Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
166
venv/Lib/site-packages/scipy/linalg/_sketches.py
Normal file
166
venv/Lib/site-packages/scipy/linalg/_sketches.py
Normal file
|
@ -0,0 +1,166 @@
|
|||
""" Sketching-based Matrix Computations """
|
||||
|
||||
# Author: Jordi Montes <jomsdev@gmail.com>
|
||||
# August 28, 2017
|
||||
|
||||
import numpy as np
|
||||
|
||||
from scipy._lib._util import check_random_state, rng_integers
|
||||
from scipy.sparse import csc_matrix
|
||||
|
||||
__all__ = ['clarkson_woodruff_transform']
|
||||
|
||||
|
||||
def cwt_matrix(n_rows, n_columns, seed=None):
|
||||
r""""
|
||||
Generate a matrix S which represents a Clarkson-Woodruff transform.
|
||||
|
||||
Given the desired size of matrix, the method returns a matrix S of size
|
||||
(n_rows, n_columns) where each column has all the entries set to 0
|
||||
except for one position which has been randomly set to +1 or -1 with
|
||||
equal probability.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_rows: int
|
||||
Number of rows of S
|
||||
n_columns: int
|
||||
Number of columns of S
|
||||
seed : None or int or `numpy.random.RandomState` instance, optional
|
||||
This parameter defines the ``RandomState`` object to use for drawing
|
||||
random variates.
|
||||
If None (or ``np.random``), the global ``np.random`` state is used.
|
||||
If integer, it is used to seed the local ``RandomState`` instance.
|
||||
Default is None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
S : (n_rows, n_columns) csc_matrix
|
||||
The returned matrix has ``n_columns`` nonzero entries.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Given a matrix A, with probability at least 9/10,
|
||||
.. math:: \|SA\| = (1 \pm \epsilon)\|A\|
|
||||
Where the error epsilon is related to the size of S.
|
||||
"""
|
||||
rng = check_random_state(seed)
|
||||
rows = rng_integers(rng, 0, n_rows, n_columns)
|
||||
cols = np.arange(n_columns+1)
|
||||
signs = rng.choice([1, -1], n_columns)
|
||||
S = csc_matrix((signs, rows, cols),shape=(n_rows, n_columns))
|
||||
return S
|
||||
|
||||
|
||||
def clarkson_woodruff_transform(input_matrix, sketch_size, seed=None):
|
||||
r""""
|
||||
Applies a Clarkson-Woodruff Transform/sketch to the input matrix.
|
||||
|
||||
Given an input_matrix ``A`` of size ``(n, d)``, compute a matrix ``A'`` of
|
||||
size (sketch_size, d) so that
|
||||
|
||||
.. math:: \|Ax\| \approx \|A'x\|
|
||||
|
||||
with high probability via the Clarkson-Woodruff Transform, otherwise
|
||||
known as the CountSketch matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
input_matrix: array_like
|
||||
Input matrix, of shape ``(n, d)``.
|
||||
sketch_size: int
|
||||
Number of rows for the sketch.
|
||||
seed : None or int or `numpy.random.RandomState` instance, optional
|
||||
This parameter defines the ``RandomState`` object to use for drawing
|
||||
random variates.
|
||||
If None (or ``np.random``), the global ``np.random`` state is used.
|
||||
If integer, it is used to seed the local ``RandomState`` instance.
|
||||
Default is None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A' : array_like
|
||||
Sketch of the input matrix ``A``, of size ``(sketch_size, d)``.
|
||||
|
||||
Notes
|
||||
-----
|
||||
To make the statement
|
||||
|
||||
.. math:: \|Ax\| \approx \|A'x\|
|
||||
|
||||
precise, observe the following result which is adapted from the
|
||||
proof of Theorem 14 of [2]_ via Markov's Inequality. If we have
|
||||
a sketch size ``sketch_size=k`` which is at least
|
||||
|
||||
.. math:: k \geq \frac{2}{\epsilon^2\delta}
|
||||
|
||||
Then for any fixed vector ``x``,
|
||||
|
||||
.. math:: \|Ax\| = (1\pm\epsilon)\|A'x\|
|
||||
|
||||
with probability at least one minus delta.
|
||||
|
||||
This implementation takes advantage of sparsity: computing
|
||||
a sketch takes time proportional to ``A.nnz``. Data ``A`` which
|
||||
is in ``scipy.sparse.csc_matrix`` format gives the quickest
|
||||
computation time for sparse input.
|
||||
|
||||
>>> from scipy import linalg
|
||||
>>> from scipy import sparse
|
||||
>>> n_rows, n_columns, density, sketch_n_rows = 15000, 100, 0.01, 200
|
||||
>>> A = sparse.rand(n_rows, n_columns, density=density, format='csc')
|
||||
>>> B = sparse.rand(n_rows, n_columns, density=density, format='csr')
|
||||
>>> C = sparse.rand(n_rows, n_columns, density=density, format='coo')
|
||||
>>> D = np.random.randn(n_rows, n_columns)
|
||||
>>> SA = linalg.clarkson_woodruff_transform(A, sketch_n_rows) # fastest
|
||||
>>> SB = linalg.clarkson_woodruff_transform(B, sketch_n_rows) # fast
|
||||
>>> SC = linalg.clarkson_woodruff_transform(C, sketch_n_rows) # slower
|
||||
>>> SD = linalg.clarkson_woodruff_transform(D, sketch_n_rows) # slowest
|
||||
|
||||
That said, this method does perform well on dense inputs, just slower
|
||||
on a relative scale.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Given a big dense matrix ``A``:
|
||||
|
||||
>>> from scipy import linalg
|
||||
>>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200
|
||||
>>> A = np.random.randn(n_rows, n_columns)
|
||||
>>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows)
|
||||
>>> sketch.shape
|
||||
(200, 100)
|
||||
>>> norm_A = np.linalg.norm(A)
|
||||
>>> norm_sketch = np.linalg.norm(sketch)
|
||||
|
||||
Now with high probability, the true norm ``norm_A`` is close to
|
||||
the sketched norm ``norm_sketch`` in absolute value.
|
||||
|
||||
Similarly, applying our sketch preserves the solution to a linear
|
||||
regression of :math:`\min \|Ax - b\|`.
|
||||
|
||||
>>> from scipy import linalg
|
||||
>>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200
|
||||
>>> A = np.random.randn(n_rows, n_columns)
|
||||
>>> b = np.random.randn(n_rows)
|
||||
>>> x = np.linalg.lstsq(A, b, rcond=None)
|
||||
>>> Ab = np.hstack((A, b.reshape(-1,1)))
|
||||
>>> SAb = linalg.clarkson_woodruff_transform(Ab, sketch_n_rows)
|
||||
>>> SA, Sb = SAb[:,:-1], SAb[:,-1]
|
||||
>>> x_sketched = np.linalg.lstsq(SA, Sb, rcond=None)
|
||||
|
||||
As with the matrix norm example, ``np.linalg.norm(A @ x - b)``
|
||||
is close to ``np.linalg.norm(A @ x_sketched - b)`` with high
|
||||
probability.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and
|
||||
regression in input sparsity time. In STOC, 2013.
|
||||
|
||||
.. [2] David P. Woodruff. Sketching as a tool for numerical linear algebra.
|
||||
In Foundations and Trends in Theoretical Computer Science, 2014.
|
||||
|
||||
"""
|
||||
S = cwt_matrix(sketch_size, input_matrix.shape[0], seed)
|
||||
return S.dot(input_matrix)
|
Loading…
Add table
Add a link
Reference in a new issue