Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
66
venv/Lib/site-packages/networkx/generators/cographs.py
Normal file
66
venv/Lib/site-packages/networkx/generators/cographs.py
Normal file
|
@ -0,0 +1,66 @@
|
|||
r"""Generators for cographs
|
||||
|
||||
A cograph is a graph containing no path on four vertices.
|
||||
Cographs or $P_4$-free graphs can be obtained from a single vertex
|
||||
by disjoint union and complementation operations.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [0] D.G. Corneil, H. Lerchs, L.Stewart Burlingham,
|
||||
"Complement reducible graphs",
|
||||
Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174,
|
||||
ISSN 0166-218X.
|
||||
"""
|
||||
import networkx as nx
|
||||
from networkx.utils import py_random_state
|
||||
|
||||
__all__ = ["random_cograph"]
|
||||
|
||||
|
||||
@py_random_state(1)
|
||||
def random_cograph(n, seed=None):
|
||||
r"""Returns a random cograph with $2 ^ n$ nodes.
|
||||
|
||||
A cograph is a graph containing no path on four vertices.
|
||||
Cographs or $P_4$-free graphs can be obtained from a single vertex
|
||||
by disjoint union and complementation operations.
|
||||
|
||||
This generator starts off from a single vertex and performes disjoint
|
||||
union and full join operations on itself.
|
||||
The decision on which operation will take place is random.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
The order of the cograph.
|
||||
seed : integer, random_state, or None (default)
|
||||
Indicator of random number generation state.
|
||||
See :ref:`Randomness<randomness>`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
G : A random graph containing no path on four vertices.
|
||||
|
||||
See Also
|
||||
--------
|
||||
full_join
|
||||
union
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] D.G. Corneil, H. Lerchs, L.Stewart Burlingham,
|
||||
"Complement reducible graphs",
|
||||
Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174,
|
||||
ISSN 0166-218X.
|
||||
"""
|
||||
R = nx.empty_graph(1)
|
||||
|
||||
for i in range(n):
|
||||
RR = nx.relabel_nodes(R.copy(), lambda x: x + len(R))
|
||||
|
||||
if seed.randint(0, 1) == 0:
|
||||
R = nx.full_join(R, RR)
|
||||
else:
|
||||
R = nx.disjoint_union(R, RR)
|
||||
|
||||
return R
|
Loading…
Add table
Add a link
Reference in a new issue