Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
482
venv/Lib/site-packages/scipy/_lib/_util.py
Normal file
482
venv/Lib/site-packages/scipy/_lib/_util.py
Normal file
|
@ -0,0 +1,482 @@
|
|||
import functools
|
||||
import operator
|
||||
import sys
|
||||
import warnings
|
||||
import numbers
|
||||
from collections import namedtuple
|
||||
from multiprocessing import Pool
|
||||
import inspect
|
||||
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
from numpy.random import Generator as Generator
|
||||
except ImportError:
|
||||
class Generator(): # type: ignore[no-redef]
|
||||
pass
|
||||
|
||||
|
||||
def _valarray(shape, value=np.nan, typecode=None):
|
||||
"""Return an array of all values.
|
||||
"""
|
||||
|
||||
out = np.ones(shape, dtype=bool) * value
|
||||
if typecode is not None:
|
||||
out = out.astype(typecode)
|
||||
if not isinstance(out, np.ndarray):
|
||||
out = np.asarray(out)
|
||||
return out
|
||||
|
||||
|
||||
def _lazywhere(cond, arrays, f, fillvalue=None, f2=None):
|
||||
"""
|
||||
np.where(cond, x, fillvalue) always evaluates x even where cond is False.
|
||||
This one only evaluates f(arr1[cond], arr2[cond], ...).
|
||||
For example,
|
||||
>>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8])
|
||||
>>> def f(a, b):
|
||||
return a*b
|
||||
>>> _lazywhere(a > 2, (a, b), f, np.nan)
|
||||
array([ nan, nan, 21., 32.])
|
||||
|
||||
Notice, it assumes that all `arrays` are of the same shape, or can be
|
||||
broadcasted together.
|
||||
|
||||
"""
|
||||
if fillvalue is None:
|
||||
if f2 is None:
|
||||
raise ValueError("One of (fillvalue, f2) must be given.")
|
||||
else:
|
||||
fillvalue = np.nan
|
||||
else:
|
||||
if f2 is not None:
|
||||
raise ValueError("Only one of (fillvalue, f2) can be given.")
|
||||
|
||||
arrays = np.broadcast_arrays(*arrays)
|
||||
temp = tuple(np.extract(cond, arr) for arr in arrays)
|
||||
tcode = np.mintypecode([a.dtype.char for a in arrays])
|
||||
out = _valarray(np.shape(arrays[0]), value=fillvalue, typecode=tcode)
|
||||
np.place(out, cond, f(*temp))
|
||||
if f2 is not None:
|
||||
temp = tuple(np.extract(~cond, arr) for arr in arrays)
|
||||
np.place(out, ~cond, f2(*temp))
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def _lazyselect(condlist, choicelist, arrays, default=0):
|
||||
"""
|
||||
Mimic `np.select(condlist, choicelist)`.
|
||||
|
||||
Notice, it assumes that all `arrays` are of the same shape or can be
|
||||
broadcasted together.
|
||||
|
||||
All functions in `choicelist` must accept array arguments in the order
|
||||
given in `arrays` and must return an array of the same shape as broadcasted
|
||||
`arrays`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> x = np.arange(6)
|
||||
>>> np.select([x <3, x > 3], [x**2, x**3], default=0)
|
||||
array([ 0, 1, 4, 0, 64, 125])
|
||||
|
||||
>>> _lazyselect([x < 3, x > 3], [lambda x: x**2, lambda x: x**3], (x,))
|
||||
array([ 0., 1., 4., 0., 64., 125.])
|
||||
|
||||
>>> a = -np.ones_like(x)
|
||||
>>> _lazyselect([x < 3, x > 3],
|
||||
... [lambda x, a: x**2, lambda x, a: a * x**3],
|
||||
... (x, a), default=np.nan)
|
||||
array([ 0., 1., 4., nan, -64., -125.])
|
||||
|
||||
"""
|
||||
arrays = np.broadcast_arrays(*arrays)
|
||||
tcode = np.mintypecode([a.dtype.char for a in arrays])
|
||||
out = _valarray(np.shape(arrays[0]), value=default, typecode=tcode)
|
||||
for index in range(len(condlist)):
|
||||
func, cond = choicelist[index], condlist[index]
|
||||
if np.all(cond is False):
|
||||
continue
|
||||
cond, _ = np.broadcast_arrays(cond, arrays[0])
|
||||
temp = tuple(np.extract(cond, arr) for arr in arrays)
|
||||
np.place(out, cond, func(*temp))
|
||||
return out
|
||||
|
||||
|
||||
def _aligned_zeros(shape, dtype=float, order="C", align=None):
|
||||
"""Allocate a new ndarray with aligned memory.
|
||||
|
||||
Primary use case for this currently is working around a f2py issue
|
||||
in NumPy 1.9.1, where dtype.alignment is such that np.zeros() does
|
||||
not necessarily create arrays aligned up to it.
|
||||
|
||||
"""
|
||||
dtype = np.dtype(dtype)
|
||||
if align is None:
|
||||
align = dtype.alignment
|
||||
if not hasattr(shape, '__len__'):
|
||||
shape = (shape,)
|
||||
size = functools.reduce(operator.mul, shape) * dtype.itemsize
|
||||
buf = np.empty(size + align + 1, np.uint8)
|
||||
offset = buf.__array_interface__['data'][0] % align
|
||||
if offset != 0:
|
||||
offset = align - offset
|
||||
# Note: slices producing 0-size arrays do not necessarily change
|
||||
# data pointer --- so we use and allocate size+1
|
||||
buf = buf[offset:offset+size+1][:-1]
|
||||
data = np.ndarray(shape, dtype, buf, order=order)
|
||||
data.fill(0)
|
||||
return data
|
||||
|
||||
|
||||
def _prune_array(array):
|
||||
"""Return an array equivalent to the input array. If the input
|
||||
array is a view of a much larger array, copy its contents to a
|
||||
newly allocated array. Otherwise, return the input unchanged.
|
||||
"""
|
||||
if array.base is not None and array.size < array.base.size // 2:
|
||||
return array.copy()
|
||||
return array
|
||||
|
||||
|
||||
def prod(iterable):
|
||||
"""
|
||||
Product of a sequence of numbers.
|
||||
|
||||
Faster than np.prod for short lists like array shapes, and does
|
||||
not overflow if using Python integers.
|
||||
"""
|
||||
product = 1
|
||||
for x in iterable:
|
||||
product *= x
|
||||
return product
|
||||
|
||||
|
||||
class DeprecatedImport(object):
|
||||
"""
|
||||
Deprecated import with redirection and warning.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Suppose you previously had in some module::
|
||||
|
||||
from foo import spam
|
||||
|
||||
If this has to be deprecated, do::
|
||||
|
||||
spam = DeprecatedImport("foo.spam", "baz")
|
||||
|
||||
to redirect users to use "baz" module instead.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, old_module_name, new_module_name):
|
||||
self._old_name = old_module_name
|
||||
self._new_name = new_module_name
|
||||
__import__(self._new_name)
|
||||
self._mod = sys.modules[self._new_name]
|
||||
|
||||
def __dir__(self):
|
||||
return dir(self._mod)
|
||||
|
||||
def __getattr__(self, name):
|
||||
warnings.warn("Module %s is deprecated, use %s instead"
|
||||
% (self._old_name, self._new_name),
|
||||
DeprecationWarning)
|
||||
return getattr(self._mod, name)
|
||||
|
||||
|
||||
# copy-pasted from scikit-learn utils/validation.py
|
||||
def check_random_state(seed):
|
||||
"""Turn seed into a np.random.RandomState instance
|
||||
|
||||
If seed is None (or np.random), return the RandomState singleton used
|
||||
by np.random.
|
||||
If seed is an int, return a new RandomState instance seeded with seed.
|
||||
If seed is already a RandomState instance, return it.
|
||||
If seed is a new-style np.random.Generator, return it.
|
||||
Otherwise, raise ValueError.
|
||||
"""
|
||||
if seed is None or seed is np.random:
|
||||
return np.random.mtrand._rand
|
||||
if isinstance(seed, (numbers.Integral, np.integer)):
|
||||
return np.random.RandomState(seed)
|
||||
if isinstance(seed, np.random.RandomState):
|
||||
return seed
|
||||
try:
|
||||
# Generator is only available in numpy >= 1.17
|
||||
if isinstance(seed, np.random.Generator):
|
||||
return seed
|
||||
except AttributeError:
|
||||
pass
|
||||
raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
|
||||
' instance' % seed)
|
||||
|
||||
|
||||
def _asarray_validated(a, check_finite=True,
|
||||
sparse_ok=False, objects_ok=False, mask_ok=False,
|
||||
as_inexact=False):
|
||||
"""
|
||||
Helper function for SciPy argument validation.
|
||||
|
||||
Many SciPy linear algebra functions do support arbitrary array-like
|
||||
input arguments. Examples of commonly unsupported inputs include
|
||||
matrices containing inf/nan, sparse matrix representations, and
|
||||
matrices with complicated elements.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
The array-like input.
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrices contain only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
Default: True
|
||||
sparse_ok : bool, optional
|
||||
True if scipy sparse matrices are allowed.
|
||||
objects_ok : bool, optional
|
||||
True if arrays with dype('O') are allowed.
|
||||
mask_ok : bool, optional
|
||||
True if masked arrays are allowed.
|
||||
as_inexact : bool, optional
|
||||
True to convert the input array to a np.inexact dtype.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ret : ndarray
|
||||
The converted validated array.
|
||||
|
||||
"""
|
||||
if not sparse_ok:
|
||||
import scipy.sparse
|
||||
if scipy.sparse.issparse(a):
|
||||
msg = ('Sparse matrices are not supported by this function. '
|
||||
'Perhaps one of the scipy.sparse.linalg functions '
|
||||
'would work instead.')
|
||||
raise ValueError(msg)
|
||||
if not mask_ok:
|
||||
if np.ma.isMaskedArray(a):
|
||||
raise ValueError('masked arrays are not supported')
|
||||
toarray = np.asarray_chkfinite if check_finite else np.asarray
|
||||
a = toarray(a)
|
||||
if not objects_ok:
|
||||
if a.dtype is np.dtype('O'):
|
||||
raise ValueError('object arrays are not supported')
|
||||
if as_inexact:
|
||||
if not np.issubdtype(a.dtype, np.inexact):
|
||||
a = toarray(a, dtype=np.float_)
|
||||
return a
|
||||
|
||||
|
||||
# Add a replacement for inspect.getfullargspec()/
|
||||
# The version below is borrowed from Django,
|
||||
# https://github.com/django/django/pull/4846.
|
||||
|
||||
# Note an inconsistency between inspect.getfullargspec(func) and
|
||||
# inspect.signature(func). If `func` is a bound method, the latter does *not*
|
||||
# list `self` as a first argument, while the former *does*.
|
||||
# Hence, cook up a common ground replacement: `getfullargspec_no_self` which
|
||||
# mimics `inspect.getfullargspec` but does not list `self`.
|
||||
#
|
||||
# This way, the caller code does not need to know whether it uses a legacy
|
||||
# .getfullargspec or a bright and shiny .signature.
|
||||
|
||||
FullArgSpec = namedtuple('FullArgSpec',
|
||||
['args', 'varargs', 'varkw', 'defaults',
|
||||
'kwonlyargs', 'kwonlydefaults', 'annotations'])
|
||||
|
||||
def getfullargspec_no_self(func):
|
||||
"""inspect.getfullargspec replacement using inspect.signature.
|
||||
|
||||
If func is a bound method, do not list the 'self' parameter.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable
|
||||
A callable to inspect
|
||||
|
||||
Returns
|
||||
-------
|
||||
fullargspec : FullArgSpec(args, varargs, varkw, defaults, kwonlyargs,
|
||||
kwonlydefaults, annotations)
|
||||
|
||||
NOTE: if the first argument of `func` is self, it is *not*, I repeat
|
||||
*not*, included in fullargspec.args.
|
||||
This is done for consistency between inspect.getargspec() under
|
||||
Python 2.x, and inspect.signature() under Python 3.x.
|
||||
|
||||
"""
|
||||
sig = inspect.signature(func)
|
||||
args = [
|
||||
p.name for p in sig.parameters.values()
|
||||
if p.kind in [inspect.Parameter.POSITIONAL_OR_KEYWORD,
|
||||
inspect.Parameter.POSITIONAL_ONLY]
|
||||
]
|
||||
varargs = [
|
||||
p.name for p in sig.parameters.values()
|
||||
if p.kind == inspect.Parameter.VAR_POSITIONAL
|
||||
]
|
||||
varargs = varargs[0] if varargs else None
|
||||
varkw = [
|
||||
p.name for p in sig.parameters.values()
|
||||
if p.kind == inspect.Parameter.VAR_KEYWORD
|
||||
]
|
||||
varkw = varkw[0] if varkw else None
|
||||
defaults = tuple(
|
||||
p.default for p in sig.parameters.values()
|
||||
if (p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD and
|
||||
p.default is not p.empty)
|
||||
) or None
|
||||
kwonlyargs = [
|
||||
p.name for p in sig.parameters.values()
|
||||
if p.kind == inspect.Parameter.KEYWORD_ONLY
|
||||
]
|
||||
kwdefaults = {p.name: p.default for p in sig.parameters.values()
|
||||
if p.kind == inspect.Parameter.KEYWORD_ONLY and
|
||||
p.default is not p.empty}
|
||||
annotations = {p.name: p.annotation for p in sig.parameters.values()
|
||||
if p.annotation is not p.empty}
|
||||
return FullArgSpec(args, varargs, varkw, defaults, kwonlyargs,
|
||||
kwdefaults or None, annotations)
|
||||
|
||||
|
||||
class MapWrapper(object):
|
||||
"""
|
||||
Parallelisation wrapper for working with map-like callables, such as
|
||||
`multiprocessing.Pool.map`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pool : int or map-like callable
|
||||
If `pool` is an integer, then it specifies the number of threads to
|
||||
use for parallelization. If ``int(pool) == 1``, then no parallel
|
||||
processing is used and the map builtin is used.
|
||||
If ``pool == -1``, then the pool will utilize all available CPUs.
|
||||
If `pool` is a map-like callable that follows the same
|
||||
calling sequence as the built-in map function, then this callable is
|
||||
used for parallelization.
|
||||
"""
|
||||
def __init__(self, pool=1):
|
||||
self.pool = None
|
||||
self._mapfunc = map
|
||||
self._own_pool = False
|
||||
|
||||
if callable(pool):
|
||||
self.pool = pool
|
||||
self._mapfunc = self.pool
|
||||
else:
|
||||
# user supplies a number
|
||||
if int(pool) == -1:
|
||||
# use as many processors as possible
|
||||
self.pool = Pool()
|
||||
self._mapfunc = self.pool.map
|
||||
self._own_pool = True
|
||||
elif int(pool) == 1:
|
||||
pass
|
||||
elif int(pool) > 1:
|
||||
# use the number of processors requested
|
||||
self.pool = Pool(processes=int(pool))
|
||||
self._mapfunc = self.pool.map
|
||||
self._own_pool = True
|
||||
else:
|
||||
raise RuntimeError("Number of workers specified must be -1,"
|
||||
" an int >= 1, or an object with a 'map' method")
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __del__(self):
|
||||
self.close()
|
||||
self.terminate()
|
||||
|
||||
def terminate(self):
|
||||
if self._own_pool:
|
||||
self.pool.terminate()
|
||||
|
||||
def join(self):
|
||||
if self._own_pool:
|
||||
self.pool.join()
|
||||
|
||||
def close(self):
|
||||
if self._own_pool:
|
||||
self.pool.close()
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
if self._own_pool:
|
||||
self.pool.close()
|
||||
self.pool.terminate()
|
||||
|
||||
def __call__(self, func, iterable):
|
||||
# only accept one iterable because that's all Pool.map accepts
|
||||
try:
|
||||
return self._mapfunc(func, iterable)
|
||||
except TypeError:
|
||||
# wrong number of arguments
|
||||
raise TypeError("The map-like callable must be of the"
|
||||
" form f(func, iterable)")
|
||||
|
||||
|
||||
def rng_integers(gen, low, high=None, size=None, dtype='int64',
|
||||
endpoint=False):
|
||||
"""
|
||||
Return random integers from low (inclusive) to high (exclusive), or if
|
||||
endpoint=True, low (inclusive) to high (inclusive). Replaces
|
||||
`RandomState.randint` (with endpoint=False) and
|
||||
`RandomState.random_integers` (with endpoint=True).
|
||||
|
||||
Return random integers from the "discrete uniform" distribution of the
|
||||
specified dtype. If high is None (the default), then results are from
|
||||
0 to low.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
gen: {None, np.random.RandomState, np.random.Generator}
|
||||
Random number generator. If None, then the np.random.RandomState
|
||||
singleton is used.
|
||||
low: int or array-like of ints
|
||||
Lowest (signed) integers to be drawn from the distribution (unless
|
||||
high=None, in which case this parameter is 0 and this value is used
|
||||
for high).
|
||||
high: int or array-like of ints
|
||||
If provided, one above the largest (signed) integer to be drawn from
|
||||
the distribution (see above for behavior if high=None). If array-like,
|
||||
must contain integer values.
|
||||
size: None
|
||||
Output shape. If the given shape is, e.g., (m, n, k), then m * n * k
|
||||
samples are drawn. Default is None, in which case a single value is
|
||||
returned.
|
||||
dtype: {str, dtype}, optional
|
||||
Desired dtype of the result. All dtypes are determined by their name,
|
||||
i.e., 'int64', 'int', etc, so byteorder is not available and a specific
|
||||
precision may have different C types depending on the platform.
|
||||
The default value is np.int_.
|
||||
endpoint: bool, optional
|
||||
If True, sample from the interval [low, high] instead of the default
|
||||
[low, high) Defaults to False.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out: int or ndarray of ints
|
||||
size-shaped array of random integers from the appropriate distribution,
|
||||
or a single such random int if size not provided.
|
||||
"""
|
||||
if isinstance(gen, Generator):
|
||||
return gen.integers(low, high=high, size=size, dtype=dtype,
|
||||
endpoint=endpoint)
|
||||
else:
|
||||
if gen is None:
|
||||
# default is RandomState singleton used by np.random.
|
||||
gen = np.random.mtrand._rand
|
||||
if endpoint:
|
||||
# inclusive of endpoint
|
||||
# remember that low and high can be arrays, so don't modify in
|
||||
# place
|
||||
if high is None:
|
||||
return gen.randint(low + 1, size=size, dtype=dtype)
|
||||
if high is not None:
|
||||
return gen.randint(low, high=high + 1, size=size, dtype=dtype)
|
||||
|
||||
# exclusive
|
||||
return gen.randint(low, high=high, size=size, dtype=dtype)
|
Loading…
Add table
Add a link
Reference in a new issue