Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
415
venv/Lib/site-packages/networkx/utils/misc.py
Normal file
415
venv/Lib/site-packages/networkx/utils/misc.py
Normal file
|
@ -0,0 +1,415 @@
|
|||
"""
|
||||
Miscellaneous Helpers for NetworkX.
|
||||
|
||||
These are not imported into the base networkx namespace but
|
||||
can be accessed, for example, as
|
||||
|
||||
>>> import networkx
|
||||
>>> networkx.utils.is_list_of_ints([1, 2, 3])
|
||||
True
|
||||
>>> networkx.utils.is_list_of_ints([1, 2, "spam"])
|
||||
False
|
||||
"""
|
||||
|
||||
from collections import defaultdict
|
||||
from collections import deque
|
||||
import warnings
|
||||
import sys
|
||||
import uuid
|
||||
from itertools import tee, chain
|
||||
import networkx as nx
|
||||
|
||||
|
||||
# some cookbook stuff
|
||||
# used in deciding whether something is a bunch of nodes, edges, etc.
|
||||
# see G.add_nodes and others in Graph Class in networkx/base.py
|
||||
|
||||
|
||||
def is_string_like(obj): # from John Hunter, types-free version
|
||||
"""Check if obj is string."""
|
||||
msg = (
|
||||
"is_string_like is deprecated and will be removed in 3.0."
|
||||
"Use isinstance(obj, str) instead."
|
||||
)
|
||||
warnings.warn(msg, DeprecationWarning)
|
||||
return isinstance(obj, str)
|
||||
|
||||
|
||||
def iterable(obj):
|
||||
""" Return True if obj is iterable with a well-defined len()."""
|
||||
if hasattr(obj, "__iter__"):
|
||||
return True
|
||||
try:
|
||||
len(obj)
|
||||
except:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def empty_generator():
|
||||
""" Return a generator with no members """
|
||||
yield from ()
|
||||
|
||||
|
||||
def flatten(obj, result=None):
|
||||
""" Return flattened version of (possibly nested) iterable object. """
|
||||
if not iterable(obj) or is_string_like(obj):
|
||||
return obj
|
||||
if result is None:
|
||||
result = []
|
||||
for item in obj:
|
||||
if not iterable(item) or is_string_like(item):
|
||||
result.append(item)
|
||||
else:
|
||||
flatten(item, result)
|
||||
return obj.__class__(result)
|
||||
|
||||
|
||||
def make_list_of_ints(sequence):
|
||||
"""Return list of ints from sequence of integral numbers.
|
||||
|
||||
All elements of the sequence must satisfy int(element) == element
|
||||
or a ValueError is raised. Sequence is iterated through once.
|
||||
|
||||
If sequence is a list, the non-int values are replaced with ints.
|
||||
So, no new list is created
|
||||
"""
|
||||
if not isinstance(sequence, list):
|
||||
result = []
|
||||
for i in sequence:
|
||||
errmsg = f"sequence is not all integers: {i}"
|
||||
try:
|
||||
ii = int(i)
|
||||
except ValueError:
|
||||
raise nx.NetworkXError(errmsg) from None
|
||||
if ii != i:
|
||||
raise nx.NetworkXError(errmsg)
|
||||
result.append(ii)
|
||||
return result
|
||||
# original sequence is a list... in-place conversion to ints
|
||||
for indx, i in enumerate(sequence):
|
||||
errmsg = f"sequence is not all integers: {i}"
|
||||
if isinstance(i, int):
|
||||
continue
|
||||
try:
|
||||
ii = int(i)
|
||||
except ValueError:
|
||||
raise nx.NetworkXError(errmsg) from None
|
||||
if ii != i:
|
||||
raise nx.NetworkXError(errmsg)
|
||||
sequence[indx] = ii
|
||||
return sequence
|
||||
|
||||
|
||||
def is_list_of_ints(intlist):
|
||||
""" Return True if list is a list of ints. """
|
||||
if not isinstance(intlist, list):
|
||||
return False
|
||||
for i in intlist:
|
||||
if not isinstance(i, int):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def make_str(x):
|
||||
"""Returns the string representation of t."""
|
||||
msg = "make_str is deprecated and will be removed in 3.0. Use str instead."
|
||||
warnings.warn(msg, DeprecationWarning)
|
||||
return str(x)
|
||||
|
||||
|
||||
def generate_unique_node():
|
||||
""" Generate a unique node label."""
|
||||
return str(uuid.uuid1())
|
||||
|
||||
|
||||
def default_opener(filename):
|
||||
"""Opens `filename` using system's default program.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filename : str
|
||||
The path of the file to be opened.
|
||||
|
||||
"""
|
||||
from subprocess import call
|
||||
|
||||
cmds = {
|
||||
"darwin": ["open"],
|
||||
"linux": ["xdg-open"],
|
||||
"linux2": ["xdg-open"],
|
||||
"win32": ["cmd.exe", "/C", "start", ""],
|
||||
}
|
||||
cmd = cmds[sys.platform] + [filename]
|
||||
call(cmd)
|
||||
|
||||
|
||||
def dict_to_numpy_array(d, mapping=None):
|
||||
"""Convert a dictionary of dictionaries to a numpy array
|
||||
with optional mapping."""
|
||||
try:
|
||||
return dict_to_numpy_array2(d, mapping)
|
||||
except (AttributeError, TypeError):
|
||||
# AttributeError is when no mapping was provided and v.keys() fails.
|
||||
# TypeError is when a mapping was provided and d[k1][k2] fails.
|
||||
return dict_to_numpy_array1(d, mapping)
|
||||
|
||||
|
||||
def dict_to_numpy_array2(d, mapping=None):
|
||||
"""Convert a dictionary of dictionaries to a 2d numpy array
|
||||
with optional mapping.
|
||||
|
||||
"""
|
||||
import numpy
|
||||
|
||||
if mapping is None:
|
||||
s = set(d.keys())
|
||||
for k, v in d.items():
|
||||
s.update(v.keys())
|
||||
mapping = dict(zip(s, range(len(s))))
|
||||
n = len(mapping)
|
||||
a = numpy.zeros((n, n))
|
||||
for k1, i in mapping.items():
|
||||
for k2, j in mapping.items():
|
||||
try:
|
||||
a[i, j] = d[k1][k2]
|
||||
except KeyError:
|
||||
pass
|
||||
return a
|
||||
|
||||
|
||||
def dict_to_numpy_array1(d, mapping=None):
|
||||
"""Convert a dictionary of numbers to a 1d numpy array
|
||||
with optional mapping.
|
||||
|
||||
"""
|
||||
import numpy
|
||||
|
||||
if mapping is None:
|
||||
s = set(d.keys())
|
||||
mapping = dict(zip(s, range(len(s))))
|
||||
n = len(mapping)
|
||||
a = numpy.zeros(n)
|
||||
for k1, i in mapping.items():
|
||||
i = mapping[k1]
|
||||
a[i] = d[k1]
|
||||
return a
|
||||
|
||||
|
||||
def is_iterator(obj):
|
||||
"""Returns True if and only if the given object is an iterator
|
||||
object.
|
||||
|
||||
"""
|
||||
has_next_attr = hasattr(obj, "__next__") or hasattr(obj, "next")
|
||||
return iter(obj) is obj and has_next_attr
|
||||
|
||||
|
||||
def arbitrary_element(iterable):
|
||||
"""Returns an arbitrary element of `iterable` without removing it.
|
||||
|
||||
This is most useful for "peeking" at an arbitrary element of a set,
|
||||
but can be used for any list, dictionary, etc., as well::
|
||||
|
||||
>>> arbitrary_element({3, 2, 1})
|
||||
1
|
||||
>>> arbitrary_element("hello")
|
||||
'h'
|
||||
|
||||
This function raises a :exc:`ValueError` if `iterable` is an
|
||||
iterator (because the current implementation of this function would
|
||||
consume an element from the iterator)::
|
||||
|
||||
>>> iterator = iter([1, 2, 3])
|
||||
>>> arbitrary_element(iterator)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: cannot return an arbitrary item from an iterator
|
||||
|
||||
"""
|
||||
if is_iterator(iterable):
|
||||
raise ValueError("cannot return an arbitrary item from an iterator")
|
||||
# Another possible implementation is ``for x in iterable: return x``.
|
||||
return next(iter(iterable))
|
||||
|
||||
|
||||
# Recipe from the itertools documentation.
|
||||
def consume(iterator):
|
||||
"Consume the iterator entirely."
|
||||
# Feed the entire iterator into a zero-length deque.
|
||||
deque(iterator, maxlen=0)
|
||||
|
||||
|
||||
# Recipe from the itertools documentation.
|
||||
def pairwise(iterable, cyclic=False):
|
||||
"s -> (s0, s1), (s1, s2), (s2, s3), ..."
|
||||
a, b = tee(iterable)
|
||||
first = next(b, None)
|
||||
if cyclic is True:
|
||||
return zip(a, chain(b, (first,)))
|
||||
return zip(a, b)
|
||||
|
||||
|
||||
def groups(many_to_one):
|
||||
"""Converts a many-to-one mapping into a one-to-many mapping.
|
||||
|
||||
`many_to_one` must be a dictionary whose keys and values are all
|
||||
:term:`hashable`.
|
||||
|
||||
The return value is a dictionary mapping values from `many_to_one`
|
||||
to sets of keys from `many_to_one` that have that value.
|
||||
|
||||
For example::
|
||||
|
||||
>>> from networkx.utils import groups
|
||||
>>> many_to_one = {"a": 1, "b": 1, "c": 2, "d": 3, "e": 3}
|
||||
>>> groups(many_to_one) # doctest: +SKIP
|
||||
{1: {'a', 'b'}, 2: {'c'}, 3: {'d', 'e'}}
|
||||
|
||||
"""
|
||||
one_to_many = defaultdict(set)
|
||||
for v, k in many_to_one.items():
|
||||
one_to_many[k].add(v)
|
||||
return dict(one_to_many)
|
||||
|
||||
|
||||
def to_tuple(x):
|
||||
"""Converts lists to tuples.
|
||||
|
||||
For example::
|
||||
|
||||
>>> from networkx.utils import to_tuple
|
||||
>>> a_list = [1, 2, [1, 4]]
|
||||
>>> to_tuple(a_list)
|
||||
(1, 2, (1, 4))
|
||||
|
||||
"""
|
||||
if not isinstance(x, (tuple, list)):
|
||||
return x
|
||||
return tuple(map(to_tuple, x))
|
||||
|
||||
|
||||
def create_random_state(random_state=None):
|
||||
"""Returns a numpy.random.RandomState instance depending on input.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
random_state : int or RandomState instance or None optional (default=None)
|
||||
If int, return a numpy.random.RandomState instance set with seed=int.
|
||||
if numpy.random.RandomState instance, return it.
|
||||
if None or numpy.random, return the global random number generator used
|
||||
by numpy.random.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
if random_state is None or random_state is np.random:
|
||||
return np.random.mtrand._rand
|
||||
if isinstance(random_state, np.random.RandomState):
|
||||
return random_state
|
||||
if isinstance(random_state, int):
|
||||
return np.random.RandomState(random_state)
|
||||
msg = (
|
||||
f"{random_state} cannot be used to generate a numpy.random.RandomState instance"
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
|
||||
class PythonRandomInterface:
|
||||
try:
|
||||
|
||||
def __init__(self, rng=None):
|
||||
import numpy
|
||||
|
||||
if rng is None:
|
||||
self._rng = numpy.random.mtrand._rand
|
||||
self._rng = rng
|
||||
|
||||
except ImportError:
|
||||
msg = "numpy not found, only random.random available."
|
||||
warnings.warn(msg, ImportWarning)
|
||||
|
||||
def random(self):
|
||||
return self._rng.random_sample()
|
||||
|
||||
def uniform(self, a, b):
|
||||
return a + (b - a) * self._rng.random_sample()
|
||||
|
||||
def randrange(self, a, b=None):
|
||||
return self._rng.randint(a, b)
|
||||
|
||||
def choice(self, seq):
|
||||
return seq[self._rng.randint(0, len(seq))]
|
||||
|
||||
def gauss(self, mu, sigma):
|
||||
return self._rng.normal(mu, sigma)
|
||||
|
||||
def shuffle(self, seq):
|
||||
return self._rng.shuffle(seq)
|
||||
|
||||
# Some methods don't match API for numpy RandomState.
|
||||
# Commented out versions are not used by NetworkX
|
||||
|
||||
def sample(self, seq, k):
|
||||
return self._rng.choice(list(seq), size=(k,), replace=False)
|
||||
|
||||
def randint(self, a, b):
|
||||
return self._rng.randint(a, b + 1)
|
||||
|
||||
# exponential as expovariate with 1/argument,
|
||||
def expovariate(self, scale):
|
||||
return self._rng.exponential(1 / scale)
|
||||
|
||||
# pareto as paretovariate with 1/argument,
|
||||
def paretovariate(self, shape):
|
||||
return self._rng.pareto(shape)
|
||||
|
||||
|
||||
# weibull as weibullvariate multiplied by beta,
|
||||
# def weibullvariate(self, alpha, beta):
|
||||
# return self._rng.weibull(alpha) * beta
|
||||
#
|
||||
# def triangular(self, low, high, mode):
|
||||
# return self._rng.triangular(low, mode, high)
|
||||
#
|
||||
# def choices(self, seq, weights=None, cum_weights=None, k=1):
|
||||
# return self._rng.choice(seq
|
||||
|
||||
|
||||
def create_py_random_state(random_state=None):
|
||||
"""Returns a random.Random instance depending on input.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
random_state : int or random number generator or None (default=None)
|
||||
If int, return a random.Random instance set with seed=int.
|
||||
if random.Random instance, return it.
|
||||
if None or the `random` package, return the global random number
|
||||
generator used by `random`.
|
||||
if np.random package, return the global numpy random number
|
||||
generator wrapped in a PythonRandomInterface class.
|
||||
if np.random.RandomState instance, return it wrapped in
|
||||
PythonRandomInterface
|
||||
if a PythonRandomInterface instance, return it
|
||||
"""
|
||||
import random
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
|
||||
if random_state is np.random:
|
||||
return PythonRandomInterface(np.random.mtrand._rand)
|
||||
if isinstance(random_state, np.random.RandomState):
|
||||
return PythonRandomInterface(random_state)
|
||||
if isinstance(random_state, PythonRandomInterface):
|
||||
return random_state
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
if random_state is None or random_state is random:
|
||||
return random._inst
|
||||
if isinstance(random_state, random.Random):
|
||||
return random_state
|
||||
if isinstance(random_state, int):
|
||||
return random.Random(random_state)
|
||||
msg = f"{random_state} cannot be used to generate a random.Random instance"
|
||||
raise ValueError(msg)
|
Loading…
Add table
Add a link
Reference in a new issue