Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
99
venv/Lib/site-packages/scipy/fft/_helper.py
Normal file
99
venv/Lib/site-packages/scipy/fft/_helper.py
Normal file
|
|
@ -0,0 +1,99 @@
|
|||
from functools import update_wrapper, lru_cache
|
||||
|
||||
from ._pocketfft import helper as _helper
|
||||
|
||||
|
||||
def next_fast_len(target, real=False):
|
||||
"""Find the next fast size of input data to ``fft``, for zero-padding, etc.
|
||||
|
||||
SciPy's FFT algorithms gain their speed by a recursive divide and conquer
|
||||
strategy. This relies on efficient functions for small prime factors of the
|
||||
input length. Thus, the transforms are fastest when using composites of the
|
||||
prime factors handled by the fft implementation. If there are efficient
|
||||
functions for all radices <= `n`, then the result will be a number `x`
|
||||
>= ``target`` with only prime factors < `n`. (Also known as `n`-smooth
|
||||
numbers)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
target : int
|
||||
Length to start searching from. Must be a positive integer.
|
||||
real : bool, optional
|
||||
True if the FFT involves real input or output (e.g., `rfft` or `hfft` but
|
||||
not `fft`). Defaults to False.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : int
|
||||
The smallest fast length greater than or equal to ``target``.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The result of this function may change in future as performance
|
||||
considerations change, for example, if new prime factors are added.
|
||||
|
||||
Calling `fft` or `ifft` with real input data performs an ``'R2C'``
|
||||
transform internally.
|
||||
|
||||
Examples
|
||||
--------
|
||||
On a particular machine, an FFT of prime length takes 17 ms:
|
||||
|
||||
>>> from scipy import fft
|
||||
>>> min_len = 93059 # prime length is worst case for speed
|
||||
>>> a = np.random.randn(min_len)
|
||||
>>> b = fft.fft(a)
|
||||
|
||||
Zero-padding to the next regular length reduces computation time to
|
||||
1.3 ms, a speedup of 13 times:
|
||||
|
||||
>>> fft.next_fast_len(min_len)
|
||||
93312
|
||||
>>> b = fft.fft(a, 93312)
|
||||
|
||||
Rounding up to the next power of 2 is not optimal, taking 1.9 ms to
|
||||
compute; 1.3 times longer than the size given by ``next_fast_len``:
|
||||
|
||||
>>> b = fft.fft(a, 131072)
|
||||
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
# Directly wrap the c-function good_size but take the docstring etc., from the
|
||||
# next_fast_len function above
|
||||
next_fast_len = update_wrapper(lru_cache()(_helper.good_size), next_fast_len)
|
||||
next_fast_len.__wrapped__ = _helper.good_size
|
||||
|
||||
|
||||
def _init_nd_shape_and_axes(x, shape, axes):
|
||||
"""Handle shape and axes arguments for N-D transforms.
|
||||
|
||||
Returns the shape and axes in a standard form, taking into account negative
|
||||
values and checking for various potential errors.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
The input array.
|
||||
shape : int or array_like of ints or None
|
||||
The shape of the result. If both `shape` and `axes` (see below) are
|
||||
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
||||
not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
|
||||
If `shape` is -1, the size of the corresponding dimension of `x` is
|
||||
used.
|
||||
axes : int or array_like of ints or None
|
||||
Axes along which the calculation is computed.
|
||||
The default is over all axes.
|
||||
Negative indices are automatically converted to their positive
|
||||
counterparts.
|
||||
|
||||
Returns
|
||||
-------
|
||||
shape : array
|
||||
The shape of the result. It is a 1-D integer array.
|
||||
axes : array
|
||||
The shape of the result. It is a 1-D integer array.
|
||||
|
||||
"""
|
||||
return _helper._init_nd_shape_and_axes(x, shape, axes)
|
||||
Loading…
Add table
Add a link
Reference in a new issue