Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
220
venv/Lib/site-packages/scipy/linalg/__init__.py
Normal file
220
venv/Lib/site-packages/scipy/linalg/__init__.py
Normal file
|
@ -0,0 +1,220 @@
|
|||
"""
|
||||
====================================
|
||||
Linear algebra (:mod:`scipy.linalg`)
|
||||
====================================
|
||||
|
||||
.. currentmodule:: scipy.linalg
|
||||
|
||||
Linear algebra functions.
|
||||
|
||||
.. eventually, we should replace the numpy.linalg HTML link with just `numpy.linalg`
|
||||
|
||||
.. seealso::
|
||||
|
||||
`numpy.linalg <https://www.numpy.org/devdocs/reference/routines.linalg.html>`__
|
||||
for more linear algebra functions. Note that
|
||||
although `scipy.linalg` imports most of them, identically named
|
||||
functions from `scipy.linalg` may offer more or slightly differing
|
||||
functionality.
|
||||
|
||||
|
||||
Basics
|
||||
======
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
inv - Find the inverse of a square matrix
|
||||
solve - Solve a linear system of equations
|
||||
solve_banded - Solve a banded linear system
|
||||
solveh_banded - Solve a Hermitian or symmetric banded system
|
||||
solve_circulant - Solve a circulant system
|
||||
solve_triangular - Solve a triangular matrix
|
||||
solve_toeplitz - Solve a toeplitz matrix
|
||||
det - Find the determinant of a square matrix
|
||||
norm - Matrix and vector norm
|
||||
lstsq - Solve a linear least-squares problem
|
||||
pinv - Pseudo-inverse (Moore-Penrose) using lstsq
|
||||
pinv2 - Pseudo-inverse using svd
|
||||
pinvh - Pseudo-inverse of hermitian matrix
|
||||
kron - Kronecker product of two arrays
|
||||
khatri_rao - Khatri-Rao product of two arrays
|
||||
tril - Construct a lower-triangular matrix from a given matrix
|
||||
triu - Construct an upper-triangular matrix from a given matrix
|
||||
orthogonal_procrustes - Solve an orthogonal Procrustes problem
|
||||
matrix_balance - Balance matrix entries with a similarity transformation
|
||||
subspace_angles - Compute the subspace angles between two matrices
|
||||
LinAlgError
|
||||
LinAlgWarning
|
||||
|
||||
Eigenvalue Problems
|
||||
===================
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
eig - Find the eigenvalues and eigenvectors of a square matrix
|
||||
eigvals - Find just the eigenvalues of a square matrix
|
||||
eigh - Find the e-vals and e-vectors of a Hermitian or symmetric matrix
|
||||
eigvalsh - Find just the eigenvalues of a Hermitian or symmetric matrix
|
||||
eig_banded - Find the eigenvalues and eigenvectors of a banded matrix
|
||||
eigvals_banded - Find just the eigenvalues of a banded matrix
|
||||
eigh_tridiagonal - Find the eigenvalues and eigenvectors of a tridiagonal matrix
|
||||
eigvalsh_tridiagonal - Find just the eigenvalues of a tridiagonal matrix
|
||||
|
||||
Decompositions
|
||||
==============
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
lu - LU decomposition of a matrix
|
||||
lu_factor - LU decomposition returning unordered matrix and pivots
|
||||
lu_solve - Solve Ax=b using back substitution with output of lu_factor
|
||||
svd - Singular value decomposition of a matrix
|
||||
svdvals - Singular values of a matrix
|
||||
diagsvd - Construct matrix of singular values from output of svd
|
||||
orth - Construct orthonormal basis for the range of A using svd
|
||||
null_space - Construct orthonormal basis for the null space of A using svd
|
||||
ldl - LDL.T decomposition of a Hermitian or a symmetric matrix.
|
||||
cholesky - Cholesky decomposition of a matrix
|
||||
cholesky_banded - Cholesky decomp. of a sym. or Hermitian banded matrix
|
||||
cho_factor - Cholesky decomposition for use in solving a linear system
|
||||
cho_solve - Solve previously factored linear system
|
||||
cho_solve_banded - Solve previously factored banded linear system
|
||||
polar - Compute the polar decomposition.
|
||||
qr - QR decomposition of a matrix
|
||||
qr_multiply - QR decomposition and multiplication by Q
|
||||
qr_update - Rank k QR update
|
||||
qr_delete - QR downdate on row or column deletion
|
||||
qr_insert - QR update on row or column insertion
|
||||
rq - RQ decomposition of a matrix
|
||||
qz - QZ decomposition of a pair of matrices
|
||||
ordqz - QZ decomposition of a pair of matrices with reordering
|
||||
schur - Schur decomposition of a matrix
|
||||
rsf2csf - Real to complex Schur form
|
||||
hessenberg - Hessenberg form of a matrix
|
||||
cdf2rdf - Complex diagonal form to real diagonal block form
|
||||
cossin - Cosine sine decomposition of a unitary or orthogonal matrix
|
||||
|
||||
.. seealso::
|
||||
|
||||
`scipy.linalg.interpolative` -- Interpolative matrix decompositions
|
||||
|
||||
|
||||
Matrix Functions
|
||||
================
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
expm - Matrix exponential
|
||||
logm - Matrix logarithm
|
||||
cosm - Matrix cosine
|
||||
sinm - Matrix sine
|
||||
tanm - Matrix tangent
|
||||
coshm - Matrix hyperbolic cosine
|
||||
sinhm - Matrix hyperbolic sine
|
||||
tanhm - Matrix hyperbolic tangent
|
||||
signm - Matrix sign
|
||||
sqrtm - Matrix square root
|
||||
funm - Evaluating an arbitrary matrix function
|
||||
expm_frechet - Frechet derivative of the matrix exponential
|
||||
expm_cond - Relative condition number of expm in the Frobenius norm
|
||||
fractional_matrix_power - Fractional matrix power
|
||||
|
||||
|
||||
Matrix Equation Solvers
|
||||
=======================
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
solve_sylvester - Solve the Sylvester matrix equation
|
||||
solve_continuous_are - Solve the continuous-time algebraic Riccati equation
|
||||
solve_discrete_are - Solve the discrete-time algebraic Riccati equation
|
||||
solve_continuous_lyapunov - Solve the continuous-time Lyapunov equation
|
||||
solve_discrete_lyapunov - Solve the discrete-time Lyapunov equation
|
||||
|
||||
|
||||
Sketches and Random Projections
|
||||
===============================
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
clarkson_woodruff_transform - Applies the Clarkson Woodruff Sketch (a.k.a CountMin Sketch)
|
||||
|
||||
Special Matrices
|
||||
================
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
block_diag - Construct a block diagonal matrix from submatrices
|
||||
circulant - Circulant matrix
|
||||
companion - Companion matrix
|
||||
convolution_matrix - Convolution matrix
|
||||
dft - Discrete Fourier transform matrix
|
||||
fiedler - Fiedler matrix
|
||||
fiedler_companion - Fiedler companion matrix
|
||||
hadamard - Hadamard matrix of order 2**n
|
||||
hankel - Hankel matrix
|
||||
helmert - Helmert matrix
|
||||
hilbert - Hilbert matrix
|
||||
invhilbert - Inverse Hilbert matrix
|
||||
leslie - Leslie matrix
|
||||
pascal - Pascal matrix
|
||||
invpascal - Inverse Pascal matrix
|
||||
toeplitz - Toeplitz matrix
|
||||
tri - Construct a matrix filled with ones at and below a given diagonal
|
||||
|
||||
Low-level routines
|
||||
==================
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
get_blas_funcs
|
||||
get_lapack_funcs
|
||||
find_best_blas_type
|
||||
|
||||
.. seealso::
|
||||
|
||||
`scipy.linalg.blas` -- Low-level BLAS functions
|
||||
|
||||
`scipy.linalg.lapack` -- Low-level LAPACK functions
|
||||
|
||||
`scipy.linalg.cython_blas` -- Low-level BLAS functions for Cython
|
||||
|
||||
`scipy.linalg.cython_lapack` -- Low-level LAPACK functions for Cython
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
from .misc import *
|
||||
from .basic import *
|
||||
from .decomp import *
|
||||
from .decomp_lu import *
|
||||
from ._decomp_ldl import *
|
||||
from .decomp_cholesky import *
|
||||
from .decomp_qr import *
|
||||
from ._decomp_qz import *
|
||||
from .decomp_svd import *
|
||||
from .decomp_schur import *
|
||||
from ._decomp_polar import *
|
||||
from .matfuncs import *
|
||||
from .blas import *
|
||||
from .lapack import *
|
||||
from .special_matrices import *
|
||||
from ._solvers import *
|
||||
from ._procrustes import *
|
||||
from ._decomp_update import *
|
||||
from ._sketches import *
|
||||
from ._decomp_cossin import *
|
||||
|
||||
__all__ = [s for s in dir() if not s.startswith('_')]
|
||||
|
||||
|
||||
from scipy._lib._testutils import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,203 @@
|
|||
"""
|
||||
A script that uses f2py to generate the signature files used to make
|
||||
the Cython BLAS and LAPACK wrappers from the fortran source code for
|
||||
LAPACK and the reference BLAS.
|
||||
|
||||
To generate the BLAS wrapper signatures call:
|
||||
python _cython_signature_generator.py blas <blas_directory> <out_file>
|
||||
|
||||
To generate the LAPACK wrapper signatures call:
|
||||
python _cython_signature_generator.py lapack <lapack_src_directory> <out_file>
|
||||
|
||||
This script expects to be run on the source directory for
|
||||
the oldest supported version of LAPACK (currently 3.4.0).
|
||||
"""
|
||||
|
||||
import glob
|
||||
import os
|
||||
from numpy.f2py import crackfortran
|
||||
|
||||
sig_types = {'integer': 'int',
|
||||
'complex': 'c',
|
||||
'double precision': 'd',
|
||||
'real': 's',
|
||||
'complex*16': 'z',
|
||||
'double complex': 'z',
|
||||
'character': 'char',
|
||||
'logical': 'bint'}
|
||||
|
||||
|
||||
def get_type(info, arg):
|
||||
argtype = sig_types[info['vars'][arg]['typespec']]
|
||||
if argtype == 'c' and info['vars'][arg].get('kindselector') is not None:
|
||||
argtype = 'z'
|
||||
return argtype
|
||||
|
||||
|
||||
def make_signature(filename):
|
||||
info = crackfortran.crackfortran(filename)[0]
|
||||
name = info['name']
|
||||
if info['block'] == 'subroutine':
|
||||
return_type = 'void'
|
||||
else:
|
||||
return_type = get_type(info, name)
|
||||
arglist = [' *'.join([get_type(info, arg), arg]) for arg in info['args']]
|
||||
args = ', '.join(arglist)
|
||||
# Eliminate strange variable naming that replaces rank with rank_bn.
|
||||
args = args.replace('rank_bn', 'rank')
|
||||
return '{0} {1}({2})\n'.format(return_type, name, args)
|
||||
|
||||
|
||||
def get_sig_name(line):
|
||||
return line.split('(')[0].split(' ')[-1]
|
||||
|
||||
|
||||
def sigs_from_dir(directory, outfile, manual_wrappers=None, exclusions=None):
|
||||
if directory[-1] in ['/', '\\']:
|
||||
directory = directory[:-1]
|
||||
files = sorted(glob.glob(directory + '/*.f*'))
|
||||
if exclusions is None:
|
||||
exclusions = []
|
||||
if manual_wrappers is not None:
|
||||
exclusions += [get_sig_name(l) for l in manual_wrappers.split('\n')]
|
||||
signatures = []
|
||||
for filename in files:
|
||||
name = os.path.splitext(os.path.basename(filename))[0]
|
||||
if name in exclusions:
|
||||
continue
|
||||
signatures.append(make_signature(filename))
|
||||
if manual_wrappers is not None:
|
||||
signatures += [l + '\n' for l in manual_wrappers.split('\n')]
|
||||
signatures.sort(key=get_sig_name)
|
||||
comment = ["# This file was generated by _cython_signature_generator.py.\n",
|
||||
"# Do not edit this file directly.\n\n"]
|
||||
with open(outfile, 'w') as f:
|
||||
f.writelines(comment)
|
||||
f.writelines(signatures)
|
||||
|
||||
# slamch and dlamch are not in the lapack src directory, but,since they
|
||||
# already have Python wrappers, we'll wrap them as well.
|
||||
# The other manual signatures are used because the signature generating
|
||||
# functions don't work when function pointer arguments are used.
|
||||
|
||||
|
||||
lapack_manual_wrappers = '''void cgees(char *jobvs, char *sort, cselect1 *select, int *n, c *a, int *lda, int *sdim, c *w, c *vs, int *ldvs, c *work, int *lwork, s *rwork, bint *bwork, int *info)
|
||||
void cgeesx(char *jobvs, char *sort, cselect1 *select, char *sense, int *n, c *a, int *lda, int *sdim, c *w, c *vs, int *ldvs, s *rconde, s *rcondv, c *work, int *lwork, s *rwork, bint *bwork, int *info)
|
||||
void cgges(char *jobvsl, char *jobvsr, char *sort, cselect2 *selctg, int *n, c *a, int *lda, c *b, int *ldb, int *sdim, c *alpha, c *beta, c *vsl, int *ldvsl, c *vsr, int *ldvsr, c *work, int *lwork, s *rwork, bint *bwork, int *info)
|
||||
void cggesx(char *jobvsl, char *jobvsr, char *sort, cselect2 *selctg, char *sense, int *n, c *a, int *lda, c *b, int *ldb, int *sdim, c *alpha, c *beta, c *vsl, int *ldvsl, c *vsr, int *ldvsr, s *rconde, s *rcondv, c *work, int *lwork, s *rwork, int *iwork, int *liwork, bint *bwork, int *info)
|
||||
void dgees(char *jobvs, char *sort, dselect2 *select, int *n, d *a, int *lda, int *sdim, d *wr, d *wi, d *vs, int *ldvs, d *work, int *lwork, bint *bwork, int *info)
|
||||
void dgeesx(char *jobvs, char *sort, dselect2 *select, char *sense, int *n, d *a, int *lda, int *sdim, d *wr, d *wi, d *vs, int *ldvs, d *rconde, d *rcondv, d *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info)
|
||||
void dgges(char *jobvsl, char *jobvsr, char *sort, dselect3 *selctg, int *n, d *a, int *lda, d *b, int *ldb, int *sdim, d *alphar, d *alphai, d *beta, d *vsl, int *ldvsl, d *vsr, int *ldvsr, d *work, int *lwork, bint *bwork, int *info)
|
||||
void dggesx(char *jobvsl, char *jobvsr, char *sort, dselect3 *selctg, char *sense, int *n, d *a, int *lda, d *b, int *ldb, int *sdim, d *alphar, d *alphai, d *beta, d *vsl, int *ldvsl, d *vsr, int *ldvsr, d *rconde, d *rcondv, d *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info)
|
||||
d dlamch(char *cmach)
|
||||
void ilaver(int *vers_major, int *vers_minor, int *vers_patch)
|
||||
void sgees(char *jobvs, char *sort, sselect2 *select, int *n, s *a, int *lda, int *sdim, s *wr, s *wi, s *vs, int *ldvs, s *work, int *lwork, bint *bwork, int *info)
|
||||
void sgeesx(char *jobvs, char *sort, sselect2 *select, char *sense, int *n, s *a, int *lda, int *sdim, s *wr, s *wi, s *vs, int *ldvs, s *rconde, s *rcondv, s *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info)
|
||||
void sgges(char *jobvsl, char *jobvsr, char *sort, sselect3 *selctg, int *n, s *a, int *lda, s *b, int *ldb, int *sdim, s *alphar, s *alphai, s *beta, s *vsl, int *ldvsl, s *vsr, int *ldvsr, s *work, int *lwork, bint *bwork, int *info)
|
||||
void sggesx(char *jobvsl, char *jobvsr, char *sort, sselect3 *selctg, char *sense, int *n, s *a, int *lda, s *b, int *ldb, int *sdim, s *alphar, s *alphai, s *beta, s *vsl, int *ldvsl, s *vsr, int *ldvsr, s *rconde, s *rcondv, s *work, int *lwork, int *iwork, int *liwork, bint *bwork, int *info)
|
||||
s slamch(char *cmach)
|
||||
void zgees(char *jobvs, char *sort, zselect1 *select, int *n, z *a, int *lda, int *sdim, z *w, z *vs, int *ldvs, z *work, int *lwork, d *rwork, bint *bwork, int *info)
|
||||
void zgeesx(char *jobvs, char *sort, zselect1 *select, char *sense, int *n, z *a, int *lda, int *sdim, z *w, z *vs, int *ldvs, d *rconde, d *rcondv, z *work, int *lwork, d *rwork, bint *bwork, int *info)
|
||||
void zgges(char *jobvsl, char *jobvsr, char *sort, zselect2 *selctg, int *n, z *a, int *lda, z *b, int *ldb, int *sdim, z *alpha, z *beta, z *vsl, int *ldvsl, z *vsr, int *ldvsr, z *work, int *lwork, d *rwork, bint *bwork, int *info)
|
||||
void zggesx(char *jobvsl, char *jobvsr, char *sort, zselect2 *selctg, char *sense, int *n, z *a, int *lda, z *b, int *ldb, int *sdim, z *alpha, z *beta, z *vsl, int *ldvsl, z *vsr, int *ldvsr, d *rconde, d *rcondv, z *work, int *lwork, d *rwork, int *iwork, int *liwork, bint *bwork, int *info)'''
|
||||
|
||||
|
||||
# Exclude scabs and sisnan since they aren't currently included
|
||||
# in the scipy-specific ABI wrappers.
|
||||
blas_exclusions = ['scabs1', 'xerbla']
|
||||
|
||||
# Exclude all routines that do not have consistent interfaces from
|
||||
# LAPACK 3.4.0 through 3.6.0.
|
||||
# Also exclude routines with string arguments to avoid
|
||||
# compatibility woes with different standards for string arguments.
|
||||
lapack_exclusions = [
|
||||
# Not included because people should be using the
|
||||
# C standard library function instead.
|
||||
# sisnan is also not currently included in the
|
||||
# ABI wrappers.
|
||||
'sisnan', 'dlaisnan', 'slaisnan',
|
||||
# Exclude slaneg because it isn't currently included
|
||||
# in the ABI wrappers
|
||||
'slaneg',
|
||||
# Excluded because they require Fortran string arguments.
|
||||
'ilaenv', 'iparmq', 'lsamen', 'xerbla',
|
||||
# Exclude XBLAS routines since they aren't included
|
||||
# by default.
|
||||
'cgesvxx', 'dgesvxx', 'sgesvxx', 'zgesvxx',
|
||||
'cgerfsx', 'dgerfsx', 'sgerfsx', 'zgerfsx',
|
||||
'cla_gerfsx_extended', 'dla_gerfsx_extended',
|
||||
'sla_gerfsx_extended', 'zla_gerfsx_extended',
|
||||
'cla_geamv', 'dla_geamv', 'sla_geamv', 'zla_geamv',
|
||||
'dla_gercond', 'sla_gercond',
|
||||
'cla_gercond_c', 'zla_gercond_c',
|
||||
'cla_gercond_x', 'zla_gercond_x',
|
||||
'cla_gerpvgrw', 'dla_gerpvgrw',
|
||||
'sla_gerpvgrw', 'zla_gerpvgrw',
|
||||
'csysvxx', 'dsysvxx', 'ssysvxx', 'zsysvxx',
|
||||
'csyrfsx', 'dsyrfsx', 'ssyrfsx', 'zsyrfsx',
|
||||
'cla_syrfsx_extended', 'dla_syrfsx_extended',
|
||||
'sla_syrfsx_extended', 'zla_syrfsx_extended',
|
||||
'cla_syamv', 'dla_syamv', 'sla_syamv', 'zla_syamv',
|
||||
'dla_syrcond', 'sla_syrcond',
|
||||
'cla_syrcond_c', 'zla_syrcond_c',
|
||||
'cla_syrcond_x', 'zla_syrcond_x',
|
||||
'cla_syrpvgrw', 'dla_syrpvgrw',
|
||||
'sla_syrpvgrw', 'zla_syrpvgrw',
|
||||
'cposvxx', 'dposvxx', 'sposvxx', 'zposvxx',
|
||||
'cporfsx', 'dporfsx', 'sporfsx', 'zporfsx',
|
||||
'cla_porfsx_extended', 'dla_porfsx_extended',
|
||||
'sla_porfsx_extended', 'zla_porfsx_extended',
|
||||
'dla_porcond', 'sla_porcond',
|
||||
'cla_porcond_c', 'zla_porcond_c',
|
||||
'cla_porcond_x', 'zla_porcond_x',
|
||||
'cla_porpvgrw', 'dla_porpvgrw',
|
||||
'sla_porpvgrw', 'zla_porpvgrw',
|
||||
'cgbsvxx', 'dgbsvxx', 'sgbsvxx', 'zgbsvxx',
|
||||
'cgbrfsx', 'dgbrfsx', 'sgbrfsx', 'zgbrfsx',
|
||||
'cla_gbrfsx_extended', 'dla_gbrfsx_extended',
|
||||
'sla_gbrfsx_extended', 'zla_gbrfsx_extended',
|
||||
'cla_gbamv', 'dla_gbamv', 'sla_gbamv', 'zla_gbamv',
|
||||
'dla_gbrcond', 'sla_gbrcond',
|
||||
'cla_gbrcond_c', 'zla_gbrcond_c',
|
||||
'cla_gbrcond_x', 'zla_gbrcond_x',
|
||||
'cla_gbrpvgrw', 'dla_gbrpvgrw',
|
||||
'sla_gbrpvgrw', 'zla_gbrpvgrw',
|
||||
'chesvxx', 'zhesvxx',
|
||||
'cherfsx', 'zherfsx',
|
||||
'cla_herfsx_extended', 'zla_herfsx_extended',
|
||||
'cla_heamv', 'zla_heamv',
|
||||
'cla_hercond_c', 'zla_hercond_c',
|
||||
'cla_hercond_x', 'zla_hercond_x',
|
||||
'cla_herpvgrw', 'zla_herpvgrw',
|
||||
'sla_lin_berr', 'cla_lin_berr',
|
||||
'dla_lin_berr', 'zla_lin_berr',
|
||||
'clarscl2', 'dlarscl2', 'slarscl2', 'zlarscl2',
|
||||
'clascl2', 'dlascl2', 'slascl2', 'zlascl2',
|
||||
'cla_wwaddw', 'dla_wwaddw', 'sla_wwaddw', 'zla_wwaddw',
|
||||
# Removed between 3.3.1 and 3.4.0.
|
||||
'cla_rpvgrw', 'dla_rpvgrw', 'sla_rpvgrw', 'zla_rpvgrw',
|
||||
# Signatures changed between 3.4.0 and 3.4.1.
|
||||
'dlasq5', 'slasq5',
|
||||
# Routines deprecated in LAPACK 3.6.0
|
||||
'cgegs', 'cgegv', 'cgelsx',
|
||||
'cgeqpf', 'cggsvd', 'cggsvp',
|
||||
'clahrd', 'clatzm', 'ctzrqf',
|
||||
'dgegs', 'dgegv', 'dgelsx',
|
||||
'dgeqpf', 'dggsvd', 'dggsvp',
|
||||
'dlahrd', 'dlatzm', 'dtzrqf',
|
||||
'sgegs', 'sgegv', 'sgelsx',
|
||||
'sgeqpf', 'sggsvd', 'sggsvp',
|
||||
'slahrd', 'slatzm', 'stzrqf',
|
||||
'zgegs', 'zgegv', 'zgelsx',
|
||||
'zgeqpf', 'zggsvd', 'zggsvp',
|
||||
'zlahrd', 'zlatzm', 'ztzrqf']
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from sys import argv
|
||||
libname, src_dir, outfile = argv[1:]
|
||||
if libname.lower() == 'blas':
|
||||
sigs_from_dir(src_dir, outfile, exclusions=blas_exclusions)
|
||||
elif libname.lower() == 'lapack':
|
||||
sigs_from_dir(src_dir, outfile, manual_wrappers=lapack_manual_wrappers,
|
||||
exclusions=lapack_exclusions)
|
223
venv/Lib/site-packages/scipy/linalg/_decomp_cossin.py
Normal file
223
venv/Lib/site-packages/scipy/linalg/_decomp_cossin.py
Normal file
|
@ -0,0 +1,223 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
from collections.abc import Iterable
|
||||
import numpy as np
|
||||
|
||||
from scipy._lib._util import _asarray_validated
|
||||
from scipy.linalg import block_diag, LinAlgError
|
||||
from .lapack import _compute_lwork, get_lapack_funcs
|
||||
|
||||
__all__ = ['cossin']
|
||||
|
||||
|
||||
def cossin(X, p=None, q=None, separate=False,
|
||||
swap_sign=False, compute_u=True, compute_vh=True):
|
||||
"""
|
||||
Compute the cosine-sine (CS) decomposition of an orthogonal/unitary matrix.
|
||||
|
||||
X is an ``(m, m)`` orthogonal/unitary matrix, partitioned as the following
|
||||
where upper left block has the shape of ``(p, q)``::
|
||||
|
||||
┌ ┐
|
||||
│ I 0 0 │ 0 0 0 │
|
||||
┌ ┐ ┌ ┐│ 0 C 0 │ 0 -S 0 │┌ ┐*
|
||||
│ X11 │ X12 │ │ U1 │ ││ 0 0 0 │ 0 0 -I ││ V1 │ │
|
||||
│ ────┼──── │ = │────┼────││─────────┼─────────││────┼────│
|
||||
│ X21 │ X22 │ │ │ U2 ││ 0 0 0 │ I 0 0 ││ │ V2 │
|
||||
└ ┘ └ ┘│ 0 S 0 │ 0 C 0 │└ ┘
|
||||
│ 0 0 I │ 0 0 0 │
|
||||
└ ┘
|
||||
|
||||
``U1``, ``U2``, ``V1``, ``V2`` are square orthogonal/unitary matrices of
|
||||
dimensions ``(p,p)``, ``(m-p,m-p)``, ``(q,q)``, and ``(m-q,m-q)``
|
||||
respectively, and ``C`` and ``S`` are ``(r, r)`` nonnegative diagonal
|
||||
matrices satisfying ``C^2 + S^2 = I`` where ``r = min(p, m-p, q, m-q)``.
|
||||
|
||||
Moreover, the rank of the identity matrices are ``min(p, q) - r``,
|
||||
``min(p, m - q) - r``, ``min(m - p, q) - r``, and ``min(m - p, m - q) - r``
|
||||
respectively.
|
||||
|
||||
X can be supplied either by itself and block specifications p, q or its
|
||||
subblocks in an iterable from which the shapes would be derived. See the
|
||||
examples below.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array_like, iterable
|
||||
complex unitary or real orthogonal matrix to be decomposed, or iterable
|
||||
of subblocks ``X11``, ``X12``, ``X21``, ``X22``, when ``p``, ``q`` are
|
||||
omitted.
|
||||
p : int, optional
|
||||
Number of rows of the upper left block ``X11``, used only when X is
|
||||
given as an array.
|
||||
q : int, optional
|
||||
Number of columns of the upper left block ``X11``, used only when X is
|
||||
given as an array.
|
||||
separate : bool, optional
|
||||
if ``True``, the low level components are returned instead of the
|
||||
matrix factors, i.e. ``(u1,u2)``, ``theta``, ``(v1h,v2h)`` instead of
|
||||
``u``, ``cs``, ``vh``.
|
||||
swap_sign : bool, optional
|
||||
if ``True``, the ``-S``, ``-I`` block will be the bottom left,
|
||||
otherwise (by default) they will be in the upper right block.
|
||||
compute_u : bool, optional
|
||||
if ``False``, ``u`` won't be computed and an empty array is returned.
|
||||
compute_vh : bool, optional
|
||||
if ``False``, ``vh`` won't be computed and an empty array is returned.
|
||||
|
||||
Returns
|
||||
-------
|
||||
u : ndarray
|
||||
When ``compute_u=True``, contains the block diagonal orthogonal/unitary
|
||||
matrix consisting of the blocks ``U1`` (``p`` x ``p``) and ``U2``
|
||||
(``m-p`` x ``m-p``) orthogonal/unitary matrices. If ``separate=True``,
|
||||
this contains the tuple of ``(U1, U2)``.
|
||||
cs : ndarray
|
||||
The cosine-sine factor with the structure described above.
|
||||
If ``separate=True``, this contains the ``theta`` array containing the
|
||||
angles in radians.
|
||||
vh : ndarray
|
||||
When ``compute_vh=True`, contains the block diagonal orthogonal/unitary
|
||||
matrix consisting of the blocks ``V1H`` (``q`` x ``q``) and ``V2H``
|
||||
(``m-q`` x ``m-q``) orthogonal/unitary matrices. If ``separate=True``,
|
||||
this contains the tuple of ``(V1H, V2H)``.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import cossin
|
||||
>>> from scipy.stats import unitary_group
|
||||
>>> x = unitary_group.rvs(4)
|
||||
>>> u, cs, vdh = cossin(x, p=2, q=2)
|
||||
>>> np.allclose(x, u @ cs @ vdh)
|
||||
True
|
||||
|
||||
Same can be entered via subblocks without the need of ``p`` and ``q``. Also
|
||||
let's skip the computation of ``u``
|
||||
|
||||
>>> ue, cs, vdh = cossin((x[:2, :2], x[:2, 2:], x[2:, :2], x[2:, 2:]),
|
||||
... compute_u=False)
|
||||
>>> print(ue)
|
||||
[]
|
||||
>>> np.allclose(x, u @ cs @ vdh)
|
||||
True
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] : Brian D. Sutton. Computing the complete CS decomposition. Numer.
|
||||
Algorithms, 50(1):33-65, 2009.
|
||||
|
||||
"""
|
||||
|
||||
if p or q:
|
||||
p = 1 if p is None else int(p)
|
||||
q = 1 if q is None else int(q)
|
||||
X = _asarray_validated(X, check_finite=True)
|
||||
if not np.equal(*X.shape):
|
||||
raise ValueError("Cosine Sine decomposition only supports square"
|
||||
" matrices, got {}".format(X.shape))
|
||||
m = X.shape[0]
|
||||
if p >= m or p <= 0:
|
||||
raise ValueError("invalid p={}, 0<p<{} must hold"
|
||||
.format(p, X.shape[0]))
|
||||
if q >= m or q <= 0:
|
||||
raise ValueError("invalid q={}, 0<q<{} must hold"
|
||||
.format(q, X.shape[0]))
|
||||
|
||||
x11, x12, x21, x22 = X[:p, :q], X[:p, q:], X[p:, :q], X[p:, q:]
|
||||
elif not isinstance(X, Iterable):
|
||||
raise ValueError("When p and q are None, X must be an Iterable"
|
||||
" containing the subblocks of X")
|
||||
else:
|
||||
if len(X) != 4:
|
||||
raise ValueError("When p and q are None, exactly four arrays"
|
||||
" should be in X, got {}".format(len(X)))
|
||||
|
||||
x11, x12, x21, x22 = [np.atleast_2d(x) for x in X]
|
||||
for name, block in zip(["x11", "x12", "x21", "x22"],
|
||||
[x11, x12, x21, x22]):
|
||||
if block.shape[1] == 0:
|
||||
raise ValueError("{} can't be empty".format(name))
|
||||
p, q = x11.shape
|
||||
mmp, mmq = x22.shape
|
||||
|
||||
if x12.shape != (p, mmq):
|
||||
raise ValueError("Invalid x12 dimensions: desired {}, "
|
||||
"got {}".format((p, mmq), x12.shape))
|
||||
|
||||
if x21.shape != (mmp, q):
|
||||
raise ValueError("Invalid x21 dimensions: desired {}, "
|
||||
"got {}".format((mmp, q), x21.shape))
|
||||
|
||||
if p + mmp != q + mmq:
|
||||
raise ValueError("The subblocks have compatible sizes but "
|
||||
"don't form a square array (instead they form a"
|
||||
" {}x{} array). This might be due to missing "
|
||||
"p, q arguments.".format(p + mmp, q + mmq))
|
||||
|
||||
m = p + mmp
|
||||
|
||||
cplx = any([np.iscomplexobj(x) for x in [x11, x12, x21, x22]])
|
||||
driver = "uncsd" if cplx else "orcsd"
|
||||
csd, csd_lwork = get_lapack_funcs([driver, driver + "_lwork"],
|
||||
[x11, x12, x21, x22])
|
||||
lwork = _compute_lwork(csd_lwork, m=m, p=p, q=q)
|
||||
lwork_args = ({'lwork': lwork[0], 'lrwork': lwork[1]} if cplx else
|
||||
{'lwork': lwork})
|
||||
*_, theta, u1, u2, v1h, v2h, info = csd(x11=x11, x12=x12, x21=x21, x22=x22,
|
||||
compute_u1=compute_u,
|
||||
compute_u2=compute_u,
|
||||
compute_v1t=compute_vh,
|
||||
compute_v2t=compute_vh,
|
||||
trans=False, signs=swap_sign,
|
||||
**lwork_args)
|
||||
|
||||
method_name = csd.typecode + driver
|
||||
if info < 0:
|
||||
raise ValueError('illegal value in argument {} of internal {}'
|
||||
.format(-info, method_name))
|
||||
if info > 0:
|
||||
raise LinAlgError("{} did not converge: {}".format(method_name, info))
|
||||
|
||||
if separate:
|
||||
return (u1, u2), theta, (v1h, v2h)
|
||||
|
||||
U = block_diag(u1, u2)
|
||||
VDH = block_diag(v1h, v2h)
|
||||
|
||||
# Construct the middle factor CS
|
||||
c = np.diag(np.cos(theta))
|
||||
s = np.diag(np.sin(theta))
|
||||
r = min(p, q, m - p, m - q)
|
||||
n11 = min(p, q) - r
|
||||
n12 = min(p, m - q) - r
|
||||
n21 = min(m - p, q) - r
|
||||
n22 = min(m - p, m - q) - r
|
||||
Id = np.eye(np.max([n11, n12, n21, n22, r]), dtype=theta.dtype)
|
||||
CS = np.zeros((m, m), dtype=theta.dtype)
|
||||
|
||||
CS[:n11, :n11] = Id[:n11, :n11]
|
||||
|
||||
xs = n11 + r
|
||||
xe = n11 + r + n12
|
||||
ys = n11 + n21 + n22 + 2 * r
|
||||
ye = n11 + n21 + n22 + 2 * r + n12
|
||||
CS[xs: xe, ys:ye] = Id[:n12, :n12] if swap_sign else -Id[:n12, :n12]
|
||||
|
||||
xs = p + n22 + r
|
||||
xe = p + n22 + r + + n21
|
||||
ys = n11 + r
|
||||
ye = n11 + r + n21
|
||||
CS[xs:xe, ys:ye] = -Id[:n21, :n21] if swap_sign else Id[:n21, :n21]
|
||||
|
||||
CS[p:p + n22, q:q + n22] = Id[:n22, :n22]
|
||||
CS[n11:n11 + r, n11:n11 + r] = c
|
||||
CS[p + n22:p + n22 + r, r + n21 + n22:2 * r + n21 + n22] = c
|
||||
|
||||
xs = n11
|
||||
xe = n11 + r
|
||||
ys = n11 + n21 + n22 + r
|
||||
ye = n11 + n21 + n22 + 2 * r
|
||||
CS[xs:xe, ys:ye] = s if swap_sign else -s
|
||||
|
||||
CS[p + n22:p + n22 + r, n11:n11 + r] = -s if swap_sign else s
|
||||
|
||||
return U, CS, VDH
|
352
venv/Lib/site-packages/scipy/linalg/_decomp_ldl.py
Normal file
352
venv/Lib/site-packages/scipy/linalg/_decomp_ldl.py
Normal file
|
@ -0,0 +1,352 @@
|
|||
from warnings import warn
|
||||
|
||||
import numpy as np
|
||||
from numpy import (atleast_2d, ComplexWarning, arange, zeros_like, imag, diag,
|
||||
iscomplexobj, tril, triu, argsort, empty_like)
|
||||
from .decomp import _asarray_validated
|
||||
from .lapack import get_lapack_funcs, _compute_lwork
|
||||
|
||||
__all__ = ['ldl']
|
||||
|
||||
|
||||
def ldl(A, lower=True, hermitian=True, overwrite_a=False, check_finite=True):
|
||||
""" Computes the LDLt or Bunch-Kaufman factorization of a symmetric/
|
||||
hermitian matrix.
|
||||
|
||||
This function returns a block diagonal matrix D consisting blocks of size
|
||||
at most 2x2 and also a possibly permuted unit lower triangular matrix
|
||||
``L`` such that the factorization ``A = L D L^H`` or ``A = L D L^T``
|
||||
holds. If ``lower`` is False then (again possibly permuted) upper
|
||||
triangular matrices are returned as outer factors.
|
||||
|
||||
The permutation array can be used to triangularize the outer factors
|
||||
simply by a row shuffle, i.e., ``lu[perm, :]`` is an upper/lower
|
||||
triangular matrix. This is also equivalent to multiplication with a
|
||||
permutation matrix ``P.dot(lu)``, where ``P`` is a column-permuted
|
||||
identity matrix ``I[:, perm]``.
|
||||
|
||||
Depending on the value of the boolean ``lower``, only upper or lower
|
||||
triangular part of the input array is referenced. Hence, a triangular
|
||||
matrix on entry would give the same result as if the full matrix is
|
||||
supplied.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
Square input array
|
||||
lower : bool, optional
|
||||
This switches between the lower and upper triangular outer factors of
|
||||
the factorization. Lower triangular (``lower=True``) is the default.
|
||||
hermitian : bool, optional
|
||||
For complex-valued arrays, this defines whether ``a = a.conj().T`` or
|
||||
``a = a.T`` is assumed. For real-valued arrays, this switch has no
|
||||
effect.
|
||||
overwrite_a : bool, optional
|
||||
Allow overwriting data in ``a`` (may enhance performance). The default
|
||||
is False.
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrices contain only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
lu : ndarray
|
||||
The (possibly) permuted upper/lower triangular outer factor of the
|
||||
factorization.
|
||||
d : ndarray
|
||||
The block diagonal multiplier of the factorization.
|
||||
perm : ndarray
|
||||
The row-permutation index array that brings lu into triangular form.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If input array is not square.
|
||||
ComplexWarning
|
||||
If a complex-valued array with nonzero imaginary parts on the
|
||||
diagonal is given and hermitian is set to True.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Given an upper triangular array `a` that represents the full symmetric
|
||||
array with its entries, obtain `l`, 'd' and the permutation vector `perm`:
|
||||
|
||||
>>> import numpy as np
|
||||
>>> from scipy.linalg import ldl
|
||||
>>> a = np.array([[2, -1, 3], [0, 2, 0], [0, 0, 1]])
|
||||
>>> lu, d, perm = ldl(a, lower=0) # Use the upper part
|
||||
>>> lu
|
||||
array([[ 0. , 0. , 1. ],
|
||||
[ 0. , 1. , -0.5],
|
||||
[ 1. , 1. , 1.5]])
|
||||
>>> d
|
||||
array([[-5. , 0. , 0. ],
|
||||
[ 0. , 1.5, 0. ],
|
||||
[ 0. , 0. , 2. ]])
|
||||
>>> perm
|
||||
array([2, 1, 0])
|
||||
>>> lu[perm, :]
|
||||
array([[ 1. , 1. , 1.5],
|
||||
[ 0. , 1. , -0.5],
|
||||
[ 0. , 0. , 1. ]])
|
||||
>>> lu.dot(d).dot(lu.T)
|
||||
array([[ 2., -1., 3.],
|
||||
[-1., 2., 0.],
|
||||
[ 3., 0., 1.]])
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function uses ``?SYTRF`` routines for symmetric matrices and
|
||||
``?HETRF`` routines for Hermitian matrices from LAPACK. See [1]_ for
|
||||
the algorithm details.
|
||||
|
||||
Depending on the ``lower`` keyword value, only lower or upper triangular
|
||||
part of the input array is referenced. Moreover, this keyword also defines
|
||||
the structure of the outer factors of the factorization.
|
||||
|
||||
.. versionadded:: 1.1.0
|
||||
|
||||
See also
|
||||
--------
|
||||
cholesky, lu
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] J.R. Bunch, L. Kaufman, Some stable methods for calculating
|
||||
inertia and solving symmetric linear systems, Math. Comput. Vol.31,
|
||||
1977. DOI: 10.2307/2005787
|
||||
|
||||
"""
|
||||
a = atleast_2d(_asarray_validated(A, check_finite=check_finite))
|
||||
if a.shape[0] != a.shape[1]:
|
||||
raise ValueError('The input array "a" should be square.')
|
||||
# Return empty arrays for empty square input
|
||||
if a.size == 0:
|
||||
return empty_like(a), empty_like(a), np.array([], dtype=int)
|
||||
|
||||
n = a.shape[0]
|
||||
r_or_c = complex if iscomplexobj(a) else float
|
||||
|
||||
# Get the LAPACK routine
|
||||
if r_or_c is complex and hermitian:
|
||||
s, sl = 'hetrf', 'hetrf_lwork'
|
||||
if np.any(imag(diag(a))):
|
||||
warn('scipy.linalg.ldl():\nThe imaginary parts of the diagonal'
|
||||
'are ignored. Use "hermitian=False" for factorization of'
|
||||
'complex symmetric arrays.', ComplexWarning, stacklevel=2)
|
||||
else:
|
||||
s, sl = 'sytrf', 'sytrf_lwork'
|
||||
|
||||
solver, solver_lwork = get_lapack_funcs((s, sl), (a,))
|
||||
lwork = _compute_lwork(solver_lwork, n, lower=lower)
|
||||
ldu, piv, info = solver(a, lwork=lwork, lower=lower,
|
||||
overwrite_a=overwrite_a)
|
||||
if info < 0:
|
||||
raise ValueError('{} exited with the internal error "illegal value '
|
||||
'in argument number {}". See LAPACK documentation '
|
||||
'for the error codes.'.format(s.upper(), -info))
|
||||
|
||||
swap_arr, pivot_arr = _ldl_sanitize_ipiv(piv, lower=lower)
|
||||
d, lu = _ldl_get_d_and_l(ldu, pivot_arr, lower=lower, hermitian=hermitian)
|
||||
lu, perm = _ldl_construct_tri_factor(lu, swap_arr, pivot_arr, lower=lower)
|
||||
|
||||
return lu, d, perm
|
||||
|
||||
|
||||
def _ldl_sanitize_ipiv(a, lower=True):
|
||||
"""
|
||||
This helper function takes the rather strangely encoded permutation array
|
||||
returned by the LAPACK routines ?(HE/SY)TRF and converts it into
|
||||
regularized permutation and diagonal pivot size format.
|
||||
|
||||
Since FORTRAN uses 1-indexing and LAPACK uses different start points for
|
||||
upper and lower formats there are certain offsets in the indices used
|
||||
below.
|
||||
|
||||
Let's assume a result where the matrix is 6x6 and there are two 2x2
|
||||
and two 1x1 blocks reported by the routine. To ease the coding efforts,
|
||||
we still populate a 6-sized array and fill zeros as the following ::
|
||||
|
||||
pivots = [2, 0, 2, 0, 1, 1]
|
||||
|
||||
This denotes a diagonal matrix of the form ::
|
||||
|
||||
[x x ]
|
||||
[x x ]
|
||||
[ x x ]
|
||||
[ x x ]
|
||||
[ x ]
|
||||
[ x]
|
||||
|
||||
In other words, we write 2 when the 2x2 block is first encountered and
|
||||
automatically write 0 to the next entry and skip the next spin of the
|
||||
loop. Thus, a separate counter or array appends to keep track of block
|
||||
sizes are avoided. If needed, zeros can be filtered out later without
|
||||
losing the block structure.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : ndarray
|
||||
The permutation array ipiv returned by LAPACK
|
||||
lower : bool, optional
|
||||
The switch to select whether upper or lower triangle is chosen in
|
||||
the LAPACK call.
|
||||
|
||||
Returns
|
||||
-------
|
||||
swap_ : ndarray
|
||||
The array that defines the row/column swap operations. For example,
|
||||
if row two is swapped with row four, the result is [0, 3, 2, 3].
|
||||
pivots : ndarray
|
||||
The array that defines the block diagonal structure as given above.
|
||||
|
||||
"""
|
||||
n = a.size
|
||||
swap_ = arange(n)
|
||||
pivots = zeros_like(swap_, dtype=int)
|
||||
skip_2x2 = False
|
||||
|
||||
# Some upper/lower dependent offset values
|
||||
# range (s)tart, r(e)nd, r(i)ncrement
|
||||
x, y, rs, re, ri = (1, 0, 0, n, 1) if lower else (-1, -1, n-1, -1, -1)
|
||||
|
||||
for ind in range(rs, re, ri):
|
||||
# If previous spin belonged already to a 2x2 block
|
||||
if skip_2x2:
|
||||
skip_2x2 = False
|
||||
continue
|
||||
|
||||
cur_val = a[ind]
|
||||
# do we have a 1x1 block or not?
|
||||
if cur_val > 0:
|
||||
if cur_val != ind+1:
|
||||
# Index value != array value --> permutation required
|
||||
swap_[ind] = swap_[cur_val-1]
|
||||
pivots[ind] = 1
|
||||
# Not.
|
||||
elif cur_val < 0 and cur_val == a[ind+x]:
|
||||
# first neg entry of 2x2 block identifier
|
||||
if -cur_val != ind+2:
|
||||
# Index value != array value --> permutation required
|
||||
swap_[ind+x] = swap_[-cur_val-1]
|
||||
pivots[ind+y] = 2
|
||||
skip_2x2 = True
|
||||
else: # Doesn't make sense, give up
|
||||
raise ValueError('While parsing the permutation array '
|
||||
'in "scipy.linalg.ldl", invalid entries '
|
||||
'found. The array syntax is invalid.')
|
||||
return swap_, pivots
|
||||
|
||||
|
||||
def _ldl_get_d_and_l(ldu, pivs, lower=True, hermitian=True):
|
||||
"""
|
||||
Helper function to extract the diagonal and triangular matrices for
|
||||
LDL.T factorization.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ldu : ndarray
|
||||
The compact output returned by the LAPACK routing
|
||||
pivs : ndarray
|
||||
The sanitized array of {0, 1, 2} denoting the sizes of the pivots. For
|
||||
every 2 there is a succeeding 0.
|
||||
lower : bool, optional
|
||||
If set to False, upper triangular part is considered.
|
||||
hermitian : bool, optional
|
||||
If set to False a symmetric complex array is assumed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
d : ndarray
|
||||
The block diagonal matrix.
|
||||
lu : ndarray
|
||||
The upper/lower triangular matrix
|
||||
"""
|
||||
is_c = iscomplexobj(ldu)
|
||||
d = diag(diag(ldu))
|
||||
n = d.shape[0]
|
||||
blk_i = 0 # block index
|
||||
|
||||
# row/column offsets for selecting sub-, super-diagonal
|
||||
x, y = (1, 0) if lower else (0, 1)
|
||||
|
||||
lu = tril(ldu, -1) if lower else triu(ldu, 1)
|
||||
diag_inds = arange(n)
|
||||
lu[diag_inds, diag_inds] = 1
|
||||
|
||||
for blk in pivs[pivs != 0]:
|
||||
# increment the block index and check for 2s
|
||||
# if 2 then copy the off diagonals depending on uplo
|
||||
inc = blk_i + blk
|
||||
|
||||
if blk == 2:
|
||||
d[blk_i+x, blk_i+y] = ldu[blk_i+x, blk_i+y]
|
||||
# If Hermitian matrix is factorized, the cross-offdiagonal element
|
||||
# should be conjugated.
|
||||
if is_c and hermitian:
|
||||
d[blk_i+y, blk_i+x] = ldu[blk_i+x, blk_i+y].conj()
|
||||
else:
|
||||
d[blk_i+y, blk_i+x] = ldu[blk_i+x, blk_i+y]
|
||||
|
||||
lu[blk_i+x, blk_i+y] = 0.
|
||||
blk_i = inc
|
||||
|
||||
return d, lu
|
||||
|
||||
|
||||
def _ldl_construct_tri_factor(lu, swap_vec, pivs, lower=True):
|
||||
"""
|
||||
Helper function to construct explicit outer factors of LDL factorization.
|
||||
|
||||
If lower is True the permuted factors are multiplied as L(1)*L(2)*...*L(k).
|
||||
Otherwise, the permuted factors are multiplied as L(k)*...*L(2)*L(1). See
|
||||
LAPACK documentation for more details.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
lu : ndarray
|
||||
The triangular array that is extracted from LAPACK routine call with
|
||||
ones on the diagonals.
|
||||
swap_vec : ndarray
|
||||
The array that defines the row swapping indices. If the kth entry is m
|
||||
then rows k,m are swapped. Notice that the mth entry is not necessarily
|
||||
k to avoid undoing the swapping.
|
||||
pivs : ndarray
|
||||
The array that defines the block diagonal structure returned by
|
||||
_ldl_sanitize_ipiv().
|
||||
lower : bool, optional
|
||||
The boolean to switch between lower and upper triangular structure.
|
||||
|
||||
Returns
|
||||
-------
|
||||
lu : ndarray
|
||||
The square outer factor which satisfies the L * D * L.T = A
|
||||
perm : ndarray
|
||||
The permutation vector that brings the lu to the triangular form
|
||||
|
||||
Notes
|
||||
-----
|
||||
Note that the original argument "lu" is overwritten.
|
||||
|
||||
"""
|
||||
n = lu.shape[0]
|
||||
perm = arange(n)
|
||||
# Setup the reading order of the permutation matrix for upper/lower
|
||||
rs, re, ri = (n-1, -1, -1) if lower else (0, n, 1)
|
||||
|
||||
for ind in range(rs, re, ri):
|
||||
s_ind = swap_vec[ind]
|
||||
if s_ind != ind:
|
||||
# Column start and end positions
|
||||
col_s = ind if lower else 0
|
||||
col_e = n if lower else ind+1
|
||||
|
||||
# If we stumble upon a 2x2 block include both cols in the perm.
|
||||
if pivs[ind] == (0 if lower else 2):
|
||||
col_s += -1 if lower else 0
|
||||
col_e += 0 if lower else 1
|
||||
lu[[s_ind, ind], col_s:col_e] = lu[[ind, s_ind], col_s:col_e]
|
||||
perm[[s_ind, ind]] = perm[[ind, s_ind]]
|
||||
|
||||
return lu, argsort(perm)
|
110
venv/Lib/site-packages/scipy/linalg/_decomp_polar.py
Normal file
110
venv/Lib/site-packages/scipy/linalg/_decomp_polar.py
Normal file
|
@ -0,0 +1,110 @@
|
|||
import numpy as np
|
||||
from scipy.linalg import svd
|
||||
|
||||
|
||||
__all__ = ['polar']
|
||||
|
||||
|
||||
def polar(a, side="right"):
|
||||
"""
|
||||
Compute the polar decomposition.
|
||||
|
||||
Returns the factors of the polar decomposition [1]_ `u` and `p` such
|
||||
that ``a = up`` (if `side` is "right") or ``a = pu`` (if `side` is
|
||||
"left"), where `p` is positive semidefinite. Depending on the shape
|
||||
of `a`, either the rows or columns of `u` are orthonormal. When `a`
|
||||
is a square array, `u` is a square unitary array. When `a` is not
|
||||
square, the "canonical polar decomposition" [2]_ is computed.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (m, n) array_like
|
||||
The array to be factored.
|
||||
side : {'left', 'right'}, optional
|
||||
Determines whether a right or left polar decomposition is computed.
|
||||
If `side` is "right", then ``a = up``. If `side` is "left", then
|
||||
``a = pu``. The default is "right".
|
||||
|
||||
Returns
|
||||
-------
|
||||
u : (m, n) ndarray
|
||||
If `a` is square, then `u` is unitary. If m > n, then the columns
|
||||
of `a` are orthonormal, and if m < n, then the rows of `u` are
|
||||
orthonormal.
|
||||
p : ndarray
|
||||
`p` is Hermitian positive semidefinite. If `a` is nonsingular, `p`
|
||||
is positive definite. The shape of `p` is (n, n) or (m, m), depending
|
||||
on whether `side` is "right" or "left", respectively.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] R. A. Horn and C. R. Johnson, "Matrix Analysis", Cambridge
|
||||
University Press, 1985.
|
||||
.. [2] N. J. Higham, "Functions of Matrices: Theory and Computation",
|
||||
SIAM, 2008.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import polar
|
||||
>>> a = np.array([[1, -1], [2, 4]])
|
||||
>>> u, p = polar(a)
|
||||
>>> u
|
||||
array([[ 0.85749293, -0.51449576],
|
||||
[ 0.51449576, 0.85749293]])
|
||||
>>> p
|
||||
array([[ 1.88648444, 1.2004901 ],
|
||||
[ 1.2004901 , 3.94446746]])
|
||||
|
||||
A non-square example, with m < n:
|
||||
|
||||
>>> b = np.array([[0.5, 1, 2], [1.5, 3, 4]])
|
||||
>>> u, p = polar(b)
|
||||
>>> u
|
||||
array([[-0.21196618, -0.42393237, 0.88054056],
|
||||
[ 0.39378971, 0.78757942, 0.4739708 ]])
|
||||
>>> p
|
||||
array([[ 0.48470147, 0.96940295, 1.15122648],
|
||||
[ 0.96940295, 1.9388059 , 2.30245295],
|
||||
[ 1.15122648, 2.30245295, 3.65696431]])
|
||||
>>> u.dot(p) # Verify the decomposition.
|
||||
array([[ 0.5, 1. , 2. ],
|
||||
[ 1.5, 3. , 4. ]])
|
||||
>>> u.dot(u.T) # The rows of u are orthonormal.
|
||||
array([[ 1.00000000e+00, -2.07353665e-17],
|
||||
[ -2.07353665e-17, 1.00000000e+00]])
|
||||
|
||||
Another non-square example, with m > n:
|
||||
|
||||
>>> c = b.T
|
||||
>>> u, p = polar(c)
|
||||
>>> u
|
||||
array([[-0.21196618, 0.39378971],
|
||||
[-0.42393237, 0.78757942],
|
||||
[ 0.88054056, 0.4739708 ]])
|
||||
>>> p
|
||||
array([[ 1.23116567, 1.93241587],
|
||||
[ 1.93241587, 4.84930602]])
|
||||
>>> u.dot(p) # Verify the decomposition.
|
||||
array([[ 0.5, 1.5],
|
||||
[ 1. , 3. ],
|
||||
[ 2. , 4. ]])
|
||||
>>> u.T.dot(u) # The columns of u are orthonormal.
|
||||
array([[ 1.00000000e+00, -1.26363763e-16],
|
||||
[ -1.26363763e-16, 1.00000000e+00]])
|
||||
|
||||
"""
|
||||
if side not in ['right', 'left']:
|
||||
raise ValueError("`side` must be either 'right' or 'left'")
|
||||
a = np.asarray(a)
|
||||
if a.ndim != 2:
|
||||
raise ValueError("`a` must be a 2-D array.")
|
||||
|
||||
w, s, vh = svd(a, full_matrices=False)
|
||||
u = w.dot(vh)
|
||||
if side == 'right':
|
||||
# a = up
|
||||
p = (vh.T.conj() * s).dot(vh)
|
||||
else:
|
||||
# a = pu
|
||||
p = (w * s).dot(w.T.conj())
|
||||
return u, p
|
402
venv/Lib/site-packages/scipy/linalg/_decomp_qz.py
Normal file
402
venv/Lib/site-packages/scipy/linalg/_decomp_qz.py
Normal file
|
@ -0,0 +1,402 @@
|
|||
import warnings
|
||||
|
||||
import numpy as np
|
||||
from numpy import asarray_chkfinite
|
||||
|
||||
from .misc import LinAlgError, _datacopied, LinAlgWarning
|
||||
from .lapack import get_lapack_funcs
|
||||
|
||||
|
||||
__all__ = ['qz', 'ordqz']
|
||||
|
||||
_double_precision = ['i', 'l', 'd']
|
||||
|
||||
|
||||
def _select_function(sort):
|
||||
if callable(sort):
|
||||
# assume the user knows what they're doing
|
||||
sfunction = sort
|
||||
elif sort == 'lhp':
|
||||
sfunction = _lhp
|
||||
elif sort == 'rhp':
|
||||
sfunction = _rhp
|
||||
elif sort == 'iuc':
|
||||
sfunction = _iuc
|
||||
elif sort == 'ouc':
|
||||
sfunction = _ouc
|
||||
else:
|
||||
raise ValueError("sort parameter must be None, a callable, or "
|
||||
"one of ('lhp','rhp','iuc','ouc')")
|
||||
|
||||
return sfunction
|
||||
|
||||
|
||||
def _lhp(x, y):
|
||||
out = np.empty_like(x, dtype=bool)
|
||||
nonzero = (y != 0)
|
||||
# handles (x, y) = (0, 0) too
|
||||
out[~nonzero] = False
|
||||
out[nonzero] = (np.real(x[nonzero]/y[nonzero]) < 0.0)
|
||||
return out
|
||||
|
||||
|
||||
def _rhp(x, y):
|
||||
out = np.empty_like(x, dtype=bool)
|
||||
nonzero = (y != 0)
|
||||
# handles (x, y) = (0, 0) too
|
||||
out[~nonzero] = False
|
||||
out[nonzero] = (np.real(x[nonzero]/y[nonzero]) > 0.0)
|
||||
return out
|
||||
|
||||
|
||||
def _iuc(x, y):
|
||||
out = np.empty_like(x, dtype=bool)
|
||||
nonzero = (y != 0)
|
||||
# handles (x, y) = (0, 0) too
|
||||
out[~nonzero] = False
|
||||
out[nonzero] = (abs(x[nonzero]/y[nonzero]) < 1.0)
|
||||
return out
|
||||
|
||||
|
||||
def _ouc(x, y):
|
||||
out = np.empty_like(x, dtype=bool)
|
||||
xzero = (x == 0)
|
||||
yzero = (y == 0)
|
||||
out[xzero & yzero] = False
|
||||
out[~xzero & yzero] = True
|
||||
out[~yzero] = (abs(x[~yzero]/y[~yzero]) > 1.0)
|
||||
return out
|
||||
|
||||
|
||||
def _qz(A, B, output='real', lwork=None, sort=None, overwrite_a=False,
|
||||
overwrite_b=False, check_finite=True):
|
||||
if sort is not None:
|
||||
# Disabled due to segfaults on win32, see ticket 1717.
|
||||
raise ValueError("The 'sort' input of qz() has to be None and will be "
|
||||
"removed in a future release. Use ordqz instead.")
|
||||
|
||||
if output not in ['real', 'complex', 'r', 'c']:
|
||||
raise ValueError("argument must be 'real', or 'complex'")
|
||||
|
||||
if check_finite:
|
||||
a1 = asarray_chkfinite(A)
|
||||
b1 = asarray_chkfinite(B)
|
||||
else:
|
||||
a1 = np.asarray(A)
|
||||
b1 = np.asarray(B)
|
||||
|
||||
a_m, a_n = a1.shape
|
||||
b_m, b_n = b1.shape
|
||||
if not (a_m == a_n == b_m == b_n):
|
||||
raise ValueError("Array dimensions must be square and agree")
|
||||
|
||||
typa = a1.dtype.char
|
||||
if output in ['complex', 'c'] and typa not in ['F', 'D']:
|
||||
if typa in _double_precision:
|
||||
a1 = a1.astype('D')
|
||||
typa = 'D'
|
||||
else:
|
||||
a1 = a1.astype('F')
|
||||
typa = 'F'
|
||||
typb = b1.dtype.char
|
||||
if output in ['complex', 'c'] and typb not in ['F', 'D']:
|
||||
if typb in _double_precision:
|
||||
b1 = b1.astype('D')
|
||||
typb = 'D'
|
||||
else:
|
||||
b1 = b1.astype('F')
|
||||
typb = 'F'
|
||||
|
||||
overwrite_a = overwrite_a or (_datacopied(a1, A))
|
||||
overwrite_b = overwrite_b or (_datacopied(b1, B))
|
||||
|
||||
gges, = get_lapack_funcs(('gges',), (a1, b1))
|
||||
|
||||
if lwork is None or lwork == -1:
|
||||
# get optimal work array size
|
||||
result = gges(lambda x: None, a1, b1, lwork=-1)
|
||||
lwork = result[-2][0].real.astype(np.int_)
|
||||
|
||||
sfunction = lambda x: None
|
||||
result = gges(sfunction, a1, b1, lwork=lwork, overwrite_a=overwrite_a,
|
||||
overwrite_b=overwrite_b, sort_t=0)
|
||||
|
||||
info = result[-1]
|
||||
if info < 0:
|
||||
raise ValueError("Illegal value in argument {} of gges".format(-info))
|
||||
elif info > 0 and info <= a_n:
|
||||
warnings.warn("The QZ iteration failed. (a,b) are not in Schur "
|
||||
"form, but ALPHAR(j), ALPHAI(j), and BETA(j) should be "
|
||||
"correct for J={},...,N".format(info-1), LinAlgWarning,
|
||||
stacklevel=3)
|
||||
elif info == a_n+1:
|
||||
raise LinAlgError("Something other than QZ iteration failed")
|
||||
elif info == a_n+2:
|
||||
raise LinAlgError("After reordering, roundoff changed values of some "
|
||||
"complex eigenvalues so that leading eigenvalues "
|
||||
"in the Generalized Schur form no longer satisfy "
|
||||
"sort=True. This could also be due to scaling.")
|
||||
elif info == a_n+3:
|
||||
raise LinAlgError("Reordering failed in <s,d,c,z>tgsen")
|
||||
|
||||
return result, gges.typecode
|
||||
|
||||
|
||||
def qz(A, B, output='real', lwork=None, sort=None, overwrite_a=False,
|
||||
overwrite_b=False, check_finite=True):
|
||||
"""
|
||||
QZ decomposition for generalized eigenvalues of a pair of matrices.
|
||||
|
||||
The QZ, or generalized Schur, decomposition for a pair of N x N
|
||||
nonsymmetric matrices (A,B) is::
|
||||
|
||||
(A,B) = (Q*AA*Z', Q*BB*Z')
|
||||
|
||||
where AA, BB is in generalized Schur form if BB is upper-triangular
|
||||
with non-negative diagonal and AA is upper-triangular, or for real QZ
|
||||
decomposition (``output='real'``) block upper triangular with 1x1
|
||||
and 2x2 blocks. In this case, the 1x1 blocks correspond to real
|
||||
generalized eigenvalues and 2x2 blocks are 'standardized' by making
|
||||
the corresponding elements of BB have the form::
|
||||
|
||||
[ a 0 ]
|
||||
[ 0 b ]
|
||||
|
||||
and the pair of corresponding 2x2 blocks in AA and BB will have a complex
|
||||
conjugate pair of generalized eigenvalues. If (``output='complex'``) or
|
||||
A and B are complex matrices, Z' denotes the conjugate-transpose of Z.
|
||||
Q and Z are unitary matrices.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
2-D array to decompose
|
||||
B : (N, N) array_like
|
||||
2-D array to decompose
|
||||
output : {'real', 'complex'}, optional
|
||||
Construct the real or complex QZ decomposition for real matrices.
|
||||
Default is 'real'.
|
||||
lwork : int, optional
|
||||
Work array size. If None or -1, it is automatically computed.
|
||||
sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional
|
||||
NOTE: THIS INPUT IS DISABLED FOR NOW. Use ordqz instead.
|
||||
|
||||
Specifies whether the upper eigenvalues should be sorted. A callable
|
||||
may be passed that, given a eigenvalue, returns a boolean denoting
|
||||
whether the eigenvalue should be sorted to the top-left (True). For
|
||||
real matrix pairs, the sort function takes three real arguments
|
||||
(alphar, alphai, beta). The eigenvalue
|
||||
``x = (alphar + alphai*1j)/beta``. For complex matrix pairs or
|
||||
output='complex', the sort function takes two complex arguments
|
||||
(alpha, beta). The eigenvalue ``x = (alpha/beta)``. Alternatively,
|
||||
string parameters may be used:
|
||||
|
||||
- 'lhp' Left-hand plane (x.real < 0.0)
|
||||
- 'rhp' Right-hand plane (x.real > 0.0)
|
||||
- 'iuc' Inside the unit circle (x*x.conjugate() < 1.0)
|
||||
- 'ouc' Outside the unit circle (x*x.conjugate() > 1.0)
|
||||
|
||||
Defaults to None (no sorting).
|
||||
overwrite_a : bool, optional
|
||||
Whether to overwrite data in a (may improve performance)
|
||||
overwrite_b : bool, optional
|
||||
Whether to overwrite data in b (may improve performance)
|
||||
check_finite : bool, optional
|
||||
If true checks the elements of `A` and `B` are finite numbers. If
|
||||
false does no checking and passes matrix through to
|
||||
underlying algorithm.
|
||||
|
||||
Returns
|
||||
-------
|
||||
AA : (N, N) ndarray
|
||||
Generalized Schur form of A.
|
||||
BB : (N, N) ndarray
|
||||
Generalized Schur form of B.
|
||||
Q : (N, N) ndarray
|
||||
The left Schur vectors.
|
||||
Z : (N, N) ndarray
|
||||
The right Schur vectors.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Q is transposed versus the equivalent function in Matlab.
|
||||
|
||||
.. versionadded:: 0.11.0
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy import linalg
|
||||
>>> np.random.seed(1234)
|
||||
>>> A = np.arange(9).reshape((3, 3))
|
||||
>>> B = np.random.randn(3, 3)
|
||||
|
||||
>>> AA, BB, Q, Z = linalg.qz(A, B)
|
||||
>>> AA
|
||||
array([[-13.40928183, -4.62471562, 1.09215523],
|
||||
[ 0. , 0. , 1.22805978],
|
||||
[ 0. , 0. , 0.31973817]])
|
||||
>>> BB
|
||||
array([[ 0.33362547, -1.37393632, 0.02179805],
|
||||
[ 0. , 1.68144922, 0.74683866],
|
||||
[ 0. , 0. , 0.9258294 ]])
|
||||
>>> Q
|
||||
array([[ 0.14134727, -0.97562773, 0.16784365],
|
||||
[ 0.49835904, -0.07636948, -0.86360059],
|
||||
[ 0.85537081, 0.20571399, 0.47541828]])
|
||||
>>> Z
|
||||
array([[-0.24900855, -0.51772687, 0.81850696],
|
||||
[-0.79813178, 0.58842606, 0.12938478],
|
||||
[-0.54861681, -0.6210585 , -0.55973739]])
|
||||
|
||||
See also
|
||||
--------
|
||||
ordqz
|
||||
"""
|
||||
# output for real
|
||||
# AA, BB, sdim, alphar, alphai, beta, vsl, vsr, work, info
|
||||
# output for complex
|
||||
# AA, BB, sdim, alpha, beta, vsl, vsr, work, info
|
||||
result, _ = _qz(A, B, output=output, lwork=lwork, sort=sort,
|
||||
overwrite_a=overwrite_a, overwrite_b=overwrite_b,
|
||||
check_finite=check_finite)
|
||||
return result[0], result[1], result[-4], result[-3]
|
||||
|
||||
|
||||
def ordqz(A, B, sort='lhp', output='real', overwrite_a=False,
|
||||
overwrite_b=False, check_finite=True):
|
||||
"""QZ decomposition for a pair of matrices with reordering.
|
||||
|
||||
.. versionadded:: 0.17.0
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
2-D array to decompose
|
||||
B : (N, N) array_like
|
||||
2-D array to decompose
|
||||
sort : {callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional
|
||||
Specifies whether the upper eigenvalues should be sorted. A
|
||||
callable may be passed that, given an ordered pair ``(alpha,
|
||||
beta)`` representing the eigenvalue ``x = (alpha/beta)``,
|
||||
returns a boolean denoting whether the eigenvalue should be
|
||||
sorted to the top-left (True). For the real matrix pairs
|
||||
``beta`` is real while ``alpha`` can be complex, and for
|
||||
complex matrix pairs both ``alpha`` and ``beta`` can be
|
||||
complex. The callable must be able to accept a NumPy
|
||||
array. Alternatively, string parameters may be used:
|
||||
|
||||
- 'lhp' Left-hand plane (x.real < 0.0)
|
||||
- 'rhp' Right-hand plane (x.real > 0.0)
|
||||
- 'iuc' Inside the unit circle (x*x.conjugate() < 1.0)
|
||||
- 'ouc' Outside the unit circle (x*x.conjugate() > 1.0)
|
||||
|
||||
With the predefined sorting functions, an infinite eigenvalue
|
||||
(i.e., ``alpha != 0`` and ``beta = 0``) is considered to lie in
|
||||
neither the left-hand nor the right-hand plane, but it is
|
||||
considered to lie outside the unit circle. For the eigenvalue
|
||||
``(alpha, beta) = (0, 0)``, the predefined sorting functions
|
||||
all return `False`.
|
||||
output : str {'real','complex'}, optional
|
||||
Construct the real or complex QZ decomposition for real matrices.
|
||||
Default is 'real'.
|
||||
overwrite_a : bool, optional
|
||||
If True, the contents of A are overwritten.
|
||||
overwrite_b : bool, optional
|
||||
If True, the contents of B are overwritten.
|
||||
check_finite : bool, optional
|
||||
If true checks the elements of `A` and `B` are finite numbers. If
|
||||
false does no checking and passes matrix through to
|
||||
underlying algorithm.
|
||||
|
||||
Returns
|
||||
-------
|
||||
AA : (N, N) ndarray
|
||||
Generalized Schur form of A.
|
||||
BB : (N, N) ndarray
|
||||
Generalized Schur form of B.
|
||||
alpha : (N,) ndarray
|
||||
alpha = alphar + alphai * 1j. See notes.
|
||||
beta : (N,) ndarray
|
||||
See notes.
|
||||
Q : (N, N) ndarray
|
||||
The left Schur vectors.
|
||||
Z : (N, N) ndarray
|
||||
The right Schur vectors.
|
||||
|
||||
Notes
|
||||
-----
|
||||
On exit, ``(ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N``, will be the
|
||||
generalized eigenvalues. ``ALPHAR(j) + ALPHAI(j)*i`` and
|
||||
``BETA(j),j=1,...,N`` are the diagonals of the complex Schur form (S,T)
|
||||
that would result if the 2-by-2 diagonal blocks of the real generalized
|
||||
Schur form of (A,B) were further reduced to triangular form using complex
|
||||
unitary transformations. If ALPHAI(j) is zero, then the jth eigenvalue is
|
||||
real; if positive, then the ``j``th and ``(j+1)``st eigenvalues are a
|
||||
complex conjugate pair, with ``ALPHAI(j+1)`` negative.
|
||||
|
||||
See also
|
||||
--------
|
||||
qz
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import ordqz
|
||||
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
|
||||
>>> B = np.array([[0, 6, 0, 0], [5, 0, 2, 1], [5, 2, 6, 6], [4, 7, 7, 7]])
|
||||
>>> AA, BB, alpha, beta, Q, Z = ordqz(A, B, sort='lhp')
|
||||
|
||||
Since we have sorted for left half plane eigenvalues, negatives come first
|
||||
|
||||
>>> (alpha/beta).real < 0
|
||||
array([ True, True, False, False], dtype=bool)
|
||||
|
||||
"""
|
||||
# NOTE: should users be able to set these?
|
||||
lwork = None
|
||||
result, typ = _qz(A, B, output=output, lwork=lwork, sort=None,
|
||||
overwrite_a=overwrite_a, overwrite_b=overwrite_b,
|
||||
check_finite=check_finite)
|
||||
AA, BB, Q, Z = result[0], result[1], result[-4], result[-3]
|
||||
if typ not in 'cz':
|
||||
alpha, beta = result[3] + result[4]*1.j, result[5]
|
||||
else:
|
||||
alpha, beta = result[3], result[4]
|
||||
|
||||
sfunction = _select_function(sort)
|
||||
select = sfunction(alpha, beta)
|
||||
|
||||
tgsen, = get_lapack_funcs(('tgsen',), (AA, BB))
|
||||
|
||||
if lwork is None or lwork == -1:
|
||||
result = tgsen(select, AA, BB, Q, Z, lwork=-1)
|
||||
lwork = result[-3][0].real.astype(np.int_)
|
||||
# looks like wrong value passed to ZTGSYL if not
|
||||
lwork += 1
|
||||
|
||||
liwork = None
|
||||
if liwork is None or liwork == -1:
|
||||
result = tgsen(select, AA, BB, Q, Z, liwork=-1)
|
||||
liwork = result[-2][0]
|
||||
|
||||
result = tgsen(select, AA, BB, Q, Z, lwork=lwork, liwork=liwork)
|
||||
|
||||
info = result[-1]
|
||||
if info < 0:
|
||||
raise ValueError("Illegal value in argument %d of tgsen" % -info)
|
||||
elif info == 1:
|
||||
raise ValueError("Reordering of (A, B) failed because the transformed"
|
||||
" matrix pair (A, B) would be too far from "
|
||||
"generalized Schur form; the problem is very "
|
||||
"ill-conditioned. (A, B) may have been partially "
|
||||
"reorded. If requested, 0 is returned in DIF(*), "
|
||||
"PL, and PR.")
|
||||
|
||||
# for real results has a, b, alphar, alphai, beta, q, z, m, pl, pr, dif,
|
||||
# work, iwork, info
|
||||
if typ in ['f', 'd']:
|
||||
alpha = result[2] + result[3] * 1.j
|
||||
return (result[0], result[1], alpha, result[4], result[5], result[6])
|
||||
# for complex results has a, b, alpha, beta, q, z, m, pl, pr, dif, work,
|
||||
# iwork, info
|
||||
else:
|
||||
return result[0], result[1], result[2], result[3], result[4], result[5]
|
Binary file not shown.
409
venv/Lib/site-packages/scipy/linalg/_expm_frechet.py
Normal file
409
venv/Lib/site-packages/scipy/linalg/_expm_frechet.py
Normal file
|
@ -0,0 +1,409 @@
|
|||
"""Frechet derivative of the matrix exponential."""
|
||||
import numpy as np
|
||||
import scipy.linalg
|
||||
|
||||
__all__ = ['expm_frechet', 'expm_cond']
|
||||
|
||||
|
||||
def expm_frechet(A, E, method=None, compute_expm=True, check_finite=True):
|
||||
"""
|
||||
Frechet derivative of the matrix exponential of A in the direction E.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix of which to take the matrix exponential.
|
||||
E : (N, N) array_like
|
||||
Matrix direction in which to take the Frechet derivative.
|
||||
method : str, optional
|
||||
Choice of algorithm. Should be one of
|
||||
|
||||
- `SPS` (default)
|
||||
- `blockEnlarge`
|
||||
|
||||
compute_expm : bool, optional
|
||||
Whether to compute also `expm_A` in addition to `expm_frechet_AE`.
|
||||
Default is True.
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
expm_A : ndarray
|
||||
Matrix exponential of A.
|
||||
expm_frechet_AE : ndarray
|
||||
Frechet derivative of the matrix exponential of A in the direction E.
|
||||
|
||||
For ``compute_expm = False``, only `expm_frechet_AE` is returned.
|
||||
|
||||
See also
|
||||
--------
|
||||
expm : Compute the exponential of a matrix.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This section describes the available implementations that can be selected
|
||||
by the `method` parameter. The default method is *SPS*.
|
||||
|
||||
Method *blockEnlarge* is a naive algorithm.
|
||||
|
||||
Method *SPS* is Scaling-Pade-Squaring [1]_.
|
||||
It is a sophisticated implementation which should take
|
||||
only about 3/8 as much time as the naive implementation.
|
||||
The asymptotics are the same.
|
||||
|
||||
.. versionadded:: 0.13.0
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2009)
|
||||
Computing the Frechet Derivative of the Matrix Exponential,
|
||||
with an application to Condition Number Estimation.
|
||||
SIAM Journal On Matrix Analysis and Applications.,
|
||||
30 (4). pp. 1639-1657. ISSN 1095-7162
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import scipy.linalg
|
||||
>>> A = np.random.randn(3, 3)
|
||||
>>> E = np.random.randn(3, 3)
|
||||
>>> expm_A, expm_frechet_AE = scipy.linalg.expm_frechet(A, E)
|
||||
>>> expm_A.shape, expm_frechet_AE.shape
|
||||
((3, 3), (3, 3))
|
||||
|
||||
>>> import scipy.linalg
|
||||
>>> A = np.random.randn(3, 3)
|
||||
>>> E = np.random.randn(3, 3)
|
||||
>>> expm_A, expm_frechet_AE = scipy.linalg.expm_frechet(A, E)
|
||||
>>> M = np.zeros((6, 6))
|
||||
>>> M[:3, :3] = A; M[:3, 3:] = E; M[3:, 3:] = A
|
||||
>>> expm_M = scipy.linalg.expm(M)
|
||||
>>> np.allclose(expm_A, expm_M[:3, :3])
|
||||
True
|
||||
>>> np.allclose(expm_frechet_AE, expm_M[:3, 3:])
|
||||
True
|
||||
|
||||
"""
|
||||
if check_finite:
|
||||
A = np.asarray_chkfinite(A)
|
||||
E = np.asarray_chkfinite(E)
|
||||
else:
|
||||
A = np.asarray(A)
|
||||
E = np.asarray(E)
|
||||
if A.ndim != 2 or A.shape[0] != A.shape[1]:
|
||||
raise ValueError('expected A to be a square matrix')
|
||||
if E.ndim != 2 or E.shape[0] != E.shape[1]:
|
||||
raise ValueError('expected E to be a square matrix')
|
||||
if A.shape != E.shape:
|
||||
raise ValueError('expected A and E to be the same shape')
|
||||
if method is None:
|
||||
method = 'SPS'
|
||||
if method == 'SPS':
|
||||
expm_A, expm_frechet_AE = expm_frechet_algo_64(A, E)
|
||||
elif method == 'blockEnlarge':
|
||||
expm_A, expm_frechet_AE = expm_frechet_block_enlarge(A, E)
|
||||
else:
|
||||
raise ValueError('Unknown implementation %s' % method)
|
||||
if compute_expm:
|
||||
return expm_A, expm_frechet_AE
|
||||
else:
|
||||
return expm_frechet_AE
|
||||
|
||||
|
||||
def expm_frechet_block_enlarge(A, E):
|
||||
"""
|
||||
This is a helper function, mostly for testing and profiling.
|
||||
Return expm(A), frechet(A, E)
|
||||
"""
|
||||
n = A.shape[0]
|
||||
M = np.vstack([
|
||||
np.hstack([A, E]),
|
||||
np.hstack([np.zeros_like(A), A])])
|
||||
expm_M = scipy.linalg.expm(M)
|
||||
return expm_M[:n, :n], expm_M[:n, n:]
|
||||
|
||||
|
||||
"""
|
||||
Maximal values ell_m of ||2**-s A|| such that the backward error bound
|
||||
does not exceed 2**-53.
|
||||
"""
|
||||
ell_table_61 = (
|
||||
None,
|
||||
# 1
|
||||
2.11e-8,
|
||||
3.56e-4,
|
||||
1.08e-2,
|
||||
6.49e-2,
|
||||
2.00e-1,
|
||||
4.37e-1,
|
||||
7.83e-1,
|
||||
1.23e0,
|
||||
1.78e0,
|
||||
2.42e0,
|
||||
# 11
|
||||
3.13e0,
|
||||
3.90e0,
|
||||
4.74e0,
|
||||
5.63e0,
|
||||
6.56e0,
|
||||
7.52e0,
|
||||
8.53e0,
|
||||
9.56e0,
|
||||
1.06e1,
|
||||
1.17e1,
|
||||
)
|
||||
|
||||
|
||||
# The b vectors and U and V are copypasted
|
||||
# from scipy.sparse.linalg.matfuncs.py.
|
||||
# M, Lu, Lv follow (6.11), (6.12), (6.13), (3.3)
|
||||
|
||||
def _diff_pade3(A, E, ident):
|
||||
b = (120., 60., 12., 1.)
|
||||
A2 = A.dot(A)
|
||||
M2 = np.dot(A, E) + np.dot(E, A)
|
||||
U = A.dot(b[3]*A2 + b[1]*ident)
|
||||
V = b[2]*A2 + b[0]*ident
|
||||
Lu = A.dot(b[3]*M2) + E.dot(b[3]*A2 + b[1]*ident)
|
||||
Lv = b[2]*M2
|
||||
return U, V, Lu, Lv
|
||||
|
||||
|
||||
def _diff_pade5(A, E, ident):
|
||||
b = (30240., 15120., 3360., 420., 30., 1.)
|
||||
A2 = A.dot(A)
|
||||
M2 = np.dot(A, E) + np.dot(E, A)
|
||||
A4 = np.dot(A2, A2)
|
||||
M4 = np.dot(A2, M2) + np.dot(M2, A2)
|
||||
U = A.dot(b[5]*A4 + b[3]*A2 + b[1]*ident)
|
||||
V = b[4]*A4 + b[2]*A2 + b[0]*ident
|
||||
Lu = (A.dot(b[5]*M4 + b[3]*M2) +
|
||||
E.dot(b[5]*A4 + b[3]*A2 + b[1]*ident))
|
||||
Lv = b[4]*M4 + b[2]*M2
|
||||
return U, V, Lu, Lv
|
||||
|
||||
|
||||
def _diff_pade7(A, E, ident):
|
||||
b = (17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.)
|
||||
A2 = A.dot(A)
|
||||
M2 = np.dot(A, E) + np.dot(E, A)
|
||||
A4 = np.dot(A2, A2)
|
||||
M4 = np.dot(A2, M2) + np.dot(M2, A2)
|
||||
A6 = np.dot(A2, A4)
|
||||
M6 = np.dot(A4, M2) + np.dot(M4, A2)
|
||||
U = A.dot(b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident)
|
||||
V = b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident
|
||||
Lu = (A.dot(b[7]*M6 + b[5]*M4 + b[3]*M2) +
|
||||
E.dot(b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident))
|
||||
Lv = b[6]*M6 + b[4]*M4 + b[2]*M2
|
||||
return U, V, Lu, Lv
|
||||
|
||||
|
||||
def _diff_pade9(A, E, ident):
|
||||
b = (17643225600., 8821612800., 2075673600., 302702400., 30270240.,
|
||||
2162160., 110880., 3960., 90., 1.)
|
||||
A2 = A.dot(A)
|
||||
M2 = np.dot(A, E) + np.dot(E, A)
|
||||
A4 = np.dot(A2, A2)
|
||||
M4 = np.dot(A2, M2) + np.dot(M2, A2)
|
||||
A6 = np.dot(A2, A4)
|
||||
M6 = np.dot(A4, M2) + np.dot(M4, A2)
|
||||
A8 = np.dot(A4, A4)
|
||||
M8 = np.dot(A4, M4) + np.dot(M4, A4)
|
||||
U = A.dot(b[9]*A8 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident)
|
||||
V = b[8]*A8 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident
|
||||
Lu = (A.dot(b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2) +
|
||||
E.dot(b[9]*A8 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident))
|
||||
Lv = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2
|
||||
return U, V, Lu, Lv
|
||||
|
||||
|
||||
def expm_frechet_algo_64(A, E):
|
||||
n = A.shape[0]
|
||||
s = None
|
||||
ident = np.identity(n)
|
||||
A_norm_1 = scipy.linalg.norm(A, 1)
|
||||
m_pade_pairs = (
|
||||
(3, _diff_pade3),
|
||||
(5, _diff_pade5),
|
||||
(7, _diff_pade7),
|
||||
(9, _diff_pade9))
|
||||
for m, pade in m_pade_pairs:
|
||||
if A_norm_1 <= ell_table_61[m]:
|
||||
U, V, Lu, Lv = pade(A, E, ident)
|
||||
s = 0
|
||||
break
|
||||
if s is None:
|
||||
# scaling
|
||||
s = max(0, int(np.ceil(np.log2(A_norm_1 / ell_table_61[13]))))
|
||||
A = A * 2.0**-s
|
||||
E = E * 2.0**-s
|
||||
# pade order 13
|
||||
A2 = np.dot(A, A)
|
||||
M2 = np.dot(A, E) + np.dot(E, A)
|
||||
A4 = np.dot(A2, A2)
|
||||
M4 = np.dot(A2, M2) + np.dot(M2, A2)
|
||||
A6 = np.dot(A2, A4)
|
||||
M6 = np.dot(A4, M2) + np.dot(M4, A2)
|
||||
b = (64764752532480000., 32382376266240000., 7771770303897600.,
|
||||
1187353796428800., 129060195264000., 10559470521600.,
|
||||
670442572800., 33522128640., 1323241920., 40840800., 960960.,
|
||||
16380., 182., 1.)
|
||||
W1 = b[13]*A6 + b[11]*A4 + b[9]*A2
|
||||
W2 = b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident
|
||||
Z1 = b[12]*A6 + b[10]*A4 + b[8]*A2
|
||||
Z2 = b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident
|
||||
W = np.dot(A6, W1) + W2
|
||||
U = np.dot(A, W)
|
||||
V = np.dot(A6, Z1) + Z2
|
||||
Lw1 = b[13]*M6 + b[11]*M4 + b[9]*M2
|
||||
Lw2 = b[7]*M6 + b[5]*M4 + b[3]*M2
|
||||
Lz1 = b[12]*M6 + b[10]*M4 + b[8]*M2
|
||||
Lz2 = b[6]*M6 + b[4]*M4 + b[2]*M2
|
||||
Lw = np.dot(A6, Lw1) + np.dot(M6, W1) + Lw2
|
||||
Lu = np.dot(A, Lw) + np.dot(E, W)
|
||||
Lv = np.dot(A6, Lz1) + np.dot(M6, Z1) + Lz2
|
||||
# factor once and solve twice
|
||||
lu_piv = scipy.linalg.lu_factor(-U + V)
|
||||
R = scipy.linalg.lu_solve(lu_piv, U + V)
|
||||
L = scipy.linalg.lu_solve(lu_piv, Lu + Lv + np.dot((Lu - Lv), R))
|
||||
# squaring
|
||||
for k in range(s):
|
||||
L = np.dot(R, L) + np.dot(L, R)
|
||||
R = np.dot(R, R)
|
||||
return R, L
|
||||
|
||||
|
||||
def vec(M):
|
||||
"""
|
||||
Stack columns of M to construct a single vector.
|
||||
|
||||
This is somewhat standard notation in linear algebra.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
M : 2-D array_like
|
||||
Input matrix
|
||||
|
||||
Returns
|
||||
-------
|
||||
v : 1-D ndarray
|
||||
Output vector
|
||||
|
||||
"""
|
||||
return M.T.ravel()
|
||||
|
||||
|
||||
def expm_frechet_kronform(A, method=None, check_finite=True):
|
||||
"""
|
||||
Construct the Kronecker form of the Frechet derivative of expm.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : array_like with shape (N, N)
|
||||
Matrix to be expm'd.
|
||||
method : str, optional
|
||||
Extra keyword to be passed to expm_frechet.
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
K : 2-D ndarray with shape (N*N, N*N)
|
||||
Kronecker form of the Frechet derivative of the matrix exponential.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function is used to help compute the condition number
|
||||
of the matrix exponential.
|
||||
|
||||
See also
|
||||
--------
|
||||
expm : Compute a matrix exponential.
|
||||
expm_frechet : Compute the Frechet derivative of the matrix exponential.
|
||||
expm_cond : Compute the relative condition number of the matrix exponential
|
||||
in the Frobenius norm.
|
||||
|
||||
"""
|
||||
if check_finite:
|
||||
A = np.asarray_chkfinite(A)
|
||||
else:
|
||||
A = np.asarray(A)
|
||||
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||||
raise ValueError('expected a square matrix')
|
||||
|
||||
n = A.shape[0]
|
||||
ident = np.identity(n)
|
||||
cols = []
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
E = np.outer(ident[i], ident[j])
|
||||
F = expm_frechet(A, E,
|
||||
method=method, compute_expm=False, check_finite=False)
|
||||
cols.append(vec(F))
|
||||
return np.vstack(cols).T
|
||||
|
||||
|
||||
def expm_cond(A, check_finite=True):
|
||||
"""
|
||||
Relative condition number of the matrix exponential in the Frobenius norm.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : 2-D array_like
|
||||
Square input matrix with shape (N, N).
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
kappa : float
|
||||
The relative condition number of the matrix exponential
|
||||
in the Frobenius norm
|
||||
|
||||
Notes
|
||||
-----
|
||||
A faster estimate for the condition number in the 1-norm
|
||||
has been published but is not yet implemented in SciPy.
|
||||
|
||||
.. versionadded:: 0.14.0
|
||||
|
||||
See also
|
||||
--------
|
||||
expm : Compute the exponential of a matrix.
|
||||
expm_frechet : Compute the Frechet derivative of the matrix exponential.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import expm_cond
|
||||
>>> A = np.array([[-0.3, 0.2, 0.6], [0.6, 0.3, -0.1], [-0.7, 1.2, 0.9]])
|
||||
>>> k = expm_cond(A)
|
||||
>>> k
|
||||
1.7787805864469866
|
||||
|
||||
"""
|
||||
if check_finite:
|
||||
A = np.asarray_chkfinite(A)
|
||||
else:
|
||||
A = np.asarray(A)
|
||||
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||||
raise ValueError('expected a square matrix')
|
||||
|
||||
X = scipy.linalg.expm(A)
|
||||
K = expm_frechet_kronform(A, check_finite=False)
|
||||
|
||||
# The following norm choices are deliberate.
|
||||
# The norms of A and X are Frobenius norms,
|
||||
# and the norm of K is the induced 2-norm.
|
||||
A_norm = scipy.linalg.norm(A, 'fro')
|
||||
X_norm = scipy.linalg.norm(X, 'fro')
|
||||
K_norm = scipy.linalg.norm(K, 2)
|
||||
|
||||
kappa = (K_norm * A_norm) / X_norm
|
||||
return kappa
|
BIN
venv/Lib/site-packages/scipy/linalg/_fblas.cp36-win32.pyd
Normal file
BIN
venv/Lib/site-packages/scipy/linalg/_fblas.cp36-win32.pyd
Normal file
Binary file not shown.
BIN
venv/Lib/site-packages/scipy/linalg/_flapack.cp36-win32.pyd
Normal file
BIN
venv/Lib/site-packages/scipy/linalg/_flapack.cp36-win32.pyd
Normal file
Binary file not shown.
BIN
venv/Lib/site-packages/scipy/linalg/_flinalg.cp36-win32.pyd
Normal file
BIN
venv/Lib/site-packages/scipy/linalg/_flinalg.cp36-win32.pyd
Normal file
Binary file not shown.
753
venv/Lib/site-packages/scipy/linalg/_generate_pyx.py
Normal file
753
venv/Lib/site-packages/scipy/linalg/_generate_pyx.py
Normal file
|
@ -0,0 +1,753 @@
|
|||
"""
|
||||
Code generator script to make the Cython BLAS and LAPACK wrappers
|
||||
from the files "cython_blas_signatures.txt" and
|
||||
"cython_lapack_signatures.txt" which contain the signatures for
|
||||
all the BLAS/LAPACK routines that should be included in the wrappers.
|
||||
"""
|
||||
|
||||
from collections import defaultdict
|
||||
from operator import itemgetter
|
||||
import os
|
||||
|
||||
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
|
||||
|
||||
fortran_types = {'int': 'integer',
|
||||
'c': 'complex',
|
||||
'd': 'double precision',
|
||||
's': 'real',
|
||||
'z': 'complex*16',
|
||||
'char': 'character',
|
||||
'bint': 'logical'}
|
||||
|
||||
c_types = {'int': 'int',
|
||||
'c': 'npy_complex64',
|
||||
'd': 'double',
|
||||
's': 'float',
|
||||
'z': 'npy_complex128',
|
||||
'char': 'char',
|
||||
'bint': 'int',
|
||||
'cselect1': '_cselect1',
|
||||
'cselect2': '_cselect2',
|
||||
'dselect2': '_dselect2',
|
||||
'dselect3': '_dselect3',
|
||||
'sselect2': '_sselect2',
|
||||
'sselect3': '_sselect3',
|
||||
'zselect1': '_zselect1',
|
||||
'zselect2': '_zselect2'}
|
||||
|
||||
|
||||
def arg_names_and_types(args):
|
||||
return zip(*[arg.split(' *') for arg in args.split(', ')])
|
||||
|
||||
|
||||
pyx_func_template = """
|
||||
cdef extern from "{header_name}":
|
||||
void _fortran_{name} "F_FUNC({name}wrp, {upname}WRP)"({ret_type} *out, {fort_args}) nogil
|
||||
cdef {ret_type} {name}({args}) nogil:
|
||||
cdef {ret_type} out
|
||||
_fortran_{name}(&out, {argnames})
|
||||
return out
|
||||
"""
|
||||
|
||||
npy_types = {'c': 'npy_complex64', 'z': 'npy_complex128',
|
||||
'cselect1': '_cselect1', 'cselect2': '_cselect2',
|
||||
'dselect2': '_dselect2', 'dselect3': '_dselect3',
|
||||
'sselect2': '_sselect2', 'sselect3': '_sselect3',
|
||||
'zselect1': '_zselect1', 'zselect2': '_zselect2'}
|
||||
|
||||
|
||||
def arg_casts(arg):
|
||||
if arg in ['npy_complex64', 'npy_complex128', '_cselect1', '_cselect2',
|
||||
'_dselect2', '_dselect3', '_sselect2', '_sselect3',
|
||||
'_zselect1', '_zselect2']:
|
||||
return '<{0}*>'.format(arg)
|
||||
return ''
|
||||
|
||||
|
||||
def pyx_decl_func(name, ret_type, args, header_name):
|
||||
argtypes, argnames = arg_names_and_types(args)
|
||||
# Fix the case where one of the arguments has the same name as the
|
||||
# abbreviation for the argument type.
|
||||
# Otherwise the variable passed as an argument is considered overwrites
|
||||
# the previous typedef and Cython compilation fails.
|
||||
if ret_type in argnames:
|
||||
argnames = [n if n != ret_type else ret_type + '_' for n in argnames]
|
||||
argnames = [n if n not in ['lambda', 'in'] else n + '_'
|
||||
for n in argnames]
|
||||
args = ', '.join([' *'.join([n, t])
|
||||
for n, t in zip(argtypes, argnames)])
|
||||
argtypes = [npy_types.get(t, t) for t in argtypes]
|
||||
fort_args = ', '.join([' *'.join([n, t])
|
||||
for n, t in zip(argtypes, argnames)])
|
||||
argnames = [arg_casts(t) + n for n, t in zip(argnames, argtypes)]
|
||||
argnames = ', '.join(argnames)
|
||||
c_ret_type = c_types[ret_type]
|
||||
args = args.replace('lambda', 'lambda_')
|
||||
return pyx_func_template.format(name=name, upname=name.upper(), args=args,
|
||||
fort_args=fort_args, ret_type=ret_type,
|
||||
c_ret_type=c_ret_type, argnames=argnames,
|
||||
header_name=header_name)
|
||||
|
||||
|
||||
pyx_sub_template = """cdef extern from "{header_name}":
|
||||
void _fortran_{name} "F_FUNC({name},{upname})"({fort_args}) nogil
|
||||
cdef void {name}({args}) nogil:
|
||||
_fortran_{name}({argnames})
|
||||
"""
|
||||
|
||||
|
||||
def pyx_decl_sub(name, args, header_name):
|
||||
argtypes, argnames = arg_names_and_types(args)
|
||||
argtypes = [npy_types.get(t, t) for t in argtypes]
|
||||
argnames = [n if n not in ['lambda', 'in'] else n + '_' for n in argnames]
|
||||
fort_args = ', '.join([' *'.join([n, t])
|
||||
for n, t in zip(argtypes, argnames)])
|
||||
argnames = [arg_casts(t) + n for n, t in zip(argnames, argtypes)]
|
||||
argnames = ', '.join(argnames)
|
||||
args = args.replace('*lambda,', '*lambda_,').replace('*in,', '*in_,')
|
||||
return pyx_sub_template.format(name=name, upname=name.upper(),
|
||||
args=args, fort_args=fort_args,
|
||||
argnames=argnames, header_name=header_name)
|
||||
|
||||
|
||||
blas_pyx_preamble = '''# cython: boundscheck = False
|
||||
# cython: wraparound = False
|
||||
# cython: cdivision = True
|
||||
|
||||
"""
|
||||
BLAS Functions for Cython
|
||||
=========================
|
||||
|
||||
Usable from Cython via::
|
||||
|
||||
cimport scipy.linalg.cython_blas
|
||||
|
||||
These wrappers do not check for alignment of arrays.
|
||||
Alignment should be checked before these wrappers are used.
|
||||
|
||||
Raw function pointers (Fortran-style pointer arguments):
|
||||
|
||||
- {}
|
||||
|
||||
|
||||
"""
|
||||
|
||||
# Within SciPy, these wrappers can be used via relative or absolute cimport.
|
||||
# Examples:
|
||||
# from ..linalg cimport cython_blas
|
||||
# from scipy.linalg cimport cython_blas
|
||||
# cimport scipy.linalg.cython_blas as cython_blas
|
||||
# cimport ..linalg.cython_blas as cython_blas
|
||||
|
||||
# Within SciPy, if BLAS functions are needed in C/C++/Fortran,
|
||||
# these wrappers should not be used.
|
||||
# The original libraries should be linked directly.
|
||||
|
||||
cdef extern from "fortran_defs.h":
|
||||
pass
|
||||
|
||||
from numpy cimport npy_complex64, npy_complex128
|
||||
|
||||
'''
|
||||
|
||||
|
||||
def make_blas_pyx_preamble(all_sigs):
|
||||
names = [sig[0] for sig in all_sigs]
|
||||
return blas_pyx_preamble.format("\n- ".join(names))
|
||||
|
||||
|
||||
lapack_pyx_preamble = '''"""
|
||||
LAPACK functions for Cython
|
||||
===========================
|
||||
|
||||
Usable from Cython via::
|
||||
|
||||
cimport scipy.linalg.cython_lapack
|
||||
|
||||
This module provides Cython-level wrappers for all primary routines included
|
||||
in LAPACK 3.4.0 except for ``zcgesv`` since its interface is not consistent
|
||||
from LAPACK 3.4.0 to 3.6.0. It also provides some of the
|
||||
fixed-api auxiliary routines.
|
||||
|
||||
These wrappers do not check for alignment of arrays.
|
||||
Alignment should be checked before these wrappers are used.
|
||||
|
||||
Raw function pointers (Fortran-style pointer arguments):
|
||||
|
||||
- {}
|
||||
|
||||
|
||||
"""
|
||||
|
||||
# Within SciPy, these wrappers can be used via relative or absolute cimport.
|
||||
# Examples:
|
||||
# from ..linalg cimport cython_lapack
|
||||
# from scipy.linalg cimport cython_lapack
|
||||
# cimport scipy.linalg.cython_lapack as cython_lapack
|
||||
# cimport ..linalg.cython_lapack as cython_lapack
|
||||
|
||||
# Within SciPy, if LAPACK functions are needed in C/C++/Fortran,
|
||||
# these wrappers should not be used.
|
||||
# The original libraries should be linked directly.
|
||||
|
||||
cdef extern from "fortran_defs.h":
|
||||
pass
|
||||
|
||||
from numpy cimport npy_complex64, npy_complex128
|
||||
|
||||
cdef extern from "_lapack_subroutines.h":
|
||||
# Function pointer type declarations for
|
||||
# gees and gges families of functions.
|
||||
ctypedef bint _cselect1(npy_complex64*)
|
||||
ctypedef bint _cselect2(npy_complex64*, npy_complex64*)
|
||||
ctypedef bint _dselect2(d*, d*)
|
||||
ctypedef bint _dselect3(d*, d*, d*)
|
||||
ctypedef bint _sselect2(s*, s*)
|
||||
ctypedef bint _sselect3(s*, s*, s*)
|
||||
ctypedef bint _zselect1(npy_complex128*)
|
||||
ctypedef bint _zselect2(npy_complex128*, npy_complex128*)
|
||||
|
||||
'''
|
||||
|
||||
|
||||
def make_lapack_pyx_preamble(all_sigs):
|
||||
names = [sig[0] for sig in all_sigs]
|
||||
return lapack_pyx_preamble.format("\n- ".join(names))
|
||||
|
||||
|
||||
blas_py_wrappers = """
|
||||
|
||||
# Python-accessible wrappers for testing:
|
||||
|
||||
cdef inline bint _is_contiguous(double[:,:] a, int axis) nogil:
|
||||
return (a.strides[axis] == sizeof(a[0,0]) or a.shape[axis] == 1)
|
||||
|
||||
cpdef float complex _test_cdotc(float complex[:] cx, float complex[:] cy) nogil:
|
||||
cdef:
|
||||
int n = cx.shape[0]
|
||||
int incx = cx.strides[0] // sizeof(cx[0])
|
||||
int incy = cy.strides[0] // sizeof(cy[0])
|
||||
return cdotc(&n, &cx[0], &incx, &cy[0], &incy)
|
||||
|
||||
cpdef float complex _test_cdotu(float complex[:] cx, float complex[:] cy) nogil:
|
||||
cdef:
|
||||
int n = cx.shape[0]
|
||||
int incx = cx.strides[0] // sizeof(cx[0])
|
||||
int incy = cy.strides[0] // sizeof(cy[0])
|
||||
return cdotu(&n, &cx[0], &incx, &cy[0], &incy)
|
||||
|
||||
cpdef double _test_dasum(double[:] dx) nogil:
|
||||
cdef:
|
||||
int n = dx.shape[0]
|
||||
int incx = dx.strides[0] // sizeof(dx[0])
|
||||
return dasum(&n, &dx[0], &incx)
|
||||
|
||||
cpdef double _test_ddot(double[:] dx, double[:] dy) nogil:
|
||||
cdef:
|
||||
int n = dx.shape[0]
|
||||
int incx = dx.strides[0] // sizeof(dx[0])
|
||||
int incy = dy.strides[0] // sizeof(dy[0])
|
||||
return ddot(&n, &dx[0], &incx, &dy[0], &incy)
|
||||
|
||||
cpdef int _test_dgemm(double alpha, double[:,:] a, double[:,:] b, double beta,
|
||||
double[:,:] c) nogil except -1:
|
||||
cdef:
|
||||
char *transa
|
||||
char *transb
|
||||
int m, n, k, lda, ldb, ldc
|
||||
double *a0=&a[0,0]
|
||||
double *b0=&b[0,0]
|
||||
double *c0=&c[0,0]
|
||||
# In the case that c is C contiguous, swap a and b and
|
||||
# swap whether or not each of them is transposed.
|
||||
# This can be done because a.dot(b) = b.T.dot(a.T).T.
|
||||
if _is_contiguous(c, 1):
|
||||
if _is_contiguous(a, 1):
|
||||
transb = 'n'
|
||||
ldb = (&a[1,0]) - a0 if a.shape[0] > 1 else 1
|
||||
elif _is_contiguous(a, 0):
|
||||
transb = 't'
|
||||
ldb = (&a[0,1]) - a0 if a.shape[1] > 1 else 1
|
||||
else:
|
||||
with gil:
|
||||
raise ValueError("Input 'a' is neither C nor Fortran contiguous.")
|
||||
if _is_contiguous(b, 1):
|
||||
transa = 'n'
|
||||
lda = (&b[1,0]) - b0 if b.shape[0] > 1 else 1
|
||||
elif _is_contiguous(b, 0):
|
||||
transa = 't'
|
||||
lda = (&b[0,1]) - b0 if b.shape[1] > 1 else 1
|
||||
else:
|
||||
with gil:
|
||||
raise ValueError("Input 'b' is neither C nor Fortran contiguous.")
|
||||
k = b.shape[0]
|
||||
if k != a.shape[1]:
|
||||
with gil:
|
||||
raise ValueError("Shape mismatch in input arrays.")
|
||||
m = b.shape[1]
|
||||
n = a.shape[0]
|
||||
if n != c.shape[0] or m != c.shape[1]:
|
||||
with gil:
|
||||
raise ValueError("Output array does not have the correct shape.")
|
||||
ldc = (&c[1,0]) - c0 if c.shape[0] > 1 else 1
|
||||
dgemm(transa, transb, &m, &n, &k, &alpha, b0, &lda, a0,
|
||||
&ldb, &beta, c0, &ldc)
|
||||
elif _is_contiguous(c, 0):
|
||||
if _is_contiguous(a, 1):
|
||||
transa = 't'
|
||||
lda = (&a[1,0]) - a0 if a.shape[0] > 1 else 1
|
||||
elif _is_contiguous(a, 0):
|
||||
transa = 'n'
|
||||
lda = (&a[0,1]) - a0 if a.shape[1] > 1 else 1
|
||||
else:
|
||||
with gil:
|
||||
raise ValueError("Input 'a' is neither C nor Fortran contiguous.")
|
||||
if _is_contiguous(b, 1):
|
||||
transb = 't'
|
||||
ldb = (&b[1,0]) - b0 if b.shape[0] > 1 else 1
|
||||
elif _is_contiguous(b, 0):
|
||||
transb = 'n'
|
||||
ldb = (&b[0,1]) - b0 if b.shape[1] > 1 else 1
|
||||
else:
|
||||
with gil:
|
||||
raise ValueError("Input 'b' is neither C nor Fortran contiguous.")
|
||||
m = a.shape[0]
|
||||
k = a.shape[1]
|
||||
if k != b.shape[0]:
|
||||
with gil:
|
||||
raise ValueError("Shape mismatch in input arrays.")
|
||||
n = b.shape[1]
|
||||
if m != c.shape[0] or n != c.shape[1]:
|
||||
with gil:
|
||||
raise ValueError("Output array does not have the correct shape.")
|
||||
ldc = (&c[0,1]) - c0 if c.shape[1] > 1 else 1
|
||||
dgemm(transa, transb, &m, &n, &k, &alpha, a0, &lda, b0,
|
||||
&ldb, &beta, c0, &ldc)
|
||||
else:
|
||||
with gil:
|
||||
raise ValueError("Input 'c' is neither C nor Fortran contiguous.")
|
||||
return 0
|
||||
|
||||
cpdef double _test_dnrm2(double[:] x) nogil:
|
||||
cdef:
|
||||
int n = x.shape[0]
|
||||
int incx = x.strides[0] // sizeof(x[0])
|
||||
return dnrm2(&n, &x[0], &incx)
|
||||
|
||||
cpdef double _test_dzasum(double complex[:] zx) nogil:
|
||||
cdef:
|
||||
int n = zx.shape[0]
|
||||
int incx = zx.strides[0] // sizeof(zx[0])
|
||||
return dzasum(&n, &zx[0], &incx)
|
||||
|
||||
cpdef double _test_dznrm2(double complex[:] x) nogil:
|
||||
cdef:
|
||||
int n = x.shape[0]
|
||||
int incx = x.strides[0] // sizeof(x[0])
|
||||
return dznrm2(&n, &x[0], &incx)
|
||||
|
||||
cpdef int _test_icamax(float complex[:] cx) nogil:
|
||||
cdef:
|
||||
int n = cx.shape[0]
|
||||
int incx = cx.strides[0] // sizeof(cx[0])
|
||||
return icamax(&n, &cx[0], &incx)
|
||||
|
||||
cpdef int _test_idamax(double[:] dx) nogil:
|
||||
cdef:
|
||||
int n = dx.shape[0]
|
||||
int incx = dx.strides[0] // sizeof(dx[0])
|
||||
return idamax(&n, &dx[0], &incx)
|
||||
|
||||
cpdef int _test_isamax(float[:] sx) nogil:
|
||||
cdef:
|
||||
int n = sx.shape[0]
|
||||
int incx = sx.strides[0] // sizeof(sx[0])
|
||||
return isamax(&n, &sx[0], &incx)
|
||||
|
||||
cpdef int _test_izamax(double complex[:] zx) nogil:
|
||||
cdef:
|
||||
int n = zx.shape[0]
|
||||
int incx = zx.strides[0] // sizeof(zx[0])
|
||||
return izamax(&n, &zx[0], &incx)
|
||||
|
||||
cpdef float _test_sasum(float[:] sx) nogil:
|
||||
cdef:
|
||||
int n = sx.shape[0]
|
||||
int incx = sx.shape[0] // sizeof(sx[0])
|
||||
return sasum(&n, &sx[0], &incx)
|
||||
|
||||
cpdef float _test_scasum(float complex[:] cx) nogil:
|
||||
cdef:
|
||||
int n = cx.shape[0]
|
||||
int incx = cx.strides[0] // sizeof(cx[0])
|
||||
return scasum(&n, &cx[0], &incx)
|
||||
|
||||
cpdef float _test_scnrm2(float complex[:] x) nogil:
|
||||
cdef:
|
||||
int n = x.shape[0]
|
||||
int incx = x.strides[0] // sizeof(x[0])
|
||||
return scnrm2(&n, &x[0], &incx)
|
||||
|
||||
cpdef float _test_sdot(float[:] sx, float[:] sy) nogil:
|
||||
cdef:
|
||||
int n = sx.shape[0]
|
||||
int incx = sx.strides[0] // sizeof(sx[0])
|
||||
int incy = sy.strides[0] // sizeof(sy[0])
|
||||
return sdot(&n, &sx[0], &incx, &sy[0], &incy)
|
||||
|
||||
cpdef float _test_snrm2(float[:] x) nogil:
|
||||
cdef:
|
||||
int n = x.shape[0]
|
||||
int incx = x.shape[0] // sizeof(x[0])
|
||||
return snrm2(&n, &x[0], &incx)
|
||||
|
||||
cpdef double complex _test_zdotc(double complex[:] zx, double complex[:] zy) nogil:
|
||||
cdef:
|
||||
int n = zx.shape[0]
|
||||
int incx = zx.strides[0] // sizeof(zx[0])
|
||||
int incy = zy.strides[0] // sizeof(zy[0])
|
||||
return zdotc(&n, &zx[0], &incx, &zy[0], &incy)
|
||||
|
||||
cpdef double complex _test_zdotu(double complex[:] zx, double complex[:] zy) nogil:
|
||||
cdef:
|
||||
int n = zx.shape[0]
|
||||
int incx = zx.strides[0] // sizeof(zx[0])
|
||||
int incy = zy.strides[0] // sizeof(zy[0])
|
||||
return zdotu(&n, &zx[0], &incx, &zy[0], &incy)
|
||||
"""
|
||||
|
||||
|
||||
def generate_blas_pyx(func_sigs, sub_sigs, all_sigs, header_name):
|
||||
funcs = "\n".join(pyx_decl_func(*(s+(header_name,))) for s in func_sigs)
|
||||
subs = "\n" + "\n".join(pyx_decl_sub(*(s[::2]+(header_name,)))
|
||||
for s in sub_sigs)
|
||||
return make_blas_pyx_preamble(all_sigs) + funcs + subs + blas_py_wrappers
|
||||
|
||||
|
||||
lapack_py_wrappers = """
|
||||
|
||||
# Python accessible wrappers for testing:
|
||||
|
||||
def _test_dlamch(cmach):
|
||||
# This conversion is necessary to handle Python 3 strings.
|
||||
cmach_bytes = bytes(cmach)
|
||||
# Now that it is a bytes representation, a non-temporary variable
|
||||
# must be passed as a part of the function call.
|
||||
cdef char* cmach_char = cmach_bytes
|
||||
return dlamch(cmach_char)
|
||||
|
||||
def _test_slamch(cmach):
|
||||
# This conversion is necessary to handle Python 3 strings.
|
||||
cmach_bytes = bytes(cmach)
|
||||
# Now that it is a bytes representation, a non-temporary variable
|
||||
# must be passed as a part of the function call.
|
||||
cdef char* cmach_char = cmach_bytes
|
||||
return slamch(cmach_char)
|
||||
"""
|
||||
|
||||
|
||||
def generate_lapack_pyx(func_sigs, sub_sigs, all_sigs, header_name):
|
||||
funcs = "\n".join(pyx_decl_func(*(s+(header_name,))) for s in func_sigs)
|
||||
subs = "\n" + "\n".join(pyx_decl_sub(*(s[::2]+(header_name,)))
|
||||
for s in sub_sigs)
|
||||
preamble = make_lapack_pyx_preamble(all_sigs)
|
||||
return preamble + funcs + subs + lapack_py_wrappers
|
||||
|
||||
|
||||
pxd_template = """ctypedef {ret_type} {name}_t({args}) nogil
|
||||
cdef {name}_t *{name}_f
|
||||
"""
|
||||
pxd_template = """cdef {ret_type} {name}({args}) nogil
|
||||
"""
|
||||
|
||||
|
||||
def pxd_decl(name, ret_type, args):
|
||||
args = args.replace('lambda', 'lambda_').replace('*in,', '*in_,')
|
||||
return pxd_template.format(name=name, ret_type=ret_type, args=args)
|
||||
|
||||
|
||||
blas_pxd_preamble = """# Within scipy, these wrappers can be used via relative or absolute cimport.
|
||||
# Examples:
|
||||
# from ..linalg cimport cython_blas
|
||||
# from scipy.linalg cimport cython_blas
|
||||
# cimport scipy.linalg.cython_blas as cython_blas
|
||||
# cimport ..linalg.cython_blas as cython_blas
|
||||
|
||||
# Within SciPy, if BLAS functions are needed in C/C++/Fortran,
|
||||
# these wrappers should not be used.
|
||||
# The original libraries should be linked directly.
|
||||
|
||||
ctypedef float s
|
||||
ctypedef double d
|
||||
ctypedef float complex c
|
||||
ctypedef double complex z
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def generate_blas_pxd(all_sigs):
|
||||
body = '\n'.join(pxd_decl(*sig) for sig in all_sigs)
|
||||
return blas_pxd_preamble + body
|
||||
|
||||
|
||||
lapack_pxd_preamble = """# Within SciPy, these wrappers can be used via relative or absolute cimport.
|
||||
# Examples:
|
||||
# from ..linalg cimport cython_lapack
|
||||
# from scipy.linalg cimport cython_lapack
|
||||
# cimport scipy.linalg.cython_lapack as cython_lapack
|
||||
# cimport ..linalg.cython_lapack as cython_lapack
|
||||
|
||||
# Within SciPy, if LAPACK functions are needed in C/C++/Fortran,
|
||||
# these wrappers should not be used.
|
||||
# The original libraries should be linked directly.
|
||||
|
||||
ctypedef float s
|
||||
ctypedef double d
|
||||
ctypedef float complex c
|
||||
ctypedef double complex z
|
||||
|
||||
# Function pointer type declarations for
|
||||
# gees and gges families of functions.
|
||||
ctypedef bint cselect1(c*)
|
||||
ctypedef bint cselect2(c*, c*)
|
||||
ctypedef bint dselect2(d*, d*)
|
||||
ctypedef bint dselect3(d*, d*, d*)
|
||||
ctypedef bint sselect2(s*, s*)
|
||||
ctypedef bint sselect3(s*, s*, s*)
|
||||
ctypedef bint zselect1(z*)
|
||||
ctypedef bint zselect2(z*, z*)
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def generate_lapack_pxd(all_sigs):
|
||||
return lapack_pxd_preamble + '\n'.join(pxd_decl(*sig) for sig in all_sigs)
|
||||
|
||||
|
||||
fortran_template = """ subroutine {name}wrp(
|
||||
+ ret,
|
||||
+ {argnames}
|
||||
+ )
|
||||
external {wrapper}
|
||||
{ret_type} {wrapper}
|
||||
{ret_type} ret
|
||||
{argdecls}
|
||||
ret = {wrapper}(
|
||||
+ {argnames}
|
||||
+ )
|
||||
end
|
||||
"""
|
||||
|
||||
dims = {'work': '(*)', 'ab': '(ldab,*)', 'a': '(lda,*)', 'dl': '(*)',
|
||||
'd': '(*)', 'du': '(*)', 'ap': '(*)', 'e': '(*)', 'lld': '(*)'}
|
||||
|
||||
xy_specialized_dims = {'x': '', 'y': ''}
|
||||
a_specialized_dims = {'a': '(*)'}
|
||||
special_cases = defaultdict(dict,
|
||||
ladiv = xy_specialized_dims,
|
||||
lanhf = a_specialized_dims,
|
||||
lansf = a_specialized_dims,
|
||||
lapy2 = xy_specialized_dims,
|
||||
lapy3 = xy_specialized_dims)
|
||||
|
||||
|
||||
def process_fortran_name(name, funcname):
|
||||
if 'inc' in name:
|
||||
return name
|
||||
special = special_cases[funcname[1:]]
|
||||
if 'x' in name or 'y' in name:
|
||||
suffix = special.get(name, '(n)')
|
||||
else:
|
||||
suffix = special.get(name, '')
|
||||
return name + suffix
|
||||
|
||||
|
||||
def called_name(name):
|
||||
included = ['cdotc', 'cdotu', 'zdotc', 'zdotu', 'cladiv', 'zladiv']
|
||||
if name in included:
|
||||
return "w" + name
|
||||
return name
|
||||
|
||||
|
||||
def fort_subroutine_wrapper(name, ret_type, args):
|
||||
wrapper = called_name(name)
|
||||
types, names = arg_names_and_types(args)
|
||||
argnames = ',\n + '.join(names)
|
||||
|
||||
names = [process_fortran_name(n, name) for n in names]
|
||||
argdecls = '\n '.join('{0} {1}'.format(fortran_types[t], n)
|
||||
for n, t in zip(names, types))
|
||||
return fortran_template.format(name=name, wrapper=wrapper,
|
||||
argnames=argnames, argdecls=argdecls,
|
||||
ret_type=fortran_types[ret_type])
|
||||
|
||||
|
||||
def generate_fortran(func_sigs):
|
||||
return "\n".join(fort_subroutine_wrapper(*sig) for sig in func_sigs)
|
||||
|
||||
|
||||
def make_c_args(args):
|
||||
types, names = arg_names_and_types(args)
|
||||
types = [c_types[arg] for arg in types]
|
||||
return ', '.join('{0} *{1}'.format(t, n) for t, n in zip(types, names))
|
||||
|
||||
|
||||
c_func_template = ("void F_FUNC({name}wrp, {upname}WRP)"
|
||||
"({return_type} *ret, {args});\n")
|
||||
|
||||
|
||||
def c_func_decl(name, return_type, args):
|
||||
args = make_c_args(args)
|
||||
return_type = c_types[return_type]
|
||||
return c_func_template.format(name=name, upname=name.upper(),
|
||||
return_type=return_type, args=args)
|
||||
|
||||
|
||||
c_sub_template = "void F_FUNC({name},{upname})({args});\n"
|
||||
|
||||
|
||||
def c_sub_decl(name, return_type, args):
|
||||
args = make_c_args(args)
|
||||
return c_sub_template.format(name=name, upname=name.upper(), args=args)
|
||||
|
||||
|
||||
c_preamble = """#ifndef SCIPY_LINALG_{lib}_FORTRAN_WRAPPERS_H
|
||||
#define SCIPY_LINALG_{lib}_FORTRAN_WRAPPERS_H
|
||||
#include "fortran_defs.h"
|
||||
#include "numpy/arrayobject.h"
|
||||
"""
|
||||
|
||||
lapack_decls = """
|
||||
typedef int (*_cselect1)(npy_complex64*);
|
||||
typedef int (*_cselect2)(npy_complex64*, npy_complex64*);
|
||||
typedef int (*_dselect2)(double*, double*);
|
||||
typedef int (*_dselect3)(double*, double*, double*);
|
||||
typedef int (*_sselect2)(float*, float*);
|
||||
typedef int (*_sselect3)(float*, float*, float*);
|
||||
typedef int (*_zselect1)(npy_complex128*);
|
||||
typedef int (*_zselect2)(npy_complex128*, npy_complex128*);
|
||||
"""
|
||||
|
||||
cpp_guard = """
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
"""
|
||||
|
||||
c_end = """
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
"""
|
||||
|
||||
|
||||
def generate_c_header(func_sigs, sub_sigs, all_sigs, lib_name):
|
||||
funcs = "".join(c_func_decl(*sig) for sig in func_sigs)
|
||||
subs = "\n" + "".join(c_sub_decl(*sig) for sig in sub_sigs)
|
||||
if lib_name == 'LAPACK':
|
||||
preamble = (c_preamble.format(lib=lib_name) + lapack_decls)
|
||||
else:
|
||||
preamble = c_preamble.format(lib=lib_name)
|
||||
return "".join([preamble, cpp_guard, funcs, subs, c_end])
|
||||
|
||||
|
||||
def split_signature(sig):
|
||||
name_and_type, args = sig[:-1].split('(')
|
||||
ret_type, name = name_and_type.split(' ')
|
||||
return name, ret_type, args
|
||||
|
||||
|
||||
def filter_lines(lines):
|
||||
lines = [line for line in map(str.strip, lines)
|
||||
if line and not line.startswith('#')]
|
||||
func_sigs = [split_signature(line) for line in lines
|
||||
if line.split(' ')[0] != 'void']
|
||||
sub_sigs = [split_signature(line) for line in lines
|
||||
if line.split(' ')[0] == 'void']
|
||||
all_sigs = list(sorted(func_sigs + sub_sigs, key=itemgetter(0)))
|
||||
return func_sigs, sub_sigs, all_sigs
|
||||
|
||||
|
||||
def all_newer(src_files, dst_files):
|
||||
from distutils.dep_util import newer
|
||||
return all(os.path.exists(dst) and newer(dst, src)
|
||||
for dst in dst_files for src in src_files)
|
||||
|
||||
|
||||
def make_all(blas_signature_file="cython_blas_signatures.txt",
|
||||
lapack_signature_file="cython_lapack_signatures.txt",
|
||||
blas_name="cython_blas",
|
||||
lapack_name="cython_lapack",
|
||||
blas_fortran_name="_blas_subroutine_wrappers.f",
|
||||
lapack_fortran_name="_lapack_subroutine_wrappers.f",
|
||||
blas_header_name="_blas_subroutines.h",
|
||||
lapack_header_name="_lapack_subroutines.h"):
|
||||
|
||||
src_files = (os.path.abspath(__file__),
|
||||
blas_signature_file,
|
||||
lapack_signature_file)
|
||||
dst_files = (blas_name + '.pyx',
|
||||
blas_name + '.pxd',
|
||||
blas_fortran_name,
|
||||
blas_header_name,
|
||||
lapack_name + '.pyx',
|
||||
lapack_name + '.pxd',
|
||||
lapack_fortran_name,
|
||||
lapack_header_name)
|
||||
|
||||
os.chdir(BASE_DIR)
|
||||
|
||||
if all_newer(src_files, dst_files):
|
||||
print("scipy/linalg/_generate_pyx.py: all files up-to-date")
|
||||
return
|
||||
|
||||
comments = ["This file was generated by _generate_pyx.py.\n",
|
||||
"Do not edit this file directly.\n"]
|
||||
ccomment = ''.join(['/* ' + line.rstrip() + ' */\n'
|
||||
for line in comments]) + '\n'
|
||||
pyxcomment = ''.join(['# ' + line for line in comments]) + '\n'
|
||||
fcomment = ''.join(['c ' + line for line in comments]) + '\n'
|
||||
with open(blas_signature_file, 'r') as f:
|
||||
blas_sigs = f.readlines()
|
||||
blas_sigs = filter_lines(blas_sigs)
|
||||
blas_pyx = generate_blas_pyx(*(blas_sigs + (blas_header_name,)))
|
||||
with open(blas_name + '.pyx', 'w') as f:
|
||||
f.write(pyxcomment)
|
||||
f.write(blas_pyx)
|
||||
blas_pxd = generate_blas_pxd(blas_sigs[2])
|
||||
with open(blas_name + '.pxd', 'w') as f:
|
||||
f.write(pyxcomment)
|
||||
f.write(blas_pxd)
|
||||
blas_fortran = generate_fortran(blas_sigs[0])
|
||||
with open(blas_fortran_name, 'w') as f:
|
||||
f.write(fcomment)
|
||||
f.write(blas_fortran)
|
||||
blas_c_header = generate_c_header(*(blas_sigs + ('BLAS',)))
|
||||
with open(blas_header_name, 'w') as f:
|
||||
f.write(ccomment)
|
||||
f.write(blas_c_header)
|
||||
with open(lapack_signature_file, 'r') as f:
|
||||
lapack_sigs = f.readlines()
|
||||
lapack_sigs = filter_lines(lapack_sigs)
|
||||
lapack_pyx = generate_lapack_pyx(*(lapack_sigs + (lapack_header_name,)))
|
||||
with open(lapack_name + '.pyx', 'w') as f:
|
||||
f.write(pyxcomment)
|
||||
f.write(lapack_pyx)
|
||||
lapack_pxd = generate_lapack_pxd(lapack_sigs[2])
|
||||
with open(lapack_name + '.pxd', 'w') as f:
|
||||
f.write(pyxcomment)
|
||||
f.write(lapack_pxd)
|
||||
lapack_fortran = generate_fortran(lapack_sigs[0])
|
||||
with open(lapack_fortran_name, 'w') as f:
|
||||
f.write(fcomment)
|
||||
f.write(lapack_fortran)
|
||||
lapack_c_header = generate_c_header(*(lapack_sigs + ('LAPACK',)))
|
||||
with open(lapack_header_name, 'w') as f:
|
||||
f.write(ccomment)
|
||||
f.write(lapack_c_header)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
make_all()
|
Binary file not shown.
1681
venv/Lib/site-packages/scipy/linalg/_interpolative_backend.py
Normal file
1681
venv/Lib/site-packages/scipy/linalg/_interpolative_backend.py
Normal file
File diff suppressed because it is too large
Load diff
886
venv/Lib/site-packages/scipy/linalg/_matfuncs_inv_ssq.py
Normal file
886
venv/Lib/site-packages/scipy/linalg/_matfuncs_inv_ssq.py
Normal file
|
@ -0,0 +1,886 @@
|
|||
"""
|
||||
Matrix functions that use Pade approximation with inverse scaling and squaring.
|
||||
|
||||
"""
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from scipy.linalg._matfuncs_sqrtm import SqrtmError, _sqrtm_triu
|
||||
from scipy.linalg.decomp_schur import schur, rsf2csf
|
||||
from scipy.linalg.matfuncs import funm
|
||||
from scipy.linalg import svdvals, solve_triangular
|
||||
from scipy.sparse.linalg.interface import LinearOperator
|
||||
from scipy.sparse.linalg import onenormest
|
||||
import scipy.special
|
||||
|
||||
|
||||
class LogmRankWarning(UserWarning):
|
||||
pass
|
||||
|
||||
|
||||
class LogmExactlySingularWarning(LogmRankWarning):
|
||||
pass
|
||||
|
||||
|
||||
class LogmNearlySingularWarning(LogmRankWarning):
|
||||
pass
|
||||
|
||||
|
||||
class LogmError(np.linalg.LinAlgError):
|
||||
pass
|
||||
|
||||
|
||||
class FractionalMatrixPowerError(np.linalg.LinAlgError):
|
||||
pass
|
||||
|
||||
|
||||
#TODO renovate or move this class when scipy operators are more mature
|
||||
class _MatrixM1PowerOperator(LinearOperator):
|
||||
"""
|
||||
A representation of the linear operator (A - I)^p.
|
||||
"""
|
||||
|
||||
def __init__(self, A, p):
|
||||
if A.ndim != 2 or A.shape[0] != A.shape[1]:
|
||||
raise ValueError('expected A to be like a square matrix')
|
||||
if p < 0 or p != int(p):
|
||||
raise ValueError('expected p to be a non-negative integer')
|
||||
self._A = A
|
||||
self._p = p
|
||||
self.ndim = A.ndim
|
||||
self.shape = A.shape
|
||||
|
||||
def _matvec(self, x):
|
||||
for i in range(self._p):
|
||||
x = self._A.dot(x) - x
|
||||
return x
|
||||
|
||||
def _rmatvec(self, x):
|
||||
for i in range(self._p):
|
||||
x = x.dot(self._A) - x
|
||||
return x
|
||||
|
||||
def _matmat(self, X):
|
||||
for i in range(self._p):
|
||||
X = self._A.dot(X) - X
|
||||
return X
|
||||
|
||||
def _adjoint(self):
|
||||
return _MatrixM1PowerOperator(self._A.T, self._p)
|
||||
|
||||
|
||||
#TODO renovate or move this function when SciPy operators are more mature
|
||||
def _onenormest_m1_power(A, p,
|
||||
t=2, itmax=5, compute_v=False, compute_w=False):
|
||||
"""
|
||||
Efficiently estimate the 1-norm of (A - I)^p.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : ndarray
|
||||
Matrix whose 1-norm of a power is to be computed.
|
||||
p : int
|
||||
Non-negative integer power.
|
||||
t : int, optional
|
||||
A positive parameter controlling the tradeoff between
|
||||
accuracy versus time and memory usage.
|
||||
Larger values take longer and use more memory
|
||||
but give more accurate output.
|
||||
itmax : int, optional
|
||||
Use at most this many iterations.
|
||||
compute_v : bool, optional
|
||||
Request a norm-maximizing linear operator input vector if True.
|
||||
compute_w : bool, optional
|
||||
Request a norm-maximizing linear operator output vector if True.
|
||||
|
||||
Returns
|
||||
-------
|
||||
est : float
|
||||
An underestimate of the 1-norm of the sparse matrix.
|
||||
v : ndarray, optional
|
||||
The vector such that ||Av||_1 == est*||v||_1.
|
||||
It can be thought of as an input to the linear operator
|
||||
that gives an output with particularly large norm.
|
||||
w : ndarray, optional
|
||||
The vector Av which has relatively large 1-norm.
|
||||
It can be thought of as an output of the linear operator
|
||||
that is relatively large in norm compared to the input.
|
||||
|
||||
"""
|
||||
return onenormest(_MatrixM1PowerOperator(A, p),
|
||||
t=t, itmax=itmax, compute_v=compute_v, compute_w=compute_w)
|
||||
|
||||
|
||||
def _unwindk(z):
|
||||
"""
|
||||
Compute the scalar unwinding number.
|
||||
|
||||
Uses Eq. (5.3) in [1]_, and should be equal to (z - log(exp(z)) / (2 pi i).
|
||||
Note that this definition differs in sign from the original definition
|
||||
in equations (5, 6) in [2]_. The sign convention is justified in [3]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
z : complex
|
||||
A complex number.
|
||||
|
||||
Returns
|
||||
-------
|
||||
unwinding_number : integer
|
||||
The scalar unwinding number of z.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Nicholas J. Higham and Lijing lin (2011)
|
||||
"A Schur-Pade Algorithm for Fractional Powers of a Matrix."
|
||||
SIAM Journal on Matrix Analysis and Applications,
|
||||
32 (3). pp. 1056-1078. ISSN 0895-4798
|
||||
|
||||
.. [2] Robert M. Corless and David J. Jeffrey,
|
||||
"The unwinding number." Newsletter ACM SIGSAM Bulletin
|
||||
Volume 30, Issue 2, June 1996, Pages 28-35.
|
||||
|
||||
.. [3] Russell Bradford and Robert M. Corless and James H. Davenport and
|
||||
David J. Jeffrey and Stephen M. Watt,
|
||||
"Reasoning about the elementary functions of complex analysis"
|
||||
Annals of Mathematics and Artificial Intelligence,
|
||||
36: 303-318, 2002.
|
||||
|
||||
"""
|
||||
return int(np.ceil((z.imag - np.pi) / (2*np.pi)))
|
||||
|
||||
|
||||
def _briggs_helper_function(a, k):
|
||||
"""
|
||||
Computes r = a^(1 / (2^k)) - 1.
|
||||
|
||||
This is algorithm (2) of [1]_.
|
||||
The purpose is to avoid a danger of subtractive cancellation.
|
||||
For more computational efficiency it should probably be cythonized.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : complex
|
||||
A complex number.
|
||||
k : integer
|
||||
A nonnegative integer.
|
||||
|
||||
Returns
|
||||
-------
|
||||
r : complex
|
||||
The value r = a^(1 / (2^k)) - 1 computed with less cancellation.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The algorithm as formulated in the reference does not handle k=0 or k=1
|
||||
correctly, so these are special-cased in this implementation.
|
||||
This function is intended to not allow `a` to belong to the closed
|
||||
negative real axis, but this constraint is relaxed.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Awad H. Al-Mohy (2012)
|
||||
"A more accurate Briggs method for the logarithm",
|
||||
Numerical Algorithms, 59 : 393--402.
|
||||
|
||||
"""
|
||||
if k < 0 or int(k) != k:
|
||||
raise ValueError('expected a nonnegative integer k')
|
||||
if k == 0:
|
||||
return a - 1
|
||||
elif k == 1:
|
||||
return np.sqrt(a) - 1
|
||||
else:
|
||||
k_hat = k
|
||||
if np.angle(a) >= np.pi / 2:
|
||||
a = np.sqrt(a)
|
||||
k_hat = k - 1
|
||||
z0 = a - 1
|
||||
a = np.sqrt(a)
|
||||
r = 1 + a
|
||||
for j in range(1, k_hat):
|
||||
a = np.sqrt(a)
|
||||
r = r * (1 + a)
|
||||
r = z0 / r
|
||||
return r
|
||||
|
||||
|
||||
def _fractional_power_superdiag_entry(l1, l2, t12, p):
|
||||
"""
|
||||
Compute a superdiagonal entry of a fractional matrix power.
|
||||
|
||||
This is Eq. (5.6) in [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
l1 : complex
|
||||
A diagonal entry of the matrix.
|
||||
l2 : complex
|
||||
A diagonal entry of the matrix.
|
||||
t12 : complex
|
||||
A superdiagonal entry of the matrix.
|
||||
p : float
|
||||
A fractional power.
|
||||
|
||||
Returns
|
||||
-------
|
||||
f12 : complex
|
||||
A superdiagonal entry of the fractional matrix power.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Care has been taken to return a real number if possible when
|
||||
all of the inputs are real numbers.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Nicholas J. Higham and Lijing lin (2011)
|
||||
"A Schur-Pade Algorithm for Fractional Powers of a Matrix."
|
||||
SIAM Journal on Matrix Analysis and Applications,
|
||||
32 (3). pp. 1056-1078. ISSN 0895-4798
|
||||
|
||||
"""
|
||||
if l1 == l2:
|
||||
f12 = t12 * p * l1**(p-1)
|
||||
elif abs(l2 - l1) > abs(l1 + l2) / 2:
|
||||
f12 = t12 * ((l2**p) - (l1**p)) / (l2 - l1)
|
||||
else:
|
||||
# This is Eq. (5.5) in [1].
|
||||
z = (l2 - l1) / (l2 + l1)
|
||||
log_l1 = np.log(l1)
|
||||
log_l2 = np.log(l2)
|
||||
arctanh_z = np.arctanh(z)
|
||||
tmp_a = t12 * np.exp((p/2)*(log_l2 + log_l1))
|
||||
tmp_u = _unwindk(log_l2 - log_l1)
|
||||
if tmp_u:
|
||||
tmp_b = p * (arctanh_z + np.pi * 1j * tmp_u)
|
||||
else:
|
||||
tmp_b = p * arctanh_z
|
||||
tmp_c = 2 * np.sinh(tmp_b) / (l2 - l1)
|
||||
f12 = tmp_a * tmp_c
|
||||
return f12
|
||||
|
||||
|
||||
def _logm_superdiag_entry(l1, l2, t12):
|
||||
"""
|
||||
Compute a superdiagonal entry of a matrix logarithm.
|
||||
|
||||
This is like Eq. (11.28) in [1]_, except the determination of whether
|
||||
l1 and l2 are sufficiently far apart has been modified.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
l1 : complex
|
||||
A diagonal entry of the matrix.
|
||||
l2 : complex
|
||||
A diagonal entry of the matrix.
|
||||
t12 : complex
|
||||
A superdiagonal entry of the matrix.
|
||||
|
||||
Returns
|
||||
-------
|
||||
f12 : complex
|
||||
A superdiagonal entry of the matrix logarithm.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Care has been taken to return a real number if possible when
|
||||
all of the inputs are real numbers.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Nicholas J. Higham (2008)
|
||||
"Functions of Matrices: Theory and Computation"
|
||||
ISBN 978-0-898716-46-7
|
||||
|
||||
"""
|
||||
if l1 == l2:
|
||||
f12 = t12 / l1
|
||||
elif abs(l2 - l1) > abs(l1 + l2) / 2:
|
||||
f12 = t12 * (np.log(l2) - np.log(l1)) / (l2 - l1)
|
||||
else:
|
||||
z = (l2 - l1) / (l2 + l1)
|
||||
u = _unwindk(np.log(l2) - np.log(l1))
|
||||
if u:
|
||||
f12 = t12 * 2 * (np.arctanh(z) + np.pi*1j*u) / (l2 - l1)
|
||||
else:
|
||||
f12 = t12 * 2 * np.arctanh(z) / (l2 - l1)
|
||||
return f12
|
||||
|
||||
|
||||
def _inverse_squaring_helper(T0, theta):
|
||||
"""
|
||||
A helper function for inverse scaling and squaring for Pade approximation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
T0 : (N, N) array_like upper triangular
|
||||
Matrix involved in inverse scaling and squaring.
|
||||
theta : indexable
|
||||
The values theta[1] .. theta[7] must be available.
|
||||
They represent bounds related to Pade approximation, and they depend
|
||||
on the matrix function which is being computed.
|
||||
For example, different values of theta are required for
|
||||
matrix logarithm than for fractional matrix power.
|
||||
|
||||
Returns
|
||||
-------
|
||||
R : (N, N) array_like upper triangular
|
||||
Composition of zero or more matrix square roots of T0, minus I.
|
||||
s : non-negative integer
|
||||
Number of square roots taken.
|
||||
m : positive integer
|
||||
The degree of the Pade approximation.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This subroutine appears as a chunk of lines within
|
||||
a couple of published algorithms; for example it appears
|
||||
as lines 4--35 in algorithm (3.1) of [1]_, and
|
||||
as lines 3--34 in algorithm (4.1) of [2]_.
|
||||
The instances of 'goto line 38' in algorithm (3.1) of [1]_
|
||||
probably mean 'goto line 36' and have been intepreted accordingly.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Nicholas J. Higham and Lijing Lin (2013)
|
||||
"An Improved Schur-Pade Algorithm for Fractional Powers
|
||||
of a Matrix and their Frechet Derivatives."
|
||||
|
||||
.. [2] Awad H. Al-Mohy and Nicholas J. Higham (2012)
|
||||
"Improved Inverse Scaling and Squaring Algorithms
|
||||
for the Matrix Logarithm."
|
||||
SIAM Journal on Scientific Computing, 34 (4). C152-C169.
|
||||
ISSN 1095-7197
|
||||
|
||||
"""
|
||||
if len(T0.shape) != 2 or T0.shape[0] != T0.shape[1]:
|
||||
raise ValueError('expected an upper triangular square matrix')
|
||||
n, n = T0.shape
|
||||
T = T0
|
||||
|
||||
# Find s0, the smallest s such that the spectral radius
|
||||
# of a certain diagonal matrix is at most theta[7].
|
||||
# Note that because theta[7] < 1,
|
||||
# this search will not terminate if any diagonal entry of T is zero.
|
||||
s0 = 0
|
||||
tmp_diag = np.diag(T)
|
||||
if np.count_nonzero(tmp_diag) != n:
|
||||
raise Exception('internal inconsistency')
|
||||
while np.max(np.absolute(tmp_diag - 1)) > theta[7]:
|
||||
tmp_diag = np.sqrt(tmp_diag)
|
||||
s0 += 1
|
||||
|
||||
# Take matrix square roots of T.
|
||||
for i in range(s0):
|
||||
T = _sqrtm_triu(T)
|
||||
|
||||
# Flow control in this section is a little odd.
|
||||
# This is because I am translating algorithm descriptions
|
||||
# which have GOTOs in the publication.
|
||||
s = s0
|
||||
k = 0
|
||||
d2 = _onenormest_m1_power(T, 2) ** (1/2)
|
||||
d3 = _onenormest_m1_power(T, 3) ** (1/3)
|
||||
a2 = max(d2, d3)
|
||||
m = None
|
||||
for i in (1, 2):
|
||||
if a2 <= theta[i]:
|
||||
m = i
|
||||
break
|
||||
while m is None:
|
||||
if s > s0:
|
||||
d3 = _onenormest_m1_power(T, 3) ** (1/3)
|
||||
d4 = _onenormest_m1_power(T, 4) ** (1/4)
|
||||
a3 = max(d3, d4)
|
||||
if a3 <= theta[7]:
|
||||
j1 = min(i for i in (3, 4, 5, 6, 7) if a3 <= theta[i])
|
||||
if j1 <= 6:
|
||||
m = j1
|
||||
break
|
||||
elif a3 / 2 <= theta[5] and k < 2:
|
||||
k += 1
|
||||
T = _sqrtm_triu(T)
|
||||
s += 1
|
||||
continue
|
||||
d5 = _onenormest_m1_power(T, 5) ** (1/5)
|
||||
a4 = max(d4, d5)
|
||||
eta = min(a3, a4)
|
||||
for i in (6, 7):
|
||||
if eta <= theta[i]:
|
||||
m = i
|
||||
break
|
||||
if m is not None:
|
||||
break
|
||||
T = _sqrtm_triu(T)
|
||||
s += 1
|
||||
|
||||
# The subtraction of the identity is redundant here,
|
||||
# because the diagonal will be replaced for improved numerical accuracy,
|
||||
# but this formulation should help clarify the meaning of R.
|
||||
R = T - np.identity(n)
|
||||
|
||||
# Replace the diagonal and first superdiagonal of T0^(1/(2^s)) - I
|
||||
# using formulas that have less subtractive cancellation.
|
||||
# Skip this step if the principal branch
|
||||
# does not exist at T0; this happens when a diagonal entry of T0
|
||||
# is negative with imaginary part 0.
|
||||
has_principal_branch = all(x.real > 0 or x.imag != 0 for x in np.diag(T0))
|
||||
if has_principal_branch:
|
||||
for j in range(n):
|
||||
a = T0[j, j]
|
||||
r = _briggs_helper_function(a, s)
|
||||
R[j, j] = r
|
||||
p = np.exp2(-s)
|
||||
for j in range(n-1):
|
||||
l1 = T0[j, j]
|
||||
l2 = T0[j+1, j+1]
|
||||
t12 = T0[j, j+1]
|
||||
f12 = _fractional_power_superdiag_entry(l1, l2, t12, p)
|
||||
R[j, j+1] = f12
|
||||
|
||||
# Return the T-I matrix, the number of square roots, and the Pade degree.
|
||||
if not np.array_equal(R, np.triu(R)):
|
||||
raise Exception('internal inconsistency')
|
||||
return R, s, m
|
||||
|
||||
|
||||
def _fractional_power_pade_constant(i, t):
|
||||
# A helper function for matrix fractional power.
|
||||
if i < 1:
|
||||
raise ValueError('expected a positive integer i')
|
||||
if not (-1 < t < 1):
|
||||
raise ValueError('expected -1 < t < 1')
|
||||
if i == 1:
|
||||
return -t
|
||||
elif i % 2 == 0:
|
||||
j = i // 2
|
||||
return (-j + t) / (2 * (2*j - 1))
|
||||
elif i % 2 == 1:
|
||||
j = (i - 1) // 2
|
||||
return (-j - t) / (2 * (2*j + 1))
|
||||
else:
|
||||
raise Exception('internal error')
|
||||
|
||||
|
||||
def _fractional_power_pade(R, t, m):
|
||||
"""
|
||||
Evaluate the Pade approximation of a fractional matrix power.
|
||||
|
||||
Evaluate the degree-m Pade approximation of R
|
||||
to the fractional matrix power t using the continued fraction
|
||||
in bottom-up fashion using algorithm (4.1) in [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
R : (N, N) array_like
|
||||
Upper triangular matrix whose fractional power to evaluate.
|
||||
t : float
|
||||
Fractional power between -1 and 1 exclusive.
|
||||
m : positive integer
|
||||
Degree of Pade approximation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
U : (N, N) array_like
|
||||
The degree-m Pade approximation of R to the fractional power t.
|
||||
This matrix will be upper triangular.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Nicholas J. Higham and Lijing lin (2011)
|
||||
"A Schur-Pade Algorithm for Fractional Powers of a Matrix."
|
||||
SIAM Journal on Matrix Analysis and Applications,
|
||||
32 (3). pp. 1056-1078. ISSN 0895-4798
|
||||
|
||||
"""
|
||||
if m < 1 or int(m) != m:
|
||||
raise ValueError('expected a positive integer m')
|
||||
if not (-1 < t < 1):
|
||||
raise ValueError('expected -1 < t < 1')
|
||||
R = np.asarray(R)
|
||||
if len(R.shape) != 2 or R.shape[0] != R.shape[1]:
|
||||
raise ValueError('expected an upper triangular square matrix')
|
||||
n, n = R.shape
|
||||
ident = np.identity(n)
|
||||
Y = R * _fractional_power_pade_constant(2*m, t)
|
||||
for j in range(2*m - 1, 0, -1):
|
||||
rhs = R * _fractional_power_pade_constant(j, t)
|
||||
Y = solve_triangular(ident + Y, rhs)
|
||||
U = ident + Y
|
||||
if not np.array_equal(U, np.triu(U)):
|
||||
raise Exception('internal inconsistency')
|
||||
return U
|
||||
|
||||
|
||||
def _remainder_matrix_power_triu(T, t):
|
||||
"""
|
||||
Compute a fractional power of an upper triangular matrix.
|
||||
|
||||
The fractional power is restricted to fractions -1 < t < 1.
|
||||
This uses algorithm (3.1) of [1]_.
|
||||
The Pade approximation itself uses algorithm (4.1) of [2]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
T : (N, N) array_like
|
||||
Upper triangular matrix whose fractional power to evaluate.
|
||||
t : float
|
||||
Fractional power between -1 and 1 exclusive.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X : (N, N) array_like
|
||||
The fractional power of the matrix.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Nicholas J. Higham and Lijing Lin (2013)
|
||||
"An Improved Schur-Pade Algorithm for Fractional Powers
|
||||
of a Matrix and their Frechet Derivatives."
|
||||
|
||||
.. [2] Nicholas J. Higham and Lijing lin (2011)
|
||||
"A Schur-Pade Algorithm for Fractional Powers of a Matrix."
|
||||
SIAM Journal on Matrix Analysis and Applications,
|
||||
32 (3). pp. 1056-1078. ISSN 0895-4798
|
||||
|
||||
"""
|
||||
m_to_theta = {
|
||||
1: 1.51e-5,
|
||||
2: 2.24e-3,
|
||||
3: 1.88e-2,
|
||||
4: 6.04e-2,
|
||||
5: 1.24e-1,
|
||||
6: 2.00e-1,
|
||||
7: 2.79e-1,
|
||||
}
|
||||
n, n = T.shape
|
||||
T0 = T
|
||||
T0_diag = np.diag(T0)
|
||||
if np.array_equal(T0, np.diag(T0_diag)):
|
||||
U = np.diag(T0_diag ** t)
|
||||
else:
|
||||
R, s, m = _inverse_squaring_helper(T0, m_to_theta)
|
||||
|
||||
# Evaluate the Pade approximation.
|
||||
# Note that this function expects the negative of the matrix
|
||||
# returned by the inverse squaring helper.
|
||||
U = _fractional_power_pade(-R, t, m)
|
||||
|
||||
# Undo the inverse scaling and squaring.
|
||||
# Be less clever about this
|
||||
# if the principal branch does not exist at T0;
|
||||
# this happens when a diagonal entry of T0
|
||||
# is negative with imaginary part 0.
|
||||
eivals = np.diag(T0)
|
||||
has_principal_branch = all(x.real > 0 or x.imag != 0 for x in eivals)
|
||||
for i in range(s, -1, -1):
|
||||
if i < s:
|
||||
U = U.dot(U)
|
||||
else:
|
||||
if has_principal_branch:
|
||||
p = t * np.exp2(-i)
|
||||
U[np.diag_indices(n)] = T0_diag ** p
|
||||
for j in range(n-1):
|
||||
l1 = T0[j, j]
|
||||
l2 = T0[j+1, j+1]
|
||||
t12 = T0[j, j+1]
|
||||
f12 = _fractional_power_superdiag_entry(l1, l2, t12, p)
|
||||
U[j, j+1] = f12
|
||||
if not np.array_equal(U, np.triu(U)):
|
||||
raise Exception('internal inconsistency')
|
||||
return U
|
||||
|
||||
|
||||
def _remainder_matrix_power(A, t):
|
||||
"""
|
||||
Compute the fractional power of a matrix, for fractions -1 < t < 1.
|
||||
|
||||
This uses algorithm (3.1) of [1]_.
|
||||
The Pade approximation itself uses algorithm (4.1) of [2]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix whose fractional power to evaluate.
|
||||
t : float
|
||||
Fractional power between -1 and 1 exclusive.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X : (N, N) array_like
|
||||
The fractional power of the matrix.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Nicholas J. Higham and Lijing Lin (2013)
|
||||
"An Improved Schur-Pade Algorithm for Fractional Powers
|
||||
of a Matrix and their Frechet Derivatives."
|
||||
|
||||
.. [2] Nicholas J. Higham and Lijing lin (2011)
|
||||
"A Schur-Pade Algorithm for Fractional Powers of a Matrix."
|
||||
SIAM Journal on Matrix Analysis and Applications,
|
||||
32 (3). pp. 1056-1078. ISSN 0895-4798
|
||||
|
||||
"""
|
||||
# This code block is copied from numpy.matrix_power().
|
||||
A = np.asarray(A)
|
||||
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||||
raise ValueError('input must be a square array')
|
||||
|
||||
# Get the number of rows and columns.
|
||||
n, n = A.shape
|
||||
|
||||
# Triangularize the matrix if necessary,
|
||||
# attempting to preserve dtype if possible.
|
||||
if np.array_equal(A, np.triu(A)):
|
||||
Z = None
|
||||
T = A
|
||||
else:
|
||||
if np.isrealobj(A):
|
||||
T, Z = schur(A)
|
||||
if not np.array_equal(T, np.triu(T)):
|
||||
T, Z = rsf2csf(T, Z)
|
||||
else:
|
||||
T, Z = schur(A, output='complex')
|
||||
|
||||
# Zeros on the diagonal of the triangular matrix are forbidden,
|
||||
# because the inverse scaling and squaring cannot deal with it.
|
||||
T_diag = np.diag(T)
|
||||
if np.count_nonzero(T_diag) != n:
|
||||
raise FractionalMatrixPowerError(
|
||||
'cannot use inverse scaling and squaring to find '
|
||||
'the fractional matrix power of a singular matrix')
|
||||
|
||||
# If the triangular matrix is real and has a negative
|
||||
# entry on the diagonal, then force the matrix to be complex.
|
||||
if np.isrealobj(T) and np.min(T_diag) < 0:
|
||||
T = T.astype(complex)
|
||||
|
||||
# Get the fractional power of the triangular matrix,
|
||||
# and de-triangularize it if necessary.
|
||||
U = _remainder_matrix_power_triu(T, t)
|
||||
if Z is not None:
|
||||
ZH = np.conjugate(Z).T
|
||||
return Z.dot(U).dot(ZH)
|
||||
else:
|
||||
return U
|
||||
|
||||
|
||||
def _fractional_matrix_power(A, p):
|
||||
"""
|
||||
Compute the fractional power of a matrix.
|
||||
|
||||
See the fractional_matrix_power docstring in matfuncs.py for more info.
|
||||
|
||||
"""
|
||||
A = np.asarray(A)
|
||||
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||||
raise ValueError('expected a square matrix')
|
||||
if p == int(p):
|
||||
return np.linalg.matrix_power(A, int(p))
|
||||
# Compute singular values.
|
||||
s = svdvals(A)
|
||||
# Inverse scaling and squaring cannot deal with a singular matrix,
|
||||
# because the process of repeatedly taking square roots
|
||||
# would not converge to the identity matrix.
|
||||
if s[-1]:
|
||||
# Compute the condition number relative to matrix inversion,
|
||||
# and use this to decide between floor(p) and ceil(p).
|
||||
k2 = s[0] / s[-1]
|
||||
p1 = p - np.floor(p)
|
||||
p2 = p - np.ceil(p)
|
||||
if p1 * k2 ** (1 - p1) <= -p2 * k2:
|
||||
a = int(np.floor(p))
|
||||
b = p1
|
||||
else:
|
||||
a = int(np.ceil(p))
|
||||
b = p2
|
||||
try:
|
||||
R = _remainder_matrix_power(A, b)
|
||||
Q = np.linalg.matrix_power(A, a)
|
||||
return Q.dot(R)
|
||||
except np.linalg.LinAlgError:
|
||||
pass
|
||||
# If p is negative then we are going to give up.
|
||||
# If p is non-negative then we can fall back to generic funm.
|
||||
if p < 0:
|
||||
X = np.empty_like(A)
|
||||
X.fill(np.nan)
|
||||
return X
|
||||
else:
|
||||
p1 = p - np.floor(p)
|
||||
a = int(np.floor(p))
|
||||
b = p1
|
||||
R, info = funm(A, lambda x: pow(x, b), disp=False)
|
||||
Q = np.linalg.matrix_power(A, a)
|
||||
return Q.dot(R)
|
||||
|
||||
|
||||
def _logm_triu(T):
|
||||
"""
|
||||
Compute matrix logarithm of an upper triangular matrix.
|
||||
|
||||
The matrix logarithm is the inverse of
|
||||
expm: expm(logm(`T`)) == `T`
|
||||
|
||||
Parameters
|
||||
----------
|
||||
T : (N, N) array_like
|
||||
Upper triangular matrix whose logarithm to evaluate
|
||||
|
||||
Returns
|
||||
-------
|
||||
logm : (N, N) ndarray
|
||||
Matrix logarithm of `T`
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2012)
|
||||
"Improved Inverse Scaling and Squaring Algorithms
|
||||
for the Matrix Logarithm."
|
||||
SIAM Journal on Scientific Computing, 34 (4). C152-C169.
|
||||
ISSN 1095-7197
|
||||
|
||||
.. [2] Nicholas J. Higham (2008)
|
||||
"Functions of Matrices: Theory and Computation"
|
||||
ISBN 978-0-898716-46-7
|
||||
|
||||
.. [3] Nicholas J. Higham and Lijing lin (2011)
|
||||
"A Schur-Pade Algorithm for Fractional Powers of a Matrix."
|
||||
SIAM Journal on Matrix Analysis and Applications,
|
||||
32 (3). pp. 1056-1078. ISSN 0895-4798
|
||||
|
||||
"""
|
||||
T = np.asarray(T)
|
||||
if len(T.shape) != 2 or T.shape[0] != T.shape[1]:
|
||||
raise ValueError('expected an upper triangular square matrix')
|
||||
n, n = T.shape
|
||||
|
||||
# Construct T0 with the appropriate type,
|
||||
# depending on the dtype and the spectrum of T.
|
||||
T_diag = np.diag(T)
|
||||
keep_it_real = np.isrealobj(T) and np.min(T_diag) >= 0
|
||||
if keep_it_real:
|
||||
T0 = T
|
||||
else:
|
||||
T0 = T.astype(complex)
|
||||
|
||||
# Define bounds given in Table (2.1).
|
||||
theta = (None,
|
||||
1.59e-5, 2.31e-3, 1.94e-2, 6.21e-2,
|
||||
1.28e-1, 2.06e-1, 2.88e-1, 3.67e-1,
|
||||
4.39e-1, 5.03e-1, 5.60e-1, 6.09e-1,
|
||||
6.52e-1, 6.89e-1, 7.21e-1, 7.49e-1)
|
||||
|
||||
R, s, m = _inverse_squaring_helper(T0, theta)
|
||||
|
||||
# Evaluate U = 2**s r_m(T - I) using the partial fraction expansion (1.1).
|
||||
# This requires the nodes and weights
|
||||
# corresponding to degree-m Gauss-Legendre quadrature.
|
||||
# These quadrature arrays need to be transformed from the [-1, 1] interval
|
||||
# to the [0, 1] interval.
|
||||
nodes, weights = scipy.special.p_roots(m)
|
||||
nodes = nodes.real
|
||||
if nodes.shape != (m,) or weights.shape != (m,):
|
||||
raise Exception('internal error')
|
||||
nodes = 0.5 + 0.5 * nodes
|
||||
weights = 0.5 * weights
|
||||
ident = np.identity(n)
|
||||
U = np.zeros_like(R)
|
||||
for alpha, beta in zip(weights, nodes):
|
||||
U += solve_triangular(ident + beta*R, alpha*R)
|
||||
U *= np.exp2(s)
|
||||
|
||||
# Skip this step if the principal branch
|
||||
# does not exist at T0; this happens when a diagonal entry of T0
|
||||
# is negative with imaginary part 0.
|
||||
has_principal_branch = all(x.real > 0 or x.imag != 0 for x in np.diag(T0))
|
||||
if has_principal_branch:
|
||||
|
||||
# Recompute diagonal entries of U.
|
||||
U[np.diag_indices(n)] = np.log(np.diag(T0))
|
||||
|
||||
# Recompute superdiagonal entries of U.
|
||||
# This indexing of this code should be renovated
|
||||
# when newer np.diagonal() becomes available.
|
||||
for i in range(n-1):
|
||||
l1 = T0[i, i]
|
||||
l2 = T0[i+1, i+1]
|
||||
t12 = T0[i, i+1]
|
||||
U[i, i+1] = _logm_superdiag_entry(l1, l2, t12)
|
||||
|
||||
# Return the logm of the upper triangular matrix.
|
||||
if not np.array_equal(U, np.triu(U)):
|
||||
raise Exception('internal inconsistency')
|
||||
return U
|
||||
|
||||
|
||||
def _logm_force_nonsingular_triangular_matrix(T, inplace=False):
|
||||
# The input matrix should be upper triangular.
|
||||
# The eps is ad hoc and is not meant to be machine precision.
|
||||
tri_eps = 1e-20
|
||||
abs_diag = np.absolute(np.diag(T))
|
||||
if np.any(abs_diag == 0):
|
||||
exact_singularity_msg = 'The logm input matrix is exactly singular.'
|
||||
warnings.warn(exact_singularity_msg, LogmExactlySingularWarning)
|
||||
if not inplace:
|
||||
T = T.copy()
|
||||
n = T.shape[0]
|
||||
for i in range(n):
|
||||
if not T[i, i]:
|
||||
T[i, i] = tri_eps
|
||||
elif np.any(abs_diag < tri_eps):
|
||||
near_singularity_msg = 'The logm input matrix may be nearly singular.'
|
||||
warnings.warn(near_singularity_msg, LogmNearlySingularWarning)
|
||||
return T
|
||||
|
||||
|
||||
def _logm(A):
|
||||
"""
|
||||
Compute the matrix logarithm.
|
||||
|
||||
See the logm docstring in matfuncs.py for more info.
|
||||
|
||||
Notes
|
||||
-----
|
||||
In this function we look at triangular matrices that are similar
|
||||
to the input matrix. If any diagonal entry of such a triangular matrix
|
||||
is exactly zero then the original matrix is singular.
|
||||
The matrix logarithm does not exist for such matrices,
|
||||
but in such cases we will pretend that the diagonal entries that are zero
|
||||
are actually slightly positive by an ad-hoc amount, in the interest
|
||||
of returning something more useful than NaN. This will cause a warning.
|
||||
|
||||
"""
|
||||
A = np.asarray(A)
|
||||
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||||
raise ValueError('expected a square matrix')
|
||||
|
||||
# If the input matrix dtype is integer then copy to a float dtype matrix.
|
||||
if issubclass(A.dtype.type, np.integer):
|
||||
A = np.asarray(A, dtype=float)
|
||||
|
||||
keep_it_real = np.isrealobj(A)
|
||||
try:
|
||||
if np.array_equal(A, np.triu(A)):
|
||||
A = _logm_force_nonsingular_triangular_matrix(A)
|
||||
if np.min(np.diag(A)) < 0:
|
||||
A = A.astype(complex)
|
||||
return _logm_triu(A)
|
||||
else:
|
||||
if keep_it_real:
|
||||
T, Z = schur(A)
|
||||
if not np.array_equal(T, np.triu(T)):
|
||||
T, Z = rsf2csf(T, Z)
|
||||
else:
|
||||
T, Z = schur(A, output='complex')
|
||||
T = _logm_force_nonsingular_triangular_matrix(T, inplace=True)
|
||||
U = _logm_triu(T)
|
||||
ZH = np.conjugate(Z).T
|
||||
return Z.dot(U).dot(ZH)
|
||||
except (SqrtmError, LogmError):
|
||||
X = np.empty_like(A)
|
||||
X.fill(np.nan)
|
||||
return X
|
194
venv/Lib/site-packages/scipy/linalg/_matfuncs_sqrtm.py
Normal file
194
venv/Lib/site-packages/scipy/linalg/_matfuncs_sqrtm.py
Normal file
|
@ -0,0 +1,194 @@
|
|||
"""
|
||||
Matrix square root for general matrices and for upper triangular matrices.
|
||||
|
||||
This module exists to avoid cyclic imports.
|
||||
|
||||
"""
|
||||
__all__ = ['sqrtm']
|
||||
|
||||
import numpy as np
|
||||
|
||||
from scipy._lib._util import _asarray_validated
|
||||
|
||||
|
||||
# Local imports
|
||||
from .misc import norm
|
||||
from .lapack import ztrsyl, dtrsyl
|
||||
from .decomp_schur import schur, rsf2csf
|
||||
|
||||
|
||||
class SqrtmError(np.linalg.LinAlgError):
|
||||
pass
|
||||
|
||||
|
||||
def _sqrtm_triu(T, blocksize=64):
|
||||
"""
|
||||
Matrix square root of an upper triangular matrix.
|
||||
|
||||
This is a helper function for `sqrtm` and `logm`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
T : (N, N) array_like upper triangular
|
||||
Matrix whose square root to evaluate
|
||||
blocksize : int, optional
|
||||
If the blocksize is not degenerate with respect to the
|
||||
size of the input array, then use a blocked algorithm. (Default: 64)
|
||||
|
||||
Returns
|
||||
-------
|
||||
sqrtm : (N, N) ndarray
|
||||
Value of the sqrt function at `T`
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Edvin Deadman, Nicholas J. Higham, Rui Ralha (2013)
|
||||
"Blocked Schur Algorithms for Computing the Matrix Square Root,
|
||||
Lecture Notes in Computer Science, 7782. pp. 171-182.
|
||||
|
||||
"""
|
||||
T_diag = np.diag(T)
|
||||
keep_it_real = np.isrealobj(T) and np.min(T_diag) >= 0
|
||||
if not keep_it_real:
|
||||
T_diag = T_diag.astype(complex)
|
||||
R = np.diag(np.sqrt(T_diag))
|
||||
|
||||
# Compute the number of blocks to use; use at least one block.
|
||||
n, n = T.shape
|
||||
nblocks = max(n // blocksize, 1)
|
||||
|
||||
# Compute the smaller of the two sizes of blocks that
|
||||
# we will actually use, and compute the number of large blocks.
|
||||
bsmall, nlarge = divmod(n, nblocks)
|
||||
blarge = bsmall + 1
|
||||
nsmall = nblocks - nlarge
|
||||
if nsmall * bsmall + nlarge * blarge != n:
|
||||
raise Exception('internal inconsistency')
|
||||
|
||||
# Define the index range covered by each block.
|
||||
start_stop_pairs = []
|
||||
start = 0
|
||||
for count, size in ((nsmall, bsmall), (nlarge, blarge)):
|
||||
for i in range(count):
|
||||
start_stop_pairs.append((start, start + size))
|
||||
start += size
|
||||
|
||||
# Within-block interactions.
|
||||
for start, stop in start_stop_pairs:
|
||||
for j in range(start, stop):
|
||||
for i in range(j-1, start-1, -1):
|
||||
s = 0
|
||||
if j - i > 1:
|
||||
s = R[i, i+1:j].dot(R[i+1:j, j])
|
||||
denom = R[i, i] + R[j, j]
|
||||
num = T[i, j] - s
|
||||
if denom != 0:
|
||||
R[i, j] = (T[i, j] - s) / denom
|
||||
elif denom == 0 and num == 0:
|
||||
R[i, j] = 0
|
||||
else:
|
||||
raise SqrtmError('failed to find the matrix square root')
|
||||
|
||||
# Between-block interactions.
|
||||
for j in range(nblocks):
|
||||
jstart, jstop = start_stop_pairs[j]
|
||||
for i in range(j-1, -1, -1):
|
||||
istart, istop = start_stop_pairs[i]
|
||||
S = T[istart:istop, jstart:jstop]
|
||||
if j - i > 1:
|
||||
S = S - R[istart:istop, istop:jstart].dot(R[istop:jstart,
|
||||
jstart:jstop])
|
||||
|
||||
# Invoke LAPACK.
|
||||
# For more details, see the solve_sylvester implemention
|
||||
# and the fortran dtrsyl and ztrsyl docs.
|
||||
Rii = R[istart:istop, istart:istop]
|
||||
Rjj = R[jstart:jstop, jstart:jstop]
|
||||
if keep_it_real:
|
||||
x, scale, info = dtrsyl(Rii, Rjj, S)
|
||||
else:
|
||||
x, scale, info = ztrsyl(Rii, Rjj, S)
|
||||
R[istart:istop, jstart:jstop] = x * scale
|
||||
|
||||
# Return the matrix square root.
|
||||
return R
|
||||
|
||||
|
||||
def sqrtm(A, disp=True, blocksize=64):
|
||||
"""
|
||||
Matrix square root.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix whose square root to evaluate
|
||||
disp : bool, optional
|
||||
Print warning if error in the result is estimated large
|
||||
instead of returning estimated error. (Default: True)
|
||||
blocksize : integer, optional
|
||||
If the blocksize is not degenerate with respect to the
|
||||
size of the input array, then use a blocked algorithm. (Default: 64)
|
||||
|
||||
Returns
|
||||
-------
|
||||
sqrtm : (N, N) ndarray
|
||||
Value of the sqrt function at `A`
|
||||
|
||||
errest : float
|
||||
(if disp == False)
|
||||
|
||||
Frobenius norm of the estimated error, ||err||_F / ||A||_F
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Edvin Deadman, Nicholas J. Higham, Rui Ralha (2013)
|
||||
"Blocked Schur Algorithms for Computing the Matrix Square Root,
|
||||
Lecture Notes in Computer Science, 7782. pp. 171-182.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import sqrtm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> r = sqrtm(a)
|
||||
>>> r
|
||||
array([[ 0.75592895, 1.13389342],
|
||||
[ 0.37796447, 1.88982237]])
|
||||
>>> r.dot(r)
|
||||
array([[ 1., 3.],
|
||||
[ 1., 4.]])
|
||||
|
||||
"""
|
||||
A = _asarray_validated(A, check_finite=True, as_inexact=True)
|
||||
if len(A.shape) != 2:
|
||||
raise ValueError("Non-matrix input to matrix function.")
|
||||
if blocksize < 1:
|
||||
raise ValueError("The blocksize should be at least 1.")
|
||||
keep_it_real = np.isrealobj(A)
|
||||
if keep_it_real:
|
||||
T, Z = schur(A)
|
||||
if not np.array_equal(T, np.triu(T)):
|
||||
T, Z = rsf2csf(T, Z)
|
||||
else:
|
||||
T, Z = schur(A, output='complex')
|
||||
failflag = False
|
||||
try:
|
||||
R = _sqrtm_triu(T, blocksize=blocksize)
|
||||
ZH = np.conjugate(Z).T
|
||||
X = Z.dot(R).dot(ZH)
|
||||
except SqrtmError:
|
||||
failflag = True
|
||||
X = np.empty_like(A)
|
||||
X.fill(np.nan)
|
||||
|
||||
if disp:
|
||||
if failflag:
|
||||
print("Failed to find a square root.")
|
||||
return X
|
||||
else:
|
||||
try:
|
||||
arg2 = norm(X.dot(X) - A, 'fro')**2 / norm(A, 'fro')
|
||||
except ValueError:
|
||||
# NaNs in matrix
|
||||
arg2 = np.inf
|
||||
|
||||
return X, arg2
|
89
venv/Lib/site-packages/scipy/linalg/_procrustes.py
Normal file
89
venv/Lib/site-packages/scipy/linalg/_procrustes.py
Normal file
|
@ -0,0 +1,89 @@
|
|||
"""
|
||||
Solve the orthogonal Procrustes problem.
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
from .decomp_svd import svd
|
||||
|
||||
|
||||
__all__ = ['orthogonal_procrustes']
|
||||
|
||||
|
||||
def orthogonal_procrustes(A, B, check_finite=True):
|
||||
"""
|
||||
Compute the matrix solution of the orthogonal Procrustes problem.
|
||||
|
||||
Given matrices A and B of equal shape, find an orthogonal matrix R
|
||||
that most closely maps A to B using the algorithm given in [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (M, N) array_like
|
||||
Matrix to be mapped.
|
||||
B : (M, N) array_like
|
||||
Target matrix.
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrices contain only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
R : (N, N) ndarray
|
||||
The matrix solution of the orthogonal Procrustes problem.
|
||||
Minimizes the Frobenius norm of ``(A @ R) - B``, subject to
|
||||
``R.T @ R = I``.
|
||||
scale : float
|
||||
Sum of the singular values of ``A.T @ B``.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If the input array shapes don't match or if check_finite is True and
|
||||
the arrays contain Inf or NaN.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Note that unlike higher level Procrustes analyses of spatial data, this
|
||||
function only uses orthogonal transformations like rotations and
|
||||
reflections, and it does not use scaling or translation.
|
||||
|
||||
.. versionadded:: 0.15.0
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Peter H. Schonemann, "A generalized solution of the orthogonal
|
||||
Procrustes problem", Psychometrica -- Vol. 31, No. 1, March, 1996.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import orthogonal_procrustes
|
||||
>>> A = np.array([[ 2, 0, 1], [-2, 0, 0]])
|
||||
|
||||
Flip the order of columns and check for the anti-diagonal mapping
|
||||
|
||||
>>> R, sca = orthogonal_procrustes(A, np.fliplr(A))
|
||||
>>> R
|
||||
array([[-5.34384992e-17, 0.00000000e+00, 1.00000000e+00],
|
||||
[ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
|
||||
[ 1.00000000e+00, 0.00000000e+00, -7.85941422e-17]])
|
||||
>>> sca
|
||||
9.0
|
||||
|
||||
"""
|
||||
if check_finite:
|
||||
A = np.asarray_chkfinite(A)
|
||||
B = np.asarray_chkfinite(B)
|
||||
else:
|
||||
A = np.asanyarray(A)
|
||||
B = np.asanyarray(B)
|
||||
if A.ndim != 2:
|
||||
raise ValueError('expected ndim to be 2, but observed %s' % A.ndim)
|
||||
if A.shape != B.shape:
|
||||
raise ValueError('the shapes of A and B differ (%s vs %s)' % (
|
||||
A.shape, B.shape))
|
||||
# Be clever with transposes, with the intention to save memory.
|
||||
u, w, vt = svd(B.T.dot(A).T)
|
||||
R = u.dot(vt)
|
||||
scale = w.sum()
|
||||
return R, scale
|
166
venv/Lib/site-packages/scipy/linalg/_sketches.py
Normal file
166
venv/Lib/site-packages/scipy/linalg/_sketches.py
Normal file
|
@ -0,0 +1,166 @@
|
|||
""" Sketching-based Matrix Computations """
|
||||
|
||||
# Author: Jordi Montes <jomsdev@gmail.com>
|
||||
# August 28, 2017
|
||||
|
||||
import numpy as np
|
||||
|
||||
from scipy._lib._util import check_random_state, rng_integers
|
||||
from scipy.sparse import csc_matrix
|
||||
|
||||
__all__ = ['clarkson_woodruff_transform']
|
||||
|
||||
|
||||
def cwt_matrix(n_rows, n_columns, seed=None):
|
||||
r""""
|
||||
Generate a matrix S which represents a Clarkson-Woodruff transform.
|
||||
|
||||
Given the desired size of matrix, the method returns a matrix S of size
|
||||
(n_rows, n_columns) where each column has all the entries set to 0
|
||||
except for one position which has been randomly set to +1 or -1 with
|
||||
equal probability.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_rows: int
|
||||
Number of rows of S
|
||||
n_columns: int
|
||||
Number of columns of S
|
||||
seed : None or int or `numpy.random.RandomState` instance, optional
|
||||
This parameter defines the ``RandomState`` object to use for drawing
|
||||
random variates.
|
||||
If None (or ``np.random``), the global ``np.random`` state is used.
|
||||
If integer, it is used to seed the local ``RandomState`` instance.
|
||||
Default is None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
S : (n_rows, n_columns) csc_matrix
|
||||
The returned matrix has ``n_columns`` nonzero entries.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Given a matrix A, with probability at least 9/10,
|
||||
.. math:: \|SA\| = (1 \pm \epsilon)\|A\|
|
||||
Where the error epsilon is related to the size of S.
|
||||
"""
|
||||
rng = check_random_state(seed)
|
||||
rows = rng_integers(rng, 0, n_rows, n_columns)
|
||||
cols = np.arange(n_columns+1)
|
||||
signs = rng.choice([1, -1], n_columns)
|
||||
S = csc_matrix((signs, rows, cols),shape=(n_rows, n_columns))
|
||||
return S
|
||||
|
||||
|
||||
def clarkson_woodruff_transform(input_matrix, sketch_size, seed=None):
|
||||
r""""
|
||||
Applies a Clarkson-Woodruff Transform/sketch to the input matrix.
|
||||
|
||||
Given an input_matrix ``A`` of size ``(n, d)``, compute a matrix ``A'`` of
|
||||
size (sketch_size, d) so that
|
||||
|
||||
.. math:: \|Ax\| \approx \|A'x\|
|
||||
|
||||
with high probability via the Clarkson-Woodruff Transform, otherwise
|
||||
known as the CountSketch matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
input_matrix: array_like
|
||||
Input matrix, of shape ``(n, d)``.
|
||||
sketch_size: int
|
||||
Number of rows for the sketch.
|
||||
seed : None or int or `numpy.random.RandomState` instance, optional
|
||||
This parameter defines the ``RandomState`` object to use for drawing
|
||||
random variates.
|
||||
If None (or ``np.random``), the global ``np.random`` state is used.
|
||||
If integer, it is used to seed the local ``RandomState`` instance.
|
||||
Default is None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A' : array_like
|
||||
Sketch of the input matrix ``A``, of size ``(sketch_size, d)``.
|
||||
|
||||
Notes
|
||||
-----
|
||||
To make the statement
|
||||
|
||||
.. math:: \|Ax\| \approx \|A'x\|
|
||||
|
||||
precise, observe the following result which is adapted from the
|
||||
proof of Theorem 14 of [2]_ via Markov's Inequality. If we have
|
||||
a sketch size ``sketch_size=k`` which is at least
|
||||
|
||||
.. math:: k \geq \frac{2}{\epsilon^2\delta}
|
||||
|
||||
Then for any fixed vector ``x``,
|
||||
|
||||
.. math:: \|Ax\| = (1\pm\epsilon)\|A'x\|
|
||||
|
||||
with probability at least one minus delta.
|
||||
|
||||
This implementation takes advantage of sparsity: computing
|
||||
a sketch takes time proportional to ``A.nnz``. Data ``A`` which
|
||||
is in ``scipy.sparse.csc_matrix`` format gives the quickest
|
||||
computation time for sparse input.
|
||||
|
||||
>>> from scipy import linalg
|
||||
>>> from scipy import sparse
|
||||
>>> n_rows, n_columns, density, sketch_n_rows = 15000, 100, 0.01, 200
|
||||
>>> A = sparse.rand(n_rows, n_columns, density=density, format='csc')
|
||||
>>> B = sparse.rand(n_rows, n_columns, density=density, format='csr')
|
||||
>>> C = sparse.rand(n_rows, n_columns, density=density, format='coo')
|
||||
>>> D = np.random.randn(n_rows, n_columns)
|
||||
>>> SA = linalg.clarkson_woodruff_transform(A, sketch_n_rows) # fastest
|
||||
>>> SB = linalg.clarkson_woodruff_transform(B, sketch_n_rows) # fast
|
||||
>>> SC = linalg.clarkson_woodruff_transform(C, sketch_n_rows) # slower
|
||||
>>> SD = linalg.clarkson_woodruff_transform(D, sketch_n_rows) # slowest
|
||||
|
||||
That said, this method does perform well on dense inputs, just slower
|
||||
on a relative scale.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Given a big dense matrix ``A``:
|
||||
|
||||
>>> from scipy import linalg
|
||||
>>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200
|
||||
>>> A = np.random.randn(n_rows, n_columns)
|
||||
>>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows)
|
||||
>>> sketch.shape
|
||||
(200, 100)
|
||||
>>> norm_A = np.linalg.norm(A)
|
||||
>>> norm_sketch = np.linalg.norm(sketch)
|
||||
|
||||
Now with high probability, the true norm ``norm_A`` is close to
|
||||
the sketched norm ``norm_sketch`` in absolute value.
|
||||
|
||||
Similarly, applying our sketch preserves the solution to a linear
|
||||
regression of :math:`\min \|Ax - b\|`.
|
||||
|
||||
>>> from scipy import linalg
|
||||
>>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200
|
||||
>>> A = np.random.randn(n_rows, n_columns)
|
||||
>>> b = np.random.randn(n_rows)
|
||||
>>> x = np.linalg.lstsq(A, b, rcond=None)
|
||||
>>> Ab = np.hstack((A, b.reshape(-1,1)))
|
||||
>>> SAb = linalg.clarkson_woodruff_transform(Ab, sketch_n_rows)
|
||||
>>> SA, Sb = SAb[:,:-1], SAb[:,-1]
|
||||
>>> x_sketched = np.linalg.lstsq(SA, Sb, rcond=None)
|
||||
|
||||
As with the matrix norm example, ``np.linalg.norm(A @ x - b)``
|
||||
is close to ``np.linalg.norm(A @ x_sketched - b)`` with high
|
||||
probability.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and
|
||||
regression in input sparsity time. In STOC, 2013.
|
||||
|
||||
.. [2] David P. Woodruff. Sketching as a tool for numerical linear algebra.
|
||||
In Foundations and Trends in Theoretical Computer Science, 2014.
|
||||
|
||||
"""
|
||||
S = cwt_matrix(sketch_size, input_matrix.shape[0], seed)
|
||||
return S.dot(input_matrix)
|
Binary file not shown.
842
venv/Lib/site-packages/scipy/linalg/_solvers.py
Normal file
842
venv/Lib/site-packages/scipy/linalg/_solvers.py
Normal file
|
@ -0,0 +1,842 @@
|
|||
"""Matrix equation solver routines"""
|
||||
# Author: Jeffrey Armstrong <jeff@approximatrix.com>
|
||||
# February 24, 2012
|
||||
|
||||
# Modified: Chad Fulton <ChadFulton@gmail.com>
|
||||
# June 19, 2014
|
||||
|
||||
# Modified: Ilhan Polat <ilhanpolat@gmail.com>
|
||||
# September 13, 2016
|
||||
|
||||
import warnings
|
||||
import numpy as np
|
||||
from numpy.linalg import inv, LinAlgError, norm, cond, svd
|
||||
|
||||
from .basic import solve, solve_triangular, matrix_balance
|
||||
from .lapack import get_lapack_funcs
|
||||
from .decomp_schur import schur
|
||||
from .decomp_lu import lu
|
||||
from .decomp_qr import qr
|
||||
from ._decomp_qz import ordqz
|
||||
from .decomp import _asarray_validated
|
||||
from .special_matrices import kron, block_diag
|
||||
|
||||
__all__ = ['solve_sylvester',
|
||||
'solve_continuous_lyapunov', 'solve_discrete_lyapunov',
|
||||
'solve_lyapunov',
|
||||
'solve_continuous_are', 'solve_discrete_are']
|
||||
|
||||
|
||||
def solve_sylvester(a, b, q):
|
||||
"""
|
||||
Computes a solution (X) to the Sylvester equation :math:`AX + XB = Q`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, M) array_like
|
||||
Leading matrix of the Sylvester equation
|
||||
b : (N, N) array_like
|
||||
Trailing matrix of the Sylvester equation
|
||||
q : (M, N) array_like
|
||||
Right-hand side
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : (M, N) ndarray
|
||||
The solution to the Sylvester equation.
|
||||
|
||||
Raises
|
||||
------
|
||||
LinAlgError
|
||||
If solution was not found
|
||||
|
||||
Notes
|
||||
-----
|
||||
Computes a solution to the Sylvester matrix equation via the Bartels-
|
||||
Stewart algorithm. The A and B matrices first undergo Schur
|
||||
decompositions. The resulting matrices are used to construct an
|
||||
alternative Sylvester equation (``RY + YS^T = F``) where the R and S
|
||||
matrices are in quasi-triangular form (or, when R, S or F are complex,
|
||||
triangular form). The simplified equation is then solved using
|
||||
``*TRSYL`` from LAPACK directly.
|
||||
|
||||
.. versionadded:: 0.11.0
|
||||
|
||||
Examples
|
||||
--------
|
||||
Given `a`, `b`, and `q` solve for `x`:
|
||||
|
||||
>>> from scipy import linalg
|
||||
>>> a = np.array([[-3, -2, 0], [-1, -1, 3], [3, -5, -1]])
|
||||
>>> b = np.array([[1]])
|
||||
>>> q = np.array([[1],[2],[3]])
|
||||
>>> x = linalg.solve_sylvester(a, b, q)
|
||||
>>> x
|
||||
array([[ 0.0625],
|
||||
[-0.5625],
|
||||
[ 0.6875]])
|
||||
>>> np.allclose(a.dot(x) + x.dot(b), q)
|
||||
True
|
||||
|
||||
"""
|
||||
|
||||
# Compute the Schur decomposition form of a
|
||||
r, u = schur(a, output='real')
|
||||
|
||||
# Compute the Schur decomposition of b
|
||||
s, v = schur(b.conj().transpose(), output='real')
|
||||
|
||||
# Construct f = u'*q*v
|
||||
f = np.dot(np.dot(u.conj().transpose(), q), v)
|
||||
|
||||
# Call the Sylvester equation solver
|
||||
trsyl, = get_lapack_funcs(('trsyl',), (r, s, f))
|
||||
if trsyl is None:
|
||||
raise RuntimeError('LAPACK implementation does not contain a proper '
|
||||
'Sylvester equation solver (TRSYL)')
|
||||
y, scale, info = trsyl(r, s, f, tranb='C')
|
||||
|
||||
y = scale*y
|
||||
|
||||
if info < 0:
|
||||
raise LinAlgError("Illegal value encountered in "
|
||||
"the %d term" % (-info,))
|
||||
|
||||
return np.dot(np.dot(u, y), v.conj().transpose())
|
||||
|
||||
|
||||
def solve_continuous_lyapunov(a, q):
|
||||
"""
|
||||
Solves the continuous Lyapunov equation :math:`AX + XA^H = Q`.
|
||||
|
||||
Uses the Bartels-Stewart algorithm to find :math:`X`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
A square matrix
|
||||
|
||||
q : array_like
|
||||
Right-hand side square matrix
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : ndarray
|
||||
Solution to the continuous Lyapunov equation
|
||||
|
||||
See Also
|
||||
--------
|
||||
solve_discrete_lyapunov : computes the solution to the discrete-time
|
||||
Lyapunov equation
|
||||
solve_sylvester : computes the solution to the Sylvester equation
|
||||
|
||||
Notes
|
||||
-----
|
||||
The continuous Lyapunov equation is a special form of the Sylvester
|
||||
equation, hence this solver relies on LAPACK routine ?TRSYL.
|
||||
|
||||
.. versionadded:: 0.11.0
|
||||
|
||||
Examples
|
||||
--------
|
||||
Given `a` and `q` solve for `x`:
|
||||
|
||||
>>> from scipy import linalg
|
||||
>>> a = np.array([[-3, -2, 0], [-1, -1, 0], [0, -5, -1]])
|
||||
>>> b = np.array([2, 4, -1])
|
||||
>>> q = np.eye(3)
|
||||
>>> x = linalg.solve_continuous_lyapunov(a, q)
|
||||
>>> x
|
||||
array([[ -0.75 , 0.875 , -3.75 ],
|
||||
[ 0.875 , -1.375 , 5.3125],
|
||||
[ -3.75 , 5.3125, -27.0625]])
|
||||
>>> np.allclose(a.dot(x) + x.dot(a.T), q)
|
||||
True
|
||||
"""
|
||||
|
||||
a = np.atleast_2d(_asarray_validated(a, check_finite=True))
|
||||
q = np.atleast_2d(_asarray_validated(q, check_finite=True))
|
||||
|
||||
r_or_c = float
|
||||
|
||||
for ind, _ in enumerate((a, q)):
|
||||
if np.iscomplexobj(_):
|
||||
r_or_c = complex
|
||||
|
||||
if not np.equal(*_.shape):
|
||||
raise ValueError("Matrix {} should be square.".format("aq"[ind]))
|
||||
|
||||
# Shape consistency check
|
||||
if a.shape != q.shape:
|
||||
raise ValueError("Matrix a and q should have the same shape.")
|
||||
|
||||
# Compute the Schur decomposition form of a
|
||||
r, u = schur(a, output='real')
|
||||
|
||||
# Construct f = u'*q*u
|
||||
f = u.conj().T.dot(q.dot(u))
|
||||
|
||||
# Call the Sylvester equation solver
|
||||
trsyl = get_lapack_funcs('trsyl', (r, f))
|
||||
|
||||
dtype_string = 'T' if r_or_c == float else 'C'
|
||||
y, scale, info = trsyl(r, r, f, tranb=dtype_string)
|
||||
|
||||
if info < 0:
|
||||
raise ValueError('?TRSYL exited with the internal error '
|
||||
'"illegal value in argument number {}.". See '
|
||||
'LAPACK documentation for the ?TRSYL error codes.'
|
||||
''.format(-info))
|
||||
elif info == 1:
|
||||
warnings.warn('Input "a" has an eigenvalue pair whose sum is '
|
||||
'very close to or exactly zero. The solution is '
|
||||
'obtained via perturbing the coefficients.',
|
||||
RuntimeWarning)
|
||||
y *= scale
|
||||
|
||||
return u.dot(y).dot(u.conj().T)
|
||||
|
||||
|
||||
# For backwards compatibility, keep the old name
|
||||
solve_lyapunov = solve_continuous_lyapunov
|
||||
|
||||
|
||||
def _solve_discrete_lyapunov_direct(a, q):
|
||||
"""
|
||||
Solves the discrete Lyapunov equation directly.
|
||||
|
||||
This function is called by the `solve_discrete_lyapunov` function with
|
||||
`method=direct`. It is not supposed to be called directly.
|
||||
"""
|
||||
|
||||
lhs = kron(a, a.conj())
|
||||
lhs = np.eye(lhs.shape[0]) - lhs
|
||||
x = solve(lhs, q.flatten())
|
||||
|
||||
return np.reshape(x, q.shape)
|
||||
|
||||
|
||||
def _solve_discrete_lyapunov_bilinear(a, q):
|
||||
"""
|
||||
Solves the discrete Lyapunov equation using a bilinear transformation.
|
||||
|
||||
This function is called by the `solve_discrete_lyapunov` function with
|
||||
`method=bilinear`. It is not supposed to be called directly.
|
||||
"""
|
||||
eye = np.eye(a.shape[0])
|
||||
aH = a.conj().transpose()
|
||||
aHI_inv = inv(aH + eye)
|
||||
b = np.dot(aH - eye, aHI_inv)
|
||||
c = 2*np.dot(np.dot(inv(a + eye), q), aHI_inv)
|
||||
return solve_lyapunov(b.conj().transpose(), -c)
|
||||
|
||||
|
||||
def solve_discrete_lyapunov(a, q, method=None):
|
||||
"""
|
||||
Solves the discrete Lyapunov equation :math:`AXA^H - X + Q = 0`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a, q : (M, M) array_like
|
||||
Square matrices corresponding to A and Q in the equation
|
||||
above respectively. Must have the same shape.
|
||||
|
||||
method : {'direct', 'bilinear'}, optional
|
||||
Type of solver.
|
||||
|
||||
If not given, chosen to be ``direct`` if ``M`` is less than 10 and
|
||||
``bilinear`` otherwise.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : ndarray
|
||||
Solution to the discrete Lyapunov equation
|
||||
|
||||
See Also
|
||||
--------
|
||||
solve_continuous_lyapunov : computes the solution to the continuous-time
|
||||
Lyapunov equation
|
||||
|
||||
Notes
|
||||
-----
|
||||
This section describes the available solvers that can be selected by the
|
||||
'method' parameter. The default method is *direct* if ``M`` is less than 10
|
||||
and ``bilinear`` otherwise.
|
||||
|
||||
Method *direct* uses a direct analytical solution to the discrete Lyapunov
|
||||
equation. The algorithm is given in, for example, [1]_. However, it requires
|
||||
the linear solution of a system with dimension :math:`M^2` so that
|
||||
performance degrades rapidly for even moderately sized matrices.
|
||||
|
||||
Method *bilinear* uses a bilinear transformation to convert the discrete
|
||||
Lyapunov equation to a continuous Lyapunov equation :math:`(BX+XB'=-C)`
|
||||
where :math:`B=(A-I)(A+I)^{-1}` and
|
||||
:math:`C=2(A' + I)^{-1} Q (A + I)^{-1}`. The continuous equation can be
|
||||
efficiently solved since it is a special case of a Sylvester equation.
|
||||
The transformation algorithm is from Popov (1964) as described in [2]_.
|
||||
|
||||
.. versionadded:: 0.11.0
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Hamilton, James D. Time Series Analysis, Princeton: Princeton
|
||||
University Press, 1994. 265. Print.
|
||||
http://doc1.lbfl.li/aca/FLMF037168.pdf
|
||||
.. [2] Gajic, Z., and M.T.J. Qureshi. 2008.
|
||||
Lyapunov Matrix Equation in System Stability and Control.
|
||||
Dover Books on Engineering Series. Dover Publications.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Given `a` and `q` solve for `x`:
|
||||
|
||||
>>> from scipy import linalg
|
||||
>>> a = np.array([[0.2, 0.5],[0.7, -0.9]])
|
||||
>>> q = np.eye(2)
|
||||
>>> x = linalg.solve_discrete_lyapunov(a, q)
|
||||
>>> x
|
||||
array([[ 0.70872893, 1.43518822],
|
||||
[ 1.43518822, -2.4266315 ]])
|
||||
>>> np.allclose(a.dot(x).dot(a.T)-x, -q)
|
||||
True
|
||||
|
||||
"""
|
||||
a = np.asarray(a)
|
||||
q = np.asarray(q)
|
||||
if method is None:
|
||||
# Select automatically based on size of matrices
|
||||
if a.shape[0] >= 10:
|
||||
method = 'bilinear'
|
||||
else:
|
||||
method = 'direct'
|
||||
|
||||
meth = method.lower()
|
||||
|
||||
if meth == 'direct':
|
||||
x = _solve_discrete_lyapunov_direct(a, q)
|
||||
elif meth == 'bilinear':
|
||||
x = _solve_discrete_lyapunov_bilinear(a, q)
|
||||
else:
|
||||
raise ValueError('Unknown solver %s' % method)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def solve_continuous_are(a, b, q, r, e=None, s=None, balanced=True):
|
||||
r"""
|
||||
Solves the continuous-time algebraic Riccati equation (CARE).
|
||||
|
||||
The CARE is defined as
|
||||
|
||||
.. math::
|
||||
|
||||
X A + A^H X - X B R^{-1} B^H X + Q = 0
|
||||
|
||||
The limitations for a solution to exist are :
|
||||
|
||||
* All eigenvalues of :math:`A` on the right half plane, should be
|
||||
controllable.
|
||||
|
||||
* The associated hamiltonian pencil (See Notes), should have
|
||||
eigenvalues sufficiently away from the imaginary axis.
|
||||
|
||||
Moreover, if ``e`` or ``s`` is not precisely ``None``, then the
|
||||
generalized version of CARE
|
||||
|
||||
.. math::
|
||||
|
||||
E^HXA + A^HXE - (E^HXB + S) R^{-1} (B^HXE + S^H) + Q = 0
|
||||
|
||||
is solved. When omitted, ``e`` is assumed to be the identity and ``s``
|
||||
is assumed to be the zero matrix with sizes compatible with ``a`` and
|
||||
``b``, respectively.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, M) array_like
|
||||
Square matrix
|
||||
b : (M, N) array_like
|
||||
Input
|
||||
q : (M, M) array_like
|
||||
Input
|
||||
r : (N, N) array_like
|
||||
Nonsingular square matrix
|
||||
e : (M, M) array_like, optional
|
||||
Nonsingular square matrix
|
||||
s : (M, N) array_like, optional
|
||||
Input
|
||||
balanced : bool, optional
|
||||
The boolean that indicates whether a balancing step is performed
|
||||
on the data. The default is set to True.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : (M, M) ndarray
|
||||
Solution to the continuous-time algebraic Riccati equation.
|
||||
|
||||
Raises
|
||||
------
|
||||
LinAlgError
|
||||
For cases where the stable subspace of the pencil could not be
|
||||
isolated. See Notes section and the references for details.
|
||||
|
||||
See Also
|
||||
--------
|
||||
solve_discrete_are : Solves the discrete-time algebraic Riccati equation
|
||||
|
||||
Notes
|
||||
-----
|
||||
The equation is solved by forming the extended hamiltonian matrix pencil,
|
||||
as described in [1]_, :math:`H - \lambda J` given by the block matrices ::
|
||||
|
||||
[ A 0 B ] [ E 0 0 ]
|
||||
[-Q -A^H -S ] - \lambda * [ 0 E^H 0 ]
|
||||
[ S^H B^H R ] [ 0 0 0 ]
|
||||
|
||||
and using a QZ decomposition method.
|
||||
|
||||
In this algorithm, the fail conditions are linked to the symmetry
|
||||
of the product :math:`U_2 U_1^{-1}` and condition number of
|
||||
:math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the
|
||||
eigenvectors spanning the stable subspace with 2-m rows and partitioned
|
||||
into two m-row matrices. See [1]_ and [2]_ for more details.
|
||||
|
||||
In order to improve the QZ decomposition accuracy, the pencil goes
|
||||
through a balancing step where the sum of absolute values of
|
||||
:math:`H` and :math:`J` entries (after removing the diagonal entries of
|
||||
the sum) is balanced following the recipe given in [3]_.
|
||||
|
||||
.. versionadded:: 0.11.0
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] P. van Dooren , "A Generalized Eigenvalue Approach For Solving
|
||||
Riccati Equations.", SIAM Journal on Scientific and Statistical
|
||||
Computing, Vol.2(2), DOI: 10.1137/0902010
|
||||
|
||||
.. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati
|
||||
Equations.", Massachusetts Institute of Technology. Laboratory for
|
||||
Information and Decision Systems. LIDS-R ; 859. Available online :
|
||||
http://hdl.handle.net/1721.1/1301
|
||||
|
||||
.. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001,
|
||||
SIAM J. Sci. Comput., 2001, Vol.22(5), DOI: 10.1137/S1064827500367993
|
||||
|
||||
Examples
|
||||
--------
|
||||
Given `a`, `b`, `q`, and `r` solve for `x`:
|
||||
|
||||
>>> from scipy import linalg
|
||||
>>> a = np.array([[4, 3], [-4.5, -3.5]])
|
||||
>>> b = np.array([[1], [-1]])
|
||||
>>> q = np.array([[9, 6], [6, 4.]])
|
||||
>>> r = 1
|
||||
>>> x = linalg.solve_continuous_are(a, b, q, r)
|
||||
>>> x
|
||||
array([[ 21.72792206, 14.48528137],
|
||||
[ 14.48528137, 9.65685425]])
|
||||
>>> np.allclose(a.T.dot(x) + x.dot(a)-x.dot(b).dot(b.T).dot(x), -q)
|
||||
True
|
||||
|
||||
"""
|
||||
|
||||
# Validate input arguments
|
||||
a, b, q, r, e, s, m, n, r_or_c, gen_are = _are_validate_args(
|
||||
a, b, q, r, e, s, 'care')
|
||||
|
||||
H = np.empty((2*m+n, 2*m+n), dtype=r_or_c)
|
||||
H[:m, :m] = a
|
||||
H[:m, m:2*m] = 0.
|
||||
H[:m, 2*m:] = b
|
||||
H[m:2*m, :m] = -q
|
||||
H[m:2*m, m:2*m] = -a.conj().T
|
||||
H[m:2*m, 2*m:] = 0. if s is None else -s
|
||||
H[2*m:, :m] = 0. if s is None else s.conj().T
|
||||
H[2*m:, m:2*m] = b.conj().T
|
||||
H[2*m:, 2*m:] = r
|
||||
|
||||
if gen_are and e is not None:
|
||||
J = block_diag(e, e.conj().T, np.zeros_like(r, dtype=r_or_c))
|
||||
else:
|
||||
J = block_diag(np.eye(2*m), np.zeros_like(r, dtype=r_or_c))
|
||||
|
||||
if balanced:
|
||||
# xGEBAL does not remove the diagonals before scaling. Also
|
||||
# to avoid destroying the Symplectic structure, we follow Ref.3
|
||||
M = np.abs(H) + np.abs(J)
|
||||
M[np.diag_indices_from(M)] = 0.
|
||||
_, (sca, _) = matrix_balance(M, separate=1, permute=0)
|
||||
# do we need to bother?
|
||||
if not np.allclose(sca, np.ones_like(sca)):
|
||||
# Now impose diag(D,inv(D)) from Benner where D is
|
||||
# square root of s_i/s_(n+i) for i=0,....
|
||||
sca = np.log2(sca)
|
||||
# NOTE: Py3 uses "Bankers Rounding: round to the nearest even" !!
|
||||
s = np.round((sca[m:2*m] - sca[:m])/2)
|
||||
sca = 2 ** np.r_[s, -s, sca[2*m:]]
|
||||
# Elementwise multiplication via broadcasting.
|
||||
elwisescale = sca[:, None] * np.reciprocal(sca)
|
||||
H *= elwisescale
|
||||
J *= elwisescale
|
||||
|
||||
# Deflate the pencil to 2m x 2m ala Ref.1, eq.(55)
|
||||
q, r = qr(H[:, -n:])
|
||||
H = q[:, n:].conj().T.dot(H[:, :2*m])
|
||||
J = q[:2*m, n:].conj().T.dot(J[:2*m, :2*m])
|
||||
|
||||
# Decide on which output type is needed for QZ
|
||||
out_str = 'real' if r_or_c == float else 'complex'
|
||||
|
||||
_, _, _, _, _, u = ordqz(H, J, sort='lhp', overwrite_a=True,
|
||||
overwrite_b=True, check_finite=False,
|
||||
output=out_str)
|
||||
|
||||
# Get the relevant parts of the stable subspace basis
|
||||
if e is not None:
|
||||
u, _ = qr(np.vstack((e.dot(u[:m, :m]), u[m:, :m])))
|
||||
u00 = u[:m, :m]
|
||||
u10 = u[m:, :m]
|
||||
|
||||
# Solve via back-substituion after checking the condition of u00
|
||||
up, ul, uu = lu(u00)
|
||||
if 1/cond(uu) < np.spacing(1.):
|
||||
raise LinAlgError('Failed to find a finite solution.')
|
||||
|
||||
# Exploit the triangular structure
|
||||
x = solve_triangular(ul.conj().T,
|
||||
solve_triangular(uu.conj().T,
|
||||
u10.conj().T,
|
||||
lower=True),
|
||||
unit_diagonal=True,
|
||||
).conj().T.dot(up.conj().T)
|
||||
if balanced:
|
||||
x *= sca[:m, None] * sca[:m]
|
||||
|
||||
# Check the deviation from symmetry for lack of success
|
||||
# See proof of Thm.5 item 3 in [2]
|
||||
u_sym = u00.conj().T.dot(u10)
|
||||
n_u_sym = norm(u_sym, 1)
|
||||
u_sym = u_sym - u_sym.conj().T
|
||||
sym_threshold = np.max([np.spacing(1000.), 0.1*n_u_sym])
|
||||
|
||||
if norm(u_sym, 1) > sym_threshold:
|
||||
raise LinAlgError('The associated Hamiltonian pencil has eigenvalues '
|
||||
'too close to the imaginary axis')
|
||||
|
||||
return (x + x.conj().T)/2
|
||||
|
||||
|
||||
def solve_discrete_are(a, b, q, r, e=None, s=None, balanced=True):
|
||||
r"""
|
||||
Solves the discrete-time algebraic Riccati equation (DARE).
|
||||
|
||||
The DARE is defined as
|
||||
|
||||
.. math::
|
||||
|
||||
A^HXA - X - (A^HXB) (R + B^HXB)^{-1} (B^HXA) + Q = 0
|
||||
|
||||
The limitations for a solution to exist are :
|
||||
|
||||
* All eigenvalues of :math:`A` outside the unit disc, should be
|
||||
controllable.
|
||||
|
||||
* The associated symplectic pencil (See Notes), should have
|
||||
eigenvalues sufficiently away from the unit circle.
|
||||
|
||||
Moreover, if ``e`` and ``s`` are not both precisely ``None``, then the
|
||||
generalized version of DARE
|
||||
|
||||
.. math::
|
||||
|
||||
A^HXA - E^HXE - (A^HXB+S) (R+B^HXB)^{-1} (B^HXA+S^H) + Q = 0
|
||||
|
||||
is solved. When omitted, ``e`` is assumed to be the identity and ``s``
|
||||
is assumed to be the zero matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, M) array_like
|
||||
Square matrix
|
||||
b : (M, N) array_like
|
||||
Input
|
||||
q : (M, M) array_like
|
||||
Input
|
||||
r : (N, N) array_like
|
||||
Square matrix
|
||||
e : (M, M) array_like, optional
|
||||
Nonsingular square matrix
|
||||
s : (M, N) array_like, optional
|
||||
Input
|
||||
balanced : bool
|
||||
The boolean that indicates whether a balancing step is performed
|
||||
on the data. The default is set to True.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : (M, M) ndarray
|
||||
Solution to the discrete algebraic Riccati equation.
|
||||
|
||||
Raises
|
||||
------
|
||||
LinAlgError
|
||||
For cases where the stable subspace of the pencil could not be
|
||||
isolated. See Notes section and the references for details.
|
||||
|
||||
See Also
|
||||
--------
|
||||
solve_continuous_are : Solves the continuous algebraic Riccati equation
|
||||
|
||||
Notes
|
||||
-----
|
||||
The equation is solved by forming the extended symplectic matrix pencil,
|
||||
as described in [1]_, :math:`H - \lambda J` given by the block matrices ::
|
||||
|
||||
[ A 0 B ] [ E 0 B ]
|
||||
[ -Q E^H -S ] - \lambda * [ 0 A^H 0 ]
|
||||
[ S^H 0 R ] [ 0 -B^H 0 ]
|
||||
|
||||
and using a QZ decomposition method.
|
||||
|
||||
In this algorithm, the fail conditions are linked to the symmetry
|
||||
of the product :math:`U_2 U_1^{-1}` and condition number of
|
||||
:math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the
|
||||
eigenvectors spanning the stable subspace with 2-m rows and partitioned
|
||||
into two m-row matrices. See [1]_ and [2]_ for more details.
|
||||
|
||||
In order to improve the QZ decomposition accuracy, the pencil goes
|
||||
through a balancing step where the sum of absolute values of
|
||||
:math:`H` and :math:`J` rows/cols (after removing the diagonal entries)
|
||||
is balanced following the recipe given in [3]_. If the data has small
|
||||
numerical noise, balancing may amplify their effects and some clean up
|
||||
is required.
|
||||
|
||||
.. versionadded:: 0.11.0
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] P. van Dooren , "A Generalized Eigenvalue Approach For Solving
|
||||
Riccati Equations.", SIAM Journal on Scientific and Statistical
|
||||
Computing, Vol.2(2), DOI: 10.1137/0902010
|
||||
|
||||
.. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati
|
||||
Equations.", Massachusetts Institute of Technology. Laboratory for
|
||||
Information and Decision Systems. LIDS-R ; 859. Available online :
|
||||
http://hdl.handle.net/1721.1/1301
|
||||
|
||||
.. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001,
|
||||
SIAM J. Sci. Comput., 2001, Vol.22(5), DOI: 10.1137/S1064827500367993
|
||||
|
||||
Examples
|
||||
--------
|
||||
Given `a`, `b`, `q`, and `r` solve for `x`:
|
||||
|
||||
>>> from scipy import linalg as la
|
||||
>>> a = np.array([[0, 1], [0, -1]])
|
||||
>>> b = np.array([[1, 0], [2, 1]])
|
||||
>>> q = np.array([[-4, -4], [-4, 7]])
|
||||
>>> r = np.array([[9, 3], [3, 1]])
|
||||
>>> x = la.solve_discrete_are(a, b, q, r)
|
||||
>>> x
|
||||
array([[-4., -4.],
|
||||
[-4., 7.]])
|
||||
>>> R = la.solve(r + b.T.dot(x).dot(b), b.T.dot(x).dot(a))
|
||||
>>> np.allclose(a.T.dot(x).dot(a) - x - a.T.dot(x).dot(b).dot(R), -q)
|
||||
True
|
||||
|
||||
"""
|
||||
|
||||
# Validate input arguments
|
||||
a, b, q, r, e, s, m, n, r_or_c, gen_are = _are_validate_args(
|
||||
a, b, q, r, e, s, 'dare')
|
||||
|
||||
# Form the matrix pencil
|
||||
H = np.zeros((2*m+n, 2*m+n), dtype=r_or_c)
|
||||
H[:m, :m] = a
|
||||
H[:m, 2*m:] = b
|
||||
H[m:2*m, :m] = -q
|
||||
H[m:2*m, m:2*m] = np.eye(m) if e is None else e.conj().T
|
||||
H[m:2*m, 2*m:] = 0. if s is None else -s
|
||||
H[2*m:, :m] = 0. if s is None else s.conj().T
|
||||
H[2*m:, 2*m:] = r
|
||||
|
||||
J = np.zeros_like(H, dtype=r_or_c)
|
||||
J[:m, :m] = np.eye(m) if e is None else e
|
||||
J[m:2*m, m:2*m] = a.conj().T
|
||||
J[2*m:, m:2*m] = -b.conj().T
|
||||
|
||||
if balanced:
|
||||
# xGEBAL does not remove the diagonals before scaling. Also
|
||||
# to avoid destroying the Symplectic structure, we follow Ref.3
|
||||
M = np.abs(H) + np.abs(J)
|
||||
M[np.diag_indices_from(M)] = 0.
|
||||
_, (sca, _) = matrix_balance(M, separate=1, permute=0)
|
||||
# do we need to bother?
|
||||
if not np.allclose(sca, np.ones_like(sca)):
|
||||
# Now impose diag(D,inv(D)) from Benner where D is
|
||||
# square root of s_i/s_(n+i) for i=0,....
|
||||
sca = np.log2(sca)
|
||||
# NOTE: Py3 uses "Bankers Rounding: round to the nearest even" !!
|
||||
s = np.round((sca[m:2*m] - sca[:m])/2)
|
||||
sca = 2 ** np.r_[s, -s, sca[2*m:]]
|
||||
# Elementwise multiplication via broadcasting.
|
||||
elwisescale = sca[:, None] * np.reciprocal(sca)
|
||||
H *= elwisescale
|
||||
J *= elwisescale
|
||||
|
||||
# Deflate the pencil by the R column ala Ref.1
|
||||
q_of_qr, _ = qr(H[:, -n:])
|
||||
H = q_of_qr[:, n:].conj().T.dot(H[:, :2*m])
|
||||
J = q_of_qr[:, n:].conj().T.dot(J[:, :2*m])
|
||||
|
||||
# Decide on which output type is needed for QZ
|
||||
out_str = 'real' if r_or_c == float else 'complex'
|
||||
|
||||
_, _, _, _, _, u = ordqz(H, J, sort='iuc',
|
||||
overwrite_a=True,
|
||||
overwrite_b=True,
|
||||
check_finite=False,
|
||||
output=out_str)
|
||||
|
||||
# Get the relevant parts of the stable subspace basis
|
||||
if e is not None:
|
||||
u, _ = qr(np.vstack((e.dot(u[:m, :m]), u[m:, :m])))
|
||||
u00 = u[:m, :m]
|
||||
u10 = u[m:, :m]
|
||||
|
||||
# Solve via back-substituion after checking the condition of u00
|
||||
up, ul, uu = lu(u00)
|
||||
|
||||
if 1/cond(uu) < np.spacing(1.):
|
||||
raise LinAlgError('Failed to find a finite solution.')
|
||||
|
||||
# Exploit the triangular structure
|
||||
x = solve_triangular(ul.conj().T,
|
||||
solve_triangular(uu.conj().T,
|
||||
u10.conj().T,
|
||||
lower=True),
|
||||
unit_diagonal=True,
|
||||
).conj().T.dot(up.conj().T)
|
||||
if balanced:
|
||||
x *= sca[:m, None] * sca[:m]
|
||||
|
||||
# Check the deviation from symmetry for lack of success
|
||||
# See proof of Thm.5 item 3 in [2]
|
||||
u_sym = u00.conj().T.dot(u10)
|
||||
n_u_sym = norm(u_sym, 1)
|
||||
u_sym = u_sym - u_sym.conj().T
|
||||
sym_threshold = np.max([np.spacing(1000.), 0.1*n_u_sym])
|
||||
|
||||
if norm(u_sym, 1) > sym_threshold:
|
||||
raise LinAlgError('The associated symplectic pencil has eigenvalues'
|
||||
'too close to the unit circle')
|
||||
|
||||
return (x + x.conj().T)/2
|
||||
|
||||
|
||||
def _are_validate_args(a, b, q, r, e, s, eq_type='care'):
|
||||
"""
|
||||
A helper function to validate the arguments supplied to the
|
||||
Riccati equation solvers. Any discrepancy found in the input
|
||||
matrices leads to a ``ValueError`` exception.
|
||||
|
||||
Essentially, it performs:
|
||||
|
||||
- a check whether the input is free of NaN and Infs
|
||||
- a pass for the data through ``numpy.atleast_2d()``
|
||||
- squareness check of the relevant arrays
|
||||
- shape consistency check of the arrays
|
||||
- singularity check of the relevant arrays
|
||||
- symmetricity check of the relevant matrices
|
||||
- a check whether the regular or the generalized version is asked.
|
||||
|
||||
This function is used by ``solve_continuous_are`` and
|
||||
``solve_discrete_are``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a, b, q, r, e, s : array_like
|
||||
Input data
|
||||
eq_type : str
|
||||
Accepted arguments are 'care' and 'dare'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
a, b, q, r, e, s : ndarray
|
||||
Regularized input data
|
||||
m, n : int
|
||||
shape of the problem
|
||||
r_or_c : type
|
||||
Data type of the problem, returns float or complex
|
||||
gen_or_not : bool
|
||||
Type of the equation, True for generalized and False for regular ARE.
|
||||
|
||||
"""
|
||||
|
||||
if not eq_type.lower() in ('dare', 'care'):
|
||||
raise ValueError("Equation type unknown. "
|
||||
"Only 'care' and 'dare' is understood")
|
||||
|
||||
a = np.atleast_2d(_asarray_validated(a, check_finite=True))
|
||||
b = np.atleast_2d(_asarray_validated(b, check_finite=True))
|
||||
q = np.atleast_2d(_asarray_validated(q, check_finite=True))
|
||||
r = np.atleast_2d(_asarray_validated(r, check_finite=True))
|
||||
|
||||
# Get the correct data types otherwise NumPy complains
|
||||
# about pushing complex numbers into real arrays.
|
||||
r_or_c = complex if np.iscomplexobj(b) else float
|
||||
|
||||
for ind, mat in enumerate((a, q, r)):
|
||||
if np.iscomplexobj(mat):
|
||||
r_or_c = complex
|
||||
|
||||
if not np.equal(*mat.shape):
|
||||
raise ValueError("Matrix {} should be square.".format("aqr"[ind]))
|
||||
|
||||
# Shape consistency checks
|
||||
m, n = b.shape
|
||||
if m != a.shape[0]:
|
||||
raise ValueError("Matrix a and b should have the same number of rows.")
|
||||
if m != q.shape[0]:
|
||||
raise ValueError("Matrix a and q should have the same shape.")
|
||||
if n != r.shape[0]:
|
||||
raise ValueError("Matrix b and r should have the same number of cols.")
|
||||
|
||||
# Check if the data matrices q, r are (sufficiently) hermitian
|
||||
for ind, mat in enumerate((q, r)):
|
||||
if norm(mat - mat.conj().T, 1) > np.spacing(norm(mat, 1))*100:
|
||||
raise ValueError("Matrix {} should be symmetric/hermitian."
|
||||
"".format("qr"[ind]))
|
||||
|
||||
# Continuous time ARE should have a nonsingular r matrix.
|
||||
if eq_type == 'care':
|
||||
min_sv = svd(r, compute_uv=False)[-1]
|
||||
if min_sv == 0. or min_sv < np.spacing(1.)*norm(r, 1):
|
||||
raise ValueError('Matrix r is numerically singular.')
|
||||
|
||||
# Check if the generalized case is required with omitted arguments
|
||||
# perform late shape checking etc.
|
||||
generalized_case = e is not None or s is not None
|
||||
|
||||
if generalized_case:
|
||||
if e is not None:
|
||||
e = np.atleast_2d(_asarray_validated(e, check_finite=True))
|
||||
if not np.equal(*e.shape):
|
||||
raise ValueError("Matrix e should be square.")
|
||||
if m != e.shape[0]:
|
||||
raise ValueError("Matrix a and e should have the same shape.")
|
||||
# numpy.linalg.cond doesn't check for exact zeros and
|
||||
# emits a runtime warning. Hence the following manual check.
|
||||
min_sv = svd(e, compute_uv=False)[-1]
|
||||
if min_sv == 0. or min_sv < np.spacing(1.) * norm(e, 1):
|
||||
raise ValueError('Matrix e is numerically singular.')
|
||||
if np.iscomplexobj(e):
|
||||
r_or_c = complex
|
||||
if s is not None:
|
||||
s = np.atleast_2d(_asarray_validated(s, check_finite=True))
|
||||
if s.shape != b.shape:
|
||||
raise ValueError("Matrix b and s should have the same shape.")
|
||||
if np.iscomplexobj(s):
|
||||
r_or_c = complex
|
||||
|
||||
return a, b, q, r, e, s, m, n, r_or_c, generalized_case
|
63
venv/Lib/site-packages/scipy/linalg/_testutils.py
Normal file
63
venv/Lib/site-packages/scipy/linalg/_testutils.py
Normal file
|
@ -0,0 +1,63 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
class _FakeMatrix(object):
|
||||
def __init__(self, data):
|
||||
self._data = data
|
||||
self.__array_interface__ = data.__array_interface__
|
||||
|
||||
|
||||
class _FakeMatrix2(object):
|
||||
def __init__(self, data):
|
||||
self._data = data
|
||||
|
||||
def __array__(self):
|
||||
return self._data
|
||||
|
||||
|
||||
def _get_array(shape, dtype):
|
||||
"""
|
||||
Get a test array of given shape and data type.
|
||||
Returned NxN matrices are posdef, and 2xN are banded-posdef.
|
||||
|
||||
"""
|
||||
if len(shape) == 2 and shape[0] == 2:
|
||||
# yield a banded positive definite one
|
||||
x = np.zeros(shape, dtype=dtype)
|
||||
x[0, 1:] = -1
|
||||
x[1] = 2
|
||||
return x
|
||||
elif len(shape) == 2 and shape[0] == shape[1]:
|
||||
# always yield a positive definite matrix
|
||||
x = np.zeros(shape, dtype=dtype)
|
||||
j = np.arange(shape[0])
|
||||
x[j, j] = 2
|
||||
x[j[:-1], j[:-1]+1] = -1
|
||||
x[j[:-1]+1, j[:-1]] = -1
|
||||
return x
|
||||
else:
|
||||
np.random.seed(1234)
|
||||
return np.random.randn(*shape).astype(dtype)
|
||||
|
||||
|
||||
def _id(x):
|
||||
return x
|
||||
|
||||
|
||||
def assert_no_overwrite(call, shapes, dtypes=None):
|
||||
"""
|
||||
Test that a call does not overwrite its input arguments
|
||||
"""
|
||||
|
||||
if dtypes is None:
|
||||
dtypes = [np.float32, np.float64, np.complex64, np.complex128]
|
||||
|
||||
for dtype in dtypes:
|
||||
for order in ["C", "F"]:
|
||||
for faker in [_id, _FakeMatrix, _FakeMatrix2]:
|
||||
orig_inputs = [_get_array(s, dtype) for s in shapes]
|
||||
inputs = [faker(x.copy(order)) for x in orig_inputs]
|
||||
call(*inputs)
|
||||
msg = "call modified inputs [%r, %r]" % (dtype, faker)
|
||||
for a, b in zip(inputs, orig_inputs):
|
||||
np.testing.assert_equal(a, b, err_msg=msg)
|
1617
venv/Lib/site-packages/scipy/linalg/basic.py
Normal file
1617
venv/Lib/site-packages/scipy/linalg/basic.py
Normal file
File diff suppressed because it is too large
Load diff
450
venv/Lib/site-packages/scipy/linalg/blas.py
Normal file
450
venv/Lib/site-packages/scipy/linalg/blas.py
Normal file
|
@ -0,0 +1,450 @@
|
|||
"""
|
||||
Low-level BLAS functions (:mod:`scipy.linalg.blas`)
|
||||
===================================================
|
||||
|
||||
This module contains low-level functions from the BLAS library.
|
||||
|
||||
.. versionadded:: 0.12.0
|
||||
|
||||
.. note::
|
||||
|
||||
The common ``overwrite_<>`` option in many routines, allows the
|
||||
input arrays to be overwritten to avoid extra memory allocation.
|
||||
However this requires the array to satisfy two conditions
|
||||
which are memory order and the data type to match exactly the
|
||||
order and the type expected by the routine.
|
||||
|
||||
As an example, if you pass a double precision float array to any
|
||||
``S....`` routine which expects single precision arguments, f2py
|
||||
will create an intermediate array to match the argument types and
|
||||
overwriting will be performed on that intermediate array.
|
||||
|
||||
Similarly, if a C-contiguous array is passed, f2py will pass a
|
||||
FORTRAN-contiguous array internally. Please make sure that these
|
||||
details are satisfied. More information can be found in the f2py
|
||||
documentation.
|
||||
|
||||
.. warning::
|
||||
|
||||
These functions do little to no error checking.
|
||||
It is possible to cause crashes by mis-using them,
|
||||
so prefer using the higher-level routines in `scipy.linalg`.
|
||||
|
||||
Finding functions
|
||||
-----------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
get_blas_funcs
|
||||
find_best_blas_type
|
||||
|
||||
BLAS Level 1 functions
|
||||
----------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
caxpy
|
||||
ccopy
|
||||
cdotc
|
||||
cdotu
|
||||
crotg
|
||||
cscal
|
||||
csrot
|
||||
csscal
|
||||
cswap
|
||||
dasum
|
||||
daxpy
|
||||
dcopy
|
||||
ddot
|
||||
dnrm2
|
||||
drot
|
||||
drotg
|
||||
drotm
|
||||
drotmg
|
||||
dscal
|
||||
dswap
|
||||
dzasum
|
||||
dznrm2
|
||||
icamax
|
||||
idamax
|
||||
isamax
|
||||
izamax
|
||||
sasum
|
||||
saxpy
|
||||
scasum
|
||||
scnrm2
|
||||
scopy
|
||||
sdot
|
||||
snrm2
|
||||
srot
|
||||
srotg
|
||||
srotm
|
||||
srotmg
|
||||
sscal
|
||||
sswap
|
||||
zaxpy
|
||||
zcopy
|
||||
zdotc
|
||||
zdotu
|
||||
zdrot
|
||||
zdscal
|
||||
zrotg
|
||||
zscal
|
||||
zswap
|
||||
|
||||
BLAS Level 2 functions
|
||||
----------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
sgbmv
|
||||
sgemv
|
||||
sger
|
||||
ssbmv
|
||||
sspr
|
||||
sspr2
|
||||
ssymv
|
||||
ssyr
|
||||
ssyr2
|
||||
stbmv
|
||||
stpsv
|
||||
strmv
|
||||
strsv
|
||||
dgbmv
|
||||
dgemv
|
||||
dger
|
||||
dsbmv
|
||||
dspr
|
||||
dspr2
|
||||
dsymv
|
||||
dsyr
|
||||
dsyr2
|
||||
dtbmv
|
||||
dtpsv
|
||||
dtrmv
|
||||
dtrsv
|
||||
cgbmv
|
||||
cgemv
|
||||
cgerc
|
||||
cgeru
|
||||
chbmv
|
||||
chemv
|
||||
cher
|
||||
cher2
|
||||
chpmv
|
||||
chpr
|
||||
chpr2
|
||||
ctbmv
|
||||
ctbsv
|
||||
ctpmv
|
||||
ctpsv
|
||||
ctrmv
|
||||
ctrsv
|
||||
csyr
|
||||
zgbmv
|
||||
zgemv
|
||||
zgerc
|
||||
zgeru
|
||||
zhbmv
|
||||
zhemv
|
||||
zher
|
||||
zher2
|
||||
zhpmv
|
||||
zhpr
|
||||
zhpr2
|
||||
ztbmv
|
||||
ztbsv
|
||||
ztpmv
|
||||
ztrmv
|
||||
ztrsv
|
||||
zsyr
|
||||
|
||||
BLAS Level 3 functions
|
||||
----------------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
sgemm
|
||||
ssymm
|
||||
ssyr2k
|
||||
ssyrk
|
||||
strmm
|
||||
strsm
|
||||
dgemm
|
||||
dsymm
|
||||
dsyr2k
|
||||
dsyrk
|
||||
dtrmm
|
||||
dtrsm
|
||||
cgemm
|
||||
chemm
|
||||
cher2k
|
||||
cherk
|
||||
csymm
|
||||
csyr2k
|
||||
csyrk
|
||||
ctrmm
|
||||
ctrsm
|
||||
zgemm
|
||||
zhemm
|
||||
zher2k
|
||||
zherk
|
||||
zsymm
|
||||
zsyr2k
|
||||
zsyrk
|
||||
ztrmm
|
||||
ztrsm
|
||||
|
||||
"""
|
||||
#
|
||||
# Author: Pearu Peterson, March 2002
|
||||
# refactoring by Fabian Pedregosa, March 2010
|
||||
#
|
||||
|
||||
__all__ = ['get_blas_funcs', 'find_best_blas_type']
|
||||
|
||||
import numpy as _np
|
||||
import functools
|
||||
|
||||
from scipy.linalg import _fblas
|
||||
try:
|
||||
from scipy.linalg import _cblas
|
||||
except ImportError:
|
||||
_cblas = None
|
||||
|
||||
# Expose all functions (only fblas --- cblas is an implementation detail)
|
||||
empty_module = None
|
||||
from scipy.linalg._fblas import *
|
||||
del empty_module
|
||||
|
||||
# all numeric dtypes '?bBhHiIlLqQefdgFDGO' that are safe to be converted to
|
||||
|
||||
# single precision float : '?bBhH!!!!!!ef!!!!!!'
|
||||
# double precision float : '?bBhHiIlLqQefdg!!!!'
|
||||
# single precision complex : '?bBhH!!!!!!ef!!F!!!'
|
||||
# double precision complex : '?bBhHiIlLqQefdgFDG!'
|
||||
|
||||
_type_score = {x: 1 for x in '?bBhHef'}
|
||||
_type_score.update({x: 2 for x in 'iIlLqQd'})
|
||||
|
||||
# Handle float128(g) and complex256(G) separately in case non-Windows systems.
|
||||
# On Windows, the values will be rewritten to the same key with the same value.
|
||||
_type_score.update({'F': 3, 'D': 4, 'g': 2, 'G': 4})
|
||||
|
||||
# Final mapping to the actual prefixes and dtypes
|
||||
_type_conv = {1: ('s', _np.dtype('float32')),
|
||||
2: ('d', _np.dtype('float64')),
|
||||
3: ('c', _np.dtype('complex64')),
|
||||
4: ('z', _np.dtype('complex128'))}
|
||||
|
||||
# some convenience alias for complex functions
|
||||
_blas_alias = {'cnrm2': 'scnrm2', 'znrm2': 'dznrm2',
|
||||
'cdot': 'cdotc', 'zdot': 'zdotc',
|
||||
'cger': 'cgerc', 'zger': 'zgerc',
|
||||
'sdotc': 'sdot', 'sdotu': 'sdot',
|
||||
'ddotc': 'ddot', 'ddotu': 'ddot'}
|
||||
|
||||
|
||||
def find_best_blas_type(arrays=(), dtype=None):
|
||||
"""Find best-matching BLAS/LAPACK type.
|
||||
|
||||
Arrays are used to determine the optimal prefix of BLAS routines.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arrays : sequence of ndarrays, optional
|
||||
Arrays can be given to determine optimal prefix of BLAS
|
||||
routines. If not given, double-precision routines will be
|
||||
used, otherwise the most generic type in arrays will be used.
|
||||
dtype : str or dtype, optional
|
||||
Data-type specifier. Not used if `arrays` is non-empty.
|
||||
|
||||
Returns
|
||||
-------
|
||||
prefix : str
|
||||
BLAS/LAPACK prefix character.
|
||||
dtype : dtype
|
||||
Inferred Numpy data type.
|
||||
prefer_fortran : bool
|
||||
Whether to prefer Fortran order routines over C order.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import scipy.linalg.blas as bla
|
||||
>>> a = np.random.rand(10,15)
|
||||
>>> b = np.asfortranarray(a) # Change the memory layout order
|
||||
>>> bla.find_best_blas_type((a,))
|
||||
('d', dtype('float64'), False)
|
||||
>>> bla.find_best_blas_type((a*1j,))
|
||||
('z', dtype('complex128'), False)
|
||||
>>> bla.find_best_blas_type((b,))
|
||||
('d', dtype('float64'), True)
|
||||
|
||||
"""
|
||||
dtype = _np.dtype(dtype)
|
||||
max_score = _type_score.get(dtype.char, 5)
|
||||
prefer_fortran = False
|
||||
|
||||
if arrays:
|
||||
# In most cases, single element is passed through, quicker route
|
||||
if len(arrays) == 1:
|
||||
max_score = _type_score.get(arrays[0].dtype.char, 5)
|
||||
prefer_fortran = arrays[0].flags['FORTRAN']
|
||||
else:
|
||||
# use the most generic type in arrays
|
||||
scores = [_type_score.get(x.dtype.char, 5) for x in arrays]
|
||||
max_score = max(scores)
|
||||
ind_max_score = scores.index(max_score)
|
||||
# safe upcasting for mix of float64 and complex64 --> prefix 'z'
|
||||
if max_score == 3 and (2 in scores):
|
||||
max_score = 4
|
||||
|
||||
if arrays[ind_max_score].flags['FORTRAN']:
|
||||
# prefer Fortran for leading array with column major order
|
||||
prefer_fortran = True
|
||||
|
||||
# Get the LAPACK prefix and the corresponding dtype if not fall back
|
||||
# to 'd' and double precision float.
|
||||
prefix, dtype = _type_conv.get(max_score, ('d', _np.dtype('float64')))
|
||||
|
||||
return prefix, dtype, prefer_fortran
|
||||
|
||||
|
||||
def _get_funcs(names, arrays, dtype,
|
||||
lib_name, fmodule, cmodule,
|
||||
fmodule_name, cmodule_name, alias):
|
||||
"""
|
||||
Return available BLAS/LAPACK functions.
|
||||
|
||||
Used also in lapack.py. See get_blas_funcs for docstring.
|
||||
"""
|
||||
|
||||
funcs = []
|
||||
unpack = False
|
||||
dtype = _np.dtype(dtype)
|
||||
module1 = (cmodule, cmodule_name)
|
||||
module2 = (fmodule, fmodule_name)
|
||||
|
||||
if isinstance(names, str):
|
||||
names = (names,)
|
||||
unpack = True
|
||||
|
||||
prefix, dtype, prefer_fortran = find_best_blas_type(arrays, dtype)
|
||||
|
||||
if prefer_fortran:
|
||||
module1, module2 = module2, module1
|
||||
|
||||
for name in names:
|
||||
func_name = prefix + name
|
||||
func_name = alias.get(func_name, func_name)
|
||||
func = getattr(module1[0], func_name, None)
|
||||
module_name = module1[1]
|
||||
if func is None:
|
||||
func = getattr(module2[0], func_name, None)
|
||||
module_name = module2[1]
|
||||
if func is None:
|
||||
raise ValueError(
|
||||
'%s function %s could not be found' % (lib_name, func_name))
|
||||
func.module_name, func.typecode = module_name, prefix
|
||||
func.dtype = dtype
|
||||
func.prefix = prefix # Backward compatibility
|
||||
funcs.append(func)
|
||||
|
||||
if unpack:
|
||||
return funcs[0]
|
||||
else:
|
||||
return funcs
|
||||
|
||||
|
||||
def _memoize_get_funcs(func):
|
||||
"""
|
||||
Memoized fast path for _get_funcs instances
|
||||
"""
|
||||
memo = {}
|
||||
func.memo = memo
|
||||
|
||||
@functools.wraps(func)
|
||||
def getter(names, arrays=(), dtype=None):
|
||||
key = (names, dtype)
|
||||
for array in arrays:
|
||||
# cf. find_blas_funcs
|
||||
key += (array.dtype.char, array.flags.fortran)
|
||||
|
||||
try:
|
||||
value = memo.get(key)
|
||||
except TypeError:
|
||||
# unhashable key etc.
|
||||
key = None
|
||||
value = None
|
||||
|
||||
if value is not None:
|
||||
return value
|
||||
|
||||
value = func(names, arrays, dtype)
|
||||
|
||||
if key is not None:
|
||||
memo[key] = value
|
||||
|
||||
return value
|
||||
|
||||
return getter
|
||||
|
||||
|
||||
@_memoize_get_funcs
|
||||
def get_blas_funcs(names, arrays=(), dtype=None):
|
||||
"""Return available BLAS function objects from names.
|
||||
|
||||
Arrays are used to determine the optimal prefix of BLAS routines.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
names : str or sequence of str
|
||||
Name(s) of BLAS functions without type prefix.
|
||||
|
||||
arrays : sequence of ndarrays, optional
|
||||
Arrays can be given to determine optimal prefix of BLAS
|
||||
routines. If not given, double-precision routines will be
|
||||
used, otherwise the most generic type in arrays will be used.
|
||||
|
||||
dtype : str or dtype, optional
|
||||
Data-type specifier. Not used if `arrays` is non-empty.
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
funcs : list
|
||||
List containing the found function(s).
|
||||
|
||||
|
||||
Notes
|
||||
-----
|
||||
This routine automatically chooses between Fortran/C
|
||||
interfaces. Fortran code is used whenever possible for arrays with
|
||||
column major order. In all other cases, C code is preferred.
|
||||
|
||||
In BLAS, the naming convention is that all functions start with a
|
||||
type prefix, which depends on the type of the principal
|
||||
matrix. These can be one of {'s', 'd', 'c', 'z'} for the NumPy
|
||||
types {float32, float64, complex64, complex128} respectively.
|
||||
The code and the dtype are stored in attributes `typecode` and `dtype`
|
||||
of the returned functions.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import scipy.linalg as LA
|
||||
>>> a = np.random.rand(3,2)
|
||||
>>> x_gemv = LA.get_blas_funcs('gemv', (a,))
|
||||
>>> x_gemv.typecode
|
||||
'd'
|
||||
>>> x_gemv = LA.get_blas_funcs('gemv',(a*1j,))
|
||||
>>> x_gemv.typecode
|
||||
'z'
|
||||
|
||||
"""
|
||||
return _get_funcs(names, arrays, dtype,
|
||||
"BLAS", _fblas, _cblas, "fblas", "cblas",
|
||||
_blas_alias)
|
BIN
venv/Lib/site-packages/scipy/linalg/cython_blas.cp36-win32.pyd
Normal file
BIN
venv/Lib/site-packages/scipy/linalg/cython_blas.cp36-win32.pyd
Normal file
Binary file not shown.
314
venv/Lib/site-packages/scipy/linalg/cython_blas.pxd
Normal file
314
venv/Lib/site-packages/scipy/linalg/cython_blas.pxd
Normal file
|
@ -0,0 +1,314 @@
|
|||
# This file was generated by _generate_pyx.py.
|
||||
# Do not edit this file directly.
|
||||
|
||||
# Within scipy, these wrappers can be used via relative or absolute cimport.
|
||||
# Examples:
|
||||
# from ..linalg cimport cython_blas
|
||||
# from scipy.linalg cimport cython_blas
|
||||
# cimport scipy.linalg.cython_blas as cython_blas
|
||||
# cimport ..linalg.cython_blas as cython_blas
|
||||
|
||||
# Within SciPy, if BLAS functions are needed in C/C++/Fortran,
|
||||
# these wrappers should not be used.
|
||||
# The original libraries should be linked directly.
|
||||
|
||||
ctypedef float s
|
||||
ctypedef double d
|
||||
ctypedef float complex c
|
||||
ctypedef double complex z
|
||||
|
||||
cdef void caxpy(int *n, c *ca, c *cx, int *incx, c *cy, int *incy) nogil
|
||||
|
||||
cdef void ccopy(int *n, c *cx, int *incx, c *cy, int *incy) nogil
|
||||
|
||||
cdef c cdotc(int *n, c *cx, int *incx, c *cy, int *incy) nogil
|
||||
|
||||
cdef c cdotu(int *n, c *cx, int *incx, c *cy, int *incy) nogil
|
||||
|
||||
cdef void cgbmv(char *trans, int *m, int *n, int *kl, int *ku, c *alpha, c *a, int *lda, c *x, int *incx, c *beta, c *y, int *incy) nogil
|
||||
|
||||
cdef void cgemm(char *transa, char *transb, int *m, int *n, int *k, c *alpha, c *a, int *lda, c *b, int *ldb, c *beta, c *c, int *ldc) nogil
|
||||
|
||||
cdef void cgemv(char *trans, int *m, int *n, c *alpha, c *a, int *lda, c *x, int *incx, c *beta, c *y, int *incy) nogil
|
||||
|
||||
cdef void cgerc(int *m, int *n, c *alpha, c *x, int *incx, c *y, int *incy, c *a, int *lda) nogil
|
||||
|
||||
cdef void cgeru(int *m, int *n, c *alpha, c *x, int *incx, c *y, int *incy, c *a, int *lda) nogil
|
||||
|
||||
cdef void chbmv(char *uplo, int *n, int *k, c *alpha, c *a, int *lda, c *x, int *incx, c *beta, c *y, int *incy) nogil
|
||||
|
||||
cdef void chemm(char *side, char *uplo, int *m, int *n, c *alpha, c *a, int *lda, c *b, int *ldb, c *beta, c *c, int *ldc) nogil
|
||||
|
||||
cdef void chemv(char *uplo, int *n, c *alpha, c *a, int *lda, c *x, int *incx, c *beta, c *y, int *incy) nogil
|
||||
|
||||
cdef void cher(char *uplo, int *n, s *alpha, c *x, int *incx, c *a, int *lda) nogil
|
||||
|
||||
cdef void cher2(char *uplo, int *n, c *alpha, c *x, int *incx, c *y, int *incy, c *a, int *lda) nogil
|
||||
|
||||
cdef void cher2k(char *uplo, char *trans, int *n, int *k, c *alpha, c *a, int *lda, c *b, int *ldb, s *beta, c *c, int *ldc) nogil
|
||||
|
||||
cdef void cherk(char *uplo, char *trans, int *n, int *k, s *alpha, c *a, int *lda, s *beta, c *c, int *ldc) nogil
|
||||
|
||||
cdef void chpmv(char *uplo, int *n, c *alpha, c *ap, c *x, int *incx, c *beta, c *y, int *incy) nogil
|
||||
|
||||
cdef void chpr(char *uplo, int *n, s *alpha, c *x, int *incx, c *ap) nogil
|
||||
|
||||
cdef void chpr2(char *uplo, int *n, c *alpha, c *x, int *incx, c *y, int *incy, c *ap) nogil
|
||||
|
||||
cdef void crotg(c *ca, c *cb, s *c, c *s) nogil
|
||||
|
||||
cdef void cscal(int *n, c *ca, c *cx, int *incx) nogil
|
||||
|
||||
cdef void csrot(int *n, c *cx, int *incx, c *cy, int *incy, s *c, s *s) nogil
|
||||
|
||||
cdef void csscal(int *n, s *sa, c *cx, int *incx) nogil
|
||||
|
||||
cdef void cswap(int *n, c *cx, int *incx, c *cy, int *incy) nogil
|
||||
|
||||
cdef void csymm(char *side, char *uplo, int *m, int *n, c *alpha, c *a, int *lda, c *b, int *ldb, c *beta, c *c, int *ldc) nogil
|
||||
|
||||
cdef void csyr2k(char *uplo, char *trans, int *n, int *k, c *alpha, c *a, int *lda, c *b, int *ldb, c *beta, c *c, int *ldc) nogil
|
||||
|
||||
cdef void csyrk(char *uplo, char *trans, int *n, int *k, c *alpha, c *a, int *lda, c *beta, c *c, int *ldc) nogil
|
||||
|
||||
cdef void ctbmv(char *uplo, char *trans, char *diag, int *n, int *k, c *a, int *lda, c *x, int *incx) nogil
|
||||
|
||||
cdef void ctbsv(char *uplo, char *trans, char *diag, int *n, int *k, c *a, int *lda, c *x, int *incx) nogil
|
||||
|
||||
cdef void ctpmv(char *uplo, char *trans, char *diag, int *n, c *ap, c *x, int *incx) nogil
|
||||
|
||||
cdef void ctpsv(char *uplo, char *trans, char *diag, int *n, c *ap, c *x, int *incx) nogil
|
||||
|
||||
cdef void ctrmm(char *side, char *uplo, char *transa, char *diag, int *m, int *n, c *alpha, c *a, int *lda, c *b, int *ldb) nogil
|
||||
|
||||
cdef void ctrmv(char *uplo, char *trans, char *diag, int *n, c *a, int *lda, c *x, int *incx) nogil
|
||||
|
||||
cdef void ctrsm(char *side, char *uplo, char *transa, char *diag, int *m, int *n, c *alpha, c *a, int *lda, c *b, int *ldb) nogil
|
||||
|
||||
cdef void ctrsv(char *uplo, char *trans, char *diag, int *n, c *a, int *lda, c *x, int *incx) nogil
|
||||
|
||||
cdef d dasum(int *n, d *dx, int *incx) nogil
|
||||
|
||||
cdef void daxpy(int *n, d *da, d *dx, int *incx, d *dy, int *incy) nogil
|
||||
|
||||
cdef d dcabs1(z *z) nogil
|
||||
|
||||
cdef void dcopy(int *n, d *dx, int *incx, d *dy, int *incy) nogil
|
||||
|
||||
cdef d ddot(int *n, d *dx, int *incx, d *dy, int *incy) nogil
|
||||
|
||||
cdef void dgbmv(char *trans, int *m, int *n, int *kl, int *ku, d *alpha, d *a, int *lda, d *x, int *incx, d *beta, d *y, int *incy) nogil
|
||||
|
||||
cdef void dgemm(char *transa, char *transb, int *m, int *n, int *k, d *alpha, d *a, int *lda, d *b, int *ldb, d *beta, d *c, int *ldc) nogil
|
||||
|
||||
cdef void dgemv(char *trans, int *m, int *n, d *alpha, d *a, int *lda, d *x, int *incx, d *beta, d *y, int *incy) nogil
|
||||
|
||||
cdef void dger(int *m, int *n, d *alpha, d *x, int *incx, d *y, int *incy, d *a, int *lda) nogil
|
||||
|
||||
cdef d dnrm2(int *n, d *x, int *incx) nogil
|
||||
|
||||
cdef void drot(int *n, d *dx, int *incx, d *dy, int *incy, d *c, d *s) nogil
|
||||
|
||||
cdef void drotg(d *da, d *db, d *c, d *s) nogil
|
||||
|
||||
cdef void drotm(int *n, d *dx, int *incx, d *dy, int *incy, d *dparam) nogil
|
||||
|
||||
cdef void drotmg(d *dd1, d *dd2, d *dx1, d *dy1, d *dparam) nogil
|
||||
|
||||
cdef void dsbmv(char *uplo, int *n, int *k, d *alpha, d *a, int *lda, d *x, int *incx, d *beta, d *y, int *incy) nogil
|
||||
|
||||
cdef void dscal(int *n, d *da, d *dx, int *incx) nogil
|
||||
|
||||
cdef d dsdot(int *n, s *sx, int *incx, s *sy, int *incy) nogil
|
||||
|
||||
cdef void dspmv(char *uplo, int *n, d *alpha, d *ap, d *x, int *incx, d *beta, d *y, int *incy) nogil
|
||||
|
||||
cdef void dspr(char *uplo, int *n, d *alpha, d *x, int *incx, d *ap) nogil
|
||||
|
||||
cdef void dspr2(char *uplo, int *n, d *alpha, d *x, int *incx, d *y, int *incy, d *ap) nogil
|
||||
|
||||
cdef void dswap(int *n, d *dx, int *incx, d *dy, int *incy) nogil
|
||||
|
||||
cdef void dsymm(char *side, char *uplo, int *m, int *n, d *alpha, d *a, int *lda, d *b, int *ldb, d *beta, d *c, int *ldc) nogil
|
||||
|
||||
cdef void dsymv(char *uplo, int *n, d *alpha, d *a, int *lda, d *x, int *incx, d *beta, d *y, int *incy) nogil
|
||||
|
||||
cdef void dsyr(char *uplo, int *n, d *alpha, d *x, int *incx, d *a, int *lda) nogil
|
||||
|
||||
cdef void dsyr2(char *uplo, int *n, d *alpha, d *x, int *incx, d *y, int *incy, d *a, int *lda) nogil
|
||||
|
||||
cdef void dsyr2k(char *uplo, char *trans, int *n, int *k, d *alpha, d *a, int *lda, d *b, int *ldb, d *beta, d *c, int *ldc) nogil
|
||||
|
||||
cdef void dsyrk(char *uplo, char *trans, int *n, int *k, d *alpha, d *a, int *lda, d *beta, d *c, int *ldc) nogil
|
||||
|
||||
cdef void dtbmv(char *uplo, char *trans, char *diag, int *n, int *k, d *a, int *lda, d *x, int *incx) nogil
|
||||
|
||||
cdef void dtbsv(char *uplo, char *trans, char *diag, int *n, int *k, d *a, int *lda, d *x, int *incx) nogil
|
||||
|
||||
cdef void dtpmv(char *uplo, char *trans, char *diag, int *n, d *ap, d *x, int *incx) nogil
|
||||
|
||||
cdef void dtpsv(char *uplo, char *trans, char *diag, int *n, d *ap, d *x, int *incx) nogil
|
||||
|
||||
cdef void dtrmm(char *side, char *uplo, char *transa, char *diag, int *m, int *n, d *alpha, d *a, int *lda, d *b, int *ldb) nogil
|
||||
|
||||
cdef void dtrmv(char *uplo, char *trans, char *diag, int *n, d *a, int *lda, d *x, int *incx) nogil
|
||||
|
||||
cdef void dtrsm(char *side, char *uplo, char *transa, char *diag, int *m, int *n, d *alpha, d *a, int *lda, d *b, int *ldb) nogil
|
||||
|
||||
cdef void dtrsv(char *uplo, char *trans, char *diag, int *n, d *a, int *lda, d *x, int *incx) nogil
|
||||
|
||||
cdef d dzasum(int *n, z *zx, int *incx) nogil
|
||||
|
||||
cdef d dznrm2(int *n, z *x, int *incx) nogil
|
||||
|
||||
cdef int icamax(int *n, c *cx, int *incx) nogil
|
||||
|
||||
cdef int idamax(int *n, d *dx, int *incx) nogil
|
||||
|
||||
cdef int isamax(int *n, s *sx, int *incx) nogil
|
||||
|
||||
cdef int izamax(int *n, z *zx, int *incx) nogil
|
||||
|
||||
cdef bint lsame(char *ca, char *cb) nogil
|
||||
|
||||
cdef s sasum(int *n, s *sx, int *incx) nogil
|
||||
|
||||
cdef void saxpy(int *n, s *sa, s *sx, int *incx, s *sy, int *incy) nogil
|
||||
|
||||
cdef s scasum(int *n, c *cx, int *incx) nogil
|
||||
|
||||
cdef s scnrm2(int *n, c *x, int *incx) nogil
|
||||
|
||||
cdef void scopy(int *n, s *sx, int *incx, s *sy, int *incy) nogil
|
||||
|
||||
cdef s sdot(int *n, s *sx, int *incx, s *sy, int *incy) nogil
|
||||
|
||||
cdef s sdsdot(int *n, s *sb, s *sx, int *incx, s *sy, int *incy) nogil
|
||||
|
||||
cdef void sgbmv(char *trans, int *m, int *n, int *kl, int *ku, s *alpha, s *a, int *lda, s *x, int *incx, s *beta, s *y, int *incy) nogil
|
||||
|
||||
cdef void sgemm(char *transa, char *transb, int *m, int *n, int *k, s *alpha, s *a, int *lda, s *b, int *ldb, s *beta, s *c, int *ldc) nogil
|
||||
|
||||
cdef void sgemv(char *trans, int *m, int *n, s *alpha, s *a, int *lda, s *x, int *incx, s *beta, s *y, int *incy) nogil
|
||||
|
||||
cdef void sger(int *m, int *n, s *alpha, s *x, int *incx, s *y, int *incy, s *a, int *lda) nogil
|
||||
|
||||
cdef s snrm2(int *n, s *x, int *incx) nogil
|
||||
|
||||
cdef void srot(int *n, s *sx, int *incx, s *sy, int *incy, s *c, s *s) nogil
|
||||
|
||||
cdef void srotg(s *sa, s *sb, s *c, s *s) nogil
|
||||
|
||||
cdef void srotm(int *n, s *sx, int *incx, s *sy, int *incy, s *sparam) nogil
|
||||
|
||||
cdef void srotmg(s *sd1, s *sd2, s *sx1, s *sy1, s *sparam) nogil
|
||||
|
||||
cdef void ssbmv(char *uplo, int *n, int *k, s *alpha, s *a, int *lda, s *x, int *incx, s *beta, s *y, int *incy) nogil
|
||||
|
||||
cdef void sscal(int *n, s *sa, s *sx, int *incx) nogil
|
||||
|
||||
cdef void sspmv(char *uplo, int *n, s *alpha, s *ap, s *x, int *incx, s *beta, s *y, int *incy) nogil
|
||||
|
||||
cdef void sspr(char *uplo, int *n, s *alpha, s *x, int *incx, s *ap) nogil
|
||||
|
||||
cdef void sspr2(char *uplo, int *n, s *alpha, s *x, int *incx, s *y, int *incy, s *ap) nogil
|
||||
|
||||
cdef void sswap(int *n, s *sx, int *incx, s *sy, int *incy) nogil
|
||||
|
||||
cdef void ssymm(char *side, char *uplo, int *m, int *n, s *alpha, s *a, int *lda, s *b, int *ldb, s *beta, s *c, int *ldc) nogil
|
||||
|
||||
cdef void ssymv(char *uplo, int *n, s *alpha, s *a, int *lda, s *x, int *incx, s *beta, s *y, int *incy) nogil
|
||||
|
||||
cdef void ssyr(char *uplo, int *n, s *alpha, s *x, int *incx, s *a, int *lda) nogil
|
||||
|
||||
cdef void ssyr2(char *uplo, int *n, s *alpha, s *x, int *incx, s *y, int *incy, s *a, int *lda) nogil
|
||||
|
||||
cdef void ssyr2k(char *uplo, char *trans, int *n, int *k, s *alpha, s *a, int *lda, s *b, int *ldb, s *beta, s *c, int *ldc) nogil
|
||||
|
||||
cdef void ssyrk(char *uplo, char *trans, int *n, int *k, s *alpha, s *a, int *lda, s *beta, s *c, int *ldc) nogil
|
||||
|
||||
cdef void stbmv(char *uplo, char *trans, char *diag, int *n, int *k, s *a, int *lda, s *x, int *incx) nogil
|
||||
|
||||
cdef void stbsv(char *uplo, char *trans, char *diag, int *n, int *k, s *a, int *lda, s *x, int *incx) nogil
|
||||
|
||||
cdef void stpmv(char *uplo, char *trans, char *diag, int *n, s *ap, s *x, int *incx) nogil
|
||||
|
||||
cdef void stpsv(char *uplo, char *trans, char *diag, int *n, s *ap, s *x, int *incx) nogil
|
||||
|
||||
cdef void strmm(char *side, char *uplo, char *transa, char *diag, int *m, int *n, s *alpha, s *a, int *lda, s *b, int *ldb) nogil
|
||||
|
||||
cdef void strmv(char *uplo, char *trans, char *diag, int *n, s *a, int *lda, s *x, int *incx) nogil
|
||||
|
||||
cdef void strsm(char *side, char *uplo, char *transa, char *diag, int *m, int *n, s *alpha, s *a, int *lda, s *b, int *ldb) nogil
|
||||
|
||||
cdef void strsv(char *uplo, char *trans, char *diag, int *n, s *a, int *lda, s *x, int *incx) nogil
|
||||
|
||||
cdef void zaxpy(int *n, z *za, z *zx, int *incx, z *zy, int *incy) nogil
|
||||
|
||||
cdef void zcopy(int *n, z *zx, int *incx, z *zy, int *incy) nogil
|
||||
|
||||
cdef z zdotc(int *n, z *zx, int *incx, z *zy, int *incy) nogil
|
||||
|
||||
cdef z zdotu(int *n, z *zx, int *incx, z *zy, int *incy) nogil
|
||||
|
||||
cdef void zdrot(int *n, z *cx, int *incx, z *cy, int *incy, d *c, d *s) nogil
|
||||
|
||||
cdef void zdscal(int *n, d *da, z *zx, int *incx) nogil
|
||||
|
||||
cdef void zgbmv(char *trans, int *m, int *n, int *kl, int *ku, z *alpha, z *a, int *lda, z *x, int *incx, z *beta, z *y, int *incy) nogil
|
||||
|
||||
cdef void zgemm(char *transa, char *transb, int *m, int *n, int *k, z *alpha, z *a, int *lda, z *b, int *ldb, z *beta, z *c, int *ldc) nogil
|
||||
|
||||
cdef void zgemv(char *trans, int *m, int *n, z *alpha, z *a, int *lda, z *x, int *incx, z *beta, z *y, int *incy) nogil
|
||||
|
||||
cdef void zgerc(int *m, int *n, z *alpha, z *x, int *incx, z *y, int *incy, z *a, int *lda) nogil
|
||||
|
||||
cdef void zgeru(int *m, int *n, z *alpha, z *x, int *incx, z *y, int *incy, z *a, int *lda) nogil
|
||||
|
||||
cdef void zhbmv(char *uplo, int *n, int *k, z *alpha, z *a, int *lda, z *x, int *incx, z *beta, z *y, int *incy) nogil
|
||||
|
||||
cdef void zhemm(char *side, char *uplo, int *m, int *n, z *alpha, z *a, int *lda, z *b, int *ldb, z *beta, z *c, int *ldc) nogil
|
||||
|
||||
cdef void zhemv(char *uplo, int *n, z *alpha, z *a, int *lda, z *x, int *incx, z *beta, z *y, int *incy) nogil
|
||||
|
||||
cdef void zher(char *uplo, int *n, d *alpha, z *x, int *incx, z *a, int *lda) nogil
|
||||
|
||||
cdef void zher2(char *uplo, int *n, z *alpha, z *x, int *incx, z *y, int *incy, z *a, int *lda) nogil
|
||||
|
||||
cdef void zher2k(char *uplo, char *trans, int *n, int *k, z *alpha, z *a, int *lda, z *b, int *ldb, d *beta, z *c, int *ldc) nogil
|
||||
|
||||
cdef void zherk(char *uplo, char *trans, int *n, int *k, d *alpha, z *a, int *lda, d *beta, z *c, int *ldc) nogil
|
||||
|
||||
cdef void zhpmv(char *uplo, int *n, z *alpha, z *ap, z *x, int *incx, z *beta, z *y, int *incy) nogil
|
||||
|
||||
cdef void zhpr(char *uplo, int *n, d *alpha, z *x, int *incx, z *ap) nogil
|
||||
|
||||
cdef void zhpr2(char *uplo, int *n, z *alpha, z *x, int *incx, z *y, int *incy, z *ap) nogil
|
||||
|
||||
cdef void zrotg(z *ca, z *cb, d *c, z *s) nogil
|
||||
|
||||
cdef void zscal(int *n, z *za, z *zx, int *incx) nogil
|
||||
|
||||
cdef void zswap(int *n, z *zx, int *incx, z *zy, int *incy) nogil
|
||||
|
||||
cdef void zsymm(char *side, char *uplo, int *m, int *n, z *alpha, z *a, int *lda, z *b, int *ldb, z *beta, z *c, int *ldc) nogil
|
||||
|
||||
cdef void zsyr2k(char *uplo, char *trans, int *n, int *k, z *alpha, z *a, int *lda, z *b, int *ldb, z *beta, z *c, int *ldc) nogil
|
||||
|
||||
cdef void zsyrk(char *uplo, char *trans, int *n, int *k, z *alpha, z *a, int *lda, z *beta, z *c, int *ldc) nogil
|
||||
|
||||
cdef void ztbmv(char *uplo, char *trans, char *diag, int *n, int *k, z *a, int *lda, z *x, int *incx) nogil
|
||||
|
||||
cdef void ztbsv(char *uplo, char *trans, char *diag, int *n, int *k, z *a, int *lda, z *x, int *incx) nogil
|
||||
|
||||
cdef void ztpmv(char *uplo, char *trans, char *diag, int *n, z *ap, z *x, int *incx) nogil
|
||||
|
||||
cdef void ztpsv(char *uplo, char *trans, char *diag, int *n, z *ap, z *x, int *incx) nogil
|
||||
|
||||
cdef void ztrmm(char *side, char *uplo, char *transa, char *diag, int *m, int *n, z *alpha, z *a, int *lda, z *b, int *ldb) nogil
|
||||
|
||||
cdef void ztrmv(char *uplo, char *trans, char *diag, int *n, z *a, int *lda, z *x, int *incx) nogil
|
||||
|
||||
cdef void ztrsm(char *side, char *uplo, char *transa, char *diag, int *m, int *n, z *alpha, z *a, int *lda, z *b, int *ldb) nogil
|
||||
|
||||
cdef void ztrsv(char *uplo, char *trans, char *diag, int *n, z *a, int *lda, z *x, int *incx) nogil
|
BIN
venv/Lib/site-packages/scipy/linalg/cython_lapack.cp36-win32.pyd
Normal file
BIN
venv/Lib/site-packages/scipy/linalg/cython_lapack.cp36-win32.pyd
Normal file
Binary file not shown.
3021
venv/Lib/site-packages/scipy/linalg/cython_lapack.pxd
Normal file
3021
venv/Lib/site-packages/scipy/linalg/cython_lapack.pxd
Normal file
File diff suppressed because it is too large
Load diff
1585
venv/Lib/site-packages/scipy/linalg/decomp.py
Normal file
1585
venv/Lib/site-packages/scipy/linalg/decomp.py
Normal file
File diff suppressed because it is too large
Load diff
351
venv/Lib/site-packages/scipy/linalg/decomp_cholesky.py
Normal file
351
venv/Lib/site-packages/scipy/linalg/decomp_cholesky.py
Normal file
|
@ -0,0 +1,351 @@
|
|||
"""Cholesky decomposition functions."""
|
||||
|
||||
from numpy import asarray_chkfinite, asarray, atleast_2d
|
||||
|
||||
# Local imports
|
||||
from .misc import LinAlgError, _datacopied
|
||||
from .lapack import get_lapack_funcs
|
||||
|
||||
__all__ = ['cholesky', 'cho_factor', 'cho_solve', 'cholesky_banded',
|
||||
'cho_solve_banded']
|
||||
|
||||
|
||||
def _cholesky(a, lower=False, overwrite_a=False, clean=True,
|
||||
check_finite=True):
|
||||
"""Common code for cholesky() and cho_factor()."""
|
||||
|
||||
a1 = asarray_chkfinite(a) if check_finite else asarray(a)
|
||||
a1 = atleast_2d(a1)
|
||||
|
||||
# Dimension check
|
||||
if a1.ndim != 2:
|
||||
raise ValueError('Input array needs to be 2D but received '
|
||||
'a {}d-array.'.format(a1.ndim))
|
||||
# Squareness check
|
||||
if a1.shape[0] != a1.shape[1]:
|
||||
raise ValueError('Input array is expected to be square but has '
|
||||
'the shape: {}.'.format(a1.shape))
|
||||
|
||||
# Quick return for square empty array
|
||||
if a1.size == 0:
|
||||
return a1.copy(), lower
|
||||
|
||||
overwrite_a = overwrite_a or _datacopied(a1, a)
|
||||
potrf, = get_lapack_funcs(('potrf',), (a1,))
|
||||
c, info = potrf(a1, lower=lower, overwrite_a=overwrite_a, clean=clean)
|
||||
if info > 0:
|
||||
raise LinAlgError("%d-th leading minor of the array is not positive "
|
||||
"definite" % info)
|
||||
if info < 0:
|
||||
raise ValueError('LAPACK reported an illegal value in {}-th argument'
|
||||
'on entry to "POTRF".'.format(-info))
|
||||
return c, lower
|
||||
|
||||
|
||||
def cholesky(a, lower=False, overwrite_a=False, check_finite=True):
|
||||
"""
|
||||
Compute the Cholesky decomposition of a matrix.
|
||||
|
||||
Returns the Cholesky decomposition, :math:`A = L L^*` or
|
||||
:math:`A = U^* U` of a Hermitian positive-definite matrix A.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, M) array_like
|
||||
Matrix to be decomposed
|
||||
lower : bool, optional
|
||||
Whether to compute the upper- or lower-triangular Cholesky
|
||||
factorization. Default is upper-triangular.
|
||||
overwrite_a : bool, optional
|
||||
Whether to overwrite data in `a` (may improve performance).
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
c : (M, M) ndarray
|
||||
Upper- or lower-triangular Cholesky factor of `a`.
|
||||
|
||||
Raises
|
||||
------
|
||||
LinAlgError : if decomposition fails.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import cholesky
|
||||
>>> a = np.array([[1,-2j],[2j,5]])
|
||||
>>> L = cholesky(a, lower=True)
|
||||
>>> L
|
||||
array([[ 1.+0.j, 0.+0.j],
|
||||
[ 0.+2.j, 1.+0.j]])
|
||||
>>> L @ L.T.conj()
|
||||
array([[ 1.+0.j, 0.-2.j],
|
||||
[ 0.+2.j, 5.+0.j]])
|
||||
|
||||
"""
|
||||
c, lower = _cholesky(a, lower=lower, overwrite_a=overwrite_a, clean=True,
|
||||
check_finite=check_finite)
|
||||
return c
|
||||
|
||||
|
||||
def cho_factor(a, lower=False, overwrite_a=False, check_finite=True):
|
||||
"""
|
||||
Compute the Cholesky decomposition of a matrix, to use in cho_solve
|
||||
|
||||
Returns a matrix containing the Cholesky decomposition,
|
||||
``A = L L*`` or ``A = U* U`` of a Hermitian positive-definite matrix `a`.
|
||||
The return value can be directly used as the first parameter to cho_solve.
|
||||
|
||||
.. warning::
|
||||
The returned matrix also contains random data in the entries not
|
||||
used by the Cholesky decomposition. If you need to zero these
|
||||
entries, use the function `cholesky` instead.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, M) array_like
|
||||
Matrix to be decomposed
|
||||
lower : bool, optional
|
||||
Whether to compute the upper or lower triangular Cholesky factorization
|
||||
(Default: upper-triangular)
|
||||
overwrite_a : bool, optional
|
||||
Whether to overwrite data in a (may improve performance)
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
c : (M, M) ndarray
|
||||
Matrix whose upper or lower triangle contains the Cholesky factor
|
||||
of `a`. Other parts of the matrix contain random data.
|
||||
lower : bool
|
||||
Flag indicating whether the factor is in the lower or upper triangle
|
||||
|
||||
Raises
|
||||
------
|
||||
LinAlgError
|
||||
Raised if decomposition fails.
|
||||
|
||||
See also
|
||||
--------
|
||||
cho_solve : Solve a linear set equations using the Cholesky factorization
|
||||
of a matrix.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import cho_factor
|
||||
>>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
|
||||
>>> c, low = cho_factor(A)
|
||||
>>> c
|
||||
array([[3. , 1. , 0.33333333, 1.66666667],
|
||||
[3. , 2.44948974, 1.90515869, -0.27216553],
|
||||
[1. , 5. , 2.29330749, 0.8559528 ],
|
||||
[5. , 1. , 2. , 1.55418563]])
|
||||
>>> np.allclose(np.triu(c).T @ np. triu(c) - A, np.zeros((4, 4)))
|
||||
True
|
||||
|
||||
"""
|
||||
c, lower = _cholesky(a, lower=lower, overwrite_a=overwrite_a, clean=False,
|
||||
check_finite=check_finite)
|
||||
return c, lower
|
||||
|
||||
|
||||
def cho_solve(c_and_lower, b, overwrite_b=False, check_finite=True):
|
||||
"""Solve the linear equations A x = b, given the Cholesky factorization of A.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
(c, lower) : tuple, (array, bool)
|
||||
Cholesky factorization of a, as given by cho_factor
|
||||
b : array
|
||||
Right-hand side
|
||||
overwrite_b : bool, optional
|
||||
Whether to overwrite data in b (may improve performance)
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrices contain only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : array
|
||||
The solution to the system A x = b
|
||||
|
||||
See also
|
||||
--------
|
||||
cho_factor : Cholesky factorization of a matrix
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import cho_factor, cho_solve
|
||||
>>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
|
||||
>>> c, low = cho_factor(A)
|
||||
>>> x = cho_solve((c, low), [1, 1, 1, 1])
|
||||
>>> np.allclose(A @ x - [1, 1, 1, 1], np.zeros(4))
|
||||
True
|
||||
|
||||
"""
|
||||
(c, lower) = c_and_lower
|
||||
if check_finite:
|
||||
b1 = asarray_chkfinite(b)
|
||||
c = asarray_chkfinite(c)
|
||||
else:
|
||||
b1 = asarray(b)
|
||||
c = asarray(c)
|
||||
if c.ndim != 2 or c.shape[0] != c.shape[1]:
|
||||
raise ValueError("The factored matrix c is not square.")
|
||||
if c.shape[1] != b1.shape[0]:
|
||||
raise ValueError("incompatible dimensions.")
|
||||
|
||||
overwrite_b = overwrite_b or _datacopied(b1, b)
|
||||
|
||||
potrs, = get_lapack_funcs(('potrs',), (c, b1))
|
||||
x, info = potrs(c, b1, lower=lower, overwrite_b=overwrite_b)
|
||||
if info != 0:
|
||||
raise ValueError('illegal value in %dth argument of internal potrs'
|
||||
% -info)
|
||||
return x
|
||||
|
||||
|
||||
def cholesky_banded(ab, overwrite_ab=False, lower=False, check_finite=True):
|
||||
"""
|
||||
Cholesky decompose a banded Hermitian positive-definite matrix
|
||||
|
||||
The matrix a is stored in ab either in lower-diagonal or upper-
|
||||
diagonal ordered form::
|
||||
|
||||
ab[u + i - j, j] == a[i,j] (if upper form; i <= j)
|
||||
ab[ i - j, j] == a[i,j] (if lower form; i >= j)
|
||||
|
||||
Example of ab (shape of a is (6,6), u=2)::
|
||||
|
||||
upper form:
|
||||
* * a02 a13 a24 a35
|
||||
* a01 a12 a23 a34 a45
|
||||
a00 a11 a22 a33 a44 a55
|
||||
|
||||
lower form:
|
||||
a00 a11 a22 a33 a44 a55
|
||||
a10 a21 a32 a43 a54 *
|
||||
a20 a31 a42 a53 * *
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ab : (u + 1, M) array_like
|
||||
Banded matrix
|
||||
overwrite_ab : bool, optional
|
||||
Discard data in ab (may enhance performance)
|
||||
lower : bool, optional
|
||||
Is the matrix in the lower form. (Default is upper form)
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
c : (u + 1, M) ndarray
|
||||
Cholesky factorization of a, in the same banded format as ab
|
||||
|
||||
See also
|
||||
--------
|
||||
cho_solve_banded : Solve a linear set equations, given the Cholesky factorization
|
||||
of a banded hermitian.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import cholesky_banded
|
||||
>>> from numpy import allclose, zeros, diag
|
||||
>>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
|
||||
>>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
|
||||
>>> A = A + A.conj().T + np.diag(Ab[2, :])
|
||||
>>> c = cholesky_banded(Ab)
|
||||
>>> C = np.diag(c[0, 2:], k=2) + np.diag(c[1, 1:], k=1) + np.diag(c[2, :])
|
||||
>>> np.allclose(C.conj().T @ C - A, np.zeros((5, 5)))
|
||||
True
|
||||
|
||||
"""
|
||||
if check_finite:
|
||||
ab = asarray_chkfinite(ab)
|
||||
else:
|
||||
ab = asarray(ab)
|
||||
|
||||
pbtrf, = get_lapack_funcs(('pbtrf',), (ab,))
|
||||
c, info = pbtrf(ab, lower=lower, overwrite_ab=overwrite_ab)
|
||||
if info > 0:
|
||||
raise LinAlgError("%d-th leading minor not positive definite" % info)
|
||||
if info < 0:
|
||||
raise ValueError('illegal value in %d-th argument of internal pbtrf'
|
||||
% -info)
|
||||
return c
|
||||
|
||||
|
||||
def cho_solve_banded(cb_and_lower, b, overwrite_b=False, check_finite=True):
|
||||
"""
|
||||
Solve the linear equations ``A x = b``, given the Cholesky factorization of
|
||||
the banded hermitian ``A``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
(cb, lower) : tuple, (ndarray, bool)
|
||||
`cb` is the Cholesky factorization of A, as given by cholesky_banded.
|
||||
`lower` must be the same value that was given to cholesky_banded.
|
||||
b : array_like
|
||||
Right-hand side
|
||||
overwrite_b : bool, optional
|
||||
If True, the function will overwrite the values in `b`.
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrices contain only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : array
|
||||
The solution to the system A x = b
|
||||
|
||||
See also
|
||||
--------
|
||||
cholesky_banded : Cholesky factorization of a banded matrix
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
.. versionadded:: 0.8.0
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import cholesky_banded, cho_solve_banded
|
||||
>>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
|
||||
>>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
|
||||
>>> A = A + A.conj().T + np.diag(Ab[2, :])
|
||||
>>> c = cholesky_banded(Ab)
|
||||
>>> x = cho_solve_banded((c, False), np.ones(5))
|
||||
>>> np.allclose(A @ x - np.ones(5), np.zeros(5))
|
||||
True
|
||||
|
||||
"""
|
||||
(cb, lower) = cb_and_lower
|
||||
if check_finite:
|
||||
cb = asarray_chkfinite(cb)
|
||||
b = asarray_chkfinite(b)
|
||||
else:
|
||||
cb = asarray(cb)
|
||||
b = asarray(b)
|
||||
|
||||
# Validate shapes.
|
||||
if cb.shape[-1] != b.shape[0]:
|
||||
raise ValueError("shapes of cb and b are not compatible.")
|
||||
|
||||
pbtrs, = get_lapack_funcs(('pbtrs',), (cb, b))
|
||||
x, info = pbtrs(cb, b, lower=lower, overwrite_b=overwrite_b)
|
||||
if info > 0:
|
||||
raise LinAlgError("%dth leading minor not positive definite" % info)
|
||||
if info < 0:
|
||||
raise ValueError('illegal value in %dth argument of internal pbtrs'
|
||||
% -info)
|
||||
return x
|
221
venv/Lib/site-packages/scipy/linalg/decomp_lu.py
Normal file
221
venv/Lib/site-packages/scipy/linalg/decomp_lu.py
Normal file
|
@ -0,0 +1,221 @@
|
|||
"""LU decomposition functions."""
|
||||
|
||||
from warnings import warn
|
||||
|
||||
from numpy import asarray, asarray_chkfinite
|
||||
|
||||
# Local imports
|
||||
from .misc import _datacopied, LinAlgWarning
|
||||
from .lapack import get_lapack_funcs
|
||||
from .flinalg import get_flinalg_funcs
|
||||
|
||||
__all__ = ['lu', 'lu_solve', 'lu_factor']
|
||||
|
||||
|
||||
def lu_factor(a, overwrite_a=False, check_finite=True):
|
||||
"""
|
||||
Compute pivoted LU decomposition of a matrix.
|
||||
|
||||
The decomposition is::
|
||||
|
||||
A = P L U
|
||||
|
||||
where P is a permutation matrix, L lower triangular with unit
|
||||
diagonal elements, and U upper triangular.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, M) array_like
|
||||
Matrix to decompose
|
||||
overwrite_a : bool, optional
|
||||
Whether to overwrite data in A (may increase performance)
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
lu : (N, N) ndarray
|
||||
Matrix containing U in its upper triangle, and L in its lower triangle.
|
||||
The unit diagonal elements of L are not stored.
|
||||
piv : (N,) ndarray
|
||||
Pivot indices representing the permutation matrix P:
|
||||
row i of matrix was interchanged with row piv[i].
|
||||
|
||||
See also
|
||||
--------
|
||||
lu_solve : solve an equation system using the LU factorization of a matrix
|
||||
|
||||
Notes
|
||||
-----
|
||||
This is a wrapper to the ``*GETRF`` routines from LAPACK.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import lu_factor
|
||||
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
|
||||
>>> lu, piv = lu_factor(A)
|
||||
>>> piv
|
||||
array([2, 2, 3, 3], dtype=int32)
|
||||
|
||||
Convert LAPACK's ``piv`` array to NumPy index and test the permutation
|
||||
|
||||
>>> piv_py = [2, 0, 3, 1]
|
||||
>>> L, U = np.tril(lu, k=-1) + np.eye(4), np.triu(lu)
|
||||
>>> np.allclose(A[piv_py] - L @ U, np.zeros((4, 4)))
|
||||
True
|
||||
"""
|
||||
if check_finite:
|
||||
a1 = asarray_chkfinite(a)
|
||||
else:
|
||||
a1 = asarray(a)
|
||||
if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]):
|
||||
raise ValueError('expected square matrix')
|
||||
overwrite_a = overwrite_a or (_datacopied(a1, a))
|
||||
getrf, = get_lapack_funcs(('getrf',), (a1,))
|
||||
lu, piv, info = getrf(a1, overwrite_a=overwrite_a)
|
||||
if info < 0:
|
||||
raise ValueError('illegal value in %dth argument of '
|
||||
'internal getrf (lu_factor)' % -info)
|
||||
if info > 0:
|
||||
warn("Diagonal number %d is exactly zero. Singular matrix." % info,
|
||||
LinAlgWarning, stacklevel=2)
|
||||
return lu, piv
|
||||
|
||||
|
||||
def lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True):
|
||||
"""Solve an equation system, a x = b, given the LU factorization of a
|
||||
|
||||
Parameters
|
||||
----------
|
||||
(lu, piv)
|
||||
Factorization of the coefficient matrix a, as given by lu_factor
|
||||
b : array
|
||||
Right-hand side
|
||||
trans : {0, 1, 2}, optional
|
||||
Type of system to solve:
|
||||
|
||||
===== =========
|
||||
trans system
|
||||
===== =========
|
||||
0 a x = b
|
||||
1 a^T x = b
|
||||
2 a^H x = b
|
||||
===== =========
|
||||
overwrite_b : bool, optional
|
||||
Whether to overwrite data in b (may increase performance)
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrices contain only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : array
|
||||
Solution to the system
|
||||
|
||||
See also
|
||||
--------
|
||||
lu_factor : LU factorize a matrix
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import lu_factor, lu_solve
|
||||
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
|
||||
>>> b = np.array([1, 1, 1, 1])
|
||||
>>> lu, piv = lu_factor(A)
|
||||
>>> x = lu_solve((lu, piv), b)
|
||||
>>> np.allclose(A @ x - b, np.zeros((4,)))
|
||||
True
|
||||
|
||||
"""
|
||||
(lu, piv) = lu_and_piv
|
||||
if check_finite:
|
||||
b1 = asarray_chkfinite(b)
|
||||
else:
|
||||
b1 = asarray(b)
|
||||
overwrite_b = overwrite_b or _datacopied(b1, b)
|
||||
if lu.shape[0] != b1.shape[0]:
|
||||
raise ValueError("incompatible dimensions.")
|
||||
|
||||
getrs, = get_lapack_funcs(('getrs',), (lu, b1))
|
||||
x, info = getrs(lu, piv, b1, trans=trans, overwrite_b=overwrite_b)
|
||||
if info == 0:
|
||||
return x
|
||||
raise ValueError('illegal value in %dth argument of internal gesv|posv'
|
||||
% -info)
|
||||
|
||||
|
||||
def lu(a, permute_l=False, overwrite_a=False, check_finite=True):
|
||||
"""
|
||||
Compute pivoted LU decomposition of a matrix.
|
||||
|
||||
The decomposition is::
|
||||
|
||||
A = P L U
|
||||
|
||||
where P is a permutation matrix, L lower triangular with unit
|
||||
diagonal elements, and U upper triangular.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, N) array_like
|
||||
Array to decompose
|
||||
permute_l : bool, optional
|
||||
Perform the multiplication P*L (Default: do not permute)
|
||||
overwrite_a : bool, optional
|
||||
Whether to overwrite data in a (may improve performance)
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
**(If permute_l == False)**
|
||||
|
||||
p : (M, M) ndarray
|
||||
Permutation matrix
|
||||
l : (M, K) ndarray
|
||||
Lower triangular or trapezoidal matrix with unit diagonal.
|
||||
K = min(M, N)
|
||||
u : (K, N) ndarray
|
||||
Upper triangular or trapezoidal matrix
|
||||
|
||||
**(If permute_l == True)**
|
||||
|
||||
pl : (M, K) ndarray
|
||||
Permuted L matrix.
|
||||
K = min(M, N)
|
||||
u : (K, N) ndarray
|
||||
Upper triangular or trapezoidal matrix
|
||||
|
||||
Notes
|
||||
-----
|
||||
This is a LU factorization routine written for SciPy.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import lu
|
||||
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
|
||||
>>> p, l, u = lu(A)
|
||||
>>> np.allclose(A - p @ l @ u, np.zeros((4, 4)))
|
||||
True
|
||||
|
||||
"""
|
||||
if check_finite:
|
||||
a1 = asarray_chkfinite(a)
|
||||
else:
|
||||
a1 = asarray(a)
|
||||
if len(a1.shape) != 2:
|
||||
raise ValueError('expected matrix')
|
||||
overwrite_a = overwrite_a or (_datacopied(a1, a))
|
||||
flu, = get_flinalg_funcs(('lu',), (a1,))
|
||||
p, l, u, info = flu(a1, permute_l=permute_l, overwrite_a=overwrite_a)
|
||||
if info < 0:
|
||||
raise ValueError('illegal value in %dth argument of '
|
||||
'internal lu.getrf' % -info)
|
||||
if permute_l:
|
||||
return l, u
|
||||
return p, l, u
|
424
venv/Lib/site-packages/scipy/linalg/decomp_qr.py
Normal file
424
venv/Lib/site-packages/scipy/linalg/decomp_qr.py
Normal file
|
@ -0,0 +1,424 @@
|
|||
"""QR decomposition functions."""
|
||||
import numpy
|
||||
|
||||
# Local imports
|
||||
from .lapack import get_lapack_funcs
|
||||
from .misc import _datacopied
|
||||
|
||||
__all__ = ['qr', 'qr_multiply', 'rq']
|
||||
|
||||
|
||||
def safecall(f, name, *args, **kwargs):
|
||||
"""Call a LAPACK routine, determining lwork automatically and handling
|
||||
error return values"""
|
||||
lwork = kwargs.get("lwork", None)
|
||||
if lwork in (None, -1):
|
||||
kwargs['lwork'] = -1
|
||||
ret = f(*args, **kwargs)
|
||||
kwargs['lwork'] = ret[-2][0].real.astype(numpy.int_)
|
||||
ret = f(*args, **kwargs)
|
||||
if ret[-1] < 0:
|
||||
raise ValueError("illegal value in %dth argument of internal %s"
|
||||
% (-ret[-1], name))
|
||||
return ret[:-2]
|
||||
|
||||
|
||||
def qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False,
|
||||
check_finite=True):
|
||||
"""
|
||||
Compute QR decomposition of a matrix.
|
||||
|
||||
Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
|
||||
and R upper triangular.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, N) array_like
|
||||
Matrix to be decomposed
|
||||
overwrite_a : bool, optional
|
||||
Whether data in `a` is overwritten (may improve performance if
|
||||
`overwrite_a` is set to True by reusing the existing input data
|
||||
structure rather than creating a new one.)
|
||||
lwork : int, optional
|
||||
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
|
||||
is computed.
|
||||
mode : {'full', 'r', 'economic', 'raw'}, optional
|
||||
Determines what information is to be returned: either both Q and R
|
||||
('full', default), only R ('r') or both Q and R but computed in
|
||||
economy-size ('economic', see Notes). The final option 'raw'
|
||||
(added in SciPy 0.11) makes the function return two matrices
|
||||
(Q, TAU) in the internal format used by LAPACK.
|
||||
pivoting : bool, optional
|
||||
Whether or not factorization should include pivoting for rank-revealing
|
||||
qr decomposition. If pivoting, compute the decomposition
|
||||
``A P = Q R`` as above, but where P is chosen such that the diagonal
|
||||
of R is non-increasing.
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Q : float or complex ndarray
|
||||
Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned
|
||||
if ``mode='r'``.
|
||||
R : float or complex ndarray
|
||||
Of shape (M, N), or (K, N) for ``mode='economic'``. ``K = min(M, N)``.
|
||||
P : int ndarray
|
||||
Of shape (N,) for ``pivoting=True``. Not returned if
|
||||
``pivoting=False``.
|
||||
|
||||
Raises
|
||||
------
|
||||
LinAlgError
|
||||
Raised if decomposition fails
|
||||
|
||||
Notes
|
||||
-----
|
||||
This is an interface to the LAPACK routines dgeqrf, zgeqrf,
|
||||
dorgqr, zungqr, dgeqp3, and zgeqp3.
|
||||
|
||||
If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead
|
||||
of (M,M) and (M,N), with ``K=min(M,N)``.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy import linalg
|
||||
>>> a = np.random.randn(9, 6)
|
||||
|
||||
>>> q, r = linalg.qr(a)
|
||||
>>> np.allclose(a, np.dot(q, r))
|
||||
True
|
||||
>>> q.shape, r.shape
|
||||
((9, 9), (9, 6))
|
||||
|
||||
>>> r2 = linalg.qr(a, mode='r')
|
||||
>>> np.allclose(r, r2)
|
||||
True
|
||||
|
||||
>>> q3, r3 = linalg.qr(a, mode='economic')
|
||||
>>> q3.shape, r3.shape
|
||||
((9, 6), (6, 6))
|
||||
|
||||
>>> q4, r4, p4 = linalg.qr(a, pivoting=True)
|
||||
>>> d = np.abs(np.diag(r4))
|
||||
>>> np.all(d[1:] <= d[:-1])
|
||||
True
|
||||
>>> np.allclose(a[:, p4], np.dot(q4, r4))
|
||||
True
|
||||
>>> q4.shape, r4.shape, p4.shape
|
||||
((9, 9), (9, 6), (6,))
|
||||
|
||||
>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
|
||||
>>> q5.shape, r5.shape, p5.shape
|
||||
((9, 6), (6, 6), (6,))
|
||||
|
||||
"""
|
||||
# 'qr' was the old default, equivalent to 'full'. Neither 'full' nor
|
||||
# 'qr' are used below.
|
||||
# 'raw' is used internally by qr_multiply
|
||||
if mode not in ['full', 'qr', 'r', 'economic', 'raw']:
|
||||
raise ValueError("Mode argument should be one of ['full', 'r',"
|
||||
"'economic', 'raw']")
|
||||
|
||||
if check_finite:
|
||||
a1 = numpy.asarray_chkfinite(a)
|
||||
else:
|
||||
a1 = numpy.asarray(a)
|
||||
if len(a1.shape) != 2:
|
||||
raise ValueError("expected a 2-D array")
|
||||
M, N = a1.shape
|
||||
overwrite_a = overwrite_a or (_datacopied(a1, a))
|
||||
|
||||
if pivoting:
|
||||
geqp3, = get_lapack_funcs(('geqp3',), (a1,))
|
||||
qr, jpvt, tau = safecall(geqp3, "geqp3", a1, overwrite_a=overwrite_a)
|
||||
jpvt -= 1 # geqp3 returns a 1-based index array, so subtract 1
|
||||
else:
|
||||
geqrf, = get_lapack_funcs(('geqrf',), (a1,))
|
||||
qr, tau = safecall(geqrf, "geqrf", a1, lwork=lwork,
|
||||
overwrite_a=overwrite_a)
|
||||
|
||||
if mode not in ['economic', 'raw'] or M < N:
|
||||
R = numpy.triu(qr)
|
||||
else:
|
||||
R = numpy.triu(qr[:N, :])
|
||||
|
||||
if pivoting:
|
||||
Rj = R, jpvt
|
||||
else:
|
||||
Rj = R,
|
||||
|
||||
if mode == 'r':
|
||||
return Rj
|
||||
elif mode == 'raw':
|
||||
return ((qr, tau),) + Rj
|
||||
|
||||
gor_un_gqr, = get_lapack_funcs(('orgqr',), (qr,))
|
||||
|
||||
if M < N:
|
||||
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr[:, :M], tau,
|
||||
lwork=lwork, overwrite_a=1)
|
||||
elif mode == 'economic':
|
||||
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr, tau, lwork=lwork,
|
||||
overwrite_a=1)
|
||||
else:
|
||||
t = qr.dtype.char
|
||||
qqr = numpy.empty((M, M), dtype=t)
|
||||
qqr[:, :N] = qr
|
||||
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qqr, tau, lwork=lwork,
|
||||
overwrite_a=1)
|
||||
|
||||
return (Q,) + Rj
|
||||
|
||||
|
||||
def qr_multiply(a, c, mode='right', pivoting=False, conjugate=False,
|
||||
overwrite_a=False, overwrite_c=False):
|
||||
"""
|
||||
Calculate the QR decomposition and multiply Q with a matrix.
|
||||
|
||||
Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
|
||||
and R upper triangular. Multiply Q with a vector or a matrix c.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, N), array_like
|
||||
Input array
|
||||
c : array_like
|
||||
Input array to be multiplied by ``q``.
|
||||
mode : {'left', 'right'}, optional
|
||||
``Q @ c`` is returned if mode is 'left', ``c @ Q`` is returned if
|
||||
mode is 'right'.
|
||||
The shape of c must be appropriate for the matrix multiplications,
|
||||
if mode is 'left', ``min(a.shape) == c.shape[0]``,
|
||||
if mode is 'right', ``a.shape[0] == c.shape[1]``.
|
||||
pivoting : bool, optional
|
||||
Whether or not factorization should include pivoting for rank-revealing
|
||||
qr decomposition, see the documentation of qr.
|
||||
conjugate : bool, optional
|
||||
Whether Q should be complex-conjugated. This might be faster
|
||||
than explicit conjugation.
|
||||
overwrite_a : bool, optional
|
||||
Whether data in a is overwritten (may improve performance)
|
||||
overwrite_c : bool, optional
|
||||
Whether data in c is overwritten (may improve performance).
|
||||
If this is used, c must be big enough to keep the result,
|
||||
i.e. ``c.shape[0]`` = ``a.shape[0]`` if mode is 'left'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
CQ : ndarray
|
||||
The product of ``Q`` and ``c``.
|
||||
R : (K, N), ndarray
|
||||
R array of the resulting QR factorization where ``K = min(M, N)``.
|
||||
P : (N,) ndarray
|
||||
Integer pivot array. Only returned when ``pivoting=True``.
|
||||
|
||||
Raises
|
||||
------
|
||||
LinAlgError
|
||||
Raised if QR decomposition fails.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This is an interface to the LAPACK routines ``?GEQRF``, ``?ORMQR``,
|
||||
``?UNMQR``, and ``?GEQP3``.
|
||||
|
||||
.. versionadded:: 0.11.0
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import qr_multiply, qr
|
||||
>>> A = np.array([[1, 3, 3], [2, 3, 2], [2, 3, 3], [1, 3, 2]])
|
||||
>>> qc, r1, piv1 = qr_multiply(A, 2*np.eye(4), pivoting=1)
|
||||
>>> qc
|
||||
array([[-1., 1., -1.],
|
||||
[-1., -1., 1.],
|
||||
[-1., -1., -1.],
|
||||
[-1., 1., 1.]])
|
||||
>>> r1
|
||||
array([[-6., -3., -5. ],
|
||||
[ 0., -1., -1.11022302e-16],
|
||||
[ 0., 0., -1. ]])
|
||||
>>> piv1
|
||||
array([1, 0, 2], dtype=int32)
|
||||
>>> q2, r2, piv2 = qr(A, mode='economic', pivoting=1)
|
||||
>>> np.allclose(2*q2 - qc, np.zeros((4, 3)))
|
||||
True
|
||||
|
||||
"""
|
||||
if mode not in ['left', 'right']:
|
||||
raise ValueError("Mode argument can only be 'left' or 'right' but "
|
||||
"not '{}'".format(mode))
|
||||
c = numpy.asarray_chkfinite(c)
|
||||
if c.ndim < 2:
|
||||
onedim = True
|
||||
c = numpy.atleast_2d(c)
|
||||
if mode == "left":
|
||||
c = c.T
|
||||
else:
|
||||
onedim = False
|
||||
|
||||
a = numpy.atleast_2d(numpy.asarray(a)) # chkfinite done in qr
|
||||
M, N = a.shape
|
||||
|
||||
if mode == 'left':
|
||||
if c.shape[0] != min(M, N + overwrite_c*(M-N)):
|
||||
raise ValueError('Array shapes are not compatible for Q @ c'
|
||||
' operation: {} vs {}'.format(a.shape, c.shape))
|
||||
else:
|
||||
if M != c.shape[1]:
|
||||
raise ValueError('Array shapes are not compatible for c @ Q'
|
||||
' operation: {} vs {}'.format(c.shape, a.shape))
|
||||
|
||||
raw = qr(a, overwrite_a, None, "raw", pivoting)
|
||||
Q, tau = raw[0]
|
||||
|
||||
gor_un_mqr, = get_lapack_funcs(('ormqr',), (Q,))
|
||||
if gor_un_mqr.typecode in ('s', 'd'):
|
||||
trans = "T"
|
||||
else:
|
||||
trans = "C"
|
||||
|
||||
Q = Q[:, :min(M, N)]
|
||||
if M > N and mode == "left" and not overwrite_c:
|
||||
if conjugate:
|
||||
cc = numpy.zeros((c.shape[1], M), dtype=c.dtype, order="F")
|
||||
cc[:, :N] = c.T
|
||||
else:
|
||||
cc = numpy.zeros((M, c.shape[1]), dtype=c.dtype, order="F")
|
||||
cc[:N, :] = c
|
||||
trans = "N"
|
||||
if conjugate:
|
||||
lr = "R"
|
||||
else:
|
||||
lr = "L"
|
||||
overwrite_c = True
|
||||
elif c.flags["C_CONTIGUOUS"] and trans == "T" or conjugate:
|
||||
cc = c.T
|
||||
if mode == "left":
|
||||
lr = "R"
|
||||
else:
|
||||
lr = "L"
|
||||
else:
|
||||
trans = "N"
|
||||
cc = c
|
||||
if mode == "left":
|
||||
lr = "L"
|
||||
else:
|
||||
lr = "R"
|
||||
cQ, = safecall(gor_un_mqr, "gormqr/gunmqr", lr, trans, Q, tau, cc,
|
||||
overwrite_c=overwrite_c)
|
||||
if trans != "N":
|
||||
cQ = cQ.T
|
||||
if mode == "right":
|
||||
cQ = cQ[:, :min(M, N)]
|
||||
if onedim:
|
||||
cQ = cQ.ravel()
|
||||
|
||||
return (cQ,) + raw[1:]
|
||||
|
||||
|
||||
def rq(a, overwrite_a=False, lwork=None, mode='full', check_finite=True):
|
||||
"""
|
||||
Compute RQ decomposition of a matrix.
|
||||
|
||||
Calculate the decomposition ``A = R Q`` where Q is unitary/orthogonal
|
||||
and R upper triangular.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, N) array_like
|
||||
Matrix to be decomposed
|
||||
overwrite_a : bool, optional
|
||||
Whether data in a is overwritten (may improve performance)
|
||||
lwork : int, optional
|
||||
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
|
||||
is computed.
|
||||
mode : {'full', 'r', 'economic'}, optional
|
||||
Determines what information is to be returned: either both Q and R
|
||||
('full', default), only R ('r') or both Q and R but computed in
|
||||
economy-size ('economic', see Notes).
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
R : float or complex ndarray
|
||||
Of shape (M, N) or (M, K) for ``mode='economic'``. ``K = min(M, N)``.
|
||||
Q : float or complex ndarray
|
||||
Of shape (N, N) or (K, N) for ``mode='economic'``. Not returned
|
||||
if ``mode='r'``.
|
||||
|
||||
Raises
|
||||
------
|
||||
LinAlgError
|
||||
If decomposition fails.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf,
|
||||
sorgrq, dorgrq, cungrq and zungrq.
|
||||
|
||||
If ``mode=economic``, the shapes of Q and R are (K, N) and (M, K) instead
|
||||
of (N,N) and (M,N), with ``K=min(M,N)``.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy import linalg
|
||||
>>> a = np.random.randn(6, 9)
|
||||
>>> r, q = linalg.rq(a)
|
||||
>>> np.allclose(a, r @ q)
|
||||
True
|
||||
>>> r.shape, q.shape
|
||||
((6, 9), (9, 9))
|
||||
>>> r2 = linalg.rq(a, mode='r')
|
||||
>>> np.allclose(r, r2)
|
||||
True
|
||||
>>> r3, q3 = linalg.rq(a, mode='economic')
|
||||
>>> r3.shape, q3.shape
|
||||
((6, 6), (6, 9))
|
||||
|
||||
"""
|
||||
if mode not in ['full', 'r', 'economic']:
|
||||
raise ValueError(
|
||||
"Mode argument should be one of ['full', 'r', 'economic']")
|
||||
|
||||
if check_finite:
|
||||
a1 = numpy.asarray_chkfinite(a)
|
||||
else:
|
||||
a1 = numpy.asarray(a)
|
||||
if len(a1.shape) != 2:
|
||||
raise ValueError('expected matrix')
|
||||
M, N = a1.shape
|
||||
overwrite_a = overwrite_a or (_datacopied(a1, a))
|
||||
|
||||
gerqf, = get_lapack_funcs(('gerqf',), (a1,))
|
||||
rq, tau = safecall(gerqf, 'gerqf', a1, lwork=lwork,
|
||||
overwrite_a=overwrite_a)
|
||||
if not mode == 'economic' or N < M:
|
||||
R = numpy.triu(rq, N-M)
|
||||
else:
|
||||
R = numpy.triu(rq[-M:, -M:])
|
||||
|
||||
if mode == 'r':
|
||||
return R
|
||||
|
||||
gor_un_grq, = get_lapack_funcs(('orgrq',), (rq,))
|
||||
|
||||
if N < M:
|
||||
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq[-N:], tau, lwork=lwork,
|
||||
overwrite_a=1)
|
||||
elif mode == 'economic':
|
||||
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq, tau, lwork=lwork,
|
||||
overwrite_a=1)
|
||||
else:
|
||||
rq1 = numpy.empty((N, N), dtype=rq.dtype)
|
||||
rq1[-M:] = rq
|
||||
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq1, tau, lwork=lwork,
|
||||
overwrite_a=1)
|
||||
|
||||
return R, Q
|
292
venv/Lib/site-packages/scipy/linalg/decomp_schur.py
Normal file
292
venv/Lib/site-packages/scipy/linalg/decomp_schur.py
Normal file
|
@ -0,0 +1,292 @@
|
|||
"""Schur decomposition functions."""
|
||||
import numpy
|
||||
from numpy import asarray_chkfinite, single, asarray, array
|
||||
from numpy.linalg import norm
|
||||
|
||||
|
||||
# Local imports.
|
||||
from .misc import LinAlgError, _datacopied
|
||||
from .lapack import get_lapack_funcs
|
||||
from .decomp import eigvals
|
||||
|
||||
__all__ = ['schur', 'rsf2csf']
|
||||
|
||||
_double_precision = ['i', 'l', 'd']
|
||||
|
||||
|
||||
def schur(a, output='real', lwork=None, overwrite_a=False, sort=None,
|
||||
check_finite=True):
|
||||
"""
|
||||
Compute Schur decomposition of a matrix.
|
||||
|
||||
The Schur decomposition is::
|
||||
|
||||
A = Z T Z^H
|
||||
|
||||
where Z is unitary and T is either upper-triangular, or for real
|
||||
Schur decomposition (output='real'), quasi-upper triangular. In
|
||||
the quasi-triangular form, 2x2 blocks describing complex-valued
|
||||
eigenvalue pairs may extrude from the diagonal.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, M) array_like
|
||||
Matrix to decompose
|
||||
output : {'real', 'complex'}, optional
|
||||
Construct the real or complex Schur decomposition (for real matrices).
|
||||
lwork : int, optional
|
||||
Work array size. If None or -1, it is automatically computed.
|
||||
overwrite_a : bool, optional
|
||||
Whether to overwrite data in a (may improve performance).
|
||||
sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional
|
||||
Specifies whether the upper eigenvalues should be sorted. A callable
|
||||
may be passed that, given a eigenvalue, returns a boolean denoting
|
||||
whether the eigenvalue should be sorted to the top-left (True).
|
||||
Alternatively, string parameters may be used::
|
||||
|
||||
'lhp' Left-hand plane (x.real < 0.0)
|
||||
'rhp' Right-hand plane (x.real > 0.0)
|
||||
'iuc' Inside the unit circle (x*x.conjugate() <= 1.0)
|
||||
'ouc' Outside the unit circle (x*x.conjugate() > 1.0)
|
||||
|
||||
Defaults to None (no sorting).
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
T : (M, M) ndarray
|
||||
Schur form of A. It is real-valued for the real Schur decomposition.
|
||||
Z : (M, M) ndarray
|
||||
An unitary Schur transformation matrix for A.
|
||||
It is real-valued for the real Schur decomposition.
|
||||
sdim : int
|
||||
If and only if sorting was requested, a third return value will
|
||||
contain the number of eigenvalues satisfying the sort condition.
|
||||
|
||||
Raises
|
||||
------
|
||||
LinAlgError
|
||||
Error raised under three conditions:
|
||||
|
||||
1. The algorithm failed due to a failure of the QR algorithm to
|
||||
compute all eigenvalues.
|
||||
2. If eigenvalue sorting was requested, the eigenvalues could not be
|
||||
reordered due to a failure to separate eigenvalues, usually because
|
||||
of poor conditioning.
|
||||
3. If eigenvalue sorting was requested, roundoff errors caused the
|
||||
leading eigenvalues to no longer satisfy the sorting condition.
|
||||
|
||||
See also
|
||||
--------
|
||||
rsf2csf : Convert real Schur form to complex Schur form
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import schur, eigvals
|
||||
>>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
|
||||
>>> T, Z = schur(A)
|
||||
>>> T
|
||||
array([[ 2.65896708, 1.42440458, -1.92933439],
|
||||
[ 0. , -0.32948354, -0.49063704],
|
||||
[ 0. , 1.31178921, -0.32948354]])
|
||||
>>> Z
|
||||
array([[0.72711591, -0.60156188, 0.33079564],
|
||||
[0.52839428, 0.79801892, 0.28976765],
|
||||
[0.43829436, 0.03590414, -0.89811411]])
|
||||
|
||||
>>> T2, Z2 = schur(A, output='complex')
|
||||
>>> T2
|
||||
array([[ 2.65896708, -1.22839825+1.32378589j, 0.42590089+1.51937378j],
|
||||
[ 0. , -0.32948354+0.80225456j, -0.59877807+0.56192146j],
|
||||
[ 0. , 0. , -0.32948354-0.80225456j]])
|
||||
>>> eigvals(T2)
|
||||
array([2.65896708, -0.32948354+0.80225456j, -0.32948354-0.80225456j])
|
||||
|
||||
An arbitrary custom eig-sorting condition, having positive imaginary part,
|
||||
which is satisfied by only one eigenvalue
|
||||
|
||||
>>> T3, Z3, sdim = schur(A, output='complex', sort=lambda x: x.imag > 0)
|
||||
>>> sdim
|
||||
1
|
||||
|
||||
"""
|
||||
if output not in ['real', 'complex', 'r', 'c']:
|
||||
raise ValueError("argument must be 'real', or 'complex'")
|
||||
if check_finite:
|
||||
a1 = asarray_chkfinite(a)
|
||||
else:
|
||||
a1 = asarray(a)
|
||||
if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]):
|
||||
raise ValueError('expected square matrix')
|
||||
typ = a1.dtype.char
|
||||
if output in ['complex', 'c'] and typ not in ['F', 'D']:
|
||||
if typ in _double_precision:
|
||||
a1 = a1.astype('D')
|
||||
typ = 'D'
|
||||
else:
|
||||
a1 = a1.astype('F')
|
||||
typ = 'F'
|
||||
overwrite_a = overwrite_a or (_datacopied(a1, a))
|
||||
gees, = get_lapack_funcs(('gees',), (a1,))
|
||||
if lwork is None or lwork == -1:
|
||||
# get optimal work array
|
||||
result = gees(lambda x: None, a1, lwork=-1)
|
||||
lwork = result[-2][0].real.astype(numpy.int_)
|
||||
|
||||
if sort is None:
|
||||
sort_t = 0
|
||||
sfunction = lambda x: None
|
||||
else:
|
||||
sort_t = 1
|
||||
if callable(sort):
|
||||
sfunction = sort
|
||||
elif sort == 'lhp':
|
||||
sfunction = lambda x: (x.real < 0.0)
|
||||
elif sort == 'rhp':
|
||||
sfunction = lambda x: (x.real >= 0.0)
|
||||
elif sort == 'iuc':
|
||||
sfunction = lambda x: (abs(x) <= 1.0)
|
||||
elif sort == 'ouc':
|
||||
sfunction = lambda x: (abs(x) > 1.0)
|
||||
else:
|
||||
raise ValueError("'sort' parameter must either be 'None', or a "
|
||||
"callable, or one of ('lhp','rhp','iuc','ouc')")
|
||||
|
||||
result = gees(sfunction, a1, lwork=lwork, overwrite_a=overwrite_a,
|
||||
sort_t=sort_t)
|
||||
|
||||
info = result[-1]
|
||||
if info < 0:
|
||||
raise ValueError('illegal value in {}-th argument of internal gees'
|
||||
''.format(-info))
|
||||
elif info == a1.shape[0] + 1:
|
||||
raise LinAlgError('Eigenvalues could not be separated for reordering.')
|
||||
elif info == a1.shape[0] + 2:
|
||||
raise LinAlgError('Leading eigenvalues do not satisfy sort condition.')
|
||||
elif info > 0:
|
||||
raise LinAlgError("Schur form not found. Possibly ill-conditioned.")
|
||||
|
||||
if sort_t == 0:
|
||||
return result[0], result[-3]
|
||||
else:
|
||||
return result[0], result[-3], result[1]
|
||||
|
||||
|
||||
eps = numpy.finfo(float).eps
|
||||
feps = numpy.finfo(single).eps
|
||||
|
||||
_array_kind = {'b': 0, 'h': 0, 'B': 0, 'i': 0, 'l': 0,
|
||||
'f': 0, 'd': 0, 'F': 1, 'D': 1}
|
||||
_array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1}
|
||||
_array_type = [['f', 'd'], ['F', 'D']]
|
||||
|
||||
|
||||
def _commonType(*arrays):
|
||||
kind = 0
|
||||
precision = 0
|
||||
for a in arrays:
|
||||
t = a.dtype.char
|
||||
kind = max(kind, _array_kind[t])
|
||||
precision = max(precision, _array_precision[t])
|
||||
return _array_type[kind][precision]
|
||||
|
||||
|
||||
def _castCopy(type, *arrays):
|
||||
cast_arrays = ()
|
||||
for a in arrays:
|
||||
if a.dtype.char == type:
|
||||
cast_arrays = cast_arrays + (a.copy(),)
|
||||
else:
|
||||
cast_arrays = cast_arrays + (a.astype(type),)
|
||||
if len(cast_arrays) == 1:
|
||||
return cast_arrays[0]
|
||||
else:
|
||||
return cast_arrays
|
||||
|
||||
|
||||
def rsf2csf(T, Z, check_finite=True):
|
||||
"""
|
||||
Convert real Schur form to complex Schur form.
|
||||
|
||||
Convert a quasi-diagonal real-valued Schur form to the upper-triangular
|
||||
complex-valued Schur form.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
T : (M, M) array_like
|
||||
Real Schur form of the original array
|
||||
Z : (M, M) array_like
|
||||
Schur transformation matrix
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input arrays contain only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
T : (M, M) ndarray
|
||||
Complex Schur form of the original array
|
||||
Z : (M, M) ndarray
|
||||
Schur transformation matrix corresponding to the complex form
|
||||
|
||||
See Also
|
||||
--------
|
||||
schur : Schur decomposition of an array
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import schur, rsf2csf
|
||||
>>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
|
||||
>>> T, Z = schur(A)
|
||||
>>> T
|
||||
array([[ 2.65896708, 1.42440458, -1.92933439],
|
||||
[ 0. , -0.32948354, -0.49063704],
|
||||
[ 0. , 1.31178921, -0.32948354]])
|
||||
>>> Z
|
||||
array([[0.72711591, -0.60156188, 0.33079564],
|
||||
[0.52839428, 0.79801892, 0.28976765],
|
||||
[0.43829436, 0.03590414, -0.89811411]])
|
||||
>>> T2 , Z2 = rsf2csf(T, Z)
|
||||
>>> T2
|
||||
array([[2.65896708+0.j, -1.64592781+0.743164187j, -1.21516887+1.00660462j],
|
||||
[0.+0.j , -0.32948354+8.02254558e-01j, -0.82115218-2.77555756e-17j],
|
||||
[0.+0.j , 0.+0.j, -0.32948354-0.802254558j]])
|
||||
>>> Z2
|
||||
array([[0.72711591+0.j, 0.28220393-0.31385693j, 0.51319638-0.17258824j],
|
||||
[0.52839428+0.j, 0.24720268+0.41635578j, -0.68079517-0.15118243j],
|
||||
[0.43829436+0.j, -0.76618703+0.01873251j, -0.03063006+0.46857912j]])
|
||||
|
||||
"""
|
||||
if check_finite:
|
||||
Z, T = map(asarray_chkfinite, (Z, T))
|
||||
else:
|
||||
Z, T = map(asarray, (Z, T))
|
||||
|
||||
for ind, X in enumerate([Z, T]):
|
||||
if X.ndim != 2 or X.shape[0] != X.shape[1]:
|
||||
raise ValueError("Input '{}' must be square.".format('ZT'[ind]))
|
||||
|
||||
if T.shape[0] != Z.shape[0]:
|
||||
raise ValueError("Input array shapes must match: Z: {} vs. T: {}"
|
||||
"".format(Z.shape, T.shape))
|
||||
N = T.shape[0]
|
||||
t = _commonType(Z, T, array([3.0], 'F'))
|
||||
Z, T = _castCopy(t, Z, T)
|
||||
|
||||
for m in range(N-1, 0, -1):
|
||||
if abs(T[m, m-1]) > eps*(abs(T[m-1, m-1]) + abs(T[m, m])):
|
||||
mu = eigvals(T[m-1:m+1, m-1:m+1]) - T[m, m]
|
||||
r = norm([mu[0], T[m, m-1]])
|
||||
c = mu[0] / r
|
||||
s = T[m, m-1] / r
|
||||
G = array([[c.conj(), s], [-s, c]], dtype=t)
|
||||
|
||||
T[m-1:m+1, m-1:] = G.dot(T[m-1:m+1, m-1:])
|
||||
T[:m+1, m-1:m+1] = T[:m+1, m-1:m+1].dot(G.conj().T)
|
||||
Z[:, m-1:m+1] = Z[:, m-1:m+1].dot(G.conj().T)
|
||||
|
||||
T[m, m-1] = 0.0
|
||||
return T, Z
|
493
venv/Lib/site-packages/scipy/linalg/decomp_svd.py
Normal file
493
venv/Lib/site-packages/scipy/linalg/decomp_svd.py
Normal file
|
@ -0,0 +1,493 @@
|
|||
"""SVD decomposition functions."""
|
||||
import numpy
|
||||
from numpy import zeros, r_, diag, dot, arccos, arcsin, where, clip
|
||||
|
||||
# Local imports.
|
||||
from .misc import LinAlgError, _datacopied
|
||||
from .lapack import get_lapack_funcs, _compute_lwork
|
||||
from .decomp import _asarray_validated
|
||||
|
||||
__all__ = ['svd', 'svdvals', 'diagsvd', 'orth', 'subspace_angles', 'null_space']
|
||||
|
||||
|
||||
def svd(a, full_matrices=True, compute_uv=True, overwrite_a=False,
|
||||
check_finite=True, lapack_driver='gesdd'):
|
||||
"""
|
||||
Singular Value Decomposition.
|
||||
|
||||
Factorizes the matrix `a` into two unitary matrices ``U`` and ``Vh``, and
|
||||
a 1-D array ``s`` of singular values (real, non-negative) such that
|
||||
``a == U @ S @ Vh``, where ``S`` is a suitably shaped matrix of zeros with
|
||||
main diagonal ``s``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, N) array_like
|
||||
Matrix to decompose.
|
||||
full_matrices : bool, optional
|
||||
If True (default), `U` and `Vh` are of shape ``(M, M)``, ``(N, N)``.
|
||||
If False, the shapes are ``(M, K)`` and ``(K, N)``, where
|
||||
``K = min(M, N)``.
|
||||
compute_uv : bool, optional
|
||||
Whether to compute also ``U`` and ``Vh`` in addition to ``s``.
|
||||
Default is True.
|
||||
overwrite_a : bool, optional
|
||||
Whether to overwrite `a`; may improve performance.
|
||||
Default is False.
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
lapack_driver : {'gesdd', 'gesvd'}, optional
|
||||
Whether to use the more efficient divide-and-conquer approach
|
||||
(``'gesdd'``) or general rectangular approach (``'gesvd'``)
|
||||
to compute the SVD. MATLAB and Octave use the ``'gesvd'`` approach.
|
||||
Default is ``'gesdd'``.
|
||||
|
||||
.. versionadded:: 0.18
|
||||
|
||||
Returns
|
||||
-------
|
||||
U : ndarray
|
||||
Unitary matrix having left singular vectors as columns.
|
||||
Of shape ``(M, M)`` or ``(M, K)``, depending on `full_matrices`.
|
||||
s : ndarray
|
||||
The singular values, sorted in non-increasing order.
|
||||
Of shape (K,), with ``K = min(M, N)``.
|
||||
Vh : ndarray
|
||||
Unitary matrix having right singular vectors as rows.
|
||||
Of shape ``(N, N)`` or ``(K, N)`` depending on `full_matrices`.
|
||||
|
||||
For ``compute_uv=False``, only ``s`` is returned.
|
||||
|
||||
Raises
|
||||
------
|
||||
LinAlgError
|
||||
If SVD computation does not converge.
|
||||
|
||||
See also
|
||||
--------
|
||||
svdvals : Compute singular values of a matrix.
|
||||
diagsvd : Construct the Sigma matrix, given the vector s.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy import linalg
|
||||
>>> m, n = 9, 6
|
||||
>>> a = np.random.randn(m, n) + 1.j*np.random.randn(m, n)
|
||||
>>> U, s, Vh = linalg.svd(a)
|
||||
>>> U.shape, s.shape, Vh.shape
|
||||
((9, 9), (6,), (6, 6))
|
||||
|
||||
Reconstruct the original matrix from the decomposition:
|
||||
|
||||
>>> sigma = np.zeros((m, n))
|
||||
>>> for i in range(min(m, n)):
|
||||
... sigma[i, i] = s[i]
|
||||
>>> a1 = np.dot(U, np.dot(sigma, Vh))
|
||||
>>> np.allclose(a, a1)
|
||||
True
|
||||
|
||||
Alternatively, use ``full_matrices=False`` (notice that the shape of
|
||||
``U`` is then ``(m, n)`` instead of ``(m, m)``):
|
||||
|
||||
>>> U, s, Vh = linalg.svd(a, full_matrices=False)
|
||||
>>> U.shape, s.shape, Vh.shape
|
||||
((9, 6), (6,), (6, 6))
|
||||
>>> S = np.diag(s)
|
||||
>>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
|
||||
True
|
||||
|
||||
>>> s2 = linalg.svd(a, compute_uv=False)
|
||||
>>> np.allclose(s, s2)
|
||||
True
|
||||
|
||||
"""
|
||||
a1 = _asarray_validated(a, check_finite=check_finite)
|
||||
if len(a1.shape) != 2:
|
||||
raise ValueError('expected matrix')
|
||||
m, n = a1.shape
|
||||
overwrite_a = overwrite_a or (_datacopied(a1, a))
|
||||
|
||||
if not isinstance(lapack_driver, str):
|
||||
raise TypeError('lapack_driver must be a string')
|
||||
if lapack_driver not in ('gesdd', 'gesvd'):
|
||||
raise ValueError('lapack_driver must be "gesdd" or "gesvd", not "%s"'
|
||||
% (lapack_driver,))
|
||||
funcs = (lapack_driver, lapack_driver + '_lwork')
|
||||
gesXd, gesXd_lwork = get_lapack_funcs(funcs, (a1,))
|
||||
|
||||
# compute optimal lwork
|
||||
lwork = _compute_lwork(gesXd_lwork, a1.shape[0], a1.shape[1],
|
||||
compute_uv=compute_uv, full_matrices=full_matrices)
|
||||
|
||||
# perform decomposition
|
||||
u, s, v, info = gesXd(a1, compute_uv=compute_uv, lwork=lwork,
|
||||
full_matrices=full_matrices, overwrite_a=overwrite_a)
|
||||
|
||||
if info > 0:
|
||||
raise LinAlgError("SVD did not converge")
|
||||
if info < 0:
|
||||
raise ValueError('illegal value in %dth argument of internal gesdd'
|
||||
% -info)
|
||||
if compute_uv:
|
||||
return u, s, v
|
||||
else:
|
||||
return s
|
||||
|
||||
|
||||
def svdvals(a, overwrite_a=False, check_finite=True):
|
||||
"""
|
||||
Compute singular values of a matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M, N) array_like
|
||||
Matrix to decompose.
|
||||
overwrite_a : bool, optional
|
||||
Whether to overwrite `a`; may improve performance.
|
||||
Default is False.
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
s : (min(M, N),) ndarray
|
||||
The singular values, sorted in decreasing order.
|
||||
|
||||
Raises
|
||||
------
|
||||
LinAlgError
|
||||
If SVD computation does not converge.
|
||||
|
||||
Notes
|
||||
-----
|
||||
``svdvals(a)`` only differs from ``svd(a, compute_uv=False)`` by its
|
||||
handling of the edge case of empty ``a``, where it returns an
|
||||
empty sequence:
|
||||
|
||||
>>> a = np.empty((0, 2))
|
||||
>>> from scipy.linalg import svdvals
|
||||
>>> svdvals(a)
|
||||
array([], dtype=float64)
|
||||
|
||||
See Also
|
||||
--------
|
||||
svd : Compute the full singular value decomposition of a matrix.
|
||||
diagsvd : Construct the Sigma matrix, given the vector s.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import svdvals
|
||||
>>> m = np.array([[1.0, 0.0],
|
||||
... [2.0, 3.0],
|
||||
... [1.0, 1.0],
|
||||
... [0.0, 2.0],
|
||||
... [1.0, 0.0]])
|
||||
>>> svdvals(m)
|
||||
array([ 4.28091555, 1.63516424])
|
||||
|
||||
We can verify the maximum singular value of `m` by computing the maximum
|
||||
length of `m.dot(u)` over all the unit vectors `u` in the (x,y) plane.
|
||||
We approximate "all" the unit vectors with a large sample. Because
|
||||
of linearity, we only need the unit vectors with angles in [0, pi].
|
||||
|
||||
>>> t = np.linspace(0, np.pi, 2000)
|
||||
>>> u = np.array([np.cos(t), np.sin(t)])
|
||||
>>> np.linalg.norm(m.dot(u), axis=0).max()
|
||||
4.2809152422538475
|
||||
|
||||
`p` is a projection matrix with rank 1. With exact arithmetic,
|
||||
its singular values would be [1, 0, 0, 0].
|
||||
|
||||
>>> v = np.array([0.1, 0.3, 0.9, 0.3])
|
||||
>>> p = np.outer(v, v)
|
||||
>>> svdvals(p)
|
||||
array([ 1.00000000e+00, 2.02021698e-17, 1.56692500e-17,
|
||||
8.15115104e-34])
|
||||
|
||||
The singular values of an orthogonal matrix are all 1. Here, we
|
||||
create a random orthogonal matrix by using the `rvs()` method of
|
||||
`scipy.stats.ortho_group`.
|
||||
|
||||
>>> from scipy.stats import ortho_group
|
||||
>>> np.random.seed(123)
|
||||
>>> orth = ortho_group.rvs(4)
|
||||
>>> svdvals(orth)
|
||||
array([ 1., 1., 1., 1.])
|
||||
|
||||
"""
|
||||
a = _asarray_validated(a, check_finite=check_finite)
|
||||
if a.size:
|
||||
return svd(a, compute_uv=0, overwrite_a=overwrite_a,
|
||||
check_finite=False)
|
||||
elif len(a.shape) != 2:
|
||||
raise ValueError('expected matrix')
|
||||
else:
|
||||
return numpy.empty(0)
|
||||
|
||||
|
||||
def diagsvd(s, M, N):
|
||||
"""
|
||||
Construct the sigma matrix in SVD from singular values and size M, N.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : (M,) or (N,) array_like
|
||||
Singular values
|
||||
M : int
|
||||
Size of the matrix whose singular values are `s`.
|
||||
N : int
|
||||
Size of the matrix whose singular values are `s`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
S : (M, N) ndarray
|
||||
The S-matrix in the singular value decomposition
|
||||
|
||||
See Also
|
||||
--------
|
||||
svd : Singular value decomposition of a matrix
|
||||
svdvals : Compute singular values of a matrix.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import diagsvd
|
||||
>>> vals = np.array([1, 2, 3]) # The array representing the computed svd
|
||||
>>> diagsvd(vals, 3, 4)
|
||||
array([[1, 0, 0, 0],
|
||||
[0, 2, 0, 0],
|
||||
[0, 0, 3, 0]])
|
||||
>>> diagsvd(vals, 4, 3)
|
||||
array([[1, 0, 0],
|
||||
[0, 2, 0],
|
||||
[0, 0, 3],
|
||||
[0, 0, 0]])
|
||||
|
||||
"""
|
||||
part = diag(s)
|
||||
typ = part.dtype.char
|
||||
MorN = len(s)
|
||||
if MorN == M:
|
||||
return r_['-1', part, zeros((M, N-M), typ)]
|
||||
elif MorN == N:
|
||||
return r_[part, zeros((M-N, N), typ)]
|
||||
else:
|
||||
raise ValueError("Length of s must be M or N.")
|
||||
|
||||
|
||||
# Orthonormal decomposition
|
||||
|
||||
def orth(A, rcond=None):
|
||||
"""
|
||||
Construct an orthonormal basis for the range of A using SVD
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (M, N) array_like
|
||||
Input array
|
||||
rcond : float, optional
|
||||
Relative condition number. Singular values ``s`` smaller than
|
||||
``rcond * max(s)`` are considered zero.
|
||||
Default: floating point eps * max(M,N).
|
||||
|
||||
Returns
|
||||
-------
|
||||
Q : (M, K) ndarray
|
||||
Orthonormal basis for the range of A.
|
||||
K = effective rank of A, as determined by rcond
|
||||
|
||||
See also
|
||||
--------
|
||||
svd : Singular value decomposition of a matrix
|
||||
null_space : Matrix null space
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import orth
|
||||
>>> A = np.array([[2, 0, 0], [0, 5, 0]]) # rank 2 array
|
||||
>>> orth(A)
|
||||
array([[0., 1.],
|
||||
[1., 0.]])
|
||||
>>> orth(A.T)
|
||||
array([[0., 1.],
|
||||
[1., 0.],
|
||||
[0., 0.]])
|
||||
|
||||
"""
|
||||
u, s, vh = svd(A, full_matrices=False)
|
||||
M, N = u.shape[0], vh.shape[1]
|
||||
if rcond is None:
|
||||
rcond = numpy.finfo(s.dtype).eps * max(M, N)
|
||||
tol = numpy.amax(s) * rcond
|
||||
num = numpy.sum(s > tol, dtype=int)
|
||||
Q = u[:, :num]
|
||||
return Q
|
||||
|
||||
|
||||
def null_space(A, rcond=None):
|
||||
"""
|
||||
Construct an orthonormal basis for the null space of A using SVD
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (M, N) array_like
|
||||
Input array
|
||||
rcond : float, optional
|
||||
Relative condition number. Singular values ``s`` smaller than
|
||||
``rcond * max(s)`` are considered zero.
|
||||
Default: floating point eps * max(M,N).
|
||||
|
||||
Returns
|
||||
-------
|
||||
Z : (N, K) ndarray
|
||||
Orthonormal basis for the null space of A.
|
||||
K = dimension of effective null space, as determined by rcond
|
||||
|
||||
See also
|
||||
--------
|
||||
svd : Singular value decomposition of a matrix
|
||||
orth : Matrix range
|
||||
|
||||
Examples
|
||||
--------
|
||||
1-D null space:
|
||||
|
||||
>>> from scipy.linalg import null_space
|
||||
>>> A = np.array([[1, 1], [1, 1]])
|
||||
>>> ns = null_space(A)
|
||||
>>> ns * np.sign(ns[0,0]) # Remove the sign ambiguity of the vector
|
||||
array([[ 0.70710678],
|
||||
[-0.70710678]])
|
||||
|
||||
2-D null space:
|
||||
|
||||
>>> B = np.random.rand(3, 5)
|
||||
>>> Z = null_space(B)
|
||||
>>> Z.shape
|
||||
(5, 2)
|
||||
>>> np.allclose(B.dot(Z), 0)
|
||||
True
|
||||
|
||||
The basis vectors are orthonormal (up to rounding error):
|
||||
|
||||
>>> Z.T.dot(Z)
|
||||
array([[ 1.00000000e+00, 6.92087741e-17],
|
||||
[ 6.92087741e-17, 1.00000000e+00]])
|
||||
|
||||
"""
|
||||
u, s, vh = svd(A, full_matrices=True)
|
||||
M, N = u.shape[0], vh.shape[1]
|
||||
if rcond is None:
|
||||
rcond = numpy.finfo(s.dtype).eps * max(M, N)
|
||||
tol = numpy.amax(s) * rcond
|
||||
num = numpy.sum(s > tol, dtype=int)
|
||||
Q = vh[num:,:].T.conj()
|
||||
return Q
|
||||
|
||||
|
||||
def subspace_angles(A, B):
|
||||
r"""
|
||||
Compute the subspace angles between two matrices.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (M, N) array_like
|
||||
The first input array.
|
||||
B : (M, K) array_like
|
||||
The second input array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
angles : ndarray, shape (min(N, K),)
|
||||
The subspace angles between the column spaces of `A` and `B` in
|
||||
descending order.
|
||||
|
||||
See Also
|
||||
--------
|
||||
orth
|
||||
svd
|
||||
|
||||
Notes
|
||||
-----
|
||||
This computes the subspace angles according to the formula
|
||||
provided in [1]_. For equivalence with MATLAB and Octave behavior,
|
||||
use ``angles[0]``.
|
||||
|
||||
.. versionadded:: 1.0
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Knyazev A, Argentati M (2002) Principal Angles between Subspaces
|
||||
in an A-Based Scalar Product: Algorithms and Perturbation
|
||||
Estimates. SIAM J. Sci. Comput. 23:2008-2040.
|
||||
|
||||
Examples
|
||||
--------
|
||||
An Hadamard matrix, which has orthogonal columns, so we expect that
|
||||
the suspace angle to be :math:`\frac{\pi}{2}`:
|
||||
|
||||
>>> from scipy.linalg import hadamard, subspace_angles
|
||||
>>> H = hadamard(4)
|
||||
>>> print(H)
|
||||
[[ 1 1 1 1]
|
||||
[ 1 -1 1 -1]
|
||||
[ 1 1 -1 -1]
|
||||
[ 1 -1 -1 1]]
|
||||
>>> np.rad2deg(subspace_angles(H[:, :2], H[:, 2:]))
|
||||
array([ 90., 90.])
|
||||
|
||||
And the subspace angle of a matrix to itself should be zero:
|
||||
|
||||
>>> subspace_angles(H[:, :2], H[:, :2]) <= 2 * np.finfo(float).eps
|
||||
array([ True, True], dtype=bool)
|
||||
|
||||
The angles between non-orthogonal subspaces are in between these extremes:
|
||||
|
||||
>>> x = np.random.RandomState(0).randn(4, 3)
|
||||
>>> np.rad2deg(subspace_angles(x[:, :2], x[:, [2]]))
|
||||
array([ 55.832])
|
||||
"""
|
||||
# Steps here omit the U and V calculation steps from the paper
|
||||
|
||||
# 1. Compute orthonormal bases of column-spaces
|
||||
A = _asarray_validated(A, check_finite=True)
|
||||
if len(A.shape) != 2:
|
||||
raise ValueError('expected 2D array, got shape %s' % (A.shape,))
|
||||
QA = orth(A)
|
||||
del A
|
||||
|
||||
B = _asarray_validated(B, check_finite=True)
|
||||
if len(B.shape) != 2:
|
||||
raise ValueError('expected 2D array, got shape %s' % (B.shape,))
|
||||
if len(B) != len(QA):
|
||||
raise ValueError('A and B must have the same number of rows, got '
|
||||
'%s and %s' % (QA.shape[0], B.shape[0]))
|
||||
QB = orth(B)
|
||||
del B
|
||||
|
||||
# 2. Compute SVD for cosine
|
||||
QA_H_QB = dot(QA.T.conj(), QB)
|
||||
sigma = svdvals(QA_H_QB)
|
||||
|
||||
# 3. Compute matrix B
|
||||
if QA.shape[1] >= QB.shape[1]:
|
||||
B = QB - dot(QA, QA_H_QB)
|
||||
else:
|
||||
B = QA - dot(QB, QA_H_QB.T.conj())
|
||||
del QA, QB, QA_H_QB
|
||||
|
||||
# 4. Compute SVD for sine
|
||||
mask = sigma ** 2 >= 0.5
|
||||
if mask.any():
|
||||
mu_arcsin = arcsin(clip(svdvals(B, overwrite_a=True), -1., 1.))
|
||||
else:
|
||||
mu_arcsin = 0.
|
||||
|
||||
# 5. Compute the principal angles
|
||||
# with reverse ordering of sigma because smallest sigma belongs to largest
|
||||
# angle theta
|
||||
theta = where(mask, mu_arcsin, arccos(clip(sigma[::-1], -1., 1.)))
|
||||
return theta
|
56
venv/Lib/site-packages/scipy/linalg/flinalg.py
Normal file
56
venv/Lib/site-packages/scipy/linalg/flinalg.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
#
|
||||
# Author: Pearu Peterson, March 2002
|
||||
#
|
||||
|
||||
__all__ = ['get_flinalg_funcs']
|
||||
|
||||
# The following ensures that possibly missing flavor (C or Fortran) is
|
||||
# replaced with the available one. If none is available, exception
|
||||
# is raised at the first attempt to use the resources.
|
||||
try:
|
||||
from . import _flinalg
|
||||
except ImportError:
|
||||
_flinalg = None
|
||||
# from numpy.distutils.misc_util import PostponedException
|
||||
# _flinalg = PostponedException()
|
||||
# print _flinalg.__doc__
|
||||
has_column_major_storage = lambda a:0
|
||||
|
||||
|
||||
def has_column_major_storage(arr):
|
||||
return arr.flags['FORTRAN']
|
||||
|
||||
|
||||
_type_conv = {'f':'s', 'd':'d', 'F':'c', 'D':'z'} # 'd' will be default for 'i',..
|
||||
|
||||
|
||||
def get_flinalg_funcs(names,arrays=(),debug=0):
|
||||
"""Return optimal available _flinalg function objects with
|
||||
names. Arrays are used to determine optimal prefix."""
|
||||
ordering = []
|
||||
for i in range(len(arrays)):
|
||||
t = arrays[i].dtype.char
|
||||
if t not in _type_conv:
|
||||
t = 'd'
|
||||
ordering.append((t,i))
|
||||
if ordering:
|
||||
ordering.sort()
|
||||
required_prefix = _type_conv[ordering[0][0]]
|
||||
else:
|
||||
required_prefix = 'd'
|
||||
# Some routines may require special treatment.
|
||||
# Handle them here before the default lookup.
|
||||
|
||||
# Default lookup:
|
||||
if ordering and has_column_major_storage(arrays[ordering[0][1]]):
|
||||
suffix1,suffix2 = '_c','_r'
|
||||
else:
|
||||
suffix1,suffix2 = '_r','_c'
|
||||
|
||||
funcs = []
|
||||
for name in names:
|
||||
func_name = required_prefix + name
|
||||
func = getattr(_flinalg,func_name+suffix1,
|
||||
getattr(_flinalg,func_name+suffix2,None))
|
||||
funcs.append(func)
|
||||
return tuple(funcs)
|
970
venv/Lib/site-packages/scipy/linalg/interpolative.py
Normal file
970
venv/Lib/site-packages/scipy/linalg/interpolative.py
Normal file
|
@ -0,0 +1,970 @@
|
|||
#******************************************************************************
|
||||
# Copyright (C) 2013 Kenneth L. Ho
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer. Redistributions in binary
|
||||
# form must reproduce the above copyright notice, this list of conditions and
|
||||
# the following disclaimer in the documentation and/or other materials
|
||||
# provided with the distribution.
|
||||
#
|
||||
# None of the names of the copyright holders may be used to endorse or
|
||||
# promote products derived from this software without specific prior written
|
||||
# permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
#******************************************************************************
|
||||
|
||||
# Python module for interfacing with `id_dist`.
|
||||
|
||||
r"""
|
||||
======================================================================
|
||||
Interpolative matrix decomposition (:mod:`scipy.linalg.interpolative`)
|
||||
======================================================================
|
||||
|
||||
.. moduleauthor:: Kenneth L. Ho <klho@stanford.edu>
|
||||
|
||||
.. versionadded:: 0.13
|
||||
|
||||
.. currentmodule:: scipy.linalg.interpolative
|
||||
|
||||
An interpolative decomposition (ID) of a matrix :math:`A \in
|
||||
\mathbb{C}^{m \times n}` of rank :math:`k \leq \min \{ m, n \}` is a
|
||||
factorization
|
||||
|
||||
.. math::
|
||||
A \Pi =
|
||||
\begin{bmatrix}
|
||||
A \Pi_{1} & A \Pi_{2}
|
||||
\end{bmatrix} =
|
||||
A \Pi_{1}
|
||||
\begin{bmatrix}
|
||||
I & T
|
||||
\end{bmatrix},
|
||||
|
||||
where :math:`\Pi = [\Pi_{1}, \Pi_{2}]` is a permutation matrix with
|
||||
:math:`\Pi_{1} \in \{ 0, 1 \}^{n \times k}`, i.e., :math:`A \Pi_{2} =
|
||||
A \Pi_{1} T`. This can equivalently be written as :math:`A = BP`,
|
||||
where :math:`B = A \Pi_{1}` and :math:`P = [I, T] \Pi^{\mathsf{T}}`
|
||||
are the *skeleton* and *interpolation matrices*, respectively.
|
||||
|
||||
If :math:`A` does not have exact rank :math:`k`, then there exists an
|
||||
approximation in the form of an ID such that :math:`A = BP + E`, where
|
||||
:math:`\| E \| \sim \sigma_{k + 1}` is on the order of the :math:`(k +
|
||||
1)`-th largest singular value of :math:`A`. Note that :math:`\sigma_{k
|
||||
+ 1}` is the best possible error for a rank-:math:`k` approximation
|
||||
and, in fact, is achieved by the singular value decomposition (SVD)
|
||||
:math:`A \approx U S V^{*}`, where :math:`U \in \mathbb{C}^{m \times
|
||||
k}` and :math:`V \in \mathbb{C}^{n \times k}` have orthonormal columns
|
||||
and :math:`S = \mathop{\mathrm{diag}} (\sigma_{i}) \in \mathbb{C}^{k
|
||||
\times k}` is diagonal with nonnegative entries. The principal
|
||||
advantages of using an ID over an SVD are that:
|
||||
|
||||
- it is cheaper to construct;
|
||||
- it preserves the structure of :math:`A`; and
|
||||
- it is more efficient to compute with in light of the identity submatrix of :math:`P`.
|
||||
|
||||
Routines
|
||||
========
|
||||
|
||||
Main functionality:
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
interp_decomp
|
||||
reconstruct_matrix_from_id
|
||||
reconstruct_interp_matrix
|
||||
reconstruct_skel_matrix
|
||||
id_to_svd
|
||||
svd
|
||||
estimate_spectral_norm
|
||||
estimate_spectral_norm_diff
|
||||
estimate_rank
|
||||
|
||||
Support functions:
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
seed
|
||||
rand
|
||||
|
||||
|
||||
References
|
||||
==========
|
||||
|
||||
This module uses the ID software package [1]_ by Martinsson, Rokhlin,
|
||||
Shkolnisky, and Tygert, which is a Fortran library for computing IDs
|
||||
using various algorithms, including the rank-revealing QR approach of
|
||||
[2]_ and the more recent randomized methods described in [3]_, [4]_,
|
||||
and [5]_. This module exposes its functionality in a way convenient
|
||||
for Python users. Note that this module does not add any functionality
|
||||
beyond that of organizing a simpler and more consistent interface.
|
||||
|
||||
We advise the user to consult also the `documentation for the ID package
|
||||
<http://tygert.com/id_doc.4.pdf>`_.
|
||||
|
||||
.. [1] P.G. Martinsson, V. Rokhlin, Y. Shkolnisky, M. Tygert. "ID: a
|
||||
software package for low-rank approximation of matrices via interpolative
|
||||
decompositions, version 0.2." http://tygert.com/id_doc.4.pdf.
|
||||
|
||||
.. [2] H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin. "On the
|
||||
compression of low rank matrices." *SIAM J. Sci. Comput.* 26 (4): 1389--1404,
|
||||
2005. :doi:`10.1137/030602678`.
|
||||
|
||||
.. [3] E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, M.
|
||||
Tygert. "Randomized algorithms for the low-rank approximation of matrices."
|
||||
*Proc. Natl. Acad. Sci. U.S.A.* 104 (51): 20167--20172, 2007.
|
||||
:doi:`10.1073/pnas.0709640104`.
|
||||
|
||||
.. [4] P.G. Martinsson, V. Rokhlin, M. Tygert. "A randomized
|
||||
algorithm for the decomposition of matrices." *Appl. Comput. Harmon. Anal.* 30
|
||||
(1): 47--68, 2011. :doi:`10.1016/j.acha.2010.02.003`.
|
||||
|
||||
.. [5] F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert. "A fast
|
||||
randomized algorithm for the approximation of matrices." *Appl. Comput.
|
||||
Harmon. Anal.* 25 (3): 335--366, 2008. :doi:`10.1016/j.acha.2007.12.002`.
|
||||
|
||||
|
||||
Tutorial
|
||||
========
|
||||
|
||||
Initializing
|
||||
------------
|
||||
|
||||
The first step is to import :mod:`scipy.linalg.interpolative` by issuing the
|
||||
command:
|
||||
|
||||
>>> import scipy.linalg.interpolative as sli
|
||||
|
||||
Now let's build a matrix. For this, we consider a Hilbert matrix, which is well
|
||||
know to have low rank:
|
||||
|
||||
>>> from scipy.linalg import hilbert
|
||||
>>> n = 1000
|
||||
>>> A = hilbert(n)
|
||||
|
||||
We can also do this explicitly via:
|
||||
|
||||
>>> import numpy as np
|
||||
>>> n = 1000
|
||||
>>> A = np.empty((n, n), order='F')
|
||||
>>> for j in range(n):
|
||||
>>> for i in range(m):
|
||||
>>> A[i,j] = 1. / (i + j + 1)
|
||||
|
||||
Note the use of the flag ``order='F'`` in :func:`numpy.empty`. This
|
||||
instantiates the matrix in Fortran-contiguous order and is important for
|
||||
avoiding data copying when passing to the backend.
|
||||
|
||||
We then define multiplication routines for the matrix by regarding it as a
|
||||
:class:`scipy.sparse.linalg.LinearOperator`:
|
||||
|
||||
>>> from scipy.sparse.linalg import aslinearoperator
|
||||
>>> L = aslinearoperator(A)
|
||||
|
||||
This automatically sets up methods describing the action of the matrix and its
|
||||
adjoint on a vector.
|
||||
|
||||
Computing an ID
|
||||
---------------
|
||||
|
||||
We have several choices of algorithm to compute an ID. These fall largely
|
||||
according to two dichotomies:
|
||||
|
||||
1. how the matrix is represented, i.e., via its entries or via its action on a
|
||||
vector; and
|
||||
2. whether to approximate it to a fixed relative precision or to a fixed rank.
|
||||
|
||||
We step through each choice in turn below.
|
||||
|
||||
In all cases, the ID is represented by three parameters:
|
||||
|
||||
1. a rank ``k``;
|
||||
2. an index array ``idx``; and
|
||||
3. interpolation coefficients ``proj``.
|
||||
|
||||
The ID is specified by the relation
|
||||
``np.dot(A[:,idx[:k]], proj) == A[:,idx[k:]]``.
|
||||
|
||||
From matrix entries
|
||||
...................
|
||||
|
||||
We first consider a matrix given in terms of its entries.
|
||||
|
||||
To compute an ID to a fixed precision, type:
|
||||
|
||||
>>> k, idx, proj = sli.interp_decomp(A, eps)
|
||||
|
||||
where ``eps < 1`` is the desired precision.
|
||||
|
||||
To compute an ID to a fixed rank, use:
|
||||
|
||||
>>> idx, proj = sli.interp_decomp(A, k)
|
||||
|
||||
where ``k >= 1`` is the desired rank.
|
||||
|
||||
Both algorithms use random sampling and are usually faster than the
|
||||
corresponding older, deterministic algorithms, which can be accessed via the
|
||||
commands:
|
||||
|
||||
>>> k, idx, proj = sli.interp_decomp(A, eps, rand=False)
|
||||
|
||||
and:
|
||||
|
||||
>>> idx, proj = sli.interp_decomp(A, k, rand=False)
|
||||
|
||||
respectively.
|
||||
|
||||
From matrix action
|
||||
..................
|
||||
|
||||
Now consider a matrix given in terms of its action on a vector as a
|
||||
:class:`scipy.sparse.linalg.LinearOperator`.
|
||||
|
||||
To compute an ID to a fixed precision, type:
|
||||
|
||||
>>> k, idx, proj = sli.interp_decomp(L, eps)
|
||||
|
||||
To compute an ID to a fixed rank, use:
|
||||
|
||||
>>> idx, proj = sli.interp_decomp(L, k)
|
||||
|
||||
These algorithms are randomized.
|
||||
|
||||
Reconstructing an ID
|
||||
--------------------
|
||||
|
||||
The ID routines above do not output the skeleton and interpolation matrices
|
||||
explicitly but instead return the relevant information in a more compact (and
|
||||
sometimes more useful) form. To build these matrices, write:
|
||||
|
||||
>>> B = sli.reconstruct_skel_matrix(A, k, idx)
|
||||
|
||||
for the skeleton matrix and:
|
||||
|
||||
>>> P = sli.reconstruct_interp_matrix(idx, proj)
|
||||
|
||||
for the interpolation matrix. The ID approximation can then be computed as:
|
||||
|
||||
>>> C = np.dot(B, P)
|
||||
|
||||
This can also be constructed directly using:
|
||||
|
||||
>>> C = sli.reconstruct_matrix_from_id(B, idx, proj)
|
||||
|
||||
without having to first compute ``P``.
|
||||
|
||||
Alternatively, this can be done explicitly as well using:
|
||||
|
||||
>>> B = A[:,idx[:k]]
|
||||
>>> P = np.hstack([np.eye(k), proj])[:,np.argsort(idx)]
|
||||
>>> C = np.dot(B, P)
|
||||
|
||||
Computing an SVD
|
||||
----------------
|
||||
|
||||
An ID can be converted to an SVD via the command:
|
||||
|
||||
>>> U, S, V = sli.id_to_svd(B, idx, proj)
|
||||
|
||||
The SVD approximation is then:
|
||||
|
||||
>>> C = np.dot(U, np.dot(np.diag(S), np.dot(V.conj().T)))
|
||||
|
||||
The SVD can also be computed "fresh" by combining both the ID and conversion
|
||||
steps into one command. Following the various ID algorithms above, there are
|
||||
correspondingly various SVD algorithms that one can employ.
|
||||
|
||||
From matrix entries
|
||||
...................
|
||||
|
||||
We consider first SVD algorithms for a matrix given in terms of its entries.
|
||||
|
||||
To compute an SVD to a fixed precision, type:
|
||||
|
||||
>>> U, S, V = sli.svd(A, eps)
|
||||
|
||||
To compute an SVD to a fixed rank, use:
|
||||
|
||||
>>> U, S, V = sli.svd(A, k)
|
||||
|
||||
Both algorithms use random sampling; for the determinstic versions, issue the
|
||||
keyword ``rand=False`` as above.
|
||||
|
||||
From matrix action
|
||||
..................
|
||||
|
||||
Now consider a matrix given in terms of its action on a vector.
|
||||
|
||||
To compute an SVD to a fixed precision, type:
|
||||
|
||||
>>> U, S, V = sli.svd(L, eps)
|
||||
|
||||
To compute an SVD to a fixed rank, use:
|
||||
|
||||
>>> U, S, V = sli.svd(L, k)
|
||||
|
||||
Utility routines
|
||||
----------------
|
||||
|
||||
Several utility routines are also available.
|
||||
|
||||
To estimate the spectral norm of a matrix, use:
|
||||
|
||||
>>> snorm = sli.estimate_spectral_norm(A)
|
||||
|
||||
This algorithm is based on the randomized power method and thus requires only
|
||||
matrix-vector products. The number of iterations to take can be set using the
|
||||
keyword ``its`` (default: ``its=20``). The matrix is interpreted as a
|
||||
:class:`scipy.sparse.linalg.LinearOperator`, but it is also valid to supply it
|
||||
as a :class:`numpy.ndarray`, in which case it is trivially converted using
|
||||
:func:`scipy.sparse.linalg.aslinearoperator`.
|
||||
|
||||
The same algorithm can also estimate the spectral norm of the difference of two
|
||||
matrices ``A1`` and ``A2`` as follows:
|
||||
|
||||
>>> diff = sli.estimate_spectral_norm_diff(A1, A2)
|
||||
|
||||
This is often useful for checking the accuracy of a matrix approximation.
|
||||
|
||||
Some routines in :mod:`scipy.linalg.interpolative` require estimating the rank
|
||||
of a matrix as well. This can be done with either:
|
||||
|
||||
>>> k = sli.estimate_rank(A, eps)
|
||||
|
||||
or:
|
||||
|
||||
>>> k = sli.estimate_rank(L, eps)
|
||||
|
||||
depending on the representation. The parameter ``eps`` controls the definition
|
||||
of the numerical rank.
|
||||
|
||||
Finally, the random number generation required for all randomized routines can
|
||||
be controlled via :func:`scipy.linalg.interpolative.seed`. To reset the seed
|
||||
values to their original values, use:
|
||||
|
||||
>>> sli.seed('default')
|
||||
|
||||
To specify the seed values, use:
|
||||
|
||||
>>> sli.seed(s)
|
||||
|
||||
where ``s`` must be an integer or array of 55 floats. If an integer, the array
|
||||
of floats is obtained by using ``numpy.random.rand`` with the given integer
|
||||
seed.
|
||||
|
||||
To simply generate some random numbers, type:
|
||||
|
||||
>>> sli.rand(n)
|
||||
|
||||
where ``n`` is the number of random numbers to generate.
|
||||
|
||||
Remarks
|
||||
-------
|
||||
|
||||
The above functions all automatically detect the appropriate interface and work
|
||||
with both real and complex data types, passing input arguments to the proper
|
||||
backend routine.
|
||||
|
||||
"""
|
||||
|
||||
import scipy.linalg._interpolative_backend as backend
|
||||
import numpy as np
|
||||
|
||||
_DTYPE_ERROR = ValueError("invalid input dtype (input must be float64 or complex128)")
|
||||
_TYPE_ERROR = TypeError("invalid input type (must be array or LinearOperator)")
|
||||
|
||||
|
||||
def _is_real(A):
|
||||
try:
|
||||
if A.dtype == np.complex128:
|
||||
return False
|
||||
elif A.dtype == np.float64:
|
||||
return True
|
||||
else:
|
||||
raise _DTYPE_ERROR
|
||||
except AttributeError:
|
||||
raise _TYPE_ERROR
|
||||
|
||||
|
||||
def seed(seed=None):
|
||||
"""
|
||||
Seed the internal random number generator used in this ID package.
|
||||
|
||||
The generator is a lagged Fibonacci method with 55-element internal state.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
seed : int, sequence, 'default', optional
|
||||
If 'default', the random seed is reset to a default value.
|
||||
|
||||
If `seed` is a sequence containing 55 floating-point numbers
|
||||
in range [0,1], these are used to set the internal state of
|
||||
the generator.
|
||||
|
||||
If the value is an integer, the internal state is obtained
|
||||
from `numpy.random.RandomState` (MT19937) with the integer
|
||||
used as the initial seed.
|
||||
|
||||
If `seed` is omitted (None), ``numpy.random.rand`` is used to
|
||||
initialize the generator.
|
||||
|
||||
"""
|
||||
# For details, see :func:`backend.id_srand`, :func:`backend.id_srandi`,
|
||||
# and :func:`backend.id_srando`.
|
||||
|
||||
if isinstance(seed, str) and seed == 'default':
|
||||
backend.id_srando()
|
||||
elif hasattr(seed, '__len__'):
|
||||
state = np.asfortranarray(seed, dtype=float)
|
||||
if state.shape != (55,):
|
||||
raise ValueError("invalid input size")
|
||||
elif state.min() < 0 or state.max() > 1:
|
||||
raise ValueError("values not in range [0,1]")
|
||||
backend.id_srandi(state)
|
||||
elif seed is None:
|
||||
backend.id_srandi(np.random.rand(55))
|
||||
else:
|
||||
rnd = np.random.RandomState(seed)
|
||||
backend.id_srandi(rnd.rand(55))
|
||||
|
||||
|
||||
def rand(*shape):
|
||||
"""
|
||||
Generate standard uniform pseudorandom numbers via a very efficient lagged
|
||||
Fibonacci method.
|
||||
|
||||
This routine is used for all random number generation in this package and
|
||||
can affect ID and SVD results.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
shape
|
||||
Shape of output array
|
||||
|
||||
"""
|
||||
# For details, see :func:`backend.id_srand`, and :func:`backend.id_srando`.
|
||||
return backend.id_srand(np.prod(shape)).reshape(shape)
|
||||
|
||||
|
||||
def interp_decomp(A, eps_or_k, rand=True):
|
||||
"""
|
||||
Compute ID of a matrix.
|
||||
|
||||
An ID of a matrix `A` is a factorization defined by a rank `k`, a column
|
||||
index array `idx`, and interpolation coefficients `proj` such that::
|
||||
|
||||
numpy.dot(A[:,idx[:k]], proj) = A[:,idx[k:]]
|
||||
|
||||
The original matrix can then be reconstructed as::
|
||||
|
||||
numpy.hstack([A[:,idx[:k]],
|
||||
numpy.dot(A[:,idx[:k]], proj)]
|
||||
)[:,numpy.argsort(idx)]
|
||||
|
||||
or via the routine :func:`reconstruct_matrix_from_id`. This can
|
||||
equivalently be written as::
|
||||
|
||||
numpy.dot(A[:,idx[:k]],
|
||||
numpy.hstack([numpy.eye(k), proj])
|
||||
)[:,np.argsort(idx)]
|
||||
|
||||
in terms of the skeleton and interpolation matrices::
|
||||
|
||||
B = A[:,idx[:k]]
|
||||
|
||||
and::
|
||||
|
||||
P = numpy.hstack([numpy.eye(k), proj])[:,np.argsort(idx)]
|
||||
|
||||
respectively. See also :func:`reconstruct_interp_matrix` and
|
||||
:func:`reconstruct_skel_matrix`.
|
||||
|
||||
The ID can be computed to any relative precision or rank (depending on the
|
||||
value of `eps_or_k`). If a precision is specified (`eps_or_k < 1`), then
|
||||
this function has the output signature::
|
||||
|
||||
k, idx, proj = interp_decomp(A, eps_or_k)
|
||||
|
||||
Otherwise, if a rank is specified (`eps_or_k >= 1`), then the output
|
||||
signature is::
|
||||
|
||||
idx, proj = interp_decomp(A, eps_or_k)
|
||||
|
||||
.. This function automatically detects the form of the input parameters
|
||||
and passes them to the appropriate backend. For details, see
|
||||
:func:`backend.iddp_id`, :func:`backend.iddp_aid`,
|
||||
:func:`backend.iddp_rid`, :func:`backend.iddr_id`,
|
||||
:func:`backend.iddr_aid`, :func:`backend.iddr_rid`,
|
||||
:func:`backend.idzp_id`, :func:`backend.idzp_aid`,
|
||||
:func:`backend.idzp_rid`, :func:`backend.idzr_id`,
|
||||
:func:`backend.idzr_aid`, and :func:`backend.idzr_rid`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator` with `rmatvec`
|
||||
Matrix to be factored
|
||||
eps_or_k : float or int
|
||||
Relative error (if `eps_or_k < 1`) or rank (if `eps_or_k >= 1`) of
|
||||
approximation.
|
||||
rand : bool, optional
|
||||
Whether to use random sampling if `A` is of type :class:`numpy.ndarray`
|
||||
(randomized algorithms are always used if `A` is of type
|
||||
:class:`scipy.sparse.linalg.LinearOperator`).
|
||||
|
||||
Returns
|
||||
-------
|
||||
k : int
|
||||
Rank required to achieve specified relative precision if
|
||||
`eps_or_k < 1`.
|
||||
idx : :class:`numpy.ndarray`
|
||||
Column index array.
|
||||
proj : :class:`numpy.ndarray`
|
||||
Interpolation coefficients.
|
||||
"""
|
||||
from scipy.sparse.linalg import LinearOperator
|
||||
|
||||
real = _is_real(A)
|
||||
|
||||
if isinstance(A, np.ndarray):
|
||||
if eps_or_k < 1:
|
||||
eps = eps_or_k
|
||||
if rand:
|
||||
if real:
|
||||
k, idx, proj = backend.iddp_aid(eps, A)
|
||||
else:
|
||||
k, idx, proj = backend.idzp_aid(eps, A)
|
||||
else:
|
||||
if real:
|
||||
k, idx, proj = backend.iddp_id(eps, A)
|
||||
else:
|
||||
k, idx, proj = backend.idzp_id(eps, A)
|
||||
return k, idx - 1, proj
|
||||
else:
|
||||
k = int(eps_or_k)
|
||||
if rand:
|
||||
if real:
|
||||
idx, proj = backend.iddr_aid(A, k)
|
||||
else:
|
||||
idx, proj = backend.idzr_aid(A, k)
|
||||
else:
|
||||
if real:
|
||||
idx, proj = backend.iddr_id(A, k)
|
||||
else:
|
||||
idx, proj = backend.idzr_id(A, k)
|
||||
return idx - 1, proj
|
||||
elif isinstance(A, LinearOperator):
|
||||
m, n = A.shape
|
||||
matveca = A.rmatvec
|
||||
if eps_or_k < 1:
|
||||
eps = eps_or_k
|
||||
if real:
|
||||
k, idx, proj = backend.iddp_rid(eps, m, n, matveca)
|
||||
else:
|
||||
k, idx, proj = backend.idzp_rid(eps, m, n, matveca)
|
||||
return k, idx - 1, proj
|
||||
else:
|
||||
k = int(eps_or_k)
|
||||
if real:
|
||||
idx, proj = backend.iddr_rid(m, n, matveca, k)
|
||||
else:
|
||||
idx, proj = backend.idzr_rid(m, n, matveca, k)
|
||||
return idx - 1, proj
|
||||
else:
|
||||
raise _TYPE_ERROR
|
||||
|
||||
|
||||
def reconstruct_matrix_from_id(B, idx, proj):
|
||||
"""
|
||||
Reconstruct matrix from its ID.
|
||||
|
||||
A matrix `A` with skeleton matrix `B` and ID indices and coefficients `idx`
|
||||
and `proj`, respectively, can be reconstructed as::
|
||||
|
||||
numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)]
|
||||
|
||||
See also :func:`reconstruct_interp_matrix` and
|
||||
:func:`reconstruct_skel_matrix`.
|
||||
|
||||
.. This function automatically detects the matrix data type and calls the
|
||||
appropriate backend. For details, see :func:`backend.idd_reconid` and
|
||||
:func:`backend.idz_reconid`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
B : :class:`numpy.ndarray`
|
||||
Skeleton matrix.
|
||||
idx : :class:`numpy.ndarray`
|
||||
Column index array.
|
||||
proj : :class:`numpy.ndarray`
|
||||
Interpolation coefficients.
|
||||
|
||||
Returns
|
||||
-------
|
||||
:class:`numpy.ndarray`
|
||||
Reconstructed matrix.
|
||||
"""
|
||||
if _is_real(B):
|
||||
return backend.idd_reconid(B, idx + 1, proj)
|
||||
else:
|
||||
return backend.idz_reconid(B, idx + 1, proj)
|
||||
|
||||
|
||||
def reconstruct_interp_matrix(idx, proj):
|
||||
"""
|
||||
Reconstruct interpolation matrix from ID.
|
||||
|
||||
The interpolation matrix can be reconstructed from the ID indices and
|
||||
coefficients `idx` and `proj`, respectively, as::
|
||||
|
||||
P = numpy.hstack([numpy.eye(proj.shape[0]), proj])[:,numpy.argsort(idx)]
|
||||
|
||||
The original matrix can then be reconstructed from its skeleton matrix `B`
|
||||
via::
|
||||
|
||||
numpy.dot(B, P)
|
||||
|
||||
See also :func:`reconstruct_matrix_from_id` and
|
||||
:func:`reconstruct_skel_matrix`.
|
||||
|
||||
.. This function automatically detects the matrix data type and calls the
|
||||
appropriate backend. For details, see :func:`backend.idd_reconint` and
|
||||
:func:`backend.idz_reconint`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
idx : :class:`numpy.ndarray`
|
||||
Column index array.
|
||||
proj : :class:`numpy.ndarray`
|
||||
Interpolation coefficients.
|
||||
|
||||
Returns
|
||||
-------
|
||||
:class:`numpy.ndarray`
|
||||
Interpolation matrix.
|
||||
"""
|
||||
if _is_real(proj):
|
||||
return backend.idd_reconint(idx + 1, proj)
|
||||
else:
|
||||
return backend.idz_reconint(idx + 1, proj)
|
||||
|
||||
|
||||
def reconstruct_skel_matrix(A, k, idx):
|
||||
"""
|
||||
Reconstruct skeleton matrix from ID.
|
||||
|
||||
The skeleton matrix can be reconstructed from the original matrix `A` and its
|
||||
ID rank and indices `k` and `idx`, respectively, as::
|
||||
|
||||
B = A[:,idx[:k]]
|
||||
|
||||
The original matrix can then be reconstructed via::
|
||||
|
||||
numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)]
|
||||
|
||||
See also :func:`reconstruct_matrix_from_id` and
|
||||
:func:`reconstruct_interp_matrix`.
|
||||
|
||||
.. This function automatically detects the matrix data type and calls the
|
||||
appropriate backend. For details, see :func:`backend.idd_copycols` and
|
||||
:func:`backend.idz_copycols`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : :class:`numpy.ndarray`
|
||||
Original matrix.
|
||||
k : int
|
||||
Rank of ID.
|
||||
idx : :class:`numpy.ndarray`
|
||||
Column index array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
:class:`numpy.ndarray`
|
||||
Skeleton matrix.
|
||||
"""
|
||||
if _is_real(A):
|
||||
return backend.idd_copycols(A, k, idx + 1)
|
||||
else:
|
||||
return backend.idz_copycols(A, k, idx + 1)
|
||||
|
||||
|
||||
def id_to_svd(B, idx, proj):
|
||||
"""
|
||||
Convert ID to SVD.
|
||||
|
||||
The SVD reconstruction of a matrix with skeleton matrix `B` and ID indices and
|
||||
coefficients `idx` and `proj`, respectively, is::
|
||||
|
||||
U, S, V = id_to_svd(B, idx, proj)
|
||||
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))
|
||||
|
||||
See also :func:`svd`.
|
||||
|
||||
.. This function automatically detects the matrix data type and calls the
|
||||
appropriate backend. For details, see :func:`backend.idd_id2svd` and
|
||||
:func:`backend.idz_id2svd`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
B : :class:`numpy.ndarray`
|
||||
Skeleton matrix.
|
||||
idx : :class:`numpy.ndarray`
|
||||
Column index array.
|
||||
proj : :class:`numpy.ndarray`
|
||||
Interpolation coefficients.
|
||||
|
||||
Returns
|
||||
-------
|
||||
U : :class:`numpy.ndarray`
|
||||
Left singular vectors.
|
||||
S : :class:`numpy.ndarray`
|
||||
Singular values.
|
||||
V : :class:`numpy.ndarray`
|
||||
Right singular vectors.
|
||||
"""
|
||||
if _is_real(B):
|
||||
U, V, S = backend.idd_id2svd(B, idx + 1, proj)
|
||||
else:
|
||||
U, V, S = backend.idz_id2svd(B, idx + 1, proj)
|
||||
return U, S, V
|
||||
|
||||
|
||||
def estimate_spectral_norm(A, its=20):
|
||||
"""
|
||||
Estimate spectral norm of a matrix by the randomized power method.
|
||||
|
||||
.. This function automatically detects the matrix data type and calls the
|
||||
appropriate backend. For details, see :func:`backend.idd_snorm` and
|
||||
:func:`backend.idz_snorm`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : :class:`scipy.sparse.linalg.LinearOperator`
|
||||
Matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with the
|
||||
`matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
|
||||
its : int, optional
|
||||
Number of power method iterations.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
Spectral norm estimate.
|
||||
"""
|
||||
from scipy.sparse.linalg import aslinearoperator
|
||||
A = aslinearoperator(A)
|
||||
m, n = A.shape
|
||||
matvec = lambda x: A. matvec(x)
|
||||
matveca = lambda x: A.rmatvec(x)
|
||||
if _is_real(A):
|
||||
return backend.idd_snorm(m, n, matveca, matvec, its=its)
|
||||
else:
|
||||
return backend.idz_snorm(m, n, matveca, matvec, its=its)
|
||||
|
||||
|
||||
def estimate_spectral_norm_diff(A, B, its=20):
|
||||
"""
|
||||
Estimate spectral norm of the difference of two matrices by the randomized
|
||||
power method.
|
||||
|
||||
.. This function automatically detects the matrix data type and calls the
|
||||
appropriate backend. For details, see :func:`backend.idd_diffsnorm` and
|
||||
:func:`backend.idz_diffsnorm`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : :class:`scipy.sparse.linalg.LinearOperator`
|
||||
First matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with the
|
||||
`matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
|
||||
B : :class:`scipy.sparse.linalg.LinearOperator`
|
||||
Second matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with
|
||||
the `matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
|
||||
its : int, optional
|
||||
Number of power method iterations.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
Spectral norm estimate of matrix difference.
|
||||
"""
|
||||
from scipy.sparse.linalg import aslinearoperator
|
||||
A = aslinearoperator(A)
|
||||
B = aslinearoperator(B)
|
||||
m, n = A.shape
|
||||
matvec1 = lambda x: A. matvec(x)
|
||||
matveca1 = lambda x: A.rmatvec(x)
|
||||
matvec2 = lambda x: B. matvec(x)
|
||||
matveca2 = lambda x: B.rmatvec(x)
|
||||
if _is_real(A):
|
||||
return backend.idd_diffsnorm(
|
||||
m, n, matveca1, matveca2, matvec1, matvec2, its=its)
|
||||
else:
|
||||
return backend.idz_diffsnorm(
|
||||
m, n, matveca1, matveca2, matvec1, matvec2, its=its)
|
||||
|
||||
|
||||
def svd(A, eps_or_k, rand=True):
|
||||
"""
|
||||
Compute SVD of a matrix via an ID.
|
||||
|
||||
An SVD of a matrix `A` is a factorization::
|
||||
|
||||
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))
|
||||
|
||||
where `U` and `V` have orthonormal columns and `S` is nonnegative.
|
||||
|
||||
The SVD can be computed to any relative precision or rank (depending on the
|
||||
value of `eps_or_k`).
|
||||
|
||||
See also :func:`interp_decomp` and :func:`id_to_svd`.
|
||||
|
||||
.. This function automatically detects the form of the input parameters and
|
||||
passes them to the appropriate backend. For details, see
|
||||
:func:`backend.iddp_svd`, :func:`backend.iddp_asvd`,
|
||||
:func:`backend.iddp_rsvd`, :func:`backend.iddr_svd`,
|
||||
:func:`backend.iddr_asvd`, :func:`backend.iddr_rsvd`,
|
||||
:func:`backend.idzp_svd`, :func:`backend.idzp_asvd`,
|
||||
:func:`backend.idzp_rsvd`, :func:`backend.idzr_svd`,
|
||||
:func:`backend.idzr_asvd`, and :func:`backend.idzr_rsvd`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator`
|
||||
Matrix to be factored, given as either a :class:`numpy.ndarray` or a
|
||||
:class:`scipy.sparse.linalg.LinearOperator` with the `matvec` and
|
||||
`rmatvec` methods (to apply the matrix and its adjoint).
|
||||
eps_or_k : float or int
|
||||
Relative error (if `eps_or_k < 1`) or rank (if `eps_or_k >= 1`) of
|
||||
approximation.
|
||||
rand : bool, optional
|
||||
Whether to use random sampling if `A` is of type :class:`numpy.ndarray`
|
||||
(randomized algorithms are always used if `A` is of type
|
||||
:class:`scipy.sparse.linalg.LinearOperator`).
|
||||
|
||||
Returns
|
||||
-------
|
||||
U : :class:`numpy.ndarray`
|
||||
Left singular vectors.
|
||||
S : :class:`numpy.ndarray`
|
||||
Singular values.
|
||||
V : :class:`numpy.ndarray`
|
||||
Right singular vectors.
|
||||
"""
|
||||
from scipy.sparse.linalg import LinearOperator
|
||||
|
||||
real = _is_real(A)
|
||||
|
||||
if isinstance(A, np.ndarray):
|
||||
if eps_or_k < 1:
|
||||
eps = eps_or_k
|
||||
if rand:
|
||||
if real:
|
||||
U, V, S = backend.iddp_asvd(eps, A)
|
||||
else:
|
||||
U, V, S = backend.idzp_asvd(eps, A)
|
||||
else:
|
||||
if real:
|
||||
U, V, S = backend.iddp_svd(eps, A)
|
||||
else:
|
||||
U, V, S = backend.idzp_svd(eps, A)
|
||||
else:
|
||||
k = int(eps_or_k)
|
||||
if k > min(A.shape):
|
||||
raise ValueError("Approximation rank %s exceeds min(A.shape) = "
|
||||
" %s " % (k, min(A.shape)))
|
||||
if rand:
|
||||
if real:
|
||||
U, V, S = backend.iddr_asvd(A, k)
|
||||
else:
|
||||
U, V, S = backend.idzr_asvd(A, k)
|
||||
else:
|
||||
if real:
|
||||
U, V, S = backend.iddr_svd(A, k)
|
||||
else:
|
||||
U, V, S = backend.idzr_svd(A, k)
|
||||
elif isinstance(A, LinearOperator):
|
||||
m, n = A.shape
|
||||
matvec = lambda x: A.matvec(x)
|
||||
matveca = lambda x: A.rmatvec(x)
|
||||
if eps_or_k < 1:
|
||||
eps = eps_or_k
|
||||
if real:
|
||||
U, V, S = backend.iddp_rsvd(eps, m, n, matveca, matvec)
|
||||
else:
|
||||
U, V, S = backend.idzp_rsvd(eps, m, n, matveca, matvec)
|
||||
else:
|
||||
k = int(eps_or_k)
|
||||
if real:
|
||||
U, V, S = backend.iddr_rsvd(m, n, matveca, matvec, k)
|
||||
else:
|
||||
U, V, S = backend.idzr_rsvd(m, n, matveca, matvec, k)
|
||||
else:
|
||||
raise _TYPE_ERROR
|
||||
return U, S, V
|
||||
|
||||
|
||||
def estimate_rank(A, eps):
|
||||
"""
|
||||
Estimate matrix rank to a specified relative precision using randomized
|
||||
methods.
|
||||
|
||||
The matrix `A` can be given as either a :class:`numpy.ndarray` or a
|
||||
:class:`scipy.sparse.linalg.LinearOperator`, with different algorithms used
|
||||
for each case. If `A` is of type :class:`numpy.ndarray`, then the output
|
||||
rank is typically about 8 higher than the actual numerical rank.
|
||||
|
||||
.. This function automatically detects the form of the input parameters and
|
||||
passes them to the appropriate backend. For details,
|
||||
see :func:`backend.idd_estrank`, :func:`backend.idd_findrank`,
|
||||
:func:`backend.idz_estrank`, and :func:`backend.idz_findrank`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator`
|
||||
Matrix whose rank is to be estimated, given as either a
|
||||
:class:`numpy.ndarray` or a :class:`scipy.sparse.linalg.LinearOperator`
|
||||
with the `rmatvec` method (to apply the matrix adjoint).
|
||||
eps : float
|
||||
Relative error for numerical rank definition.
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
Estimated matrix rank.
|
||||
"""
|
||||
from scipy.sparse.linalg import LinearOperator
|
||||
|
||||
real = _is_real(A)
|
||||
|
||||
if isinstance(A, np.ndarray):
|
||||
if real:
|
||||
rank = backend.idd_estrank(eps, A)
|
||||
else:
|
||||
rank = backend.idz_estrank(eps, A)
|
||||
if rank == 0:
|
||||
# special return value for nearly full rank
|
||||
rank = min(A.shape)
|
||||
return rank
|
||||
elif isinstance(A, LinearOperator):
|
||||
m, n = A.shape
|
||||
matveca = A.rmatvec
|
||||
if real:
|
||||
return backend.idd_findrank(eps, m, n, matveca)
|
||||
else:
|
||||
return backend.idz_findrank(eps, m, n, matveca)
|
||||
else:
|
||||
raise _TYPE_ERROR
|
976
venv/Lib/site-packages/scipy/linalg/lapack.py
Normal file
976
venv/Lib/site-packages/scipy/linalg/lapack.py
Normal file
|
@ -0,0 +1,976 @@
|
|||
"""
|
||||
Low-level LAPACK functions (:mod:`scipy.linalg.lapack`)
|
||||
=======================================================
|
||||
|
||||
This module contains low-level functions from the LAPACK library.
|
||||
|
||||
The `*gegv` family of routines have been removed from LAPACK 3.6.0
|
||||
and have been deprecated in SciPy 0.17.0. They will be removed in
|
||||
a future release.
|
||||
|
||||
.. versionadded:: 0.12.0
|
||||
|
||||
.. note::
|
||||
|
||||
The common ``overwrite_<>`` option in many routines, allows the
|
||||
input arrays to be overwritten to avoid extra memory allocation.
|
||||
However this requires the array to satisfy two conditions
|
||||
which are memory order and the data type to match exactly the
|
||||
order and the type expected by the routine.
|
||||
|
||||
As an example, if you pass a double precision float array to any
|
||||
``S....`` routine which expects single precision arguments, f2py
|
||||
will create an intermediate array to match the argument types and
|
||||
overwriting will be performed on that intermediate array.
|
||||
|
||||
Similarly, if a C-contiguous array is passed, f2py will pass a
|
||||
FORTRAN-contiguous array internally. Please make sure that these
|
||||
details are satisfied. More information can be found in the f2py
|
||||
documentation.
|
||||
|
||||
.. warning::
|
||||
|
||||
These functions do little to no error checking.
|
||||
It is possible to cause crashes by mis-using them,
|
||||
so prefer using the higher-level routines in `scipy.linalg`.
|
||||
|
||||
Finding functions
|
||||
-----------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
get_lapack_funcs
|
||||
|
||||
All functions
|
||||
-------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
sgbsv
|
||||
dgbsv
|
||||
cgbsv
|
||||
zgbsv
|
||||
|
||||
sgbtrf
|
||||
dgbtrf
|
||||
cgbtrf
|
||||
zgbtrf
|
||||
|
||||
sgbtrs
|
||||
dgbtrs
|
||||
cgbtrs
|
||||
zgbtrs
|
||||
|
||||
sgebal
|
||||
dgebal
|
||||
cgebal
|
||||
zgebal
|
||||
|
||||
sgecon
|
||||
dgecon
|
||||
cgecon
|
||||
zgecon
|
||||
|
||||
sgeequ
|
||||
dgeequ
|
||||
cgeequ
|
||||
zgeequ
|
||||
|
||||
sgeequb
|
||||
dgeequb
|
||||
cgeequb
|
||||
zgeequb
|
||||
|
||||
sgees
|
||||
dgees
|
||||
cgees
|
||||
zgees
|
||||
|
||||
sgeev
|
||||
dgeev
|
||||
cgeev
|
||||
zgeev
|
||||
|
||||
sgeev_lwork
|
||||
dgeev_lwork
|
||||
cgeev_lwork
|
||||
zgeev_lwork
|
||||
|
||||
sgegv
|
||||
dgegv
|
||||
cgegv
|
||||
zgegv
|
||||
|
||||
sgehrd
|
||||
dgehrd
|
||||
cgehrd
|
||||
zgehrd
|
||||
|
||||
sgehrd_lwork
|
||||
dgehrd_lwork
|
||||
cgehrd_lwork
|
||||
zgehrd_lwork
|
||||
|
||||
sgejsv
|
||||
dgejsv
|
||||
|
||||
sgels
|
||||
dgels
|
||||
cgels
|
||||
zgels
|
||||
|
||||
sgels_lwork
|
||||
dgels_lwork
|
||||
cgels_lwork
|
||||
zgels_lwork
|
||||
|
||||
sgelsd
|
||||
dgelsd
|
||||
cgelsd
|
||||
zgelsd
|
||||
|
||||
sgelsd_lwork
|
||||
dgelsd_lwork
|
||||
cgelsd_lwork
|
||||
zgelsd_lwork
|
||||
|
||||
sgelss
|
||||
dgelss
|
||||
cgelss
|
||||
zgelss
|
||||
|
||||
sgelss_lwork
|
||||
dgelss_lwork
|
||||
cgelss_lwork
|
||||
zgelss_lwork
|
||||
|
||||
sgelsy
|
||||
dgelsy
|
||||
cgelsy
|
||||
zgelsy
|
||||
|
||||
sgelsy_lwork
|
||||
dgelsy_lwork
|
||||
cgelsy_lwork
|
||||
zgelsy_lwork
|
||||
|
||||
sgeqp3
|
||||
dgeqp3
|
||||
cgeqp3
|
||||
zgeqp3
|
||||
|
||||
sgeqrf
|
||||
dgeqrf
|
||||
cgeqrf
|
||||
zgeqrf
|
||||
|
||||
sgeqrf_lwork
|
||||
dgeqrf_lwork
|
||||
cgeqrf_lwork
|
||||
zgeqrf_lwork
|
||||
|
||||
sgeqrfp
|
||||
dgeqrfp
|
||||
cgeqrfp
|
||||
zgeqrfp
|
||||
|
||||
sgeqrfp_lwork
|
||||
dgeqrfp_lwork
|
||||
cgeqrfp_lwork
|
||||
zgeqrfp_lwork
|
||||
|
||||
sgerqf
|
||||
dgerqf
|
||||
cgerqf
|
||||
zgerqf
|
||||
|
||||
sgesdd
|
||||
dgesdd
|
||||
cgesdd
|
||||
zgesdd
|
||||
|
||||
sgesdd_lwork
|
||||
dgesdd_lwork
|
||||
cgesdd_lwork
|
||||
zgesdd_lwork
|
||||
|
||||
sgesv
|
||||
dgesv
|
||||
cgesv
|
||||
zgesv
|
||||
|
||||
sgesvd
|
||||
dgesvd
|
||||
cgesvd
|
||||
zgesvd
|
||||
|
||||
sgesvd_lwork
|
||||
dgesvd_lwork
|
||||
cgesvd_lwork
|
||||
zgesvd_lwork
|
||||
|
||||
sgesvx
|
||||
dgesvx
|
||||
cgesvx
|
||||
zgesvx
|
||||
|
||||
sgetrf
|
||||
dgetrf
|
||||
cgetrf
|
||||
zgetrf
|
||||
|
||||
sgetc2
|
||||
dgetc2
|
||||
cgetc2
|
||||
zgetc2
|
||||
|
||||
sgetri
|
||||
dgetri
|
||||
cgetri
|
||||
zgetri
|
||||
|
||||
sgetri_lwork
|
||||
dgetri_lwork
|
||||
cgetri_lwork
|
||||
zgetri_lwork
|
||||
|
||||
sgetrs
|
||||
dgetrs
|
||||
cgetrs
|
||||
zgetrs
|
||||
|
||||
sgesc2
|
||||
dgesc2
|
||||
cgesc2
|
||||
zgesc2
|
||||
|
||||
sgges
|
||||
dgges
|
||||
cgges
|
||||
zgges
|
||||
|
||||
sggev
|
||||
dggev
|
||||
cggev
|
||||
zggev
|
||||
|
||||
sgglse
|
||||
dgglse
|
||||
cgglse
|
||||
zgglse
|
||||
|
||||
sgglse_lwork
|
||||
dgglse_lwork
|
||||
cgglse_lwork
|
||||
zgglse_lwork
|
||||
|
||||
sgtsv
|
||||
dgtsv
|
||||
cgtsv
|
||||
zgtsv
|
||||
|
||||
sgtsvx
|
||||
dgtsvx
|
||||
cgtsvx
|
||||
zgtsvx
|
||||
|
||||
chbevd
|
||||
zhbevd
|
||||
|
||||
chbevx
|
||||
zhbevx
|
||||
|
||||
checon
|
||||
zhecon
|
||||
|
||||
cheequb
|
||||
zheequb
|
||||
|
||||
cheev
|
||||
zheev
|
||||
|
||||
cheev_lwork
|
||||
zheev_lwork
|
||||
|
||||
cheevd
|
||||
zheevd
|
||||
|
||||
cheevd_lwork
|
||||
zheevd_lwork
|
||||
|
||||
cheevr
|
||||
zheevr
|
||||
|
||||
cheevr_lwork
|
||||
zheevr_lwork
|
||||
|
||||
cheevx
|
||||
zheevx
|
||||
|
||||
cheevx_lwork
|
||||
zheevx_lwork
|
||||
|
||||
chegst
|
||||
zhegst
|
||||
|
||||
chegv
|
||||
zhegv
|
||||
|
||||
chegv_lwork
|
||||
zhegv_lwork
|
||||
|
||||
chegvd
|
||||
zhegvd
|
||||
|
||||
chegvx
|
||||
zhegvx
|
||||
|
||||
chegvx_lwork
|
||||
zhegvx_lwork
|
||||
|
||||
chesv
|
||||
zhesv
|
||||
|
||||
chesv_lwork
|
||||
zhesv_lwork
|
||||
|
||||
chesvx
|
||||
zhesvx
|
||||
|
||||
chesvx_lwork
|
||||
zhesvx_lwork
|
||||
|
||||
chetrd
|
||||
zhetrd
|
||||
|
||||
chetrd_lwork
|
||||
zhetrd_lwork
|
||||
|
||||
chetrf
|
||||
zhetrf
|
||||
|
||||
chetrf_lwork
|
||||
zhetrf_lwork
|
||||
|
||||
chfrk
|
||||
zhfrk
|
||||
|
||||
slamch
|
||||
dlamch
|
||||
|
||||
slange
|
||||
dlange
|
||||
clange
|
||||
zlange
|
||||
|
||||
slarf
|
||||
dlarf
|
||||
clarf
|
||||
zlarf
|
||||
|
||||
slarfg
|
||||
dlarfg
|
||||
clarfg
|
||||
zlarfg
|
||||
|
||||
slartg
|
||||
dlartg
|
||||
clartg
|
||||
zlartg
|
||||
|
||||
slasd4
|
||||
dlasd4
|
||||
|
||||
slaswp
|
||||
dlaswp
|
||||
claswp
|
||||
zlaswp
|
||||
|
||||
slauum
|
||||
dlauum
|
||||
clauum
|
||||
zlauum
|
||||
|
||||
sorcsd
|
||||
dorcsd
|
||||
sorcsd_lwork
|
||||
dorcsd_lwork
|
||||
|
||||
sorghr
|
||||
dorghr
|
||||
sorghr_lwork
|
||||
dorghr_lwork
|
||||
|
||||
sorgqr
|
||||
dorgqr
|
||||
|
||||
sorgrq
|
||||
dorgrq
|
||||
|
||||
sormqr
|
||||
dormqr
|
||||
|
||||
sormrz
|
||||
dormrz
|
||||
|
||||
sormrz_lwork
|
||||
dormrz_lwork
|
||||
|
||||
spbsv
|
||||
dpbsv
|
||||
cpbsv
|
||||
zpbsv
|
||||
|
||||
spbtrf
|
||||
dpbtrf
|
||||
cpbtrf
|
||||
zpbtrf
|
||||
|
||||
spbtrs
|
||||
dpbtrs
|
||||
cpbtrs
|
||||
zpbtrs
|
||||
|
||||
spftrf
|
||||
dpftrf
|
||||
cpftrf
|
||||
zpftrf
|
||||
|
||||
spftri
|
||||
dpftri
|
||||
cpftri
|
||||
zpftri
|
||||
|
||||
spftrs
|
||||
dpftrs
|
||||
cpftrs
|
||||
zpftrs
|
||||
|
||||
spocon
|
||||
dpocon
|
||||
cpocon
|
||||
zpocon
|
||||
|
||||
spstrf
|
||||
dpstrf
|
||||
cpstrf
|
||||
zpstrf
|
||||
|
||||
spstf2
|
||||
dpstf2
|
||||
cpstf2
|
||||
zpstf2
|
||||
|
||||
sposv
|
||||
dposv
|
||||
cposv
|
||||
zposv
|
||||
|
||||
sposvx
|
||||
dposvx
|
||||
cposvx
|
||||
zposvx
|
||||
|
||||
spotrf
|
||||
dpotrf
|
||||
cpotrf
|
||||
zpotrf
|
||||
|
||||
spotri
|
||||
dpotri
|
||||
cpotri
|
||||
zpotri
|
||||
|
||||
spotrs
|
||||
dpotrs
|
||||
cpotrs
|
||||
zpotrs
|
||||
|
||||
sptsv
|
||||
dptsv
|
||||
cptsv
|
||||
zptsv
|
||||
|
||||
sptsvx
|
||||
dptsvx
|
||||
cptsvx
|
||||
zptsvx
|
||||
|
||||
spttrf
|
||||
dpttrf
|
||||
cpttrf
|
||||
zpttrf
|
||||
|
||||
spttrs
|
||||
dpttrs
|
||||
cpttrs
|
||||
zpttrs
|
||||
|
||||
spteqr
|
||||
dpteqr
|
||||
cpteqr
|
||||
zpteqr
|
||||
|
||||
crot
|
||||
zrot
|
||||
|
||||
ssbev
|
||||
dsbev
|
||||
|
||||
ssbevd
|
||||
dsbevd
|
||||
|
||||
ssbevx
|
||||
dsbevx
|
||||
|
||||
ssfrk
|
||||
dsfrk
|
||||
|
||||
sstebz
|
||||
dstebz
|
||||
|
||||
sstein
|
||||
dstein
|
||||
|
||||
sstemr
|
||||
dstemr
|
||||
|
||||
sstemr_lwork
|
||||
dstemr_lwork
|
||||
|
||||
ssterf
|
||||
dsterf
|
||||
|
||||
sstev
|
||||
dstev
|
||||
|
||||
ssycon
|
||||
dsycon
|
||||
csycon
|
||||
zsycon
|
||||
|
||||
ssyconv
|
||||
dsyconv
|
||||
csyconv
|
||||
zsyconv
|
||||
|
||||
ssyequb
|
||||
dsyequb
|
||||
csyequb
|
||||
zsyequb
|
||||
|
||||
ssyev
|
||||
dsyev
|
||||
|
||||
ssyev_lwork
|
||||
dsyev_lwork
|
||||
|
||||
ssyevd
|
||||
dsyevd
|
||||
|
||||
ssyevd_lwork
|
||||
dsyevd_lwork
|
||||
|
||||
ssyevr
|
||||
dsyevr
|
||||
|
||||
ssyevr_lwork
|
||||
dsyevr_lwork
|
||||
|
||||
ssyevx
|
||||
dsyevx
|
||||
|
||||
ssyevx_lwork
|
||||
dsyevx_lwork
|
||||
|
||||
ssygst
|
||||
dsygst
|
||||
|
||||
ssygv
|
||||
dsygv
|
||||
|
||||
ssygv_lwork
|
||||
dsygv_lwork
|
||||
|
||||
ssygvd
|
||||
dsygvd
|
||||
|
||||
ssygvx
|
||||
dsygvx
|
||||
|
||||
ssygvx_lwork
|
||||
dsygvx_lwork
|
||||
|
||||
ssysv
|
||||
dsysv
|
||||
csysv
|
||||
zsysv
|
||||
|
||||
ssysv_lwork
|
||||
dsysv_lwork
|
||||
csysv_lwork
|
||||
zsysv_lwork
|
||||
|
||||
ssysvx
|
||||
dsysvx
|
||||
csysvx
|
||||
zsysvx
|
||||
|
||||
ssysvx_lwork
|
||||
dsysvx_lwork
|
||||
csysvx_lwork
|
||||
zsysvx_lwork
|
||||
|
||||
ssytf2
|
||||
dsytf2
|
||||
csytf2
|
||||
zsytf2
|
||||
|
||||
ssytrd
|
||||
dsytrd
|
||||
|
||||
ssytrd_lwork
|
||||
dsytrd_lwork
|
||||
|
||||
ssytrf
|
||||
dsytrf
|
||||
csytrf
|
||||
zsytrf
|
||||
|
||||
ssytrf_lwork
|
||||
dsytrf_lwork
|
||||
csytrf_lwork
|
||||
zsytrf_lwork
|
||||
|
||||
stbtrs
|
||||
dtbtrs
|
||||
ctbtrs
|
||||
ztbtrs
|
||||
|
||||
stfsm
|
||||
dtfsm
|
||||
ctfsm
|
||||
ztfsm
|
||||
|
||||
stfttp
|
||||
dtfttp
|
||||
ctfttp
|
||||
ztfttp
|
||||
|
||||
stfttr
|
||||
dtfttr
|
||||
ctfttr
|
||||
ztfttr
|
||||
|
||||
stgsen
|
||||
dtgsen
|
||||
ctgsen
|
||||
ztgsen
|
||||
|
||||
stpttf
|
||||
dtpttf
|
||||
ctpttf
|
||||
ztpttf
|
||||
|
||||
stpttr
|
||||
dtpttr
|
||||
ctpttr
|
||||
ztpttr
|
||||
|
||||
strsyl
|
||||
dtrsyl
|
||||
ctrsyl
|
||||
ztrsyl
|
||||
|
||||
strtri
|
||||
dtrtri
|
||||
ctrtri
|
||||
ztrtri
|
||||
|
||||
strtrs
|
||||
dtrtrs
|
||||
ctrtrs
|
||||
ztrtrs
|
||||
|
||||
strttf
|
||||
dtrttf
|
||||
ctrttf
|
||||
ztrttf
|
||||
|
||||
strttp
|
||||
dtrttp
|
||||
ctrttp
|
||||
ztrttp
|
||||
|
||||
stzrzf
|
||||
dtzrzf
|
||||
ctzrzf
|
||||
ztzrzf
|
||||
|
||||
stzrzf_lwork
|
||||
dtzrzf_lwork
|
||||
ctzrzf_lwork
|
||||
ztzrzf_lwork
|
||||
|
||||
cunghr
|
||||
zunghr
|
||||
|
||||
cunghr_lwork
|
||||
zunghr_lwork
|
||||
|
||||
cungqr
|
||||
zungqr
|
||||
|
||||
cungrq
|
||||
zungrq
|
||||
|
||||
cunmqr
|
||||
zunmqr
|
||||
|
||||
sgeqrt
|
||||
dgeqrt
|
||||
cgeqrt
|
||||
zgeqrt
|
||||
|
||||
sgemqrt
|
||||
dgemqrt
|
||||
cgemqrt
|
||||
zgemqrt
|
||||
|
||||
sgttrf
|
||||
dgttrf
|
||||
cgttrf
|
||||
zgttrf
|
||||
|
||||
sgttrs
|
||||
dgttrs
|
||||
cgttrs
|
||||
zgttrs
|
||||
|
||||
stpqrt
|
||||
dtpqrt
|
||||
ctpqrt
|
||||
ztpqrt
|
||||
|
||||
stpmqrt
|
||||
dtpmqrt
|
||||
ctpmqrt
|
||||
ztpmqrt
|
||||
|
||||
cuncsd
|
||||
zuncsd
|
||||
|
||||
cuncsd_lwork
|
||||
zuncsd_lwork
|
||||
|
||||
cunmrz
|
||||
zunmrz
|
||||
|
||||
cunmrz_lwork
|
||||
zunmrz_lwork
|
||||
|
||||
ilaver
|
||||
|
||||
"""
|
||||
#
|
||||
# Author: Pearu Peterson, March 2002
|
||||
#
|
||||
|
||||
import numpy as _np
|
||||
from .blas import _get_funcs, _memoize_get_funcs
|
||||
from scipy.linalg import _flapack
|
||||
from re import compile as regex_compile
|
||||
try:
|
||||
from scipy.linalg import _clapack
|
||||
except ImportError:
|
||||
_clapack = None
|
||||
|
||||
# Backward compatibility
|
||||
from scipy._lib._util import DeprecatedImport as _DeprecatedImport
|
||||
clapack = _DeprecatedImport("scipy.linalg.blas.clapack", "scipy.linalg.lapack")
|
||||
flapack = _DeprecatedImport("scipy.linalg.blas.flapack", "scipy.linalg.lapack")
|
||||
|
||||
# Expose all functions (only flapack --- clapack is an implementation detail)
|
||||
empty_module = None
|
||||
from scipy.linalg._flapack import *
|
||||
del empty_module
|
||||
|
||||
__all__ = ['get_lapack_funcs']
|
||||
|
||||
_dep_message = """The `*gegv` family of routines has been deprecated in
|
||||
LAPACK 3.6.0 in favor of the `*ggev` family of routines.
|
||||
The corresponding wrappers will be removed from SciPy in
|
||||
a future release."""
|
||||
|
||||
cgegv = _np.deprecate(cgegv, old_name='cgegv', message=_dep_message)
|
||||
dgegv = _np.deprecate(dgegv, old_name='dgegv', message=_dep_message)
|
||||
sgegv = _np.deprecate(sgegv, old_name='sgegv', message=_dep_message)
|
||||
zgegv = _np.deprecate(zgegv, old_name='zgegv', message=_dep_message)
|
||||
|
||||
# Modify _flapack in this scope so the deprecation warnings apply to
|
||||
# functions returned by get_lapack_funcs.
|
||||
_flapack.cgegv = cgegv
|
||||
_flapack.dgegv = dgegv
|
||||
_flapack.sgegv = sgegv
|
||||
_flapack.zgegv = zgegv
|
||||
|
||||
# some convenience alias for complex functions
|
||||
_lapack_alias = {
|
||||
'corghr': 'cunghr', 'zorghr': 'zunghr',
|
||||
'corghr_lwork': 'cunghr_lwork', 'zorghr_lwork': 'zunghr_lwork',
|
||||
'corgqr': 'cungqr', 'zorgqr': 'zungqr',
|
||||
'cormqr': 'cunmqr', 'zormqr': 'zunmqr',
|
||||
'corgrq': 'cungrq', 'zorgrq': 'zungrq',
|
||||
}
|
||||
|
||||
|
||||
# Place guards against docstring rendering issues with special characters
|
||||
p1 = regex_compile(r'with bounds (?P<b>.*?)( and (?P<s>.*?) storage){0,1}\n')
|
||||
p2 = regex_compile(r'Default: (?P<d>.*?)\n')
|
||||
|
||||
|
||||
def backtickrepl(m):
|
||||
if m.group('s'):
|
||||
return ('with bounds ``{}`` with ``{}`` storage\n'
|
||||
''.format(m.group('b'), m.group('s')))
|
||||
else:
|
||||
return 'with bounds ``{}``\n'.format(m.group('b'))
|
||||
|
||||
|
||||
for routine in [ssyevr, dsyevr, cheevr, zheevr,
|
||||
ssyevx, dsyevx, cheevx, zheevx,
|
||||
ssygvd, dsygvd, chegvd, zhegvd]:
|
||||
if routine.__doc__:
|
||||
routine.__doc__ = p1.sub(backtickrepl, routine.__doc__)
|
||||
routine.__doc__ = p2.sub('Default ``\\1``\n', routine.__doc__)
|
||||
else:
|
||||
continue
|
||||
|
||||
del regex_compile, p1, p2, backtickrepl
|
||||
|
||||
|
||||
@_memoize_get_funcs
|
||||
def get_lapack_funcs(names, arrays=(), dtype=None):
|
||||
"""Return available LAPACK function objects from names.
|
||||
|
||||
Arrays are used to determine the optimal prefix of LAPACK routines.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
names : str or sequence of str
|
||||
Name(s) of LAPACK functions without type prefix.
|
||||
|
||||
arrays : sequence of ndarrays, optional
|
||||
Arrays can be given to determine optimal prefix of LAPACK
|
||||
routines. If not given, double-precision routines will be
|
||||
used, otherwise the most generic type in arrays will be used.
|
||||
|
||||
dtype : str or dtype, optional
|
||||
Data-type specifier. Not used if `arrays` is non-empty.
|
||||
|
||||
Returns
|
||||
-------
|
||||
funcs : list
|
||||
List containing the found function(s).
|
||||
|
||||
Notes
|
||||
-----
|
||||
This routine automatically chooses between Fortran/C
|
||||
interfaces. Fortran code is used whenever possible for arrays with
|
||||
column major order. In all other cases, C code is preferred.
|
||||
|
||||
In LAPACK, the naming convention is that all functions start with a
|
||||
type prefix, which depends on the type of the principal
|
||||
matrix. These can be one of {'s', 'd', 'c', 'z'} for the NumPy
|
||||
types {float32, float64, complex64, complex128} respectively, and
|
||||
are stored in attribute ``typecode`` of the returned functions.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Suppose we would like to use '?lange' routine which computes the selected
|
||||
norm of an array. We pass our array in order to get the correct 'lange'
|
||||
flavor.
|
||||
|
||||
>>> import scipy.linalg as LA
|
||||
>>> a = np.random.rand(3,2)
|
||||
>>> x_lange = LA.get_lapack_funcs('lange', (a,))
|
||||
>>> x_lange.typecode
|
||||
'd'
|
||||
>>> x_lange = LA.get_lapack_funcs('lange',(a*1j,))
|
||||
>>> x_lange.typecode
|
||||
'z'
|
||||
|
||||
Several LAPACK routines work best when its internal WORK array has
|
||||
the optimal size (big enough for fast computation and small enough to
|
||||
avoid waste of memory). This size is determined also by a dedicated query
|
||||
to the function which is often wrapped as a standalone function and
|
||||
commonly denoted as ``###_lwork``. Below is an example for ``?sysv``
|
||||
|
||||
>>> import scipy.linalg as LA
|
||||
>>> a = np.random.rand(1000,1000)
|
||||
>>> b = np.random.rand(1000,1)*1j
|
||||
>>> # We pick up zsysv and zsysv_lwork due to b array
|
||||
... xsysv, xlwork = LA.get_lapack_funcs(('sysv', 'sysv_lwork'), (a, b))
|
||||
>>> opt_lwork, _ = xlwork(a.shape[0]) # returns a complex for 'z' prefix
|
||||
>>> udut, ipiv, x, info = xsysv(a, b, lwork=int(opt_lwork.real))
|
||||
|
||||
"""
|
||||
return _get_funcs(names, arrays, dtype,
|
||||
"LAPACK", _flapack, _clapack,
|
||||
"flapack", "clapack", _lapack_alias)
|
||||
|
||||
|
||||
_int32_max = _np.iinfo(_np.int32).max
|
||||
|
||||
|
||||
def _compute_lwork(routine, *args, **kwargs):
|
||||
"""
|
||||
Round floating-point lwork returned by lapack to integer.
|
||||
|
||||
Several LAPACK routines compute optimal values for LWORK, which
|
||||
they return in a floating-point variable. However, for large
|
||||
values of LWORK, single-precision floating point is not sufficient
|
||||
to hold the exact value --- some LAPACK versions (<= 3.5.0 at
|
||||
least) truncate the returned integer to single precision and in
|
||||
some cases this can be smaller than the required value.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import lapack
|
||||
>>> n = 5000
|
||||
>>> s_r, s_lw = lapack.get_lapack_funcs(('sysvx', 'sysvx_lwork'))
|
||||
>>> lwork = lapack._compute_lwork(s_lw, n)
|
||||
>>> lwork
|
||||
32000
|
||||
|
||||
"""
|
||||
dtype = getattr(routine, 'dtype', None)
|
||||
ret = routine(*args, **kwargs)
|
||||
if ret[-1] != 0:
|
||||
raise ValueError("Internal work array size computation failed: "
|
||||
"%d" % (ret[-1],))
|
||||
|
||||
if len(ret) == 2:
|
||||
return _check_work_float(ret[0].real, dtype)
|
||||
else:
|
||||
return tuple(_check_work_float(x.real, dtype) for x in ret[:-1])
|
||||
|
||||
|
||||
def _check_work_float(value, dtype):
|
||||
"""
|
||||
Convert LAPACK-returned work array size float to integer,
|
||||
carefully for single-precision types.
|
||||
"""
|
||||
|
||||
if dtype == _np.float32 or dtype == _np.complex64:
|
||||
# Single-precision routine -- take next fp value to work
|
||||
# around possible truncation in LAPACK code
|
||||
value = _np.nextafter(value, _np.inf, dtype=_np.float32)
|
||||
|
||||
value = int(value)
|
||||
if value < 0 or value > _int32_max:
|
||||
raise ValueError("Too large work array required -- computation cannot "
|
||||
"be performed with standard 32-bit LAPACK.")
|
||||
return value
|
732
venv/Lib/site-packages/scipy/linalg/matfuncs.py
Normal file
732
venv/Lib/site-packages/scipy/linalg/matfuncs.py
Normal file
|
@ -0,0 +1,732 @@
|
|||
#
|
||||
# Author: Travis Oliphant, March 2002
|
||||
#
|
||||
|
||||
__all__ = ['expm','cosm','sinm','tanm','coshm','sinhm',
|
||||
'tanhm','logm','funm','signm','sqrtm',
|
||||
'expm_frechet', 'expm_cond', 'fractional_matrix_power',
|
||||
'khatri_rao']
|
||||
|
||||
from numpy import (Inf, dot, diag, prod, logical_not, ravel,
|
||||
transpose, conjugate, absolute, amax, sign, isfinite, single)
|
||||
import numpy as np
|
||||
|
||||
# Local imports
|
||||
from .misc import norm
|
||||
from .basic import solve, inv
|
||||
from .special_matrices import triu
|
||||
from .decomp_svd import svd
|
||||
from .decomp_schur import schur, rsf2csf
|
||||
from ._expm_frechet import expm_frechet, expm_cond
|
||||
from ._matfuncs_sqrtm import sqrtm
|
||||
|
||||
eps = np.finfo(float).eps
|
||||
feps = np.finfo(single).eps
|
||||
|
||||
_array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1}
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Utility functions.
|
||||
|
||||
|
||||
def _asarray_square(A):
|
||||
"""
|
||||
Wraps asarray with the extra requirement that the input be a square matrix.
|
||||
|
||||
The motivation is that the matfuncs module has real functions that have
|
||||
been lifted to square matrix functions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : array_like
|
||||
A square matrix.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
An ndarray copy or view or other representation of A.
|
||||
|
||||
"""
|
||||
A = np.asarray(A)
|
||||
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
|
||||
raise ValueError('expected square array_like input')
|
||||
return A
|
||||
|
||||
|
||||
def _maybe_real(A, B, tol=None):
|
||||
"""
|
||||
Return either B or the real part of B, depending on properties of A and B.
|
||||
|
||||
The motivation is that B has been computed as a complicated function of A,
|
||||
and B may be perturbed by negligible imaginary components.
|
||||
If A is real and B is complex with small imaginary components,
|
||||
then return a real copy of B. The assumption in that case would be that
|
||||
the imaginary components of B are numerical artifacts.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : ndarray
|
||||
Input array whose type is to be checked as real vs. complex.
|
||||
B : ndarray
|
||||
Array to be returned, possibly without its imaginary part.
|
||||
tol : float
|
||||
Absolute tolerance.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : real or complex array
|
||||
Either the input array B or only the real part of the input array B.
|
||||
|
||||
"""
|
||||
# Note that booleans and integers compare as real.
|
||||
if np.isrealobj(A) and np.iscomplexobj(B):
|
||||
if tol is None:
|
||||
tol = {0:feps*1e3, 1:eps*1e6}[_array_precision[B.dtype.char]]
|
||||
if np.allclose(B.imag, 0.0, atol=tol):
|
||||
B = B.real
|
||||
return B
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Matrix functions.
|
||||
|
||||
|
||||
def fractional_matrix_power(A, t):
|
||||
"""
|
||||
Compute the fractional power of a matrix.
|
||||
|
||||
Proceeds according to the discussion in section (6) of [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix whose fractional power to evaluate.
|
||||
t : float
|
||||
Fractional power.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X : (N, N) array_like
|
||||
The fractional power of the matrix.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Nicholas J. Higham and Lijing lin (2011)
|
||||
"A Schur-Pade Algorithm for Fractional Powers of a Matrix."
|
||||
SIAM Journal on Matrix Analysis and Applications,
|
||||
32 (3). pp. 1056-1078. ISSN 0895-4798
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import fractional_matrix_power
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> b = fractional_matrix_power(a, 0.5)
|
||||
>>> b
|
||||
array([[ 0.75592895, 1.13389342],
|
||||
[ 0.37796447, 1.88982237]])
|
||||
>>> np.dot(b, b) # Verify square root
|
||||
array([[ 1., 3.],
|
||||
[ 1., 4.]])
|
||||
|
||||
"""
|
||||
# This fixes some issue with imports;
|
||||
# this function calls onenormest which is in scipy.sparse.
|
||||
A = _asarray_square(A)
|
||||
import scipy.linalg._matfuncs_inv_ssq
|
||||
return scipy.linalg._matfuncs_inv_ssq._fractional_matrix_power(A, t)
|
||||
|
||||
|
||||
def logm(A, disp=True):
|
||||
"""
|
||||
Compute matrix logarithm.
|
||||
|
||||
The matrix logarithm is the inverse of
|
||||
expm: expm(logm(`A`)) == `A`
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix whose logarithm to evaluate
|
||||
disp : bool, optional
|
||||
Print warning if error in the result is estimated large
|
||||
instead of returning estimated error. (Default: True)
|
||||
|
||||
Returns
|
||||
-------
|
||||
logm : (N, N) ndarray
|
||||
Matrix logarithm of `A`
|
||||
errest : float
|
||||
(if disp == False)
|
||||
|
||||
1-norm of the estimated error, ||err||_1 / ||A||_1
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2012)
|
||||
"Improved Inverse Scaling and Squaring Algorithms
|
||||
for the Matrix Logarithm."
|
||||
SIAM Journal on Scientific Computing, 34 (4). C152-C169.
|
||||
ISSN 1095-7197
|
||||
|
||||
.. [2] Nicholas J. Higham (2008)
|
||||
"Functions of Matrices: Theory and Computation"
|
||||
ISBN 978-0-898716-46-7
|
||||
|
||||
.. [3] Nicholas J. Higham and Lijing lin (2011)
|
||||
"A Schur-Pade Algorithm for Fractional Powers of a Matrix."
|
||||
SIAM Journal on Matrix Analysis and Applications,
|
||||
32 (3). pp. 1056-1078. ISSN 0895-4798
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import logm, expm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> b = logm(a)
|
||||
>>> b
|
||||
array([[-1.02571087, 2.05142174],
|
||||
[ 0.68380725, 1.02571087]])
|
||||
>>> expm(b) # Verify expm(logm(a)) returns a
|
||||
array([[ 1., 3.],
|
||||
[ 1., 4.]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
# Avoid circular import ... this is OK, right?
|
||||
import scipy.linalg._matfuncs_inv_ssq
|
||||
F = scipy.linalg._matfuncs_inv_ssq._logm(A)
|
||||
F = _maybe_real(A, F)
|
||||
errtol = 1000*eps
|
||||
#TODO use a better error approximation
|
||||
errest = norm(expm(F)-A,1) / norm(A,1)
|
||||
if disp:
|
||||
if not isfinite(errest) or errest >= errtol:
|
||||
print("logm result may be inaccurate, approximate err =", errest)
|
||||
return F
|
||||
else:
|
||||
return F, errest
|
||||
|
||||
|
||||
def expm(A):
|
||||
"""
|
||||
Compute the matrix exponential using Pade approximation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like or sparse matrix
|
||||
Matrix to be exponentiated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
expm : (N, N) ndarray
|
||||
Matrix exponential of `A`.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2009)
|
||||
"A New Scaling and Squaring Algorithm for the Matrix Exponential."
|
||||
SIAM Journal on Matrix Analysis and Applications.
|
||||
31 (3). pp. 970-989. ISSN 1095-7162
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import expm, sinm, cosm
|
||||
|
||||
Matrix version of the formula exp(0) = 1:
|
||||
|
||||
>>> expm(np.zeros((2,2)))
|
||||
array([[ 1., 0.],
|
||||
[ 0., 1.]])
|
||||
|
||||
Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
|
||||
applied to a matrix:
|
||||
|
||||
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
|
||||
>>> expm(1j*a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
>>> cosm(a) + 1j*sinm(a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
|
||||
"""
|
||||
# Input checking and conversion is provided by sparse.linalg.expm().
|
||||
import scipy.sparse.linalg
|
||||
return scipy.sparse.linalg.expm(A)
|
||||
|
||||
|
||||
def cosm(A):
|
||||
"""
|
||||
Compute the matrix cosine.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array
|
||||
|
||||
Returns
|
||||
-------
|
||||
cosm : (N, N) ndarray
|
||||
Matrix cosine of A
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import expm, sinm, cosm
|
||||
|
||||
Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
|
||||
applied to a matrix:
|
||||
|
||||
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
|
||||
>>> expm(1j*a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
>>> cosm(a) + 1j*sinm(a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
if np.iscomplexobj(A):
|
||||
return 0.5*(expm(1j*A) + expm(-1j*A))
|
||||
else:
|
||||
return expm(1j*A).real
|
||||
|
||||
|
||||
def sinm(A):
|
||||
"""
|
||||
Compute the matrix sine.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
sinm : (N, N) ndarray
|
||||
Matrix sine of `A`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import expm, sinm, cosm
|
||||
|
||||
Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
|
||||
applied to a matrix:
|
||||
|
||||
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
|
||||
>>> expm(1j*a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
>>> cosm(a) + 1j*sinm(a)
|
||||
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
|
||||
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
if np.iscomplexobj(A):
|
||||
return -0.5j*(expm(1j*A) - expm(-1j*A))
|
||||
else:
|
||||
return expm(1j*A).imag
|
||||
|
||||
|
||||
def tanm(A):
|
||||
"""
|
||||
Compute the matrix tangent.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
tanm : (N, N) ndarray
|
||||
Matrix tangent of `A`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import tanm, sinm, cosm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> t = tanm(a)
|
||||
>>> t
|
||||
array([[ -2.00876993, -8.41880636],
|
||||
[ -2.80626879, -10.42757629]])
|
||||
|
||||
Verify tanm(a) = sinm(a).dot(inv(cosm(a)))
|
||||
|
||||
>>> s = sinm(a)
|
||||
>>> c = cosm(a)
|
||||
>>> s.dot(np.linalg.inv(c))
|
||||
array([[ -2.00876993, -8.41880636],
|
||||
[ -2.80626879, -10.42757629]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
return _maybe_real(A, solve(cosm(A), sinm(A)))
|
||||
|
||||
|
||||
def coshm(A):
|
||||
"""
|
||||
Compute the hyperbolic matrix cosine.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
coshm : (N, N) ndarray
|
||||
Hyperbolic matrix cosine of `A`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import tanhm, sinhm, coshm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> c = coshm(a)
|
||||
>>> c
|
||||
array([[ 11.24592233, 38.76236492],
|
||||
[ 12.92078831, 50.00828725]])
|
||||
|
||||
Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))
|
||||
|
||||
>>> t = tanhm(a)
|
||||
>>> s = sinhm(a)
|
||||
>>> t - s.dot(np.linalg.inv(c))
|
||||
array([[ 2.72004641e-15, 4.55191440e-15],
|
||||
[ 0.00000000e+00, -5.55111512e-16]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
return _maybe_real(A, 0.5 * (expm(A) + expm(-A)))
|
||||
|
||||
|
||||
def sinhm(A):
|
||||
"""
|
||||
Compute the hyperbolic matrix sine.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
sinhm : (N, N) ndarray
|
||||
Hyperbolic matrix sine of `A`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import tanhm, sinhm, coshm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> s = sinhm(a)
|
||||
>>> s
|
||||
array([[ 10.57300653, 39.28826594],
|
||||
[ 13.09608865, 49.86127247]])
|
||||
|
||||
Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))
|
||||
|
||||
>>> t = tanhm(a)
|
||||
>>> c = coshm(a)
|
||||
>>> t - s.dot(np.linalg.inv(c))
|
||||
array([[ 2.72004641e-15, 4.55191440e-15],
|
||||
[ 0.00000000e+00, -5.55111512e-16]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
return _maybe_real(A, 0.5 * (expm(A) - expm(-A)))
|
||||
|
||||
|
||||
def tanhm(A):
|
||||
"""
|
||||
Compute the hyperbolic matrix tangent.
|
||||
|
||||
This routine uses expm to compute the matrix exponentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Input array
|
||||
|
||||
Returns
|
||||
-------
|
||||
tanhm : (N, N) ndarray
|
||||
Hyperbolic matrix tangent of `A`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import tanhm, sinhm, coshm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> t = tanhm(a)
|
||||
>>> t
|
||||
array([[ 0.3428582 , 0.51987926],
|
||||
[ 0.17329309, 0.86273746]])
|
||||
|
||||
Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))
|
||||
|
||||
>>> s = sinhm(a)
|
||||
>>> c = coshm(a)
|
||||
>>> t - s.dot(np.linalg.inv(c))
|
||||
array([[ 2.72004641e-15, 4.55191440e-15],
|
||||
[ 0.00000000e+00, -5.55111512e-16]])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
return _maybe_real(A, solve(coshm(A), sinhm(A)))
|
||||
|
||||
|
||||
def funm(A, func, disp=True):
|
||||
"""
|
||||
Evaluate a matrix function specified by a callable.
|
||||
|
||||
Returns the value of matrix-valued function ``f`` at `A`. The
|
||||
function ``f`` is an extension of the scalar-valued function `func`
|
||||
to matrices.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix at which to evaluate the function
|
||||
func : callable
|
||||
Callable object that evaluates a scalar function f.
|
||||
Must be vectorized (eg. using vectorize).
|
||||
disp : bool, optional
|
||||
Print warning if error in the result is estimated large
|
||||
instead of returning estimated error. (Default: True)
|
||||
|
||||
Returns
|
||||
-------
|
||||
funm : (N, N) ndarray
|
||||
Value of the matrix function specified by func evaluated at `A`
|
||||
errest : float
|
||||
(if disp == False)
|
||||
|
||||
1-norm of the estimated error, ||err||_1 / ||A||_1
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import funm
|
||||
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
|
||||
>>> funm(a, lambda x: x*x)
|
||||
array([[ 4., 15.],
|
||||
[ 5., 19.]])
|
||||
>>> a.dot(a)
|
||||
array([[ 4., 15.],
|
||||
[ 5., 19.]])
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function implements the general algorithm based on Schur decomposition
|
||||
(Algorithm 9.1.1. in [1]_).
|
||||
|
||||
If the input matrix is known to be diagonalizable, then relying on the
|
||||
eigendecomposition is likely to be faster. For example, if your matrix is
|
||||
Hermitian, you can do
|
||||
|
||||
>>> from scipy.linalg import eigh
|
||||
>>> def funm_herm(a, func, check_finite=False):
|
||||
... w, v = eigh(a, check_finite=check_finite)
|
||||
... ## if you further know that your matrix is positive semidefinite,
|
||||
... ## you can optionally guard against precision errors by doing
|
||||
... # w = np.maximum(w, 0)
|
||||
... w = func(w)
|
||||
... return (v * w).dot(v.conj().T)
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Gene H. Golub, Charles F. van Loan, Matrix Computations 4th ed.
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
# Perform Shur decomposition (lapack ?gees)
|
||||
T, Z = schur(A)
|
||||
T, Z = rsf2csf(T,Z)
|
||||
n,n = T.shape
|
||||
F = diag(func(diag(T))) # apply function to diagonal elements
|
||||
F = F.astype(T.dtype.char) # e.g., when F is real but T is complex
|
||||
|
||||
minden = abs(T[0,0])
|
||||
|
||||
# implement Algorithm 11.1.1 from Golub and Van Loan
|
||||
# "matrix Computations."
|
||||
for p in range(1,n):
|
||||
for i in range(1,n-p+1):
|
||||
j = i + p
|
||||
s = T[i-1,j-1] * (F[j-1,j-1] - F[i-1,i-1])
|
||||
ksl = slice(i,j-1)
|
||||
val = dot(T[i-1,ksl],F[ksl,j-1]) - dot(F[i-1,ksl],T[ksl,j-1])
|
||||
s = s + val
|
||||
den = T[j-1,j-1] - T[i-1,i-1]
|
||||
if den != 0.0:
|
||||
s = s / den
|
||||
F[i-1,j-1] = s
|
||||
minden = min(minden,abs(den))
|
||||
|
||||
F = dot(dot(Z, F), transpose(conjugate(Z)))
|
||||
F = _maybe_real(A, F)
|
||||
|
||||
tol = {0:feps, 1:eps}[_array_precision[F.dtype.char]]
|
||||
if minden == 0.0:
|
||||
minden = tol
|
||||
err = min(1, max(tol,(tol/minden)*norm(triu(T,1),1)))
|
||||
if prod(ravel(logical_not(isfinite(F))),axis=0):
|
||||
err = Inf
|
||||
if disp:
|
||||
if err > 1000*tol:
|
||||
print("funm result may be inaccurate, approximate err =", err)
|
||||
return F
|
||||
else:
|
||||
return F, err
|
||||
|
||||
|
||||
def signm(A, disp=True):
|
||||
"""
|
||||
Matrix sign function.
|
||||
|
||||
Extension of the scalar sign(x) to matrices.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : (N, N) array_like
|
||||
Matrix at which to evaluate the sign function
|
||||
disp : bool, optional
|
||||
Print warning if error in the result is estimated large
|
||||
instead of returning estimated error. (Default: True)
|
||||
|
||||
Returns
|
||||
-------
|
||||
signm : (N, N) ndarray
|
||||
Value of the sign function at `A`
|
||||
errest : float
|
||||
(if disp == False)
|
||||
|
||||
1-norm of the estimated error, ||err||_1 / ||A||_1
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import signm, eigvals
|
||||
>>> a = [[1,2,3], [1,2,1], [1,1,1]]
|
||||
>>> eigvals(a)
|
||||
array([ 4.12488542+0.j, -0.76155718+0.j, 0.63667176+0.j])
|
||||
>>> eigvals(signm(a))
|
||||
array([-1.+0.j, 1.+0.j, 1.+0.j])
|
||||
|
||||
"""
|
||||
A = _asarray_square(A)
|
||||
|
||||
def rounded_sign(x):
|
||||
rx = np.real(x)
|
||||
if rx.dtype.char == 'f':
|
||||
c = 1e3*feps*amax(x)
|
||||
else:
|
||||
c = 1e3*eps*amax(x)
|
||||
return sign((absolute(rx) > c) * rx)
|
||||
result, errest = funm(A, rounded_sign, disp=0)
|
||||
errtol = {0:1e3*feps, 1:1e3*eps}[_array_precision[result.dtype.char]]
|
||||
if errest < errtol:
|
||||
return result
|
||||
|
||||
# Handle signm of defective matrices:
|
||||
|
||||
# See "E.D.Denman and J.Leyva-Ramos, Appl.Math.Comp.,
|
||||
# 8:237-250,1981" for how to improve the following (currently a
|
||||
# rather naive) iteration process:
|
||||
|
||||
# a = result # sometimes iteration converges faster but where??
|
||||
|
||||
# Shifting to avoid zero eigenvalues. How to ensure that shifting does
|
||||
# not change the spectrum too much?
|
||||
vals = svd(A, compute_uv=0)
|
||||
max_sv = np.amax(vals)
|
||||
# min_nonzero_sv = vals[(vals>max_sv*errtol).tolist().count(1)-1]
|
||||
# c = 0.5/min_nonzero_sv
|
||||
c = 0.5/max_sv
|
||||
S0 = A + c*np.identity(A.shape[0])
|
||||
prev_errest = errest
|
||||
for i in range(100):
|
||||
iS0 = inv(S0)
|
||||
S0 = 0.5*(S0 + iS0)
|
||||
Pp = 0.5*(dot(S0,S0)+S0)
|
||||
errest = norm(dot(Pp,Pp)-Pp,1)
|
||||
if errest < errtol or prev_errest == errest:
|
||||
break
|
||||
prev_errest = errest
|
||||
if disp:
|
||||
if not isfinite(errest) or errest >= errtol:
|
||||
print("signm result may be inaccurate, approximate err =", errest)
|
||||
return S0
|
||||
else:
|
||||
return S0, errest
|
||||
|
||||
|
||||
def khatri_rao(a, b):
|
||||
r"""
|
||||
Khatri-rao product
|
||||
|
||||
A column-wise Kronecker product of two matrices
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a: (n, k) array_like
|
||||
Input array
|
||||
b: (m, k) array_like
|
||||
Input array
|
||||
|
||||
Returns
|
||||
-------
|
||||
c: (n*m, k) ndarray
|
||||
Khatri-rao product of `a` and `b`.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The mathematical definition of the Khatri-Rao product is:
|
||||
|
||||
.. math::
|
||||
|
||||
(A_{ij} \bigotimes B_{ij})_{ij}
|
||||
|
||||
which is the Kronecker product of every column of A and B, e.g.::
|
||||
|
||||
c = np.vstack([np.kron(a[:, k], b[:, k]) for k in range(b.shape[1])]).T
|
||||
|
||||
See Also
|
||||
--------
|
||||
kron : Kronecker product
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy import linalg
|
||||
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
|
||||
>>> b = np.array([[3, 4, 5], [6, 7, 8], [2, 3, 9]])
|
||||
>>> linalg.khatri_rao(a, b)
|
||||
array([[ 3, 8, 15],
|
||||
[ 6, 14, 24],
|
||||
[ 2, 6, 27],
|
||||
[12, 20, 30],
|
||||
[24, 35, 48],
|
||||
[ 8, 15, 54]])
|
||||
|
||||
"""
|
||||
a = np.asarray(a)
|
||||
b = np.asarray(b)
|
||||
|
||||
if not(a.ndim == 2 and b.ndim == 2):
|
||||
raise ValueError("The both arrays should be 2-dimensional.")
|
||||
|
||||
if not a.shape[1] == b.shape[1]:
|
||||
raise ValueError("The number of columns for both arrays "
|
||||
"should be equal.")
|
||||
|
||||
# c = np.vstack([np.kron(a[:, k], b[:, k]) for k in range(b.shape[1])]).T
|
||||
c = a[..., :, np.newaxis, :] * b[..., np.newaxis, :, :]
|
||||
return c.reshape((-1,) + c.shape[2:])
|
192
venv/Lib/site-packages/scipy/linalg/misc.py
Normal file
192
venv/Lib/site-packages/scipy/linalg/misc.py
Normal file
|
@ -0,0 +1,192 @@
|
|||
import numpy as np
|
||||
from numpy.linalg import LinAlgError
|
||||
from .blas import get_blas_funcs
|
||||
from .lapack import get_lapack_funcs
|
||||
|
||||
__all__ = ['LinAlgError', 'LinAlgWarning', 'norm']
|
||||
|
||||
|
||||
class LinAlgWarning(RuntimeWarning):
|
||||
"""
|
||||
The warning emitted when a linear algebra related operation is close
|
||||
to fail conditions of the algorithm or loss of accuracy is expected.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def norm(a, ord=None, axis=None, keepdims=False, check_finite=True):
|
||||
"""
|
||||
Matrix or vector norm.
|
||||
|
||||
This function is able to return one of seven different matrix norms,
|
||||
or one of an infinite number of vector norms (described below), depending
|
||||
on the value of the ``ord`` parameter.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (M,) or (M, N) array_like
|
||||
Input array. If `axis` is None, `a` must be 1D or 2D.
|
||||
ord : {non-zero int, inf, -inf, 'fro'}, optional
|
||||
Order of the norm (see table under ``Notes``). inf means NumPy's
|
||||
`inf` object
|
||||
axis : {int, 2-tuple of ints, None}, optional
|
||||
If `axis` is an integer, it specifies the axis of `a` along which to
|
||||
compute the vector norms. If `axis` is a 2-tuple, it specifies the
|
||||
axes that hold 2-D matrices, and the matrix norms of these matrices
|
||||
are computed. If `axis` is None then either a vector norm (when `a`
|
||||
is 1-D) or a matrix norm (when `a` is 2-D) is returned.
|
||||
keepdims : bool, optional
|
||||
If this is set to True, the axes which are normed over are left in the
|
||||
result as dimensions with size one. With this option the result will
|
||||
broadcast correctly against the original `a`.
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
n : float or ndarray
|
||||
Norm of the matrix or vector(s).
|
||||
|
||||
Notes
|
||||
-----
|
||||
For values of ``ord <= 0``, the result is, strictly speaking, not a
|
||||
mathematical 'norm', but it may still be useful for various numerical
|
||||
purposes.
|
||||
|
||||
The following norms can be calculated:
|
||||
|
||||
===== ============================ ==========================
|
||||
ord norm for matrices norm for vectors
|
||||
===== ============================ ==========================
|
||||
None Frobenius norm 2-norm
|
||||
'fro' Frobenius norm --
|
||||
inf max(sum(abs(x), axis=1)) max(abs(x))
|
||||
-inf min(sum(abs(x), axis=1)) min(abs(x))
|
||||
0 -- sum(x != 0)
|
||||
1 max(sum(abs(x), axis=0)) as below
|
||||
-1 min(sum(abs(x), axis=0)) as below
|
||||
2 2-norm (largest sing. value) as below
|
||||
-2 smallest singular value as below
|
||||
other -- sum(abs(x)**ord)**(1./ord)
|
||||
===== ============================ ==========================
|
||||
|
||||
The Frobenius norm is given by [1]_:
|
||||
|
||||
:math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
|
||||
|
||||
The ``axis`` and ``keepdims`` arguments are passed directly to
|
||||
``numpy.linalg.norm`` and are only usable if they are supported
|
||||
by the version of numpy in use.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
|
||||
Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy.linalg import norm
|
||||
>>> a = np.arange(9) - 4.0
|
||||
>>> a
|
||||
array([-4., -3., -2., -1., 0., 1., 2., 3., 4.])
|
||||
>>> b = a.reshape((3, 3))
|
||||
>>> b
|
||||
array([[-4., -3., -2.],
|
||||
[-1., 0., 1.],
|
||||
[ 2., 3., 4.]])
|
||||
|
||||
>>> norm(a)
|
||||
7.745966692414834
|
||||
>>> norm(b)
|
||||
7.745966692414834
|
||||
>>> norm(b, 'fro')
|
||||
7.745966692414834
|
||||
>>> norm(a, np.inf)
|
||||
4
|
||||
>>> norm(b, np.inf)
|
||||
9
|
||||
>>> norm(a, -np.inf)
|
||||
0
|
||||
>>> norm(b, -np.inf)
|
||||
2
|
||||
|
||||
>>> norm(a, 1)
|
||||
20
|
||||
>>> norm(b, 1)
|
||||
7
|
||||
>>> norm(a, -1)
|
||||
-4.6566128774142013e-010
|
||||
>>> norm(b, -1)
|
||||
6
|
||||
>>> norm(a, 2)
|
||||
7.745966692414834
|
||||
>>> norm(b, 2)
|
||||
7.3484692283495345
|
||||
|
||||
>>> norm(a, -2)
|
||||
0
|
||||
>>> norm(b, -2)
|
||||
1.8570331885190563e-016
|
||||
>>> norm(a, 3)
|
||||
5.8480354764257312
|
||||
>>> norm(a, -3)
|
||||
0
|
||||
|
||||
"""
|
||||
# Differs from numpy only in non-finite handling and the use of blas.
|
||||
if check_finite:
|
||||
a = np.asarray_chkfinite(a)
|
||||
else:
|
||||
a = np.asarray(a)
|
||||
|
||||
# Only use optimized norms if axis and keepdims are not specified.
|
||||
if a.dtype.char in 'fdFD' and axis is None and not keepdims:
|
||||
|
||||
if ord in (None, 2) and (a.ndim == 1):
|
||||
# use blas for fast and stable euclidean norm
|
||||
nrm2 = get_blas_funcs('nrm2', dtype=a.dtype)
|
||||
return nrm2(a)
|
||||
|
||||
if a.ndim == 2 and axis is None and not keepdims:
|
||||
# Use lapack for a couple fast matrix norms.
|
||||
# For some reason the *lange frobenius norm is slow.
|
||||
lange_args = None
|
||||
# Make sure this works if the user uses the axis keywords
|
||||
# to apply the norm to the transpose.
|
||||
if ord == 1:
|
||||
if np.isfortran(a):
|
||||
lange_args = '1', a
|
||||
elif np.isfortran(a.T):
|
||||
lange_args = 'i', a.T
|
||||
elif ord == np.inf:
|
||||
if np.isfortran(a):
|
||||
lange_args = 'i', a
|
||||
elif np.isfortran(a.T):
|
||||
lange_args = '1', a.T
|
||||
if lange_args:
|
||||
lange = get_lapack_funcs('lange', dtype=a.dtype)
|
||||
return lange(*lange_args)
|
||||
|
||||
# Filter out the axis and keepdims arguments if they aren't used so they
|
||||
# are never inadvertently passed to a version of numpy that doesn't
|
||||
# support them.
|
||||
if axis is not None:
|
||||
if keepdims:
|
||||
return np.linalg.norm(a, ord=ord, axis=axis, keepdims=keepdims)
|
||||
return np.linalg.norm(a, ord=ord, axis=axis)
|
||||
return np.linalg.norm(a, ord=ord)
|
||||
|
||||
|
||||
def _datacopied(arr, original):
|
||||
"""
|
||||
Strict check for `arr` not sharing any data with `original`,
|
||||
under the assumption that arr = asarray(original)
|
||||
|
||||
"""
|
||||
if arr is original:
|
||||
return False
|
||||
if not isinstance(original, np.ndarray) and hasattr(original, '__array__'):
|
||||
return False
|
||||
return arr.base is None
|
123
venv/Lib/site-packages/scipy/linalg/setup.py
Normal file
123
venv/Lib/site-packages/scipy/linalg/setup.py
Normal file
|
@ -0,0 +1,123 @@
|
|||
from os.path import join
|
||||
|
||||
|
||||
def configuration(parent_package='', top_path=None):
|
||||
from distutils.sysconfig import get_python_inc
|
||||
from scipy._build_utils.system_info import get_info, numpy_info
|
||||
from numpy.distutils.misc_util import Configuration, get_numpy_include_dirs
|
||||
from scipy._build_utils import get_g77_abi_wrappers, gfortran_legacy_flag_hook
|
||||
|
||||
config = Configuration('linalg', parent_package, top_path)
|
||||
|
||||
lapack_opt = get_info('lapack_opt')
|
||||
|
||||
atlas_version = ([v[3:-3] for k, v in lapack_opt.get('define_macros', [])
|
||||
if k == 'ATLAS_INFO']+[None])[0]
|
||||
if atlas_version:
|
||||
print(('ATLAS version: %s' % atlas_version))
|
||||
|
||||
# fblas:
|
||||
sources = ['fblas.pyf.src']
|
||||
sources += get_g77_abi_wrappers(lapack_opt)
|
||||
|
||||
config.add_extension('_fblas',
|
||||
sources=sources,
|
||||
depends=['fblas_l?.pyf.src'],
|
||||
extra_info=lapack_opt
|
||||
)
|
||||
|
||||
# flapack:
|
||||
sources = ['flapack.pyf.src']
|
||||
sources += get_g77_abi_wrappers(lapack_opt)
|
||||
dep_pfx = join('src', 'lapack_deprecations')
|
||||
deprecated_lapack_routines = [join(dep_pfx, c + 'gegv.f') for c in 'cdsz']
|
||||
sources += deprecated_lapack_routines
|
||||
|
||||
config.add_extension('_flapack',
|
||||
sources=sources,
|
||||
depends=['flapack_gen.pyf.src',
|
||||
'flapack_gen_banded.pyf.src',
|
||||
'flapack_gen_tri.pyf.src',
|
||||
'flapack_pos_def.pyf.src',
|
||||
'flapack_pos_def_tri.pyf.src',
|
||||
'flapack_sym_herm.pyf.src',
|
||||
'flapack_other.pyf.src',
|
||||
'flapack_user.pyf.src'],
|
||||
extra_info=lapack_opt
|
||||
)
|
||||
|
||||
if atlas_version is not None:
|
||||
# cblas:
|
||||
config.add_extension('_cblas',
|
||||
sources=['cblas.pyf.src'],
|
||||
depends=['cblas.pyf.src', 'cblas_l1.pyf.src'],
|
||||
extra_info=lapack_opt
|
||||
)
|
||||
|
||||
# clapack:
|
||||
config.add_extension('_clapack',
|
||||
sources=['clapack.pyf.src'],
|
||||
depends=['clapack.pyf.src'],
|
||||
extra_info=lapack_opt
|
||||
)
|
||||
|
||||
# _flinalg:
|
||||
config.add_extension('_flinalg',
|
||||
sources=[join('src', 'det.f'), join('src', 'lu.f')],
|
||||
extra_info=lapack_opt
|
||||
)
|
||||
|
||||
# _interpolative:
|
||||
ext = config.add_extension('_interpolative',
|
||||
sources=[join('src', 'id_dist', 'src', '*.f'),
|
||||
"interpolative.pyf"],
|
||||
extra_info=lapack_opt
|
||||
)
|
||||
ext._pre_build_hook = gfortran_legacy_flag_hook
|
||||
|
||||
# _solve_toeplitz:
|
||||
config.add_extension('_solve_toeplitz',
|
||||
sources=[('_solve_toeplitz.c')],
|
||||
include_dirs=[get_numpy_include_dirs()])
|
||||
|
||||
config.add_data_dir('tests')
|
||||
|
||||
# Cython BLAS/LAPACK
|
||||
config.add_data_files('cython_blas.pxd')
|
||||
config.add_data_files('cython_lapack.pxd')
|
||||
|
||||
sources = ['_blas_subroutine_wrappers.f', '_lapack_subroutine_wrappers.f']
|
||||
sources += get_g77_abi_wrappers(lapack_opt)
|
||||
includes = numpy_info().get_include_dirs() + [get_python_inc()]
|
||||
config.add_library('fwrappers', sources=sources, include_dirs=includes)
|
||||
|
||||
config.add_extension('cython_blas',
|
||||
sources=['cython_blas.c'],
|
||||
depends=['cython_blas.pyx', 'cython_blas.pxd',
|
||||
'fortran_defs.h', '_blas_subroutines.h'],
|
||||
include_dirs=['.'],
|
||||
libraries=['fwrappers'],
|
||||
extra_info=lapack_opt)
|
||||
|
||||
config.add_extension('cython_lapack',
|
||||
sources=['cython_lapack.c'],
|
||||
depends=['cython_lapack.pyx', 'cython_lapack.pxd',
|
||||
'fortran_defs.h', '_lapack_subroutines.h'],
|
||||
include_dirs=['.'],
|
||||
libraries=['fwrappers'],
|
||||
extra_info=lapack_opt)
|
||||
|
||||
config.add_extension('_decomp_update',
|
||||
sources=['_decomp_update.c'])
|
||||
|
||||
# Add any license files
|
||||
config.add_data_files('src/id_dist/doc/doc.tex')
|
||||
config.add_data_files('src/lapack_deprecations/LICENSE')
|
||||
|
||||
return config
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from numpy.distutils.core import setup
|
||||
|
||||
setup(**configuration(top_path='').todict())
|
1374
venv/Lib/site-packages/scipy/linalg/special_matrices.py
Normal file
1374
venv/Lib/site-packages/scipy/linalg/special_matrices.py
Normal file
File diff suppressed because it is too large
Load diff
977
venv/Lib/site-packages/scipy/linalg/src/id_dist/doc/doc.tex
Normal file
977
venv/Lib/site-packages/scipy/linalg/src/id_dist/doc/doc.tex
Normal file
|
@ -0,0 +1,977 @@
|
|||
\documentclass[letterpaper,12pt]{article}
|
||||
\usepackage[margin=1in]{geometry}
|
||||
\usepackage{verbatim}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{supertabular}
|
||||
\usepackage{array}
|
||||
|
||||
\def\T{{\hbox{\scriptsize{\rm T}}}}
|
||||
\def\epsilon{\varepsilon}
|
||||
\def\bigoh{\mathcal{O}}
|
||||
\def\phi{\varphi}
|
||||
\def\st{{\hbox{\scriptsize{\rm st}}}}
|
||||
\def\th{{\hbox{\scriptsize{\rm th}}}}
|
||||
\def\x{\mathbf{x}}
|
||||
|
||||
|
||||
\title{ID: A software package for low-rank approximation
|
||||
of matrices via interpolative decompositions, Version 0.4}
|
||||
\author{Per-Gunnar Martinsson, Vladimir Rokhlin,\\
|
||||
Yoel Shkolnisky, and Mark Tygert}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\newpage
|
||||
|
||||
{\parindent=0pt
|
||||
|
||||
The present document and all of the software
|
||||
in the accompanying distribution (which is contained in the directory
|
||||
{\tt id\_dist} and its subdirectories, or in the file
|
||||
{\tt id\_dist.tar.gz})\, is
|
||||
|
||||
\bigskip
|
||||
|
||||
Copyright \copyright\ 2014 by P.-G. Martinsson, V. Rokhlin,
|
||||
Y. Shkolnisky, and M. Tygert.
|
||||
|
||||
\bigskip
|
||||
|
||||
All rights reserved.
|
||||
|
||||
\bigskip
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
\begin{enumerate}
|
||||
\item Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions, and the following disclaimer.
|
||||
\item Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions, and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
\item None of the names of the copyright holders may be used to endorse
|
||||
or promote products derived from this software without specific prior
|
||||
written permission.
|
||||
\end{enumerate}
|
||||
|
||||
\bigskip
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
||||
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
||||
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
}
|
||||
|
||||
\newpage
|
||||
|
||||
\tableofcontents
|
||||
|
||||
\newpage
|
||||
|
||||
|
||||
|
||||
\hrule
|
||||
|
||||
\medskip
|
||||
|
||||
\centerline{\Large \bf IMPORTANT}
|
||||
|
||||
\medskip
|
||||
|
||||
\hrule
|
||||
|
||||
\medskip
|
||||
|
||||
\noindent At the minimum, please read Subsection~\ref{warning}
|
||||
and Section~\ref{naming} below, and beware that the {\it N.B.}'s
|
||||
in the source code comments highlight key information about the routines;
|
||||
{\it N.B.} stands for {\it nota bene} (Latin for ``note well'').
|
||||
|
||||
\medskip
|
||||
|
||||
\hrule
|
||||
|
||||
\bigskip
|
||||
|
||||
|
||||
|
||||
\section{Introduction}
|
||||
|
||||
This software distribution provides Fortran routines
|
||||
for computing low-rank approximations to matrices,
|
||||
in the forms of interpolative decompositions (IDs)
|
||||
and singular value decompositions (SVDs).
|
||||
The routines use algorithms based on the ID.
|
||||
The ID is also commonly known as
|
||||
the approximation obtained via skeletonization,
|
||||
the approximation obtained via subsampling,
|
||||
and the approximation obtained via subset selection.
|
||||
The ID provides many advantages in many applications,
|
||||
and we suspect that it will become increasingly popular
|
||||
once tools for its computation become more widely available.
|
||||
This software distribution includes some such tools,
|
||||
as well as tools for computing low-rank approximations
|
||||
in the form of SVDs.
|
||||
Section~\ref{defs} below defines IDs and SVDs,
|
||||
and provides references to detailed discussions of the algorithms
|
||||
used in this software package.
|
||||
|
||||
Please beware that normalized power iterations are better suited than
|
||||
the software in this distribution
|
||||
for computing principal component analyses
|
||||
in the typical case when the square of the signal-to-noise ratio
|
||||
is not orders of magnitude greater than both dimensions
|
||||
of the data matrix; see~\cite{halko-martinsson-tropp}.
|
||||
|
||||
The algorithms used in this distribution have been optimized
|
||||
for accuracy, efficiency, and reliability;
|
||||
as a somewhat counterintuitive consequence, many must be randomized.
|
||||
All randomized codes in this software package succeed
|
||||
with overwhelmingly high probability (see, for example,
|
||||
\cite{halko-martinsson-tropp}).
|
||||
The truly paranoid are welcome to use the routines {\tt idd\_diffsnorm}
|
||||
and {\tt idz\_diffsnorm} to evaluate rapidly the quality
|
||||
of the approximations produced by the randomized algorithms
|
||||
(as done, for example, in the files
|
||||
{\tt idd\_a\_test.f}, {\tt idd\_r\_test.f}, {\tt idz\_a\_test.f},
|
||||
and {\tt idz\_r\_test.f} in the {\tt test} subdirectory
|
||||
of the main directory {\tt id\_dist}).
|
||||
In most circumstances, evaluating the quality of an approximation
|
||||
via routines {\tt idd\_diffsnorm} or {\tt idz\_diffsnorm} is much faster
|
||||
than forming the approximation to be evaluated. Still, we are unaware
|
||||
of any instance in which a properly-compiled routine failed to produce
|
||||
an accurate approximation.
|
||||
To facilitate successful compilation, we encourage the user
|
||||
to read the instructions in the next section,
|
||||
and to read Section~\ref{naming}, too.
|
||||
|
||||
|
||||
|
||||
\section{Compilation instructions}
|
||||
|
||||
|
||||
Followed in numerical order, the subsections of this section
|
||||
provide step-by-step instructions for compiling the software
|
||||
under a Unix-compatible operating system.
|
||||
|
||||
|
||||
\subsection{Beware that default command-line flags may not be
|
||||
sufficient for compiling the source codes!}
|
||||
\label{warning}
|
||||
|
||||
The Fortran source codes in this distribution pass {\tt real*8}
|
||||
variables as integer variables, integers as {\tt real*8}'s,
|
||||
{\tt real*8}'s as {\tt complex*16}'s, and so on.
|
||||
This is common practice in numerical codes, and is not an error;
|
||||
be sure to provide the relevant command-line flags to the compiler
|
||||
(for example, run {\tt fort77} and {\tt f2c} with the flag {\tt -!P}).
|
||||
When following the compilation instructions
|
||||
in Subsection~\ref{makefile_edit} below,
|
||||
be sure to set {\tt FFLAGS} appropriately.
|
||||
|
||||
|
||||
\subsection{Install LAPACK}
|
||||
|
||||
The SVD routines in this distribution depend on LAPACK.
|
||||
Before compiling the present distribution,
|
||||
create the LAPACK and BLAS archive (library) {\tt .a} files;
|
||||
information about installing LAPACK is available
|
||||
at {\tt http://www.netlib.org/lapack/} (and several other web sites).
|
||||
|
||||
|
||||
\subsection{Decompress and untar the file {\tt id\_dist.tar.gz}}
|
||||
|
||||
At the command line, decompress and untar the file
|
||||
{\tt id\_dist.tar.gz} by issuing a command such as
|
||||
{\tt tar -xvvzf id\_dist.tar.gz}.
|
||||
This will create a directory named {\tt id\_dist}.
|
||||
|
||||
|
||||
\subsection{Edit the Makefile}
|
||||
\label{makefile_edit}
|
||||
|
||||
The directory {\tt id\_dist} contains a file named {\tt Makefile}.
|
||||
In {\tt Makefile}, set the following:
|
||||
%
|
||||
\begin{itemize}
|
||||
\item {\tt FC} is the Fortran compiler.
|
||||
\item {\tt FFLAGS} is the set of command-line flags
|
||||
(specifying optimization settings, for example)
|
||||
for the Fortran compiler specified by {\tt FC};
|
||||
please heed the warning in Subsection~\ref{warning} above!
|
||||
\item {\tt BLAS\_LIB} is the file-system path to the BLAS archive
|
||||
(library) {\tt .a} file.
|
||||
\item {\tt LAPACK\_LIB} is the file-system path to the LAPACK archive
|
||||
(library) {\tt .a} file.
|
||||
\item {\tt ARCH} is the archiver utility (usually {\tt ar}).
|
||||
\item {\tt ARCHFLAGS} is the set of command-line flags
|
||||
for the archiver specified by {\tt ARCH} needed
|
||||
to create an archive (usually {\tt cr}).
|
||||
\item {\tt RANLIB} is to be set to {\tt ranlib}
|
||||
when {\tt ranlib} is available, and is to be set to {\tt echo}
|
||||
when {\tt ranlib} is not available.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\subsection{Make and test the libraries}
|
||||
|
||||
At the command line in a shell that adheres
|
||||
to the Bourne shell conventions for redirection, issue the command
|
||||
``{\tt make clean; make}'' to both create the archive (library)
|
||||
{\tt id\_lib.a} and test it.
|
||||
(In most modern Unix distributions, {\tt sh} is the Bourne shell,
|
||||
or else is fully compatible with the Bourne shell;
|
||||
the Korn shell {\tt ksh} and the Bourne-again shell {\tt bash}
|
||||
also use the Bourne shell conventions for redirection.)
|
||||
{\tt make} places the file {\tt id\_lib.a}
|
||||
in the directory {\tt id\_dist}; the archive (library) file
|
||||
{\tt id\_lib.a} contains machine code for all user-callable routines
|
||||
in this distribution.
|
||||
|
||||
|
||||
|
||||
\section{Naming conventions}
|
||||
\label{naming}
|
||||
|
||||
The names of routines and files in this distribution
|
||||
start with prefixes, followed by an underscore (``\_'').
|
||||
The prefixes are two to four characters in length,
|
||||
and have the following meanings:
|
||||
%
|
||||
\begin{itemize}
|
||||
\item The first two letters are always ``{\tt id}'',
|
||||
the name of this distribution.
|
||||
\item The third letter (when present) is either ``{\tt d}''
|
||||
or ``{\tt z}'';
|
||||
``{\tt d}'' stands for double precision ({\tt real*8}),
|
||||
and ``{\tt z}'' stands for double complex ({\tt complex*16}).
|
||||
\item The fourth letter (when present) is either ``{\tt r}''
|
||||
or ``{\tt p}'';
|
||||
``{\tt r}'' stands for specified rank,
|
||||
and ``{\tt p}'' stands for specified precision.
|
||||
The specified rank routines require the user to provide
|
||||
the rank of the approximation to be constructed,
|
||||
while the specified precision routines adjust the rank adaptively
|
||||
to attain the desired precision.
|
||||
\end{itemize}
|
||||
|
||||
For example, {\tt iddr\_aid} is a {\tt real*8} routine which computes
|
||||
an approximation of specified rank.
|
||||
{\tt idz\_snorm} is a {\tt complex*16} routine.
|
||||
{\tt id\_randperm} is yet another routine in this distribution.
|
||||
|
||||
|
||||
|
||||
\section{Example programs}
|
||||
|
||||
For examples of how to use the user-callable routines
|
||||
in this distribution, see the source codes in subdirectory {\tt test}
|
||||
of the main directory {\tt id\_dist}.
|
||||
|
||||
|
||||
|
||||
\section{Directory structure}
|
||||
|
||||
The main {\tt id\_dist} directory contains a Makefile,
|
||||
the auxiliary text files {\tt README.txt} and {\tt size.txt},
|
||||
and the following subdirectories, described in the subsections below:
|
||||
%
|
||||
\begin{enumerate}
|
||||
\item {\tt bin}
|
||||
\item {\tt development}
|
||||
\item {\tt doc}
|
||||
\item {\tt src}
|
||||
\item {\tt test}
|
||||
\item {\tt tmp}
|
||||
\end{enumerate}
|
||||
%
|
||||
If a ``{\tt make all}'' command has completed successfully,
|
||||
then the main {\tt id\_dist} directory will also contain
|
||||
an archive (library) file {\tt id\_lib.a} containing machine code
|
||||
for all of the user-callable routines.
|
||||
|
||||
|
||||
\subsection{Subdirectory {\tt bin}}
|
||||
|
||||
Once all of the libraries have been made via the Makefile
|
||||
in the main {\tt id\_dist} directory,
|
||||
the subdirectory {\tt bin} will contain object files (machine code),
|
||||
each compiled from the corresponding file of source code
|
||||
in the subdirectory {\tt src} of {\tt id\_dist}.
|
||||
|
||||
|
||||
\subsection{Subdirectory {\tt development}}
|
||||
|
||||
Each Fortran file in the subdirectory {\tt development}
|
||||
(except for {\tt dfft.f} and {\tt prini.f})
|
||||
specifies its dependencies at the top, then provides a main program
|
||||
for testing and debugging, and finally provides source code
|
||||
for a library of user-callable subroutines.
|
||||
The Fortran file {\tt dfft.f} is a copy of P. N. Swarztrauber's FFTPACK library
|
||||
for computing fast Fourier transforms.
|
||||
The Fortran file {\tt prini.f} is a copy of V. Rokhlin's library
|
||||
of formatted printing routines.
|
||||
Both {\tt dfft.f} (version 4) and {\tt prini.f} are in the public domain.
|
||||
The shell script {\tt RUNME.sh} runs shell scripts {\tt make\_src.sh}
|
||||
and {\tt make\_test.sh}, which fill the subdirectories {\tt src}
|
||||
and {\tt test} of the main directory {\tt id\_dist}
|
||||
with source codes for user-callable routines
|
||||
and with the main program testing codes.
|
||||
|
||||
|
||||
\subsection{Subdirectory {\tt doc}}
|
||||
|
||||
Subdirectory {\tt doc} contains this documentation,
|
||||
supplementing comments in the source codes.
|
||||
|
||||
|
||||
\subsection{Subdirectory {\tt src}}
|
||||
|
||||
The files in the subdirectory {\tt src} provide source code
|
||||
for software libraries. Each file in the subdirectory {\tt src}
|
||||
(except for {\tt dfft.f} and {\tt prini.f}) is
|
||||
the bottom part of the corresponding file
|
||||
in the subdirectory {\tt development} of {\tt id\_dist}.
|
||||
The file {\tt dfft.f} is just a copy
|
||||
of P. N. Swarztrauber's FFTPACK library
|
||||
for computing fast Fourier transforms.
|
||||
The file {\tt prini.f} is a copy of V. Rokhlin's library
|
||||
of formatted printing routines.
|
||||
Both {\tt dfft.f} (version 4) and {\tt prini.f} are in the public domain.
|
||||
|
||||
|
||||
\subsection{Subdirectory {\tt test}}
|
||||
|
||||
The files in subdirectory {\tt test} provide source code
|
||||
for testing and debugging. Each file in subdirectory {\tt test} is
|
||||
the top part of the corresponding file
|
||||
in subdirectory {\tt development} of {\tt id\_dist},
|
||||
and provides a main program and a list of its dependencies.
|
||||
These codes provide examples of how to call the user-callable routines.
|
||||
|
||||
|
||||
|
||||
\section{Catalog of the routines}
|
||||
|
||||
The main routines for decomposing {\tt real*8} matrices are:
|
||||
%
|
||||
\begin{enumerate}
|
||||
%
|
||||
\item IDs of arbitrary (generally dense) matrices:
|
||||
{\tt iddp\_id}, {\tt iddr\_id}, {\tt iddp\_aid}, {\tt iddr\_aid}
|
||||
%
|
||||
\item IDs of matrices that may be rapidly applied to arbitrary vectors
|
||||
(as may the matrices' transposes):
|
||||
{\tt iddp\_rid}, {\tt iddr\_rid}
|
||||
%
|
||||
\item SVDs of arbitrary (generally dense) matrices:
|
||||
{\tt iddp\_svd}, {\tt iddr\_svd}, {\tt iddp\_asvd},\\{\tt iddr\_asvd}
|
||||
%
|
||||
\item SVDs of matrices that may be rapidly applied to arbitrary vectors
|
||||
(as may the matrices' transposes):
|
||||
{\tt iddp\_rsvd}, {\tt iddr\_rsvd}
|
||||
%
|
||||
\end{enumerate}
|
||||
|
||||
Similarly, the main routines for decomposing {\tt complex*16} matrices
|
||||
are:
|
||||
%
|
||||
\begin{enumerate}
|
||||
%
|
||||
\item IDs of arbitrary (generally dense) matrices:
|
||||
{\tt idzp\_id}, {\tt idzr\_id}, {\tt idzp\_aid}, {\tt idzr\_aid}
|
||||
%
|
||||
\item IDs of matrices that may be rapidly applied to arbitrary vectors
|
||||
(as may the matrices' adjoints):
|
||||
{\tt idzp\_rid}, {\tt idzr\_rid}
|
||||
%
|
||||
\item SVDs of arbitrary (generally dense) matrices:
|
||||
{\tt idzp\_svd}, {\tt idzr\_svd}, {\tt idzp\_asvd},\\{\tt idzr\_asvd}
|
||||
%
|
||||
\item SVDs of matrices that may be rapidly applied to arbitrary vectors
|
||||
(as may the matrices' adjoints):
|
||||
{\tt idzp\_rsvd}, {\tt idzr\_rsvd}
|
||||
%
|
||||
\end{enumerate}
|
||||
|
||||
This distribution also includes routines for constructing pivoted $QR$
|
||||
decompositions (in {\tt idd\_qrpiv.f} and {\tt idz\_qrpiv.f}), for
|
||||
estimating the spectral norms of matrices that may be applied rapidly
|
||||
to arbitrary vectors as may their adjoints (in {\tt idd\_snorm.f}
|
||||
and {\tt idz\_snorm.f}), for converting IDs to SVDs (in
|
||||
{\tt idd\_id2svd.f} and {\tt idz\_id2svd.f}), and for computing rapidly
|
||||
arbitrary subsets of the entries of the discrete Fourier transforms
|
||||
of vectors (in {\tt idd\_sfft.f} and {\tt idz\_sfft.f}).
|
||||
|
||||
|
||||
\subsection{List of the routines}
|
||||
|
||||
The following is an alphabetical list of the routines
|
||||
in this distribution, together with brief descriptions
|
||||
of their functionality and the names of the files containing
|
||||
the routines' source code:
|
||||
|
||||
\begin{center}
|
||||
%
|
||||
\tablehead{\bf Routine & \bf Description & \bf Source file \\}
|
||||
\tabletail{\hline}
|
||||
%
|
||||
\begin{supertabular}{>{\raggedright}p{1.2in} p{.53\textwidth} l}
|
||||
%
|
||||
\hline
|
||||
{\tt id\_frand} & generates pseudorandom numbers drawn uniformly from
|
||||
the interval $[0,1]$; this routine is more efficient than routine
|
||||
{\tt id\_srand}, but cannot generate fewer than 55 pseudorandom numbers
|
||||
per call & {\tt id\_rand.f} \\\hline
|
||||
%
|
||||
{\tt id\_frandi} & initializes the seed values for routine
|
||||
{\tt id\_frand} to specified values & {\tt id\_rand.f} \\\hline
|
||||
%
|
||||
{\tt id\_frando} & initializes the seed values for routine
|
||||
{\tt id\_frand} to their original, default values & {\tt id\_rand.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt id\_randperm} & generates a uniformly random permutation &
|
||||
{\tt id\_rand.f} \\\hline
|
||||
%
|
||||
{\tt id\_srand} & generates pseudorandom numbers drawn uniformly from
|
||||
the interval $[0,1]$; this routine is less efficient than routine
|
||||
{\tt id\_frand}, but can generate fewer than 55 pseudorandom numbers
|
||||
per call & {\tt id\_rand.f} \\\hline
|
||||
%
|
||||
{\tt id\_srandi} & initializes the seed values for routine
|
||||
{\tt id\_srand} to specified values & {\tt id\_rand.f} \\\hline
|
||||
%
|
||||
{\tt id\_srando} & initializes the seed values for routine
|
||||
{\tt id\_srand} to their original, default values & {\tt id\_rand.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idd\_copycols} & collects together selected columns of a matrix &
|
||||
{\tt idd\_id.f} \\\hline
|
||||
%
|
||||
{\tt idd\_diffsnorm} & estimates the spectral norm of the difference
|
||||
between two matrices specified by routines for applying the matrices
|
||||
and their transposes to arbitrary vectors; this routine uses the power
|
||||
method with a random starting vector & {\tt idd\_snorm.f} \\\hline
|
||||
%
|
||||
{\tt idd\_enorm} & calculates the Euclidean norm of a vector &
|
||||
{\tt idd\_snorm.f} \\\hline
|
||||
%
|
||||
{\tt idd\_estrank} & estimates the numerical rank of an arbitrary
|
||||
(generally dense) matrix to a specified precision; this routine is
|
||||
randomized, and must be initialized with routine {\tt idd\_frmi} &
|
||||
{\tt iddp\_aid.f} \\\hline
|
||||
%
|
||||
{\tt idd\_frm} & transforms a vector into a vector which is
|
||||
sufficiently scrambled to be subsampled, via a composition of Rokhlin's
|
||||
random transform, random subselection, and a fast Fourier transform &
|
||||
{\tt idd\_frm.f} \\\hline
|
||||
%
|
||||
{\tt idd\_frmi} & initializes routine {\tt idd\_frm} & {\tt idd\_frm.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idd\_getcols} & collects together selected columns of a matrix
|
||||
specified by a routine for applying the matrix to arbitrary vectors &
|
||||
{\tt idd\_id.f} \\\hline
|
||||
%
|
||||
{\tt idd\_house} & calculates the vector and scalar needed to apply the
|
||||
Householder transformation reflecting a given vector into its first
|
||||
entry & {\tt idd\_house.f} \\\hline
|
||||
%
|
||||
{\tt idd\_houseapp} & applies a Householder matrix to a vector &
|
||||
{\tt idd\_house.f} \\\hline
|
||||
%
|
||||
{\tt idd\_id2svd} & converts an approximation to a matrix in the form
|
||||
of an ID into an approximation in the form of an SVD &
|
||||
{\tt idd\_id2svd.f} \\\hline
|
||||
%
|
||||
{\tt idd\_ldiv} & finds the greatest integer less than or equal to a
|
||||
specified integer, that is divisible by another (larger) specified
|
||||
integer & {\tt idd\_sfft.f} \\\hline
|
||||
%
|
||||
{\tt idd\_pairsamps} & calculates the indices of the pairs of integers
|
||||
that the individual integers in a specified set belong to &
|
||||
{\tt idd\_frm.f} \\\hline
|
||||
%
|
||||
{\tt idd\_permmult} & multiplies together a bunch of permutations &
|
||||
{\tt idd\_qrpiv.f} \\\hline
|
||||
%
|
||||
{\tt idd\_qinqr} & reconstructs the $Q$ matrix in a $QR$ decomposition
|
||||
from the output of routines {\tt iddp\_qrpiv} or {\tt iddr\_qrpiv} &
|
||||
{\tt idd\_qrpiv.f} \\\hline
|
||||
%
|
||||
{\tt idd\_qrmatmat} & applies to multiple vectors collected together as
|
||||
a matrix the $Q$ matrix (or its transpose) in the $QR$ decomposition of
|
||||
a matrix, as described by the output of routines {\tt iddp\_qrpiv} or
|
||||
{\tt iddr\_qrpiv}; to apply $Q$ (or its transpose) to a single vector
|
||||
without having to provide a work array, use routine {\tt idd\_qrmatvec}
|
||||
instead & {\tt idd\_qrpiv.f} \\\hline
|
||||
%
|
||||
{\tt idd\_qrmatvec} & applies to a single vector the $Q$ matrix (or its
|
||||
transpose) in the $QR$ decomposition of a matrix, as described by the
|
||||
output of routines {\tt iddp\_qrpiv} or {\tt iddr\_qrpiv}; to apply $Q$
|
||||
(or its transpose) to several vectors efficiently, use routine
|
||||
{\tt idd\_qrmatmat} instead & {\tt idd\_qrpiv.f} \\\hline
|
||||
%
|
||||
{\tt idd\_random\_} {\tt transf} & applies rapidly a
|
||||
random orthogonal matrix to a user-supplied vector & {\tt id\_rtrans.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idd\_random\_ transf\_init} & \raggedright initializes routines
|
||||
{\tt idd\_random\_transf} and {\tt idd\_random\_transf\_inverse} &
|
||||
{\tt id\_rtrans.f} \\\hline
|
||||
%
|
||||
{\tt idd\_random\_} {\tt transf\_inverse} & applies
|
||||
rapidly the inverse of the operator applied by routine
|
||||
{\tt idd\_random\_transf} & {\tt id\_rtrans.f} \\\hline
|
||||
%
|
||||
{\tt idd\_reconid} & reconstructs a matrix from its ID &
|
||||
{\tt idd\_id.f} \\\hline
|
||||
%
|
||||
{\tt idd\_reconint} & constructs $P$ in the ID $A = B \, P$, where the
|
||||
columns of $B$ are a subset of the columns of $A$, and $P$ is the
|
||||
projection coefficient matrix, given {\tt list}, {\tt krank}, and
|
||||
{\tt proj} output by routines {\tt iddr\_id}, {\tt iddp\_id},
|
||||
{\tt iddr\_aid}, {\tt iddp\_aid}, {\tt iddr\_rid}, or {\tt iddp\_rid} &
|
||||
{\tt idd\_id.f} \\\hline
|
||||
%
|
||||
{\tt idd\_sfft} & rapidly computes a subset of the entries of the
|
||||
discrete Fourier transform of a vector, composed with permutation
|
||||
matrices both on input and on output & {\tt idd\_sfft.f} \\\hline
|
||||
%
|
||||
{\tt idd\_sffti} & initializes routine {\tt idd\_sfft} &
|
||||
{\tt idd\_sfft.f} \\\hline
|
||||
%
|
||||
{\tt idd\_sfrm} & transforms a vector into a scrambled vector of
|
||||
specified length, via a composition of Rokhlin's random transform,
|
||||
random subselection, and a fast Fourier transform & {\tt idd\_frm.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idd\_sfrmi} & initializes routine {\tt idd\_sfrm} &
|
||||
{\tt idd\_frm.f} \\\hline
|
||||
%
|
||||
{\tt idd\_snorm} & estimates the spectral norm of a matrix specified by
|
||||
routines for applying the matrix and its transpose to arbitrary
|
||||
vectors; this routine uses the power method with a random starting
|
||||
vector & {\tt idd\_snorm.f} \\\hline
|
||||
%
|
||||
{\tt iddp\_aid} & computes the ID of an arbitrary (generally dense)
|
||||
matrix, to a specified precision; this routine is randomized, and must
|
||||
be initialized with routine {\tt idd\_frmi} & {\tt iddp\_aid.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt iddp\_asvd} & computes the SVD of an arbitrary (generally dense)
|
||||
matrix, to a specified precision; this routine is randomized, and must
|
||||
be initialized with routine {\tt idd\_frmi} & {\tt iddp\_asvd.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt iddp\_id} & computes the ID of an arbitrary (generally dense)
|
||||
matrix, to a specified precision; this routine is often less efficient
|
||||
than routine {\tt iddp\_aid} & {\tt idd\_id.f} \\\hline
|
||||
%
|
||||
{\tt iddp\_qrpiv} & computes the pivoted $QR$ decomposition of an
|
||||
arbitrary (generally dense) matrix via Householder transformations,
|
||||
stopping at a specified precision of the decomposition &
|
||||
{\tt idd\_qrpiv.f} \\\hline
|
||||
%
|
||||
{\tt iddp\_rid} & computes the ID, to a specified precision, of a
|
||||
matrix specified by a routine for applying its transpose to arbitrary
|
||||
vectors; this routine is randomized & {\tt iddp\_rid.f} \\\hline
|
||||
%
|
||||
{\tt iddp\_rsvd} & computes the SVD, to a specified precision, of a
|
||||
matrix specified by routines for applying the matrix and its transpose
|
||||
to arbitrary vectors; this routine is randomized & {\tt iddp\_rsvd.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt iddp\_svd} & computes the SVD of an arbitrary (generally dense)
|
||||
matrix, to a specified precision; this routine is often less efficient
|
||||
than routine {\tt iddp\_asvd} & {\tt idd\_svd.f} \\\hline
|
||||
%
|
||||
{\tt iddr\_aid} & computes the ID of an arbitrary (generally dense)
|
||||
matrix, to a specified rank; this routine is randomized, and must be
|
||||
initialized by routine {\tt iddr\_aidi} & {\tt iddr\_aid.f} \\\hline
|
||||
%
|
||||
{\tt iddr\_aidi} & initializes routine {\tt iddr\_aid} &
|
||||
{\tt iddr\_aid.f} \\\hline
|
||||
%
|
||||
{\tt iddr\_asvd} & computes the SVD of an arbitrary (generally dense)
|
||||
matrix, to a specified rank; this routine is randomized, and must be
|
||||
initialized with routine {\tt idd\_aidi} & {\tt iddr\_asvd.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt iddr\_id} & computes the ID of an arbitrary (generally dense)
|
||||
matrix, to a specified rank; this routine is often less efficient than
|
||||
routine {\tt iddr\_aid} & {\tt idd\_id.f} \\\hline
|
||||
%
|
||||
{\tt iddr\_qrpiv} & computes the pivoted $QR$ decomposition of an
|
||||
arbitrary (generally dense) matrix via Householder transformations,
|
||||
stopping at a specified rank of the decomposition & {\tt idd\_qrpiv.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt iddr\_rid} & computes the ID, to a specified rank, of a matrix
|
||||
specified by a routine for applying its transpose to arbitrary vectors;
|
||||
this routine is randomized & {\tt iddr\_rid.f} \\\hline
|
||||
%
|
||||
{\tt iddr\_rsvd} & computes the SVD, to a specified rank, of a matrix
|
||||
specified by routines for applying the matrix and its transpose to
|
||||
arbitrary vectors; this routine is randomized & {\tt iddr\_rsvd.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt iddr\_svd} & computes the SVD of an arbitrary (generally dense)
|
||||
matrix, to a specified rank; this routine is often less efficient than
|
||||
routine {\tt iddr\_asvd} & {\tt idd\_svd.f} \\\hline
|
||||
%
|
||||
{\tt idz\_copycols} & collects together selected columns of a matrix &
|
||||
{\tt idz\_id.f} \\\hline
|
||||
%
|
||||
{\tt idz\_diffsnorm} & estimates the spectral norm of the difference
|
||||
between two matrices specified by routines for applying the matrices
|
||||
and their adjoints to arbitrary vectors; this routine uses the power
|
||||
method with a random starting vector & {\tt idz\_snorm.f} \\\hline
|
||||
%
|
||||
{\tt idz\_enorm} & calculates the Euclidean norm of a vector &
|
||||
{\tt idz\_snorm.f} \\\hline
|
||||
%
|
||||
{\tt idz\_estrank} & estimates the numerical rank of an arbitrary
|
||||
(generally dense) matrix to a specified precision; this routine is
|
||||
randomized, and must be initialized with routine {\tt idz\_frmi} &
|
||||
{\tt idzp\_aid.f} \\\hline
|
||||
%
|
||||
{\tt idz\_frm} & transforms a vector into a vector which is
|
||||
sufficiently scrambled to be subsampled, via a composition of Rokhlin's
|
||||
random transform, random subselection, and a fast Fourier transform &
|
||||
{\tt idz\_frm.f} \\\hline
|
||||
%
|
||||
{\tt idz\_frmi} & initializes routine {\tt idz\_frm} & {\tt idz\_frm.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idz\_getcols} & collects together selected columns of a matrix
|
||||
specified by a routine for applying the matrix to arbitrary vectors &
|
||||
{\tt idz\_id.f} \\\hline
|
||||
%
|
||||
{\tt idz\_house} & calculates the vector and scalar needed to apply the
|
||||
Householder transformation reflecting a given vector into its first
|
||||
entry & {\tt idz\_house.f} \\\hline
|
||||
%
|
||||
{\tt idz\_houseapp} & applies a Householder matrix to a vector &
|
||||
{\tt idz\_house.f} \\\hline
|
||||
%
|
||||
{\tt idz\_id2svd} & converts an approximation to a matrix in the form
|
||||
of an ID into an approximation in the form of an SVD &
|
||||
{\tt idz\_id2svd.f} \\\hline
|
||||
%
|
||||
{\tt idz\_ldiv} & finds the greatest integer less than or equal to a
|
||||
specified integer, that is divisible by another (larger) specified
|
||||
integer & {\tt idz\_sfft.f} \\\hline
|
||||
%
|
||||
{\tt idz\_permmult} & multiplies together a bunch of permutations &
|
||||
{\tt idz\_qrpiv.f} \\\hline
|
||||
%
|
||||
{\tt idz\_qinqr} & reconstructs the $Q$ matrix in a $QR$ decomposition
|
||||
from the output of routines {\tt idzp\_qrpiv} or {\tt idzr\_qrpiv} &
|
||||
{\tt idz\_qrpiv.f} \\\hline
|
||||
%
|
||||
{\tt idz\_qrmatmat} & applies to multiple vectors collected together as
|
||||
a matrix the $Q$ matrix (or its adjoint) in the $QR$ decomposition of
|
||||
a matrix, as described by the output of routines {\tt idzp\_qrpiv} or
|
||||
{\tt idzr\_qrpiv}; to apply $Q$ (or its adjoint) to a single vector
|
||||
without having to provide a work array, use routine {\tt idz\_qrmatvec}
|
||||
instead & {\tt idz\_qrpiv.f} \\\hline
|
||||
%
|
||||
{\tt idz\_qrmatvec} & applies to a single vector the $Q$ matrix (or its
|
||||
adjoint) in the $QR$ decomposition of a matrix, as described by the
|
||||
output of routines {\tt idzp\_qrpiv} or {\tt idzr\_qrpiv}; to apply $Q$
|
||||
(or its adjoint) to several vectors efficiently, use routine
|
||||
{\tt idz\_qrmatmat} instead & {\tt idz\_qrpiv.f} \\\hline
|
||||
%
|
||||
{\tt idz\_random\_ transf} & applies rapidly a random unitary matrix to
|
||||
a user-supplied vector & {\tt id\_rtrans.f} \\\hline
|
||||
%
|
||||
{\tt idz\_random\_ transf\_init} & \raggedright initializes routines
|
||||
{\tt idz\_random\_transf} and {\tt idz\_random\_transf\_inverse} &
|
||||
{\tt id\_rtrans.f} \\\hline
|
||||
%
|
||||
{\tt idz\_random\_ transf\_inverse} & applies rapidly the inverse of
|
||||
the operator applied by routine {\tt idz\_random\_transf} &
|
||||
{\tt id\_rtrans.f} \\\hline
|
||||
%
|
||||
{\tt idz\_reconid} & reconstructs a matrix from its ID &
|
||||
{\tt idz\_id.f} \\\hline
|
||||
%
|
||||
{\tt idz\_reconint} & constructs $P$ in the ID $A = B \, P$, where the
|
||||
columns of $B$ are a subset of the columns of $A$, and $P$ is the
|
||||
projection coefficient matrix, given {\tt list}, {\tt krank}, and
|
||||
{\tt proj} output by routines {\tt idzr\_id}, {\tt idzp\_id},
|
||||
{\tt idzr\_aid}, {\tt idzp\_aid}, {\tt idzr\_rid}, or {\tt idzp\_rid} &
|
||||
{\tt idz\_id.f} \\\hline
|
||||
%
|
||||
{\tt idz\_sfft} & rapidly computes a subset of the entries of the
|
||||
discrete Fourier transform of a vector, composed with permutation
|
||||
matrices both on input and on output & {\tt idz\_sfft.f} \\\hline
|
||||
%
|
||||
{\tt idz\_sffti} & initializes routine {\tt idz\_sfft} &
|
||||
{\tt idz\_sfft.f} \\\hline
|
||||
%
|
||||
{\tt idz\_sfrm} & transforms a vector into a scrambled vector of
|
||||
specified length, via a composition of Rokhlin's random transform,
|
||||
random subselection, and a fast Fourier transform & {\tt idz\_frm.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idz\_sfrmi} & initializes routine {\tt idz\_sfrm} &
|
||||
{\tt idz\_frm.f} \\\hline
|
||||
%
|
||||
{\tt idz\_snorm} & estimates the spectral norm of a matrix specified by
|
||||
routines for applying the matrix and its adjoint to arbitrary
|
||||
vectors; this routine uses the power method with a random starting
|
||||
vector & {\tt idz\_snorm.f} \\\hline
|
||||
%
|
||||
{\tt idzp\_aid} & computes the ID of an arbitrary (generally dense)
|
||||
matrix, to a specified precision; this routine is randomized, and must
|
||||
be initialized with routine {\tt idz\_frmi} & {\tt idzp\_aid.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idzp\_asvd} & computes the SVD of an arbitrary (generally dense)
|
||||
matrix, to a specified precision; this routine is randomized, and must
|
||||
be initialized with routine {\tt idz\_frmi} & {\tt idzp\_asvd.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idzp\_id} & computes the ID of an arbitrary (generally dense)
|
||||
matrix, to a specified precision; this routine is often less efficient
|
||||
than routine {\tt idzp\_aid} & {\tt idz\_id.f} \\\hline
|
||||
%
|
||||
{\tt idzp\_qrpiv} & computes the pivoted $QR$ decomposition of an
|
||||
arbitrary (generally dense) matrix via Householder transformations,
|
||||
stopping at a specified precision of the decomposition &
|
||||
{\tt idz\_qrpiv.f} \\\hline
|
||||
%
|
||||
{\tt idzp\_rid} & computes the ID, to a specified precision, of a
|
||||
matrix specified by a routine for applying its adjoint to arbitrary
|
||||
vectors; this routine is randomized & {\tt idzp\_rid.f} \\\hline
|
||||
%
|
||||
{\tt idzp\_rsvd} & computes the SVD, to a specified precision, of a
|
||||
matrix specified by routines for applying the matrix and its adjoint
|
||||
to arbitrary vectors; this routine is randomized & {\tt idzp\_rsvd.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idzp\_svd} & computes the SVD of an arbitrary (generally dense)
|
||||
matrix, to a specified precision; this routine is often less efficient
|
||||
than routine {\tt idzp\_asvd} & {\tt idz\_svd.f} \\\hline
|
||||
%
|
||||
{\tt idzr\_aid} & computes the ID of an arbitrary (generally dense)
|
||||
matrix, to a specified rank; this routine is randomized, and must be
|
||||
initialized by routine {\tt idzr\_aidi} & {\tt idzr\_aid.f} \\\hline
|
||||
%
|
||||
{\tt idzr\_aidi} & initializes routine {\tt idzr\_aid} &
|
||||
{\tt idzr\_aid.f} \\\hline
|
||||
%
|
||||
{\tt idzr\_asvd} & computes the SVD of an arbitrary (generally dense)
|
||||
matrix, to a specified rank; this routine is randomized, and must be
|
||||
initialized with routine {\tt idz\_aidi} & {\tt idzr\_asvd.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idzr\_id} & computes the ID of an arbitrary (generally dense)
|
||||
matrix, to a specified rank; this routine is often less efficient than
|
||||
routine {\tt idzr\_aid} & {\tt idz\_id.f} \\\hline
|
||||
%
|
||||
{\tt idzr\_qrpiv} & computes the pivoted $QR$ decomposition of an
|
||||
arbitrary (generally dense) matrix via Householder transformations,
|
||||
stopping at a specified rank of the decomposition & {\tt idz\_qrpiv.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idzr\_rid} & computes the ID, to a specified rank, of a matrix
|
||||
specified by a routine for applying its adjoint to arbitrary vectors;
|
||||
this routine is randomized & {\tt idzr\_rid.f} \\\hline
|
||||
%
|
||||
{\tt idzr\_rsvd} & computes the SVD, to a specified rank, of a matrix
|
||||
specified by routines for applying the matrix and its adjoint to
|
||||
arbitrary vectors; this routine is randomized & {\tt idzr\_rsvd.f}
|
||||
\\\hline
|
||||
%
|
||||
{\tt idzr\_svd} & computes the SVD of an arbitrary (generally dense)
|
||||
matrix, to a specified rank; this routine is often less efficient than
|
||||
routine {\tt idzr\_asvd} & {\tt idz\_svd.f} \\
|
||||
%
|
||||
\end{supertabular}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
\section{Documentation in the source codes}
|
||||
|
||||
Each routine in the source codes includes documentation
|
||||
in the comments immediately following the declaration
|
||||
of the subroutine's calling sequence.
|
||||
This documentation describes the purpose of the routine,
|
||||
the input and output variables, and the required work arrays (if any).
|
||||
This documentation also cites relevant references.
|
||||
Please pay attention to the {\it N.B.}'s;
|
||||
{\it N.B.} stands for {\it nota bene} (Latin for ``note well'')
|
||||
and highlights important information about the routines.
|
||||
|
||||
|
||||
|
||||
\section{Notation and decompositions}
|
||||
\label{defs}
|
||||
|
||||
This section sets notational conventions employed
|
||||
in this documentation and the associated software,
|
||||
and defines both the singular value decomposition (SVD)
|
||||
and the interpolative decomposition (ID).
|
||||
For information concerning other mathematical objects
|
||||
used in the code (such as Householder transformations,
|
||||
pivoted $QR$ decompositions, and discrete and fast Fourier transforms
|
||||
--- DFTs and FFTs), see, for example,~\cite{golub-van_loan}.
|
||||
For detailed descriptions and proofs of the mathematical facts
|
||||
discussed in the present section, see, for example,
|
||||
\cite{golub-van_loan} and the references
|
||||
in~\cite{halko-martinsson-tropp}.
|
||||
|
||||
Throughout this document and the accompanying software distribution,
|
||||
$\| \x \|$ always denotes the Euclidean norm of the vector $\x$,
|
||||
and $\| A \|$ always denotes the spectral norm of the matrix $A$.
|
||||
Subsection~\ref{Euclidean} below defines the Euclidean norm;
|
||||
Subsection~\ref{spectral} below defines the spectral norm.
|
||||
We use $A^*$ to denote the adjoint of the matrix $A$.
|
||||
|
||||
|
||||
\subsection{Euclidean norm}
|
||||
\label{Euclidean}
|
||||
|
||||
For any positive integer $n$, and vector $\x$ of length $n$,
|
||||
the Euclidean ($l^2$) norm $\| \x \|$ is
|
||||
%
|
||||
\begin{equation}
|
||||
\| \x \| = \sqrt{ \sum_{k=1}^n |x_k|^2 },
|
||||
\end{equation}
|
||||
%
|
||||
where $x_1$,~$x_2$, \dots, $x_{n-1}$,~$x_n$ are the entries of $\x$.
|
||||
|
||||
|
||||
\subsection{Spectral norm}
|
||||
\label{spectral}
|
||||
|
||||
For any positive integers $m$ and $n$, and $m \times n$ matrix $A$,
|
||||
the spectral ($l^2$ operator) norm $\| A \|$ is
|
||||
%
|
||||
\begin{equation}
|
||||
\| A_{m \times n} \|
|
||||
= \max \frac{\| A_{m \times n} \, \x_{n \times 1} \|}
|
||||
{\| \x_{n \times 1} \|},
|
||||
\end{equation}
|
||||
%
|
||||
where the $\max$ is taken over all $n \times 1$ column vectors $\x$
|
||||
such that $\| \x \| \ne 0$.
|
||||
|
||||
|
||||
\subsection{Singular value decomposition (SVD)}
|
||||
|
||||
For any positive real number $\epsilon$,
|
||||
positive integers $k$, $m$, and $n$ with $k \le m$ and $k \le n$,
|
||||
and any $m \times n$ matrix $A$,
|
||||
a rank-$k$ approximation to $A$ in the form of an SVD
|
||||
(to precision $\epsilon$) consists of an $m \times k$ matrix $U$
|
||||
whose columns are orthonormal, an $n \times k$ matrix $V$
|
||||
whose columns are orthonormal, and a diagonal $k \times k$ matrix
|
||||
$\Sigma$ with diagonal entries
|
||||
$\Sigma_{1,1} \ge \Sigma_{2,2} \ge \dots \ge \Sigma_{n-1,n-1}
|
||||
\ge \Sigma_{n,n} \ge 0$,
|
||||
such that
|
||||
%
|
||||
\begin{equation}
|
||||
\| A_{m \times n} - U_{m \times k} \, \Sigma_{k \times k}
|
||||
\, (V^*)_{k \times n} \| \le \epsilon.
|
||||
\end{equation}
|
||||
%
|
||||
The product $U \, \Sigma \, V^*$ is known as an SVD.
|
||||
The columns of $U$ are known as left singular vectors;
|
||||
the columns of $V$ are known as right singular vectors.
|
||||
The diagonal entries of $\Sigma$ are known as singular values.
|
||||
|
||||
When $k = m$ or $k = n$, and $A = U \, \Sigma \, V^*$,
|
||||
then $U \, \Sigma \, V^*$ is known as the SVD
|
||||
of $A$; the columns of $U$ are the left singular vectors of $A$,
|
||||
the columns of $V$ are the right singular vectors of $A$,
|
||||
and the diagonal entries of $\Sigma$ are the singular values of $A$.
|
||||
For any positive integer $k$ with $k < m$ and $k < n$,
|
||||
there exists a rank-$k$ approximation to $A$ in the form of an SVD,
|
||||
to precision $\sigma_{k+1}$, where $\sigma_{k+1}$ is the $(k+1)^\st$
|
||||
greatest singular value of $A$.
|
||||
|
||||
|
||||
\subsection{Interpolative decomposition (ID)}
|
||||
|
||||
For any positive real number $\epsilon$,
|
||||
positive integers $k$, $m$, and $n$ with $k \le m$ and $k \le n$,
|
||||
and any $m \times n$ matrix $A$,
|
||||
a rank-$k$ approximation to $A$ in the form of an ID
|
||||
(to precision $\epsilon$) consists of a $k \times n$ matrix $P$,
|
||||
and an $m \times k$ matrix $B$ whose columns constitute a subset
|
||||
of the columns of $A$, such that
|
||||
%
|
||||
\begin{enumerate}
|
||||
\item $\| A_{m \times n} - B_{m \times k} \, P_{k \times n} \|
|
||||
\le \epsilon$,
|
||||
\item some subset of the columns of $P$ makes up the $k \times k$
|
||||
identity matrix, and
|
||||
\item every entry of $P$ has an absolute value less than or equal
|
||||
to a reasonably small positive real number, say 2.
|
||||
\end{enumerate}
|
||||
%
|
||||
The product $B \, P$ is known as an ID.
|
||||
The matrix $P$ is known as the projection or interpolation matrix
|
||||
of the ID. Property~1 above approximates each column of $A$
|
||||
via a linear combination of the columns of $B$
|
||||
(which are themselves columns of $A$), with the coefficients
|
||||
in the linear combination given by the entries of $P$.
|
||||
|
||||
The interpolative decomposition is ``interpolative''
|
||||
due to Property~2 above. The ID is numerically stable
|
||||
due to Property~3 above.
|
||||
It follows from Property~2 that the least ($k^\th$ greatest) singular value
|
||||
of $P$ is at least 1. Combining Properties~2 and~3 yields that
|
||||
%
|
||||
\begin{equation}
|
||||
\| P_{k \times n} \| \le \sqrt{4k(n-k)+1}.
|
||||
\end{equation}
|
||||
|
||||
When $k = m$ or $k = n$, and $A = B \, P$,
|
||||
then $B \, P$ is known as the ID of $A$.
|
||||
For any positive integer $k$ with $k < m$ and $k < n$,
|
||||
there exists a rank-$k$ approximation to $A$ in the form of an ID,
|
||||
to precision $\sqrt{k(n-k)+1} \; \sigma_{k+1}$,
|
||||
where $\sigma_{k+1}$ is the $(k+1)^\st$ greatest singular value of $A$
|
||||
(in fact, there exists an ID in which every entry
|
||||
of the projection matrix $P$ has an absolute value less than or equal
|
||||
to 1).
|
||||
|
||||
|
||||
|
||||
\section{Bug reports, feedback, and support}
|
||||
|
||||
Please let us know about errors in the software or in the documentation
|
||||
via e-mail to {\tt tygert@aya.yale.edu}.
|
||||
We would also appreciate hearing about particular applications of the codes,
|
||||
especially in the form of journal articles
|
||||
e-mailed to {\tt tygert@aya.yale.edu}.
|
||||
Mathematical and technical support may also be available via e-mail. Enjoy!
|
||||
|
||||
|
||||
|
||||
\bibliographystyle{siam}
|
||||
\bibliography{doc}
|
||||
|
||||
|
||||
\end{document}
|
|
@ -0,0 +1,48 @@
|
|||
Copyright (c) 1992-2015 The University of Tennessee and The University
|
||||
of Tennessee Research Foundation. All rights
|
||||
reserved.
|
||||
Copyright (c) 2000-2015 The University of California Berkeley. All
|
||||
rights reserved.
|
||||
Copyright (c) 2006-2015 The University of Colorado Denver. All rights
|
||||
reserved.
|
||||
|
||||
$COPYRIGHT$
|
||||
|
||||
Additional copyrights may follow
|
||||
|
||||
$HEADER$
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer listed
|
||||
in this license in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
- Neither the name of the copyright holders nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
The copyright holders provide no reassurances that the source code
|
||||
provided does not infringe any patent, copyright, or any other
|
||||
intellectual property rights of third parties. The copyright holders
|
||||
disclaim any liability to any recipient for claims brought against
|
||||
recipient by any third party for infringement of that parties
|
||||
intellectual property rights.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
0
venv/Lib/site-packages/scipy/linalg/tests/__init__.py
Normal file
0
venv/Lib/site-packages/scipy/linalg/tests/__init__.py
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
venv/Lib/site-packages/scipy/linalg/tests/data/carex_15_data.npz
Normal file
BIN
venv/Lib/site-packages/scipy/linalg/tests/data/carex_15_data.npz
Normal file
Binary file not shown.
BIN
venv/Lib/site-packages/scipy/linalg/tests/data/carex_18_data.npz
Normal file
BIN
venv/Lib/site-packages/scipy/linalg/tests/data/carex_18_data.npz
Normal file
Binary file not shown.
BIN
venv/Lib/site-packages/scipy/linalg/tests/data/carex_19_data.npz
Normal file
BIN
venv/Lib/site-packages/scipy/linalg/tests/data/carex_19_data.npz
Normal file
Binary file not shown.
BIN
venv/Lib/site-packages/scipy/linalg/tests/data/carex_20_data.npz
Normal file
BIN
venv/Lib/site-packages/scipy/linalg/tests/data/carex_20_data.npz
Normal file
Binary file not shown.
BIN
venv/Lib/site-packages/scipy/linalg/tests/data/carex_6_data.npz
Normal file
BIN
venv/Lib/site-packages/scipy/linalg/tests/data/carex_6_data.npz
Normal file
Binary file not shown.
Binary file not shown.
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue