Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
194
venv/Lib/site-packages/scipy/linalg/_matfuncs_sqrtm.py
Normal file
194
venv/Lib/site-packages/scipy/linalg/_matfuncs_sqrtm.py
Normal file
|
@ -0,0 +1,194 @@
|
|||
"""
|
||||
Matrix square root for general matrices and for upper triangular matrices.
|
||||
|
||||
This module exists to avoid cyclic imports.
|
||||
|
||||
"""
|
||||
__all__ = ['sqrtm']
|
||||
|
||||
import numpy as np
|
||||
|
||||
from scipy._lib._util import _asarray_validated
|
||||
|
||||
|
||||
# Local imports
|
||||
from .misc import norm
|
||||
from .lapack import ztrsyl, dtrsyl
|
||||
from .decomp_schur import schur, rsf2csf
|
||||
|
||||
|
||||
class SqrtmError(np.linalg.LinAlgError):
|
||||
pass
|
||||
|
||||
|
||||
def _sqrtm_triu(T, blocksize=64):
|
||||
"""
|
||||
Matrix square root of an upper triangular matrix.
|
||||
|
||||
This is a helper function for `sqrtm` and `logm`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
T : (N, N) array_like upper triangular
|
||||
Matrix whose square root to evaluate
|
||||
blocksize : int, optional
|
||||
If the blocksize is not degenerate with respect to the
|
||||
size of the input array, then use a blocked algorithm. (Default: 64)
|
||||
|
||||
Returns
|
||||
-------
|
||||
sqrtm : (N, N) ndarray
|
||||
Value of the sqrt function at `T`
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Edvin Deadman, Nicholas J. Higham, Rui Ralha (2013)
|
||||
"Blocked Schur Algorithms for Computing the Matrix Square Root,
|
||||
Lecture Notes in Computer Science, 7782. pp. 171-182.
|
||||
|
||||
"""
|
||||
T_diag = np.diag(T)
|
||||
keep_it_real = np.isrealobj(T) and np.min(T_diag) >= 0
|
||||
if not keep_it_real:
|
||||
T_diag = T_diag.astype(complex)
|
||||
R = np.diag(np.sqrt(T_diag))
|
||||
|
||||
# Compute the number of blocks to use; use at least one block.
|
||||
n, n = T.shape
|
||||
nblocks = max(n // blocksize, 1)
|
||||
|
||||
# Compute the smaller of the two sizes of blocks that
|
||||
# we will actually use, and compute the number of large blocks.
|
||||
bsmall, nlarge = divmod(n, nblocks)
|
||||
blarge = bsmall + 1
|
||||
nsmall = nblocks - nlarge
|
||||
if nsmall * bsmall + nlarge * blarge != n:
|
||||
raise Exception('internal inconsistency')
|
||||
|
||||
# Define the index range covered by each block.
|
||||
start_stop_pairs = []
|
||||
start = 0
|
||||
for count, size in ((nsmall, bsmall), (nlarge, blarge)):
|
||||
for i in range(count):
|
||||
start_stop_pairs.append((start, start + size))
|
||||
start += size
|
||||
|
||||
# Within-block interactions.
|
||||
for start, stop in start_stop_pairs:
|
||||
for j in range(start, stop):
|
||||
for i in range(j-1, start-1, -1):
|
||||
s = 0
|
||||
if j - i > 1:
|
||||
s = R[i, i+1:j].dot(R[i+1:j, j])
|
||||
denom = R[i, i] + R[j, j]
|
||||
num = T[i, j] - s
|
||||
if denom != 0:
|
||||
R[i, j] = (T[i, j] - s) / denom
|
||||
elif denom == 0 and num == 0:
|
||||
R[i, j] = 0
|
||||
else:
|
||||
raise SqrtmError('failed to find the matrix square root')
|
||||
|
||||
# Between-block interactions.
|
||||
for j in range(nblocks):
|
||||
jstart, jstop = start_stop_pairs[j]
|
||||
for i in range(j-1, -1, -1):
|
||||
istart, istop = start_stop_pairs[i]
|
||||
S = T[istart:istop, jstart:jstop]
|
||||
if j - i > 1:
|
||||
S = S - R[istart:istop, istop:jstart].dot(R[istop:jstart,
|
||||
jstart:jstop])
|
||||
|
||||
# Invoke LAPACK.
|
||||
# For more details, see the solve_sylvester implemention
|
||||
# and the fortran dtrsyl and ztrsyl docs.
|
||||
Rii = R[istart:istop, istart:istop]
|
||||
Rjj = R[jstart:jstop, jstart:jstop]
|
||||
if keep_it_real:
|
||||
x, scale, info = dtrsyl(Rii, Rjj, S)
|
||||
else:
|
||||
x, scale, info = ztrsyl(Rii, Rjj, S)
|
||||
R[istart:istop, jstart:jstop] = x * scale
|
||||
|
||||
# Return the matrix square root.
|
||||
return R
|
||||
|
||||
|
||||
def sqrtm(A, disp=True, blocksize=64):
|
||||
"""
|
||||
Matrix square root.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix whose square root to evaluate
|
||||
disp : bool, optional
|
||||
Print warning if error in the result is estimated large
|
||||
instead of returning estimated error. (Default: True)
|
||||
blocksize : integer, optional
|
||||
If the blocksize is not degenerate with respect to the
|
||||
size of the input array, then use a blocked algorithm. (Default: 64)
|
||||
|
||||
Returns
|
||||
-------
|
||||
sqrtm : (N, N) ndarray
|
||||
Value of the sqrt function at `A`
|
||||
|
||||
errest : float
|
||||
(if disp == False)
|
||||
|
||||
Frobenius norm of the estimated error, ||err||_F / ||A||_F
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Edvin Deadman, Nicholas J. Higham, Rui Ralha (2013)
|
||||
"Blocked Schur Algorithms for Computing the Matrix Square Root,
|
||||
Lecture Notes in Computer Science, 7782. pp. 171-182.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import sqrtm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> r = sqrtm(a)
|
||||
>>> r
|
||||
array([[ 0.75592895, 1.13389342],
|
||||
[ 0.37796447, 1.88982237]])
|
||||
>>> r.dot(r)
|
||||
array([[ 1., 3.],
|
||||
[ 1., 4.]])
|
||||
|
||||
"""
|
||||
A = _asarray_validated(A, check_finite=True, as_inexact=True)
|
||||
if len(A.shape) != 2:
|
||||
raise ValueError("Non-matrix input to matrix function.")
|
||||
if blocksize < 1:
|
||||
raise ValueError("The blocksize should be at least 1.")
|
||||
keep_it_real = np.isrealobj(A)
|
||||
if keep_it_real:
|
||||
T, Z = schur(A)
|
||||
if not np.array_equal(T, np.triu(T)):
|
||||
T, Z = rsf2csf(T, Z)
|
||||
else:
|
||||
T, Z = schur(A, output='complex')
|
||||
failflag = False
|
||||
try:
|
||||
R = _sqrtm_triu(T, blocksize=blocksize)
|
||||
ZH = np.conjugate(Z).T
|
||||
X = Z.dot(R).dot(ZH)
|
||||
except SqrtmError:
|
||||
failflag = True
|
||||
X = np.empty_like(A)
|
||||
X.fill(np.nan)
|
||||
|
||||
if disp:
|
||||
if failflag:
|
||||
print("Failed to find a square root.")
|
||||
return X
|
||||
else:
|
||||
try:
|
||||
arg2 = norm(X.dot(X) - A, 'fro')**2 / norm(A, 'fro')
|
||||
except ValueError:
|
||||
# NaNs in matrix
|
||||
arg2 = np.inf
|
||||
|
||||
return X, arg2
|
Loading…
Add table
Add a link
Reference in a new issue