Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
227
venv/Lib/site-packages/scipy/interpolate/ndgriddata.py
Normal file
227
venv/Lib/site-packages/scipy/interpolate/ndgriddata.py
Normal file
|
|
@ -0,0 +1,227 @@
|
|||
"""
|
||||
Convenience interface to N-D interpolation
|
||||
|
||||
.. versionadded:: 0.9
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
from .interpnd import LinearNDInterpolator, NDInterpolatorBase, \
|
||||
CloughTocher2DInterpolator, _ndim_coords_from_arrays
|
||||
from scipy.spatial import cKDTree
|
||||
|
||||
__all__ = ['griddata', 'NearestNDInterpolator', 'LinearNDInterpolator',
|
||||
'CloughTocher2DInterpolator']
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
# Nearest-neighbor interpolation
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
|
||||
class NearestNDInterpolator(NDInterpolatorBase):
|
||||
"""
|
||||
NearestNDInterpolator(x, y)
|
||||
|
||||
Nearest-neighbor interpolation in N dimensions.
|
||||
|
||||
.. versionadded:: 0.9
|
||||
|
||||
Methods
|
||||
-------
|
||||
__call__
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : (Npoints, Ndims) ndarray of floats
|
||||
Data point coordinates.
|
||||
y : (Npoints,) ndarray of float or complex
|
||||
Data values.
|
||||
rescale : boolean, optional
|
||||
Rescale points to unit cube before performing interpolation.
|
||||
This is useful if some of the input dimensions have
|
||||
incommensurable units and differ by many orders of magnitude.
|
||||
|
||||
.. versionadded:: 0.14.0
|
||||
tree_options : dict, optional
|
||||
Options passed to the underlying ``cKDTree``.
|
||||
|
||||
.. versionadded:: 0.17.0
|
||||
|
||||
|
||||
Notes
|
||||
-----
|
||||
Uses ``scipy.spatial.cKDTree``
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, x, y, rescale=False, tree_options=None):
|
||||
NDInterpolatorBase.__init__(self, x, y, rescale=rescale,
|
||||
need_contiguous=False,
|
||||
need_values=False)
|
||||
if tree_options is None:
|
||||
tree_options = dict()
|
||||
self.tree = cKDTree(self.points, **tree_options)
|
||||
self.values = np.asarray(y)
|
||||
|
||||
def __call__(self, *args):
|
||||
"""
|
||||
Evaluate interpolator at given points.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
xi : ndarray of float, shape (..., ndim)
|
||||
Points where to interpolate data at.
|
||||
|
||||
"""
|
||||
xi = _ndim_coords_from_arrays(args, ndim=self.points.shape[1])
|
||||
xi = self._check_call_shape(xi)
|
||||
xi = self._scale_x(xi)
|
||||
dist, i = self.tree.query(xi)
|
||||
return self.values[i]
|
||||
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
# Convenience interface function
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
def griddata(points, values, xi, method='linear', fill_value=np.nan,
|
||||
rescale=False):
|
||||
"""
|
||||
Interpolate unstructured D-D data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
points : 2-D ndarray of floats with shape (n, D), or length D tuple of 1-D ndarrays with shape (n,).
|
||||
Data point coordinates.
|
||||
values : ndarray of float or complex, shape (n,)
|
||||
Data values.
|
||||
xi : 2-D ndarray of floats with shape (m, D), or length D tuple of ndarrays broadcastable to the same shape.
|
||||
Points at which to interpolate data.
|
||||
method : {'linear', 'nearest', 'cubic'}, optional
|
||||
Method of interpolation. One of
|
||||
|
||||
``nearest``
|
||||
return the value at the data point closest to
|
||||
the point of interpolation. See `NearestNDInterpolator` for
|
||||
more details.
|
||||
|
||||
``linear``
|
||||
tessellate the input point set to N-D
|
||||
simplices, and interpolate linearly on each simplex. See
|
||||
`LinearNDInterpolator` for more details.
|
||||
|
||||
``cubic`` (1-D)
|
||||
return the value determined from a cubic
|
||||
spline.
|
||||
|
||||
``cubic`` (2-D)
|
||||
return the value determined from a
|
||||
piecewise cubic, continuously differentiable (C1), and
|
||||
approximately curvature-minimizing polynomial surface. See
|
||||
`CloughTocher2DInterpolator` for more details.
|
||||
fill_value : float, optional
|
||||
Value used to fill in for requested points outside of the
|
||||
convex hull of the input points. If not provided, then the
|
||||
default is ``nan``. This option has no effect for the
|
||||
'nearest' method.
|
||||
rescale : bool, optional
|
||||
Rescale points to unit cube before performing interpolation.
|
||||
This is useful if some of the input dimensions have
|
||||
incommensurable units and differ by many orders of magnitude.
|
||||
|
||||
.. versionadded:: 0.14.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Array of interpolated values.
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
.. versionadded:: 0.9
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Suppose we want to interpolate the 2-D function
|
||||
|
||||
>>> def func(x, y):
|
||||
... return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2
|
||||
|
||||
on a grid in [0, 1]x[0, 1]
|
||||
|
||||
>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]
|
||||
|
||||
but we only know its values at 1000 data points:
|
||||
|
||||
>>> points = np.random.rand(1000, 2)
|
||||
>>> values = func(points[:,0], points[:,1])
|
||||
|
||||
This can be done with `griddata` -- below we try out all of the
|
||||
interpolation methods:
|
||||
|
||||
>>> from scipy.interpolate import griddata
|
||||
>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
|
||||
>>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
|
||||
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')
|
||||
|
||||
One can see that the exact result is reproduced by all of the
|
||||
methods to some degree, but for this smooth function the piecewise
|
||||
cubic interpolant gives the best results:
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> plt.subplot(221)
|
||||
>>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
|
||||
>>> plt.plot(points[:,0], points[:,1], 'k.', ms=1)
|
||||
>>> plt.title('Original')
|
||||
>>> plt.subplot(222)
|
||||
>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
|
||||
>>> plt.title('Nearest')
|
||||
>>> plt.subplot(223)
|
||||
>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
|
||||
>>> plt.title('Linear')
|
||||
>>> plt.subplot(224)
|
||||
>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
|
||||
>>> plt.title('Cubic')
|
||||
>>> plt.gcf().set_size_inches(6, 6)
|
||||
>>> plt.show()
|
||||
|
||||
"""
|
||||
|
||||
points = _ndim_coords_from_arrays(points)
|
||||
|
||||
if points.ndim < 2:
|
||||
ndim = points.ndim
|
||||
else:
|
||||
ndim = points.shape[-1]
|
||||
|
||||
if ndim == 1 and method in ('nearest', 'linear', 'cubic'):
|
||||
from .interpolate import interp1d
|
||||
points = points.ravel()
|
||||
if isinstance(xi, tuple):
|
||||
if len(xi) != 1:
|
||||
raise ValueError("invalid number of dimensions in xi")
|
||||
xi, = xi
|
||||
# Sort points/values together, necessary as input for interp1d
|
||||
idx = np.argsort(points)
|
||||
points = points[idx]
|
||||
values = values[idx]
|
||||
if method == 'nearest':
|
||||
fill_value = 'extrapolate'
|
||||
ip = interp1d(points, values, kind=method, axis=0, bounds_error=False,
|
||||
fill_value=fill_value)
|
||||
return ip(xi)
|
||||
elif method == 'nearest':
|
||||
ip = NearestNDInterpolator(points, values, rescale=rescale)
|
||||
return ip(xi)
|
||||
elif method == 'linear':
|
||||
ip = LinearNDInterpolator(points, values, fill_value=fill_value,
|
||||
rescale=rescale)
|
||||
return ip(xi)
|
||||
elif method == 'cubic' and ndim == 2:
|
||||
ip = CloughTocher2DInterpolator(points, values, fill_value=fill_value,
|
||||
rescale=rescale)
|
||||
return ip(xi)
|
||||
else:
|
||||
raise ValueError("Unknown interpolation method %r for "
|
||||
"%d dimensional data" % (method, ndim))
|
||||
Loading…
Add table
Add a link
Reference in a new issue