zero), :]
|
||||
if not(np.allclose(b[i_zero], 0)):
|
||||
status = 2
|
||||
message = "There is a zero row in A_eq with a nonzero corresponding " \
|
||||
"entry in b_eq. The problem is infeasible."
|
||||
b = b[np.logical_not(i_zero)]
|
||||
return A, b, status, message
|
||||
|
||||
|
||||
def bg_update_dense(plu, perm_r, v, j):
|
||||
LU, p = plu
|
||||
|
||||
vperm = v[perm_r]
|
||||
u = dtrsm(1, LU, vperm, lower=1, diag=1)
|
||||
LU[:j+1, j] = u[:j+1]
|
||||
l = u[j+1:]
|
||||
piv = LU[j, j]
|
||||
LU[j+1:, j] += (l/piv)
|
||||
return LU, p
|
||||
|
||||
|
||||
def _remove_redundancy_dense(A, rhs, true_rank=None):
|
||||
"""
|
||||
Eliminates redundant equations from system of equations defined by Ax = b
|
||||
and identifies infeasibilities.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : 2-D sparse matrix
|
||||
An matrix representing the left-hand side of a system of equations
|
||||
rhs : 1-D array
|
||||
An array representing the right-hand side of a system of equations
|
||||
|
||||
Returns
|
||||
----------
|
||||
A : 2-D sparse matrix
|
||||
A matrix representing the left-hand side of a system of equations
|
||||
rhs : 1-D array
|
||||
An array representing the right-hand side of a system of equations
|
||||
status: int
|
||||
An integer indicating the status of the system
|
||||
0: No infeasibility identified
|
||||
2: Trivially infeasible
|
||||
message : str
|
||||
A string descriptor of the exit status of the optimization.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [2] Andersen, Erling D. "Finding all linearly dependent rows in
|
||||
large-scale linear programming." Optimization Methods and Software
|
||||
6.3 (1995): 219-227.
|
||||
|
||||
"""
|
||||
tolapiv = 1e-8
|
||||
tolprimal = 1e-8
|
||||
status = 0
|
||||
message = ""
|
||||
inconsistent = ("There is a linear combination of rows of A_eq that "
|
||||
"results in zero, suggesting a redundant constraint. "
|
||||
"However the same linear combination of b_eq is "
|
||||
"nonzero, suggesting that the constraints conflict "
|
||||
"and the problem is infeasible.")
|
||||
A, rhs, status, message = _remove_zero_rows(A, rhs)
|
||||
|
||||
if status != 0:
|
||||
return A, rhs, status, message
|
||||
|
||||
m, n = A.shape
|
||||
|
||||
v = list(range(m)) # Artificial column indices.
|
||||
b = list(v) # Basis column indices.
|
||||
# This is better as a list than a set because column order of basis matrix
|
||||
# needs to be consistent.
|
||||
d = [] # Indices of dependent rows
|
||||
perm_r = None
|
||||
|
||||
A_orig = A
|
||||
A = np.zeros((m, m + n), order='F')
|
||||
np.fill_diagonal(A, 1)
|
||||
A[:, m:] = A_orig
|
||||
e = np.zeros(m)
|
||||
|
||||
js_candidates = np.arange(m, m+n, dtype=int) # candidate columns for basis
|
||||
# manual masking was faster than masked array
|
||||
js_mask = np.ones(js_candidates.shape, dtype=bool)
|
||||
|
||||
# Implements basic algorithm from [2]
|
||||
# Uses some of the suggested improvements (removing zero rows and
|
||||
# Bartels-Golub update idea).
|
||||
# Removing column singletons would be easy, but it is not as important
|
||||
# because the procedure is performed only on the equality constraint
|
||||
# matrix from the original problem - not on the canonical form matrix,
|
||||
# which would have many more column singletons due to slack variables
|
||||
# from the inequality constraints.
|
||||
# The thoughts on "crashing" the initial basis are only really useful if
|
||||
# the matrix is sparse.
|
||||
|
||||
lu = np.eye(m, order='F'), np.arange(m) # initial LU is trivial
|
||||
perm_r = lu[1]
|
||||
for i in v:
|
||||
|
||||
e[i] = 1
|
||||
if i > 0:
|
||||
e[i-1] = 0
|
||||
|
||||
try: # fails for i==0 and any time it gets ill-conditioned
|
||||
j = b[i-1]
|
||||
lu = bg_update_dense(lu, perm_r, A[:, j], i-1)
|
||||
except Exception:
|
||||
lu = scipy.linalg.lu_factor(A[:, b])
|
||||
LU, p = lu
|
||||
perm_r = list(range(m))
|
||||
for i1, i2 in enumerate(p):
|
||||
perm_r[i1], perm_r[i2] = perm_r[i2], perm_r[i1]
|
||||
|
||||
pi = scipy.linalg.lu_solve(lu, e, trans=1)
|
||||
|
||||
js = js_candidates[js_mask]
|
||||
batch = 50
|
||||
|
||||
# This is a tiny bit faster than looping over columns indivually,
|
||||
# like for j in js: if abs(A[:,j].transpose().dot(pi)) > tolapiv:
|
||||
for j_index in range(0, len(js), batch):
|
||||
j_indices = js[j_index: min(j_index+batch, len(js))]
|
||||
|
||||
c = abs(A[:, j_indices].transpose().dot(pi))
|
||||
if (c > tolapiv).any():
|
||||
j = js[j_index + np.argmax(c)] # very independent column
|
||||
b[i] = j
|
||||
js_mask[j-m] = False
|
||||
break
|
||||
else:
|
||||
bibar = pi.T.dot(rhs.reshape(-1, 1))
|
||||
bnorm = np.linalg.norm(rhs)
|
||||
if abs(bibar)/(1+bnorm) > tolprimal: # inconsistent
|
||||
status = 2
|
||||
message = inconsistent
|
||||
return A_orig, rhs, status, message
|
||||
else: # dependent
|
||||
d.append(i)
|
||||
if true_rank is not None and len(d) == m - true_rank:
|
||||
break # found all redundancies
|
||||
|
||||
keep = set(range(m))
|
||||
keep = list(keep - set(d))
|
||||
return A_orig[keep, :], rhs[keep], status, message
|
||||
|
||||
|
||||
def _remove_redundancy_sparse(A, rhs):
|
||||
"""
|
||||
Eliminates redundant equations from system of equations defined by Ax = b
|
||||
and identifies infeasibilities.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : 2-D sparse matrix
|
||||
An matrix representing the left-hand side of a system of equations
|
||||
rhs : 1-D array
|
||||
An array representing the right-hand side of a system of equations
|
||||
|
||||
Returns
|
||||
-------
|
||||
A : 2-D sparse matrix
|
||||
A matrix representing the left-hand side of a system of equations
|
||||
rhs : 1-D array
|
||||
An array representing the right-hand side of a system of equations
|
||||
status: int
|
||||
An integer indicating the status of the system
|
||||
0: No infeasibility identified
|
||||
2: Trivially infeasible
|
||||
message : str
|
||||
A string descriptor of the exit status of the optimization.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [2] Andersen, Erling D. "Finding all linearly dependent rows in
|
||||
large-scale linear programming." Optimization Methods and Software
|
||||
6.3 (1995): 219-227.
|
||||
|
||||
"""
|
||||
|
||||
tolapiv = 1e-8
|
||||
tolprimal = 1e-8
|
||||
status = 0
|
||||
message = ""
|
||||
inconsistent = ("There is a linear combination of rows of A_eq that "
|
||||
"results in zero, suggesting a redundant constraint. "
|
||||
"However the same linear combination of b_eq is "
|
||||
"nonzero, suggesting that the constraints conflict "
|
||||
"and the problem is infeasible.")
|
||||
A, rhs, status, message = _remove_zero_rows(A, rhs)
|
||||
|
||||
if status != 0:
|
||||
return A, rhs, status, message
|
||||
|
||||
m, n = A.shape
|
||||
|
||||
v = list(range(m)) # Artificial column indices.
|
||||
b = list(v) # Basis column indices.
|
||||
# This is better as a list than a set because column order of basis matrix
|
||||
# needs to be consistent.
|
||||
k = set(range(m, m+n)) # Structural column indices.
|
||||
d = [] # Indices of dependent rows
|
||||
|
||||
A_orig = A
|
||||
A = scipy.sparse.hstack((scipy.sparse.eye(m), A)).tocsc()
|
||||
e = np.zeros(m)
|
||||
|
||||
# Implements basic algorithm from [2]
|
||||
# Uses only one of the suggested improvements (removing zero rows).
|
||||
# Removing column singletons would be easy, but it is not as important
|
||||
# because the procedure is performed only on the equality constraint
|
||||
# matrix from the original problem - not on the canonical form matrix,
|
||||
# which would have many more column singletons due to slack variables
|
||||
# from the inequality constraints.
|
||||
# The thoughts on "crashing" the initial basis sound useful, but the
|
||||
# description of the procedure seems to assume a lot of familiarity with
|
||||
# the subject; it is not very explicit. I already went through enough
|
||||
# trouble getting the basic algorithm working, so I was not interested in
|
||||
# trying to decipher this, too. (Overall, the paper is fraught with
|
||||
# mistakes and ambiguities - which is strange, because the rest of
|
||||
# Andersen's papers are quite good.)
|
||||
# I tried and tried and tried to improve performance using the
|
||||
# Bartels-Golub update. It works, but it's only practical if the LU
|
||||
# factorization can be specialized as described, and that is not possible
|
||||
# until the SciPy SuperLU interface permits control over column
|
||||
# permutation - see issue #7700.
|
||||
|
||||
for i in v:
|
||||
B = A[:, b]
|
||||
|
||||
e[i] = 1
|
||||
if i > 0:
|
||||
e[i-1] = 0
|
||||
|
||||
pi = scipy.sparse.linalg.spsolve(B.transpose(), e).reshape(-1, 1)
|
||||
|
||||
js = list(k-set(b)) # not efficient, but this is not the time sink...
|
||||
|
||||
# Due to overhead, it tends to be faster (for problems tested) to
|
||||
# compute the full matrix-vector product rather than individual
|
||||
# vector-vector products (with the chance of terminating as soon
|
||||
# as any are nonzero). For very large matrices, it might be worth
|
||||
# it to compute, say, 100 or 1000 at a time and stop when a nonzero
|
||||
# is found.
|
||||
|
||||
c = (np.abs(A[:, js].transpose().dot(pi)) > tolapiv).nonzero()[0]
|
||||
if len(c) > 0: # independent
|
||||
j = js[c[0]]
|
||||
# in a previous commit, the previous line was changed to choose
|
||||
# index j corresponding with the maximum dot product.
|
||||
# While this avoided issues with almost
|
||||
# singular matrices, it slowed the routine in most NETLIB tests.
|
||||
# I think this is because these columns were denser than the
|
||||
# first column with nonzero dot product (c[0]).
|
||||
# It would be nice to have a heuristic that balances sparsity with
|
||||
# high dot product, but I don't think it's worth the time to
|
||||
# develop one right now. Bartels-Golub update is a much higher
|
||||
# priority.
|
||||
b[i] = j # replace artificial column
|
||||
else:
|
||||
bibar = pi.T.dot(rhs.reshape(-1, 1))
|
||||
bnorm = np.linalg.norm(rhs)
|
||||
if abs(bibar)/(1 + bnorm) > tolprimal:
|
||||
status = 2
|
||||
message = inconsistent
|
||||
return A_orig, rhs, status, message
|
||||
else: # dependent
|
||||
d.append(i)
|
||||
|
||||
keep = set(range(m))
|
||||
keep = list(keep - set(d))
|
||||
return A_orig[keep, :], rhs[keep], status, message
|
||||
|
||||
|
||||
def _remove_redundancy(A, b):
|
||||
"""
|
||||
Eliminates redundant equations from system of equations defined by Ax = b
|
||||
and identifies infeasibilities.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : 2-D array
|
||||
An array representing the left-hand side of a system of equations
|
||||
b : 1-D array
|
||||
An array representing the right-hand side of a system of equations
|
||||
|
||||
Returns
|
||||
-------
|
||||
A : 2-D array
|
||||
An array representing the left-hand side of a system of equations
|
||||
b : 1-D array
|
||||
An array representing the right-hand side of a system of equations
|
||||
status: int
|
||||
An integer indicating the status of the system
|
||||
0: No infeasibility identified
|
||||
2: Trivially infeasible
|
||||
message : str
|
||||
A string descriptor of the exit status of the optimization.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [2] Andersen, Erling D. "Finding all linearly dependent rows in
|
||||
large-scale linear programming." Optimization Methods and Software
|
||||
6.3 (1995): 219-227.
|
||||
|
||||
"""
|
||||
|
||||
A, b, status, message = _remove_zero_rows(A, b)
|
||||
|
||||
if status != 0:
|
||||
return A, b, status, message
|
||||
|
||||
U, s, Vh = svd(A)
|
||||
eps = np.finfo(float).eps
|
||||
tol = s.max() * max(A.shape) * eps
|
||||
|
||||
m, n = A.shape
|
||||
s_min = s[-1] if m <= n else 0
|
||||
|
||||
# this algorithm is faster than that of [2] when the nullspace is small
|
||||
# but it could probably be improvement by randomized algorithms and with
|
||||
# a sparse implementation.
|
||||
# it relies on repeated singular value decomposition to find linearly
|
||||
# dependent rows (as identified by columns of U that correspond with zero
|
||||
# singular values). Unfortunately, only one row can be removed per
|
||||
# decomposition (I tried otherwise; doing so can cause problems.)
|
||||
# It would be nice if we could do truncated SVD like sp.sparse.linalg.svds
|
||||
# but that function is unreliable at finding singular values near zero.
|
||||
# Finding max eigenvalue L of A A^T, then largest eigenvalue (and
|
||||
# associated eigenvector) of -A A^T + L I (I is identity) via power
|
||||
# iteration would also work in theory, but is only efficient if the
|
||||
# smallest nonzero eigenvalue of A A^T is close to the largest nonzero
|
||||
# eigenvalue.
|
||||
|
||||
while abs(s_min) < tol:
|
||||
v = U[:, -1] # TODO: return these so user can eliminate from problem?
|
||||
# rows need to be represented in significant amount
|
||||
eligibleRows = np.abs(v) > tol * 10e6
|
||||
if not np.any(eligibleRows) or np.any(np.abs(v.dot(A)) > tol):
|
||||
status = 4
|
||||
message = ("Due to numerical issues, redundant equality "
|
||||
"constraints could not be removed automatically. "
|
||||
"Try providing your constraint matrices as sparse "
|
||||
"matrices to activate sparse presolve, try turning "
|
||||
"off redundancy removal, or try turning off presolve "
|
||||
"altogether.")
|
||||
break
|
||||
if np.any(np.abs(v.dot(b)) > tol * 100): # factor of 100 to fix 10038 and 10349
|
||||
status = 2
|
||||
message = ("There is a linear combination of rows of A_eq that "
|
||||
"results in zero, suggesting a redundant constraint. "
|
||||
"However the same linear combination of b_eq is "
|
||||
"nonzero, suggesting that the constraints conflict "
|
||||
"and the problem is infeasible.")
|
||||
break
|
||||
|
||||
i_remove = _get_densest(A, eligibleRows)
|
||||
A = np.delete(A, i_remove, axis=0)
|
||||
b = np.delete(b, i_remove)
|
||||
U, s, Vh = svd(A)
|
||||
m, n = A.shape
|
||||
s_min = s[-1] if m <= n else 0
|
||||
|
||||
return A, b, status, message
|
||||
Loading…
Add table
Add a link
Reference in a new issue