Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
64
venv/Lib/site-packages/networkx/generators/ego.py
Normal file
64
venv/Lib/site-packages/networkx/generators/ego.py
Normal file
|
@ -0,0 +1,64 @@
|
|||
"""
|
||||
Ego graph.
|
||||
"""
|
||||
__all__ = ["ego_graph"]
|
||||
|
||||
import networkx as nx
|
||||
|
||||
|
||||
def ego_graph(G, n, radius=1, center=True, undirected=False, distance=None):
|
||||
"""Returns induced subgraph of neighbors centered at node n within
|
||||
a given radius.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : graph
|
||||
A NetworkX Graph or DiGraph
|
||||
|
||||
n : node
|
||||
A single node
|
||||
|
||||
radius : number, optional
|
||||
Include all neighbors of distance<=radius from n.
|
||||
|
||||
center : bool, optional
|
||||
If False, do not include center node in graph
|
||||
|
||||
undirected : bool, optional
|
||||
If True use both in- and out-neighbors of directed graphs.
|
||||
|
||||
distance : key, optional
|
||||
Use specified edge data key as distance. For example, setting
|
||||
distance='weight' will use the edge weight to measure the
|
||||
distance from the node n.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For directed graphs D this produces the "out" neighborhood
|
||||
or successors. If you want the neighborhood of predecessors
|
||||
first reverse the graph with D.reverse(). If you want both
|
||||
directions use the keyword argument undirected=True.
|
||||
|
||||
Node, edge, and graph attributes are copied to the returned subgraph.
|
||||
"""
|
||||
if undirected:
|
||||
if distance is not None:
|
||||
sp, _ = nx.single_source_dijkstra(
|
||||
G.to_undirected(), n, cutoff=radius, weight=distance
|
||||
)
|
||||
else:
|
||||
sp = dict(
|
||||
nx.single_source_shortest_path_length(
|
||||
G.to_undirected(), n, cutoff=radius
|
||||
)
|
||||
)
|
||||
else:
|
||||
if distance is not None:
|
||||
sp, _ = nx.single_source_dijkstra(G, n, cutoff=radius, weight=distance)
|
||||
else:
|
||||
sp = dict(nx.single_source_shortest_path_length(G, n, cutoff=radius))
|
||||
|
||||
H = G.subgraph(sp).copy()
|
||||
if not center:
|
||||
H.remove_node(n)
|
||||
return H
|
Loading…
Add table
Add a link
Reference in a new issue