Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
84
venv/Lib/site-packages/scipy/optimize/_nnls.py
Normal file
84
venv/Lib/site-packages/scipy/optimize/_nnls.py
Normal file
|
@ -0,0 +1,84 @@
|
|||
from . import __nnls
|
||||
from numpy import asarray_chkfinite, zeros, double
|
||||
|
||||
__all__ = ['nnls']
|
||||
|
||||
|
||||
def nnls(A, b, maxiter=None):
|
||||
"""
|
||||
Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``. This is a wrapper
|
||||
for a FORTRAN non-negative least squares solver.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : ndarray
|
||||
Matrix ``A`` as shown above.
|
||||
b : ndarray
|
||||
Right-hand side vector.
|
||||
maxiter: int, optional
|
||||
Maximum number of iterations, optional.
|
||||
Default is ``3 * A.shape[1]``.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : ndarray
|
||||
Solution vector.
|
||||
rnorm : float
|
||||
The residual, ``|| Ax-b ||_2``.
|
||||
|
||||
See Also
|
||||
--------
|
||||
lsq_linear : Linear least squares with bounds on the variables
|
||||
|
||||
Notes
|
||||
-----
|
||||
The FORTRAN code was published in the book below. The algorithm
|
||||
is an active set method. It solves the KKT (Karush-Kuhn-Tucker)
|
||||
conditions for the non-negative least squares problem.
|
||||
|
||||
References
|
||||
----------
|
||||
Lawson C., Hanson R.J., (1987) Solving Least Squares Problems, SIAM
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.optimize import nnls
|
||||
...
|
||||
>>> A = np.array([[1, 0], [1, 0], [0, 1]])
|
||||
>>> b = np.array([2, 1, 1])
|
||||
>>> nnls(A, b)
|
||||
(array([1.5, 1. ]), 0.7071067811865475)
|
||||
|
||||
>>> b = np.array([-1, -1, -1])
|
||||
>>> nnls(A, b)
|
||||
(array([0., 0.]), 1.7320508075688772)
|
||||
|
||||
"""
|
||||
|
||||
A, b = map(asarray_chkfinite, (A, b))
|
||||
|
||||
if len(A.shape) != 2:
|
||||
raise ValueError("Expected a two-dimensional array (matrix)" +
|
||||
", but the shape of A is %s" % (A.shape, ))
|
||||
if len(b.shape) != 1:
|
||||
raise ValueError("Expected a one-dimensional array (vector" +
|
||||
", but the shape of b is %s" % (b.shape, ))
|
||||
|
||||
m, n = A.shape
|
||||
|
||||
if m != b.shape[0]:
|
||||
raise ValueError(
|
||||
"Incompatible dimensions. The first dimension of " +
|
||||
"A is %s, while the shape of b is %s" % (m, (b.shape[0], )))
|
||||
|
||||
maxiter = -1 if maxiter is None else int(maxiter)
|
||||
|
||||
w = zeros((n,), dtype=double)
|
||||
zz = zeros((m,), dtype=double)
|
||||
index = zeros((n,), dtype=int)
|
||||
|
||||
x, rnorm, mode = __nnls.nnls(A, m, n, b, w, zz, index, maxiter)
|
||||
if mode != 1:
|
||||
raise RuntimeError("too many iterations")
|
||||
|
||||
return x, rnorm
|
Loading…
Add table
Add a link
Reference in a new issue