Fixed database typo and removed unnecessary class identifier.

This commit is contained in:
Batuhan Berk Başoğlu 2020-10-14 10:10:37 -04:00
parent 00ad49a143
commit 45fb349a7d
5098 changed files with 952558 additions and 85 deletions

View file

@ -0,0 +1,25 @@
"""
Module to read ARFF files
=========================
ARFF is the standard data format for WEKA.
It is a text file format which support numerical, string and data values.
The format can also represent missing data and sparse data.
Notes
-----
The ARFF support in ``scipy.io`` provides file reading functionality only.
For more extensive ARFF functionality, see `liac-arff
<https://github.com/renatopp/liac-arff>`_.
See the `WEKA website <http://weka.wikispaces.com/ARFF>`_
for more details about the ARFF format and available datasets.
"""
from .arffread import *
from . import arffread
__all__ = arffread.__all__
from scipy._lib._testutils import PytestTester
test = PytestTester(__name__)
del PytestTester

View file

@ -0,0 +1,905 @@
# Last Change: Mon Aug 20 08:00 PM 2007 J
import re
import datetime
from collections import OrderedDict
import numpy as np
import csv
import ctypes
"""A module to read arff files."""
__all__ = ['MetaData', 'loadarff', 'ArffError', 'ParseArffError']
# An Arff file is basically two parts:
# - header
# - data
#
# A header has each of its components starting by @META where META is one of
# the keyword (attribute of relation, for now).
# TODO:
# - both integer and reals are treated as numeric -> the integer info
# is lost!
# - Replace ValueError by ParseError or something
# We know can handle the following:
# - numeric and nominal attributes
# - missing values for numeric attributes
r_meta = re.compile(r'^\s*@')
# Match a comment
r_comment = re.compile(r'^%')
# Match an empty line
r_empty = re.compile(r'^\s+$')
# Match a header line, that is a line which starts by @ + a word
r_headerline = re.compile(r'^\s*@\S*')
r_datameta = re.compile(r'^@[Dd][Aa][Tt][Aa]')
r_relation = re.compile(r'^@[Rr][Ee][Ll][Aa][Tt][Ii][Oo][Nn]\s*(\S*)')
r_attribute = re.compile(r'^\s*@[Aa][Tt][Tt][Rr][Ii][Bb][Uu][Tt][Ee]\s*(..*$)')
r_nominal = re.compile('{(.+)}')
r_date = re.compile(r"[Dd][Aa][Tt][Ee]\s+[\"']?(.+?)[\"']?$")
# To get attributes name enclosed with ''
r_comattrval = re.compile(r"'(..+)'\s+(..+$)")
# To get normal attributes
r_wcomattrval = re.compile(r"(\S+)\s+(..+$)")
# ------------------------
# Module defined exception
# ------------------------
class ArffError(IOError):
pass
class ParseArffError(ArffError):
pass
# ----------
# Attributes
# ----------
class Attribute(object):
type_name = None
def __init__(self, name):
self.name = name
self.range = None
self.dtype = np.object_
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
"""
return None
def parse_data(self, data_str):
"""
Parse a value of this type.
"""
return None
def __str__(self):
"""
Parse a value of this type.
"""
return self.name + ',' + self.type_name
class NominalAttribute(Attribute):
type_name = 'nominal'
def __init__(self, name, values):
super().__init__(name)
self.values = values
self.range = values
self.dtype = (np.string_, max(len(i) for i in values))
@staticmethod
def _get_nom_val(atrv):
"""Given a string containing a nominal type, returns a tuple of the
possible values.
A nominal type is defined as something framed between braces ({}).
Parameters
----------
atrv : str
Nominal type definition
Returns
-------
poss_vals : tuple
possible values
Examples
--------
>>> get_nom_val("{floup, bouga, fl, ratata}")
('floup', 'bouga', 'fl', 'ratata')
"""
m = r_nominal.match(atrv)
if m:
attrs, _ = split_data_line(m.group(1))
return tuple(attrs)
else:
raise ValueError("This does not look like a nominal string")
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
For nominal attributes, the attribute string would be like '{<attr_1>,
<attr2>, <attr_3>}'.
"""
if attr_string[0] == '{':
values = cls._get_nom_val(attr_string)
return cls(name, values)
else:
return None
def parse_data(self, data_str):
"""
Parse a value of this type.
"""
if data_str in self.values:
return data_str
elif data_str == '?':
return data_str
else:
raise ValueError("%s value not in %s" % (str(data_str),
str(self.values)))
def __str__(self):
msg = self.name + ",{"
for i in range(len(self.values)-1):
msg += self.values[i] + ","
msg += self.values[-1]
msg += "}"
return msg
class NumericAttribute(Attribute):
def __init__(self, name):
super().__init__(name)
self.type_name = 'numeric'
self.dtype = np.float_
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
For numeric attributes, the attribute string would be like
'numeric' or 'int' or 'real'.
"""
attr_string = attr_string.lower().strip()
if(attr_string[:len('numeric')] == 'numeric' or
attr_string[:len('int')] == 'int' or
attr_string[:len('real')] == 'real'):
return cls(name)
else:
return None
def parse_data(self, data_str):
"""
Parse a value of this type.
Parameters
----------
data_str : str
string to convert
Returns
-------
f : float
where float can be nan
Examples
--------
>>> atr = NumericAttribute('atr')
>>> atr.parse_data('1')
1.0
>>> atr.parse_data('1\\n')
1.0
>>> atr.parse_data('?\\n')
nan
"""
if '?' in data_str:
return np.nan
else:
return float(data_str)
def _basic_stats(self, data):
nbfac = data.size * 1. / (data.size - 1)
return (np.nanmin(data), np.nanmax(data),
np.mean(data), np.std(data) * nbfac)
class StringAttribute(Attribute):
def __init__(self, name):
super().__init__(name)
self.type_name = 'string'
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
For string attributes, the attribute string would be like
'string'.
"""
attr_string = attr_string.lower().strip()
if attr_string[:len('string')] == 'string':
return cls(name)
else:
return None
class DateAttribute(Attribute):
def __init__(self, name, date_format, datetime_unit):
super().__init__(name)
self.date_format = date_format
self.datetime_unit = datetime_unit
self.type_name = 'date'
self.range = date_format
self.dtype = np.datetime64(0, self.datetime_unit)
@staticmethod
def _get_date_format(atrv):
m = r_date.match(atrv)
if m:
pattern = m.group(1).strip()
# convert time pattern from Java's SimpleDateFormat to C's format
datetime_unit = None
if "yyyy" in pattern:
pattern = pattern.replace("yyyy", "%Y")
datetime_unit = "Y"
elif "yy":
pattern = pattern.replace("yy", "%y")
datetime_unit = "Y"
if "MM" in pattern:
pattern = pattern.replace("MM", "%m")
datetime_unit = "M"
if "dd" in pattern:
pattern = pattern.replace("dd", "%d")
datetime_unit = "D"
if "HH" in pattern:
pattern = pattern.replace("HH", "%H")
datetime_unit = "h"
if "mm" in pattern:
pattern = pattern.replace("mm", "%M")
datetime_unit = "m"
if "ss" in pattern:
pattern = pattern.replace("ss", "%S")
datetime_unit = "s"
if "z" in pattern or "Z" in pattern:
raise ValueError("Date type attributes with time zone not "
"supported, yet")
if datetime_unit is None:
raise ValueError("Invalid or unsupported date format")
return pattern, datetime_unit
else:
raise ValueError("Invalid or no date format")
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
For date attributes, the attribute string would be like
'date <format>'.
"""
attr_string_lower = attr_string.lower().strip()
if attr_string_lower[:len('date')] == 'date':
date_format, datetime_unit = cls._get_date_format(attr_string)
return cls(name, date_format, datetime_unit)
else:
return None
def parse_data(self, data_str):
"""
Parse a value of this type.
"""
date_str = data_str.strip().strip("'").strip('"')
if date_str == '?':
return np.datetime64('NaT', self.datetime_unit)
else:
dt = datetime.datetime.strptime(date_str, self.date_format)
return np.datetime64(dt).astype(
"datetime64[%s]" % self.datetime_unit)
def __str__(self):
return super(DateAttribute, self).__str__() + ',' + self.date_format
class RelationalAttribute(Attribute):
def __init__(self, name):
super().__init__(name)
self.type_name = 'relational'
self.dtype = np.object_
self.attributes = []
self.dialect = None
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
For date attributes, the attribute string would be like
'date <format>'.
"""
attr_string_lower = attr_string.lower().strip()
if attr_string_lower[:len('relational')] == 'relational':
return cls(name)
else:
return None
def parse_data(self, data_str):
# Copy-pasted
elems = list(range(len(self.attributes)))
escaped_string = data_str.encode().decode("unicode-escape")
row_tuples = []
for raw in escaped_string.split("\n"):
row, self.dialect = split_data_line(raw, self.dialect)
row_tuples.append(tuple(
[self.attributes[i].parse_data(row[i]) for i in elems]))
return np.array(row_tuples,
[(a.name, a.dtype) for a in self.attributes])
def __str__(self):
return (super(RelationalAttribute, self).__str__() + '\n\t' +
'\n\t'.join(str(a) for a in self.attributes))
# -----------------
# Various utilities
# -----------------
def to_attribute(name, attr_string):
attr_classes = (NominalAttribute, NumericAttribute, DateAttribute,
StringAttribute, RelationalAttribute)
for cls in attr_classes:
attr = cls.parse_attribute(name, attr_string)
if attr is not None:
return attr
raise ParseArffError("unknown attribute %s" % attr_string)
def csv_sniffer_has_bug_last_field():
"""
Checks if the bug https://bugs.python.org/issue30157 is unpatched.
"""
# We only compute this once.
has_bug = getattr(csv_sniffer_has_bug_last_field, "has_bug", None)
if has_bug is None:
dialect = csv.Sniffer().sniff("3, 'a'")
csv_sniffer_has_bug_last_field.has_bug = dialect.quotechar != "'"
has_bug = csv_sniffer_has_bug_last_field.has_bug
return has_bug
def workaround_csv_sniffer_bug_last_field(sniff_line, dialect, delimiters):
"""
Workaround for the bug https://bugs.python.org/issue30157 if is unpatched.
"""
if csv_sniffer_has_bug_last_field():
# Reuses code from the csv module
right_regex = r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'
for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # .*?",
right_regex, # ,".*?"
r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space)
regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
matches = regexp.findall(sniff_line)
if matches:
break
# If it does not match the expression that was bugged, then this bug does not apply
if restr != right_regex:
return
groupindex = regexp.groupindex
# There is only one end of the string
assert len(matches) == 1
m = matches[0]
n = groupindex['quote'] - 1
quote = m[n]
n = groupindex['delim'] - 1
delim = m[n]
n = groupindex['space'] - 1
space = bool(m[n])
dq_regexp = re.compile(
r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" %
{'delim': re.escape(delim), 'quote': quote}, re.MULTILINE
)
doublequote = bool(dq_regexp.search(sniff_line))
dialect.quotechar = quote
if delim in delimiters:
dialect.delimiter = delim
dialect.doublequote = doublequote
dialect.skipinitialspace = space
def split_data_line(line, dialect=None):
delimiters = ",\t"
# This can not be done in a per reader basis, and relational fields
# can be HUGE
csv.field_size_limit(int(ctypes.c_ulong(-1).value // 2))
# Remove the line end if any
if line[-1] == '\n':
line = line[:-1]
sniff_line = line
# Add a delimiter if none is present, so that the csv.Sniffer
# does not complain for a single-field CSV.
if not any(d in line for d in delimiters):
sniff_line += ","
if dialect is None:
dialect = csv.Sniffer().sniff(sniff_line, delimiters=delimiters)
workaround_csv_sniffer_bug_last_field(sniff_line=sniff_line,
dialect=dialect,
delimiters=delimiters)
row = next(csv.reader([line], dialect))
return row, dialect
# --------------
# Parsing header
# --------------
def tokenize_attribute(iterable, attribute):
"""Parse a raw string in header (e.g., starts by @attribute).
Given a raw string attribute, try to get the name and type of the
attribute. Constraints:
* The first line must start with @attribute (case insensitive, and
space like characters before @attribute are allowed)
* Works also if the attribute is spread on multilines.
* Works if empty lines or comments are in between
Parameters
----------
attribute : str
the attribute string.
Returns
-------
name : str
name of the attribute
value : str
value of the attribute
next : str
next line to be parsed
Examples
--------
If attribute is a string defined in python as r"floupi real", will
return floupi as name, and real as value.
>>> iterable = iter([0] * 10) # dummy iterator
>>> tokenize_attribute(iterable, r"@attribute floupi real")
('floupi', 'real', 0)
If attribute is r"'floupi 2' real", will return 'floupi 2' as name,
and real as value.
>>> tokenize_attribute(iterable, r" @attribute 'floupi 2' real ")
('floupi 2', 'real', 0)
"""
sattr = attribute.strip()
mattr = r_attribute.match(sattr)
if mattr:
# atrv is everything after @attribute
atrv = mattr.group(1)
if r_comattrval.match(atrv):
name, type = tokenize_single_comma(atrv)
next_item = next(iterable)
elif r_wcomattrval.match(atrv):
name, type = tokenize_single_wcomma(atrv)
next_item = next(iterable)
else:
# Not sure we should support this, as it does not seem supported by
# weka.
raise ValueError("multi line not supported yet")
else:
raise ValueError("First line unparsable: %s" % sattr)
attribute = to_attribute(name, type)
if type.lower() == 'relational':
next_item = read_relational_attribute(iterable, attribute, next_item)
# raise ValueError("relational attributes not supported yet")
return attribute, next_item
def tokenize_single_comma(val):
# XXX we match twice the same string (here and at the caller level). It is
# stupid, but it is easier for now...
m = r_comattrval.match(val)
if m:
try:
name = m.group(1).strip()
type = m.group(2).strip()
except IndexError:
raise ValueError("Error while tokenizing attribute")
else:
raise ValueError("Error while tokenizing single %s" % val)
return name, type
def tokenize_single_wcomma(val):
# XXX we match twice the same string (here and at the caller level). It is
# stupid, but it is easier for now...
m = r_wcomattrval.match(val)
if m:
try:
name = m.group(1).strip()
type = m.group(2).strip()
except IndexError:
raise ValueError("Error while tokenizing attribute")
else:
raise ValueError("Error while tokenizing single %s" % val)
return name, type
def read_relational_attribute(ofile, relational_attribute, i):
"""Read the nested attributes of a relational attribute"""
r_end_relational = re.compile(r'^@[Ee][Nn][Dd]\s*' +
relational_attribute.name + r'\s*$')
while not r_end_relational.match(i):
m = r_headerline.match(i)
if m:
isattr = r_attribute.match(i)
if isattr:
attr, i = tokenize_attribute(ofile, i)
relational_attribute.attributes.append(attr)
else:
raise ValueError("Error parsing line %s" % i)
else:
i = next(ofile)
i = next(ofile)
return i
def read_header(ofile):
"""Read the header of the iterable ofile."""
i = next(ofile)
# Pass first comments
while r_comment.match(i):
i = next(ofile)
# Header is everything up to DATA attribute ?
relation = None
attributes = []
while not r_datameta.match(i):
m = r_headerline.match(i)
if m:
isattr = r_attribute.match(i)
if isattr:
attr, i = tokenize_attribute(ofile, i)
attributes.append(attr)
else:
isrel = r_relation.match(i)
if isrel:
relation = isrel.group(1)
else:
raise ValueError("Error parsing line %s" % i)
i = next(ofile)
else:
i = next(ofile)
return relation, attributes
class MetaData(object):
"""Small container to keep useful information on a ARFF dataset.
Knows about attributes names and types.
Examples
--------
::
data, meta = loadarff('iris.arff')
# This will print the attributes names of the iris.arff dataset
for i in meta:
print(i)
# This works too
meta.names()
# Getting attribute type
types = meta.types()
Methods
-------
names
types
Notes
-----
Also maintains the list of attributes in order, i.e., doing for i in
meta, where meta is an instance of MetaData, will return the
different attribute names in the order they were defined.
"""
def __init__(self, rel, attr):
self.name = rel
# We need the dictionary to be ordered
self._attributes = OrderedDict((a.name, a) for a in attr)
def __repr__(self):
msg = ""
msg += "Dataset: %s\n" % self.name
for i in self._attributes:
msg += "\t%s's type is %s" % (i, self._attributes[i].type_name)
if self._attributes[i].range:
msg += ", range is %s" % str(self._attributes[i].range)
msg += '\n'
return msg
def __iter__(self):
return iter(self._attributes)
def __getitem__(self, key):
attr = self._attributes[key]
return (attr.type_name, attr.range)
def names(self):
"""Return the list of attribute names.
Returns
-------
attrnames : list of str
The attribute names.
"""
return list(self._attributes)
def types(self):
"""Return the list of attribute types.
Returns
-------
attr_types : list of str
The attribute types.
"""
attr_types = [self._attributes[name].type_name
for name in self._attributes]
return attr_types
def loadarff(f):
"""
Read an arff file.
The data is returned as a record array, which can be accessed much like
a dictionary of NumPy arrays. For example, if one of the attributes is
called 'pressure', then its first 10 data points can be accessed from the
``data`` record array like so: ``data['pressure'][0:10]``
Parameters
----------
f : file-like or str
File-like object to read from, or filename to open.
Returns
-------
data : record array
The data of the arff file, accessible by attribute names.
meta : `MetaData`
Contains information about the arff file such as name and
type of attributes, the relation (name of the dataset), etc.
Raises
------
ParseArffError
This is raised if the given file is not ARFF-formatted.
NotImplementedError
The ARFF file has an attribute which is not supported yet.
Notes
-----
This function should be able to read most arff files. Not
implemented functionality include:
* date type attributes
* string type attributes
It can read files with numeric and nominal attributes. It cannot read
files with sparse data ({} in the file). However, this function can
read files with missing data (? in the file), representing the data
points as NaNs.
Examples
--------
>>> from scipy.io import arff
>>> from io import StringIO
>>> content = \"\"\"
... @relation foo
... @attribute width numeric
... @attribute height numeric
... @attribute color {red,green,blue,yellow,black}
... @data
... 5.0,3.25,blue
... 4.5,3.75,green
... 3.0,4.00,red
... \"\"\"
>>> f = StringIO(content)
>>> data, meta = arff.loadarff(f)
>>> data
array([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],
dtype=[('width', '<f8'), ('height', '<f8'), ('color', '|S6')])
>>> meta
Dataset: foo
\twidth's type is numeric
\theight's type is numeric
\tcolor's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')
"""
if hasattr(f, 'read'):
ofile = f
else:
ofile = open(f, 'rt')
try:
return _loadarff(ofile)
finally:
if ofile is not f: # only close what we opened
ofile.close()
def _loadarff(ofile):
# Parse the header file
try:
rel, attr = read_header(ofile)
except ValueError as e:
msg = "Error while parsing header, error was: " + str(e)
raise ParseArffError(msg)
# Check whether we have a string attribute (not supported yet)
hasstr = False
for a in attr:
if isinstance(a, StringAttribute):
hasstr = True
meta = MetaData(rel, attr)
# XXX The following code is not great
# Build the type descriptor descr and the list of convertors to convert
# each attribute to the suitable type (which should match the one in
# descr).
# This can be used once we want to support integer as integer values and
# not as numeric anymore (using masked arrays ?).
if hasstr:
# How to support string efficiently ? Ideally, we should know the max
# size of the string before allocating the numpy array.
raise NotImplementedError("String attributes not supported yet, sorry")
ni = len(attr)
def generator(row_iter, delim=','):
# TODO: this is where we are spending time (~80%). I think things
# could be made more efficiently:
# - We could for example "compile" the function, because some values
# do not change here.
# - The function to convert a line to dtyped values could also be
# generated on the fly from a string and be executed instead of
# looping.
# - The regex are overkill: for comments, checking that a line starts
# by % should be enough and faster, and for empty lines, same thing
# --> this does not seem to change anything.
# 'compiling' the range since it does not change
# Note, I have already tried zipping the converters and
# row elements and got slightly worse performance.
elems = list(range(ni))
dialect = None
for raw in row_iter:
# We do not abstract skipping comments and empty lines for
# performance reasons.
if r_comment.match(raw) or r_empty.match(raw):
continue
row, dialect = split_data_line(raw, dialect)
yield tuple([attr[i].parse_data(row[i]) for i in elems])
a = list(generator(ofile))
# No error should happen here: it is a bug otherwise
data = np.array(a, [(a.name, a.dtype) for a in attr])
return data, meta
# ----
# Misc
# ----
def basic_stats(data):
nbfac = data.size * 1. / (data.size - 1)
return np.nanmin(data), np.nanmax(data), np.mean(data), np.std(data) * nbfac
def print_attribute(name, tp, data):
type = tp.type_name
if type == 'numeric' or type == 'real' or type == 'integer':
min, max, mean, std = basic_stats(data)
print("%s,%s,%f,%f,%f,%f" % (name, type, min, max, mean, std))
else:
print(str(tp))
def test_weka(filename):
data, meta = loadarff(filename)
print(len(data.dtype))
print(data.size)
for i in meta:
print_attribute(i, meta[i], data[i])
# make sure nose does not find this as a test
test_weka.__test__ = False
if __name__ == '__main__':
import sys
filename = sys.argv[1]
test_weka(filename)

View file

@ -0,0 +1,11 @@
def configuration(parent_package='io',top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration('arff', parent_package, top_path)
config.add_data_dir('tests')
return config
if __name__ == '__main__':
from numpy.distutils.core import setup
setup(**configuration(top_path='').todict())

View file

@ -0,0 +1,225 @@
% 1. Title: Iris Plants Database
%
% 2. Sources:
% (a) Creator: R.A. Fisher
% (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
% (c) Date: July, 1988
%
% 3. Past Usage:
% - Publications: too many to mention!!! Here are a few.
% 1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
% Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
% to Mathematical Statistics" (John Wiley, NY, 1950).
% 2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
% (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
% 3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
% Structure and Classification Rule for Recognition in Partially Exposed
% Environments". IEEE Transactions on Pattern Analysis and Machine
% Intelligence, Vol. PAMI-2, No. 1, 67-71.
% -- Results:
% -- very low misclassification rates (0% for the setosa class)
% 4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
% Transactions on Information Theory, May 1972, 431-433.
% -- Results:
% -- very low misclassification rates again
% 5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II
% conceptual clustering system finds 3 classes in the data.
%
% 4. Relevant Information:
% --- This is perhaps the best known database to be found in the pattern
% recognition literature. Fisher's paper is a classic in the field
% and is referenced frequently to this day. (See Duda & Hart, for
% example.) The data set contains 3 classes of 50 instances each,
% where each class refers to a type of iris plant. One class is
% linearly separable from the other 2; the latter are NOT linearly
% separable from each other.
% --- Predicted attribute: class of iris plant.
% --- This is an exceedingly simple domain.
%
% 5. Number of Instances: 150 (50 in each of three classes)
%
% 6. Number of Attributes: 4 numeric, predictive attributes and the class
%
% 7. Attribute Information:
% 1. sepal length in cm
% 2. sepal width in cm
% 3. petal length in cm
% 4. petal width in cm
% 5. class:
% -- Iris Setosa
% -- Iris Versicolour
% -- Iris Virginica
%
% 8. Missing Attribute Values: None
%
% Summary Statistics:
% Min Max Mean SD Class Correlation
% sepal length: 4.3 7.9 5.84 0.83 0.7826
% sepal width: 2.0 4.4 3.05 0.43 -0.4194
% petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
% petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
%
% 9. Class Distribution: 33.3% for each of 3 classes.
@RELATION iris
@ATTRIBUTE sepallength REAL
@ATTRIBUTE sepalwidth REAL
@ATTRIBUTE petallength REAL
@ATTRIBUTE petalwidth REAL
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
@DATA
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
%
%
%

View file

@ -0,0 +1,8 @@
% This arff file contains some missing data
@relation missing
@attribute yop real
@attribute yap real
@data
1,5
2,4
?,?

View file

@ -0,0 +1,11 @@
@RELATION iris
@ATTRIBUTE sepallength REAL
@ATTRIBUTE sepalwidth REAL
@ATTRIBUTE petallength REAL
@ATTRIBUTE petalwidth REAL
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}
@DATA
% This file has no data

View file

@ -0,0 +1,13 @@
% Regression test for issue #10232 : Exception in loadarff with quoted nominal attributes
% Spaces between elements are stripped by the parser
@relation SOME_DATA
@attribute age numeric
@attribute smoker {'yes', 'no'}
@data
18, 'no'
24, 'yes'
44, 'no'
56, 'no'
89,'yes'
11, 'no'

View file

@ -0,0 +1,13 @@
% Regression test for issue #10232 : Exception in loadarff with quoted nominal attributes
% Spaces inside quotes are NOT stripped by the parser
@relation SOME_DATA
@attribute age numeric
@attribute smoker {' yes', 'no '}
@data
18,'no '
24,' yes'
44,'no '
56,'no '
89,' yes'
11,'no '

View file

@ -0,0 +1,10 @@
@RELATION test1
@ATTRIBUTE attr0 REAL
@ATTRIBUTE attr1 REAL
@ATTRIBUTE attr2 REAL
@ATTRIBUTE attr3 REAL
@ATTRIBUTE class {class0, class1, class2, class3}
@DATA
0.1, 0.2, 0.3, 0.4,class1

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,15 @@
@RELATION test2
@ATTRIBUTE attr0 REAL
@ATTRIBUTE attr1 real
@ATTRIBUTE attr2 integer
@ATTRIBUTE attr3 Integer
@ATTRIBUTE attr4 Numeric
@ATTRIBUTE attr5 numeric
@ATTRIBUTE attr6 string
@ATTRIBUTE attr7 STRING
@ATTRIBUTE attr8 {bla}
@ATTRIBUTE attr9 {bla, bla}
@DATA
0.1, 0.2, 0.3, 0.4,class1

View file

@ -0,0 +1,6 @@
@RELATION test3
@ATTRIBUTE attr0 crap
@DATA
0.1, 0.2, 0.3, 0.4,class1

View file

@ -0,0 +1,11 @@
@RELATION test5
@ATTRIBUTE attr0 REAL
@ATTRIBUTE attr1 REAL
@ATTRIBUTE attr2 REAL
@ATTRIBUTE attr3 REAL
@ATTRIBUTE class {class0, class1, class2, class3}
@DATA
0.1, 0.2, 0.3, 0.4,class1
-0.1, -0.2, -0.3, -0.4,class2
1, 2, 3, 4,class3

View file

@ -0,0 +1,26 @@
@RELATION test4
@ATTRIBUTE attr0 REAL
@ATTRIBUTE attr1 REAL
@ATTRIBUTE attr2 REAL
@ATTRIBUTE attr3 REAL
@ATTRIBUTE class {class0, class1, class2, class3}
@DATA
% lsdflkjhaksjdhf
% lsdflkjhaksjdhf
0.1, 0.2, 0.3, 0.4,class1
% laksjdhf
% lsdflkjhaksjdhf
-0.1, -0.2, -0.3, -0.4,class2
% lsdflkjhaksjdhf
% lsdflkjhaksjdhf
% lsdflkjhaksjdhf
1, 2, 3, 4,class3

View file

@ -0,0 +1,12 @@
@RELATION test6
@ATTRIBUTE attr0 REAL
@ATTRIBUTE attr1 REAL
@ATTRIBUTE attr2 REAL
@ATTRIBUTE attr3 REAL
@ATTRIBUTE class {C}
@DATA
0.1, 0.2, 0.3, 0.4,C
-0.1, -0.2, -0.3, -0.4,C
1, 2, 3, 4,C

View file

@ -0,0 +1,15 @@
@RELATION test7
@ATTRIBUTE attr_year DATE yyyy
@ATTRIBUTE attr_month DATE yyyy-MM
@ATTRIBUTE attr_date DATE yyyy-MM-dd
@ATTRIBUTE attr_datetime_local DATE "yyyy-MM-dd HH:mm"
@ATTRIBUTE attr_datetime_missing DATE "yyyy-MM-dd HH:mm"
@DATA
1999,1999-01,1999-01-31,"1999-01-31 00:01",?
2004,2004-12,2004-12-01,"2004-12-01 23:59","2004-12-01 23:59"
1817,1817-04,1817-04-28,"1817-04-28 13:00",?
2100,2100-09,2100-09-10,"2100-09-10 12:00",?
2013,2013-11,2013-11-30,"2013-11-30 04:55","2013-11-30 04:55"
1631,1631-10,1631-10-15,"1631-10-15 20:04","1631-10-15 20:04"

View file

@ -0,0 +1,12 @@
@RELATION test8
@ATTRIBUTE attr_datetime_utc DATE "yyyy-MM-dd HH:mm Z"
@ATTRIBUTE attr_datetime_full DATE "yy-MM-dd HH:mm:ss z"
@DATA
"1999-01-31 00:01 UTC","99-01-31 00:01:08 +0430"
"2004-12-01 23:59 UTC","04-12-01 23:59:59 -0800"
"1817-04-28 13:00 UTC","17-04-28 13:00:33 +1000"
"2100-09-10 12:00 UTC","21-09-10 12:00:21 -0300"
"2013-11-30 04:55 UTC","13-11-30 04:55:48 -1100"
"1631-10-15 20:04 UTC","31-10-15 20:04:10 +0000"

View file

@ -0,0 +1,14 @@
@RELATION test9
@ATTRIBUTE attr_date_number RELATIONAL
@ATTRIBUTE attr_date DATE "yyyy-MM-dd"
@ATTRIBUTE attr_number INTEGER
@END attr_date_number
@DATA
"1999-01-31 1\n1935-11-27 10"
"2004-12-01 2\n1942-08-13 20"
"1817-04-28 3"
"2100-09-10 4\n1957-04-17 40\n1721-01-14 400"
"2013-11-30 5"
"1631-10-15 6"

View file

@ -0,0 +1,412 @@
import datetime
import os
import sys
from os.path import join as pjoin
from io import StringIO
import numpy as np
from numpy.testing import (assert_array_almost_equal,
assert_array_equal, assert_equal, assert_)
import pytest
from pytest import raises as assert_raises
from scipy.io.arff.arffread import loadarff
from scipy.io.arff.arffread import read_header, ParseArffError
data_path = pjoin(os.path.dirname(__file__), 'data')
test1 = pjoin(data_path, 'test1.arff')
test2 = pjoin(data_path, 'test2.arff')
test3 = pjoin(data_path, 'test3.arff')
test4 = pjoin(data_path, 'test4.arff')
test5 = pjoin(data_path, 'test5.arff')
test6 = pjoin(data_path, 'test6.arff')
test7 = pjoin(data_path, 'test7.arff')
test8 = pjoin(data_path, 'test8.arff')
test9 = pjoin(data_path, 'test9.arff')
test10 = pjoin(data_path, 'test10.arff')
test11 = pjoin(data_path, 'test11.arff')
test_quoted_nominal = pjoin(data_path, 'quoted_nominal.arff')
test_quoted_nominal_spaces = pjoin(data_path, 'quoted_nominal_spaces.arff')
expect4_data = [(0.1, 0.2, 0.3, 0.4, 'class1'),
(-0.1, -0.2, -0.3, -0.4, 'class2'),
(1, 2, 3, 4, 'class3')]
expected_types = ['numeric', 'numeric', 'numeric', 'numeric', 'nominal']
missing = pjoin(data_path, 'missing.arff')
expect_missing_raw = np.array([[1, 5], [2, 4], [np.nan, np.nan]])
expect_missing = np.empty(3, [('yop', float), ('yap', float)])
expect_missing['yop'] = expect_missing_raw[:, 0]
expect_missing['yap'] = expect_missing_raw[:, 1]
class TestData(object):
def test1(self):
# Parsing trivial file with nothing.
self._test(test4)
def test2(self):
# Parsing trivial file with some comments in the data section.
self._test(test5)
def test3(self):
# Parsing trivial file with nominal attribute of 1 character.
self._test(test6)
def _test(self, test_file):
data, meta = loadarff(test_file)
for i in range(len(data)):
for j in range(4):
assert_array_almost_equal(expect4_data[i][j], data[i][j])
assert_equal(meta.types(), expected_types)
def test_filelike(self):
# Test reading from file-like object (StringIO)
with open(test1) as f1:
data1, meta1 = loadarff(f1)
with open(test1) as f2:
data2, meta2 = loadarff(StringIO(f2.read()))
assert_(data1 == data2)
assert_(repr(meta1) == repr(meta2))
@pytest.mark.skipif(sys.version_info < (3, 6),
reason='Passing path-like objects to IO functions requires Python >= 3.6')
def test_path(self):
# Test reading from `pathlib.Path` object
from pathlib import Path
with open(test1) as f1:
data1, meta1 = loadarff(f1)
data2, meta2 = loadarff(Path(test1))
assert_(data1 == data2)
assert_(repr(meta1) == repr(meta2))
class TestMissingData(object):
def test_missing(self):
data, meta = loadarff(missing)
for i in ['yop', 'yap']:
assert_array_almost_equal(data[i], expect_missing[i])
class TestNoData(object):
def test_nodata(self):
# The file nodata.arff has no data in the @DATA section.
# Reading it should result in an array with length 0.
nodata_filename = os.path.join(data_path, 'nodata.arff')
data, meta = loadarff(nodata_filename)
expected_dtype = np.dtype([('sepallength', '<f8'),
('sepalwidth', '<f8'),
('petallength', '<f8'),
('petalwidth', '<f8'),
('class', 'S15')])
assert_equal(data.dtype, expected_dtype)
assert_equal(data.size, 0)
class TestHeader(object):
def test_type_parsing(self):
# Test parsing type of attribute from their value.
with open(test2) as ofile:
rel, attrs = read_header(ofile)
expected = ['numeric', 'numeric', 'numeric', 'numeric', 'numeric',
'numeric', 'string', 'string', 'nominal', 'nominal']
for i in range(len(attrs)):
assert_(attrs[i].type_name == expected[i])
def test_badtype_parsing(self):
# Test parsing wrong type of attribute from their value.
def badtype_read():
with open(test3) as ofile:
_, _ = read_header(ofile)
assert_raises(ParseArffError, badtype_read)
def test_fullheader1(self):
# Parsing trivial header with nothing.
with open(test1) as ofile:
rel, attrs = read_header(ofile)
# Test relation
assert_(rel == 'test1')
# Test numerical attributes
assert_(len(attrs) == 5)
for i in range(4):
assert_(attrs[i].name == 'attr%d' % i)
assert_(attrs[i].type_name == 'numeric')
# Test nominal attribute
assert_(attrs[4].name == 'class')
assert_(attrs[4].values == ('class0', 'class1', 'class2', 'class3'))
def test_dateheader(self):
with open(test7) as ofile:
rel, attrs = read_header(ofile)
assert_(rel == 'test7')
assert_(len(attrs) == 5)
assert_(attrs[0].name == 'attr_year')
assert_(attrs[0].date_format == '%Y')
assert_(attrs[1].name == 'attr_month')
assert_(attrs[1].date_format == '%Y-%m')
assert_(attrs[2].name == 'attr_date')
assert_(attrs[2].date_format == '%Y-%m-%d')
assert_(attrs[3].name == 'attr_datetime_local')
assert_(attrs[3].date_format == '%Y-%m-%d %H:%M')
assert_(attrs[4].name == 'attr_datetime_missing')
assert_(attrs[4].date_format == '%Y-%m-%d %H:%M')
def test_dateheader_unsupported(self):
def read_dateheader_unsupported():
with open(test8) as ofile:
_, _ = read_header(ofile)
assert_raises(ValueError, read_dateheader_unsupported)
class TestDateAttribute(object):
def setup_method(self):
self.data, self.meta = loadarff(test7)
def test_year_attribute(self):
expected = np.array([
'1999',
'2004',
'1817',
'2100',
'2013',
'1631'
], dtype='datetime64[Y]')
assert_array_equal(self.data["attr_year"], expected)
def test_month_attribute(self):
expected = np.array([
'1999-01',
'2004-12',
'1817-04',
'2100-09',
'2013-11',
'1631-10'
], dtype='datetime64[M]')
assert_array_equal(self.data["attr_month"], expected)
def test_date_attribute(self):
expected = np.array([
'1999-01-31',
'2004-12-01',
'1817-04-28',
'2100-09-10',
'2013-11-30',
'1631-10-15'
], dtype='datetime64[D]')
assert_array_equal(self.data["attr_date"], expected)
def test_datetime_local_attribute(self):
expected = np.array([
datetime.datetime(year=1999, month=1, day=31, hour=0, minute=1),
datetime.datetime(year=2004, month=12, day=1, hour=23, minute=59),
datetime.datetime(year=1817, month=4, day=28, hour=13, minute=0),
datetime.datetime(year=2100, month=9, day=10, hour=12, minute=0),
datetime.datetime(year=2013, month=11, day=30, hour=4, minute=55),
datetime.datetime(year=1631, month=10, day=15, hour=20, minute=4)
], dtype='datetime64[m]')
assert_array_equal(self.data["attr_datetime_local"], expected)
def test_datetime_missing(self):
expected = np.array([
'nat',
'2004-12-01T23:59',
'nat',
'nat',
'2013-11-30T04:55',
'1631-10-15T20:04'
], dtype='datetime64[m]')
assert_array_equal(self.data["attr_datetime_missing"], expected)
def test_datetime_timezone(self):
assert_raises(ParseArffError, loadarff, test8)
class TestRelationalAttribute(object):
def setup_method(self):
self.data, self.meta = loadarff(test9)
def test_attributes(self):
assert_equal(len(self.meta._attributes), 1)
relational = list(self.meta._attributes.values())[0]
assert_equal(relational.name, 'attr_date_number')
assert_equal(relational.type_name, 'relational')
assert_equal(len(relational.attributes), 2)
assert_equal(relational.attributes[0].name,
'attr_date')
assert_equal(relational.attributes[0].type_name,
'date')
assert_equal(relational.attributes[1].name,
'attr_number')
assert_equal(relational.attributes[1].type_name,
'numeric')
def test_data(self):
dtype_instance = [('attr_date', 'datetime64[D]'),
('attr_number', np.float_)]
expected = [
np.array([('1999-01-31', 1), ('1935-11-27', 10)],
dtype=dtype_instance),
np.array([('2004-12-01', 2), ('1942-08-13', 20)],
dtype=dtype_instance),
np.array([('1817-04-28', 3)],
dtype=dtype_instance),
np.array([('2100-09-10', 4), ('1957-04-17', 40),
('1721-01-14', 400)],
dtype=dtype_instance),
np.array([('2013-11-30', 5)],
dtype=dtype_instance),
np.array([('1631-10-15', 6)],
dtype=dtype_instance)
]
for i in range(len(self.data["attr_date_number"])):
assert_array_equal(self.data["attr_date_number"][i],
expected[i])
class TestRelationalAttributeLong(object):
def setup_method(self):
self.data, self.meta = loadarff(test10)
def test_attributes(self):
assert_equal(len(self.meta._attributes), 1)
relational = list(self.meta._attributes.values())[0]
assert_equal(relational.name, 'attr_relational')
assert_equal(relational.type_name, 'relational')
assert_equal(len(relational.attributes), 1)
assert_equal(relational.attributes[0].name,
'attr_number')
assert_equal(relational.attributes[0].type_name, 'numeric')
def test_data(self):
dtype_instance = [('attr_number', np.float_)]
expected = np.array([(n,) for n in range(30000)],
dtype=dtype_instance)
assert_array_equal(self.data["attr_relational"][0],
expected)
class TestQuotedNominal(object):
"""
Regression test for issue #10232 : Exception in loadarff with quoted nominal attributes.
"""
def setup_method(self):
self.data, self.meta = loadarff(test_quoted_nominal)
def test_attributes(self):
assert_equal(len(self.meta._attributes), 2)
age, smoker = self.meta._attributes.values()
assert_equal(age.name, 'age')
assert_equal(age.type_name, 'numeric')
assert_equal(smoker.name, 'smoker')
assert_equal(smoker.type_name, 'nominal')
assert_equal(smoker.values, ['yes', 'no'])
def test_data(self):
age_dtype_instance = np.float_
smoker_dtype_instance = '<S3'
age_expected = np.array([
18,
24,
44,
56,
89,
11,
], dtype=age_dtype_instance)
smoker_expected = np.array([
'no',
'yes',
'no',
'no',
'yes',
'no',
], dtype=smoker_dtype_instance)
assert_array_equal(self.data["age"], age_expected)
assert_array_equal(self.data["smoker"], smoker_expected)
class TestQuotedNominalSpaces(object):
"""
Regression test for issue #10232 : Exception in loadarff with quoted nominal attributes.
"""
def setup_method(self):
self.data, self.meta = loadarff(test_quoted_nominal_spaces)
def test_attributes(self):
assert_equal(len(self.meta._attributes), 2)
age, smoker = self.meta._attributes.values()
assert_equal(age.name, 'age')
assert_equal(age.type_name, 'numeric')
assert_equal(smoker.name, 'smoker')
assert_equal(smoker.type_name, 'nominal')
assert_equal(smoker.values, [' yes', 'no '])
def test_data(self):
age_dtype_instance = np.float_
smoker_dtype_instance = '<S5'
age_expected = np.array([
18,
24,
44,
56,
89,
11,
], dtype=age_dtype_instance)
smoker_expected = np.array([
'no ',
' yes',
'no ',
'no ',
' yes',
'no ',
], dtype=smoker_dtype_instance)
assert_array_equal(self.data["age"], age_expected)
assert_array_equal(self.data["smoker"], smoker_expected)