Fixed database typo and removed unnecessary class identifier.

This commit is contained in:
Batuhan Berk Başoğlu 2020-10-14 10:10:37 -04:00
parent 00ad49a143
commit 45fb349a7d
5098 changed files with 952558 additions and 85 deletions

View file

@ -0,0 +1,31 @@
"""
A package for generating various graphs in networkx.
"""
from networkx.generators.atlas import *
from networkx.generators.classic import *
from networkx.generators.cographs import *
from networkx.generators.community import *
from networkx.generators.degree_seq import *
from networkx.generators.directed import *
from networkx.generators.duplication import *
from networkx.generators.ego import *
from networkx.generators.expanders import *
from networkx.generators.geometric import *
from networkx.generators.internet_as_graphs import *
from networkx.generators.intersection import *
from networkx.generators.interval_graph import *
from networkx.generators.joint_degree_seq import *
from networkx.generators.lattice import *
from networkx.generators.line import *
from networkx.generators.mycielski import *
from networkx.generators.nonisomorphic_trees import *
from networkx.generators.random_clustered import *
from networkx.generators.random_graphs import *
from networkx.generators.small import *
from networkx.generators.social import *
from networkx.generators.sudoku import *
from networkx.generators.spectral_graph_forge import *
from networkx.generators.stochastic import *
from networkx.generators.trees import *
from networkx.generators.triads import *

View file

@ -0,0 +1,177 @@
"""
Generators for the small graph atlas.
"""
import gzip
from itertools import islice
import os
import os.path
import networkx as nx
__all__ = ["graph_atlas", "graph_atlas_g"]
#: The total number of graphs in the atlas.
#:
#: The graphs are labeled starting from 0 and extending to (but not
#: including) this number.
NUM_GRAPHS = 1253
#: The absolute path representing the directory containing this file.
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
#: The path to the data file containing the graph edge lists.
#:
#: This is the absolute filename of the gzipped text file containing the
#: edge list for each graph in the atlas. The file contains one entry
#: per graph in the atlas, in sequential order, starting from graph
#: number 0 and extending through graph number 1252 (see
#: :data:`NUM_GRAPHS`). Each entry looks like
#:
#: .. sourcecode:: text
#:
#: GRAPH 6
#: NODES 3
#: 0 1
#: 0 2
#:
#: where the first two lines are the graph's index in the atlas and the
#: number of nodes in the graph, and the remaining lines are the edge
#: list.
#:
#: This file was generated from a Python list of graphs via code like
#: the following::
#:
#: import gzip
#: from networkx.generators.atlas import graph_atlas_g
#: from networkx.readwrite.edgelist import write_edgelist
#:
#: with gzip.open('atlas.dat.gz', 'wb') as f:
#: for i, G in enumerate(graph_atlas_g()):
#: f.write(bytes(f'GRAPH {i}\n', encoding='utf-8'))
#: f.write(bytes(f'NODES {len(G)}\n', encoding='utf-8'))
#: write_edgelist(G, f, data=False)
#:
ATLAS_FILE = os.path.join(THIS_DIR, "atlas.dat.gz")
def _generate_graphs():
"""Sequentially read the file containing the edge list data for the
graphs in the atlas and generate the graphs one at a time.
This function reads the file given in :data:`.ATLAS_FILE`.
"""
with gzip.open(ATLAS_FILE, "rb") as f:
line = f.readline()
while line and line.startswith(b"GRAPH"):
# The first two lines of each entry tell us the index of the
# graph in the list and the number of nodes in the graph.
# They look like this:
#
# GRAPH 3
# NODES 2
#
graph_index = int(line[6:].rstrip())
line = f.readline()
num_nodes = int(line[6:].rstrip())
# The remaining lines contain the edge list, until the next
# GRAPH line (or until the end of the file).
edgelist = []
line = f.readline()
while line and not line.startswith(b"GRAPH"):
edgelist.append(line.rstrip())
line = f.readline()
G = nx.Graph()
G.name = f"G{graph_index}"
G.add_nodes_from(range(num_nodes))
G.add_edges_from(tuple(map(int, e.split())) for e in edgelist)
yield G
def graph_atlas(i):
"""Returns graph number `i` from the Graph Atlas.
For more information, see :func:`.graph_atlas_g`.
Parameters
----------
i : int
The index of the graph from the atlas to get. The graph at index
0 is assumed to be the null graph.
Returns
-------
list
A list of :class:`~networkx.Graph` objects, the one at index *i*
corresponding to the graph *i* in the Graph Atlas.
See also
--------
graph_atlas_g
Notes
-----
The time required by this function increases linearly with the
argument `i`, since it reads a large file sequentially in order to
generate the graph [1]_.
References
----------
.. [1] Ronald C. Read and Robin J. Wilson, *An Atlas of Graphs*.
Oxford University Press, 1998.
"""
if not (0 <= i < NUM_GRAPHS):
raise ValueError(f"index must be between 0 and {NUM_GRAPHS}")
return next(islice(_generate_graphs(), i, None))
def graph_atlas_g():
"""Returns the list of all graphs with up to seven nodes named in the
Graph Atlas.
The graphs are listed in increasing order by
1. number of nodes,
2. number of edges,
3. degree sequence (for example 111223 < 112222),
4. number of automorphisms,
in that order, with three exceptions as described in the *Notes*
section below. This causes the list to correspond with the index of
the graphs in the Graph Atlas [atlas]_, with the first graph,
``G[0]``, being the null graph.
Returns
-------
list
A list of :class:`~networkx.Graph` objects, the one at index *i*
corresponding to the graph *i* in the Graph Atlas.
See also
--------
graph_atlas
Notes
-----
This function may be expensive in both time and space, since it
reads a large file sequentially in order to populate the list.
Although the NetworkX atlas functions match the order of graphs
given in the "Atlas of Graphs" book, there are (at least) three
errors in the ordering described in the book. The following three
pairs of nodes violate the lexicographically nondecreasing sorted
degree sequence rule:
- graphs 55 and 56 with degree sequences 001111 and 000112,
- graphs 1007 and 1008 with degree sequences 3333444 and 3333336,
- graphs 1012 and 1213 with degree sequences 1244555 and 1244456.
References
----------
.. [atlas] Ronald C. Read and Robin J. Wilson,
*An Atlas of Graphs*.
Oxford University Press, 1998.
"""
return list(_generate_graphs())

View file

@ -0,0 +1,766 @@
"""Generators for some classic graphs.
The typical graph generator is called as follows:
>>> G = nx.complete_graph(100)
returning the complete graph on n nodes labeled 0, .., 99
as a simple graph. Except for empty_graph, all the generators
in this module return a Graph class (i.e. a simple, undirected graph).
"""
import itertools
import networkx as nx
from networkx.classes import Graph
from networkx.exception import NetworkXError
from itertools import accumulate
from networkx.utils import nodes_or_number
from networkx.utils import pairwise
__all__ = [
"balanced_tree",
"barbell_graph",
"binomial_tree",
"complete_graph",
"complete_multipartite_graph",
"circular_ladder_graph",
"circulant_graph",
"cycle_graph",
"dorogovtsev_goltsev_mendes_graph",
"empty_graph",
"full_rary_tree",
"ladder_graph",
"lollipop_graph",
"null_graph",
"path_graph",
"star_graph",
"trivial_graph",
"turan_graph",
"wheel_graph",
]
# -------------------------------------------------------------------
# Some Classic Graphs
# -------------------------------------------------------------------
def _tree_edges(n, r):
if n == 0:
return
# helper function for trees
# yields edges in rooted tree at 0 with n nodes and branching ratio r
nodes = iter(range(n))
parents = [next(nodes)] # stack of max length r
while parents:
source = parents.pop(0)
for i in range(r):
try:
target = next(nodes)
parents.append(target)
yield source, target
except StopIteration:
break
def full_rary_tree(r, n, create_using=None):
"""Creates a full r-ary tree of n vertices.
Sometimes called a k-ary, n-ary, or m-ary tree.
"... all non-leaf vertices have exactly r children and all levels
are full except for some rightmost position of the bottom level
(if a leaf at the bottom level is missing, then so are all of the
leaves to its right." [1]_
Parameters
----------
r : int
branching factor of the tree
n : int
Number of nodes in the tree
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
G : networkx Graph
An r-ary tree with n nodes
References
----------
.. [1] An introduction to data structures and algorithms,
James Andrew Storer, Birkhauser Boston 2001, (page 225).
"""
G = empty_graph(n, create_using)
G.add_edges_from(_tree_edges(n, r))
return G
def balanced_tree(r, h, create_using=None):
"""Returns the perfectly balanced `r`-ary tree of height `h`.
Parameters
----------
r : int
Branching factor of the tree; each node will have `r`
children.
h : int
Height of the tree.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
G : NetworkX graph
A balanced `r`-ary tree of height `h`.
Notes
-----
This is the rooted tree where all leaves are at distance `h` from
the root. The root has degree `r` and all other internal nodes
have degree `r + 1`.
Node labels are integers, starting from zero.
A balanced tree is also known as a *complete r-ary tree*.
"""
# The number of nodes in the balanced tree is `1 + r + ... + r^h`,
# which is computed by using the closed-form formula for a geometric
# sum with ratio `r`. In the special case that `r` is 1, the number
# of nodes is simply `h + 1` (since the tree is actually a path
# graph).
if r == 1:
n = h + 1
else:
# This must be an integer if both `r` and `h` are integers. If
# they are not, we force integer division anyway.
n = (1 - r ** (h + 1)) // (1 - r)
return full_rary_tree(r, n, create_using=create_using)
def barbell_graph(m1, m2, create_using=None):
"""Returns the Barbell Graph: two complete graphs connected by a path.
For $m1 > 1$ and $m2 >= 0$.
Two identical complete graphs $K_{m1}$ form the left and right bells,
and are connected by a path $P_{m2}$.
The `2*m1+m2` nodes are numbered
`0, ..., m1-1` for the left barbell,
`m1, ..., m1+m2-1` for the path,
and `m1+m2, ..., 2*m1+m2-1` for the right barbell.
The 3 subgraphs are joined via the edges `(m1-1, m1)` and
`(m1+m2-1, m1+m2)`. If `m2=0`, this is merely two complete
graphs joined together.
This graph is an extremal example in David Aldous
and Jim Fill's e-text on Random Walks on Graphs.
"""
if m1 < 2:
raise NetworkXError("Invalid graph description, m1 should be >=2")
if m2 < 0:
raise NetworkXError("Invalid graph description, m2 should be >=0")
# left barbell
G = complete_graph(m1, create_using)
if G.is_directed():
raise NetworkXError("Directed Graph not supported")
# connecting path
G.add_nodes_from(range(m1, m1 + m2 - 1))
if m2 > 1:
G.add_edges_from(pairwise(range(m1, m1 + m2)))
# right barbell
G.add_edges_from(
(u, v) for u in range(m1 + m2, 2 * m1 + m2) for v in range(u + 1, 2 * m1 + m2)
)
# connect it up
G.add_edge(m1 - 1, m1)
if m2 > 0:
G.add_edge(m1 + m2 - 1, m1 + m2)
return G
def binomial_tree(n):
"""Returns the Binomial Tree of order n.
The binomial tree of order 0 consists of a single vertex. A binomial tree of order k
is defined recursively by linking two binomial trees of order k-1: the root of one is
the leftmost child of the root of the other.
Parameters
----------
n : int
Order of the binomial tree.
Returns
-------
G : NetworkX graph
A binomial tree of $2^n$ vertices and $2^n - 1$ edges.
"""
G = nx.empty_graph(1)
N = 1
for i in range(n):
edges = [(u + N, v + N) for (u, v) in G.edges]
G.add_edges_from(edges)
G.add_edge(0, N)
N *= 2
return G
@nodes_or_number(0)
def complete_graph(n, create_using=None):
""" Return the complete graph `K_n` with n nodes.
Parameters
----------
n : int or iterable container of nodes
If n is an integer, nodes are from range(n).
If n is a container of nodes, those nodes appear in the graph.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Examples
--------
>>> G = nx.complete_graph(9)
>>> len(G)
9
>>> G.size()
36
>>> G = nx.complete_graph(range(11, 14))
>>> list(G.nodes())
[11, 12, 13]
>>> G = nx.complete_graph(4, nx.DiGraph())
>>> G.is_directed()
True
"""
n_name, nodes = n
G = empty_graph(n_name, create_using)
if len(nodes) > 1:
if G.is_directed():
edges = itertools.permutations(nodes, 2)
else:
edges = itertools.combinations(nodes, 2)
G.add_edges_from(edges)
return G
def circular_ladder_graph(n, create_using=None):
"""Returns the circular ladder graph $CL_n$ of length n.
$CL_n$ consists of two concentric n-cycles in which
each of the n pairs of concentric nodes are joined by an edge.
Node labels are the integers 0 to n-1
"""
G = ladder_graph(n, create_using)
G.add_edge(0, n - 1)
G.add_edge(n, 2 * n - 1)
return G
def circulant_graph(n, offsets, create_using=None):
"""Generates the circulant graph $Ci_n(x_1, x_2, ..., x_m)$ with $n$ vertices.
Returns
-------
The graph $Ci_n(x_1, ..., x_m)$ consisting of $n$ vertices $0, ..., n-1$ such
that the vertex with label $i$ is connected to the vertices labelled $(i + x)$
and $(i - x)$, for all $x$ in $x_1$ up to $x_m$, with the indices taken modulo $n$.
Parameters
----------
n : integer
The number of vertices the generated graph is to contain.
offsets : list of integers
A list of vertex offsets, $x_1$ up to $x_m$, as described above.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Examples
--------
Many well-known graph families are subfamilies of the circulant graphs;
for example, to generate the cycle graph on n points, we connect every
vertex to every other at offset plus or minus one. For n = 10,
>>> import networkx
>>> G = networkx.generators.classic.circulant_graph(10, [1])
>>> edges = [
... (0, 9),
... (0, 1),
... (1, 2),
... (2, 3),
... (3, 4),
... (4, 5),
... (5, 6),
... (6, 7),
... (7, 8),
... (8, 9),
... ]
...
>>> sorted(edges) == sorted(G.edges())
True
Similarly, we can generate the complete graph on 5 points with the set of
offsets [1, 2]:
>>> G = networkx.generators.classic.circulant_graph(5, [1, 2])
>>> edges = [
... (0, 1),
... (0, 2),
... (0, 3),
... (0, 4),
... (1, 2),
... (1, 3),
... (1, 4),
... (2, 3),
... (2, 4),
... (3, 4),
... ]
...
>>> sorted(edges) == sorted(G.edges())
True
"""
G = empty_graph(n, create_using)
for i in range(n):
for j in offsets:
G.add_edge(i, (i - j) % n)
G.add_edge(i, (i + j) % n)
return G
@nodes_or_number(0)
def cycle_graph(n, create_using=None):
"""Returns the cycle graph $C_n$ of cyclically connected nodes.
$C_n$ is a path with its two end-nodes connected.
Parameters
----------
n : int or iterable container of nodes
If n is an integer, nodes are from `range(n)`.
If n is a container of nodes, those nodes appear in the graph.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Notes
-----
If create_using is directed, the direction is in increasing order.
"""
n_orig, nodes = n
G = empty_graph(nodes, create_using)
G.add_edges_from(pairwise(nodes))
G.add_edge(nodes[-1], nodes[0])
return G
def dorogovtsev_goltsev_mendes_graph(n, create_using=None):
"""Returns the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.
n is the generation.
See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes.
"""
G = empty_graph(0, create_using)
if G.is_directed():
raise NetworkXError("Directed Graph not supported")
if G.is_multigraph():
raise NetworkXError("Multigraph not supported")
G.add_edge(0, 1)
if n == 0:
return G
new_node = 2 # next node to be added
for i in range(1, n + 1): # iterate over number of generations.
last_generation_edges = list(G.edges())
number_of_edges_in_last_generation = len(last_generation_edges)
for j in range(0, number_of_edges_in_last_generation):
G.add_edge(new_node, last_generation_edges[j][0])
G.add_edge(new_node, last_generation_edges[j][1])
new_node += 1
return G
@nodes_or_number(0)
def empty_graph(n=0, create_using=None, default=nx.Graph):
"""Returns the empty graph with n nodes and zero edges.
Parameters
----------
n : int or iterable container of nodes (default = 0)
If n is an integer, nodes are from `range(n)`.
If n is a container of nodes, those nodes appear in the graph.
create_using : Graph Instance, Constructor or None
Indicator of type of graph to return.
If a Graph-type instance, then clear and use it.
If None, use the `default` constructor.
If a constructor, call it to create an empty graph.
default : Graph constructor (optional, default = nx.Graph)
The constructor to use if create_using is None.
If None, then nx.Graph is used.
This is used when passing an unknown `create_using` value
through your home-grown function to `empty_graph` and
you want a default constructor other than nx.Graph.
Examples
--------
>>> G = nx.empty_graph(10)
>>> G.number_of_nodes()
10
>>> G.number_of_edges()
0
>>> G = nx.empty_graph("ABC")
>>> G.number_of_nodes()
3
>>> sorted(G)
['A', 'B', 'C']
Notes
-----
The variable create_using should be a Graph Constructor or a
"graph"-like object. Constructors, e.g. `nx.Graph` or `nx.MultiGraph`
will be used to create the returned graph. "graph"-like objects
will be cleared (nodes and edges will be removed) and refitted as
an empty "graph" with nodes specified in n. This capability
is useful for specifying the class-nature of the resulting empty
"graph" (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).
The variable create_using has three main uses:
Firstly, the variable create_using can be used to create an
empty digraph, multigraph, etc. For example,
>>> n = 10
>>> G = nx.empty_graph(n, create_using=nx.DiGraph)
will create an empty digraph on n nodes.
Secondly, one can pass an existing graph (digraph, multigraph,
etc.) via create_using. For example, if G is an existing graph
(resp. digraph, multigraph, etc.), then empty_graph(n, create_using=G)
will empty G (i.e. delete all nodes and edges using G.clear())
and then add n nodes and zero edges, and return the modified graph.
Thirdly, when constructing your home-grown graph creation function
you can use empty_graph to construct the graph by passing a user
defined create_using to empty_graph. In this case, if you want the
default constructor to be other than nx.Graph, specify `default`.
>>> def mygraph(n, create_using=None):
... G = nx.empty_graph(n, create_using, nx.MultiGraph)
... G.add_edges_from([(0, 1), (0, 1)])
... return G
>>> G = mygraph(3)
>>> G.is_multigraph()
True
>>> G = mygraph(3, nx.Graph)
>>> G.is_multigraph()
False
See also create_empty_copy(G).
"""
if create_using is None:
G = default()
elif hasattr(create_using, "_adj"):
# create_using is a NetworkX style Graph
create_using.clear()
G = create_using
else:
# try create_using as constructor
G = create_using()
n_name, nodes = n
G.add_nodes_from(nodes)
return G
def ladder_graph(n, create_using=None):
"""Returns the Ladder graph of length n.
This is two paths of n nodes, with
each pair connected by a single edge.
Node labels are the integers 0 to 2*n - 1.
"""
G = empty_graph(2 * n, create_using)
if G.is_directed():
raise NetworkXError("Directed Graph not supported")
G.add_edges_from(pairwise(range(n)))
G.add_edges_from(pairwise(range(n, 2 * n)))
G.add_edges_from((v, v + n) for v in range(n))
return G
@nodes_or_number([0, 1])
def lollipop_graph(m, n, create_using=None):
"""Returns the Lollipop Graph; `K_m` connected to `P_n`.
This is the Barbell Graph without the right barbell.
Parameters
----------
m, n : int or iterable container of nodes (default = 0)
If an integer, nodes are from `range(m)` and `range(m,m+n)`.
If a container, the entries are the coordinate of the node.
The nodes for m appear in the complete graph $K_m$ and the nodes
for n appear in the path $P_n$
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Notes
-----
The 2 subgraphs are joined via an edge (m-1, m).
If n=0, this is merely a complete graph.
(This graph is an extremal example in David Aldous and Jim
Fill's etext on Random Walks on Graphs.)
"""
m, m_nodes = m
n, n_nodes = n
M = len(m_nodes)
N = len(n_nodes)
if isinstance(m, int):
n_nodes = [len(m_nodes) + i for i in n_nodes]
if M < 2:
raise NetworkXError("Invalid graph description, m should be >=2")
if N < 0:
raise NetworkXError("Invalid graph description, n should be >=0")
# the ball
G = complete_graph(m_nodes, create_using)
if G.is_directed():
raise NetworkXError("Directed Graph not supported")
# the stick
G.add_nodes_from(n_nodes)
if N > 1:
G.add_edges_from(pairwise(n_nodes))
# connect ball to stick
if M > 0 and N > 0:
G.add_edge(m_nodes[-1], n_nodes[0])
return G
def null_graph(create_using=None):
"""Returns the Null graph with no nodes or edges.
See empty_graph for the use of create_using.
"""
G = empty_graph(0, create_using)
return G
@nodes_or_number(0)
def path_graph(n, create_using=None):
"""Returns the Path graph `P_n` of linearly connected nodes.
Parameters
----------
n : int or iterable
If an integer, node labels are 0 to n with center 0.
If an iterable of nodes, the center is the first.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
"""
n_name, nodes = n
G = empty_graph(nodes, create_using)
G.add_edges_from(pairwise(nodes))
return G
@nodes_or_number(0)
def star_graph(n, create_using=None):
""" Return the star graph
The star graph consists of one center node connected to n outer nodes.
Parameters
----------
n : int or iterable
If an integer, node labels are 0 to n with center 0.
If an iterable of nodes, the center is the first.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Notes
-----
The graph has n+1 nodes for integer n.
So star_graph(3) is the same as star_graph(range(4)).
"""
n_name, nodes = n
if isinstance(n_name, int):
nodes = nodes + [n_name] # there should be n+1 nodes
first = nodes[0]
G = empty_graph(nodes, create_using)
if G.is_directed():
raise NetworkXError("Directed Graph not supported")
G.add_edges_from((first, v) for v in nodes[1:])
return G
def trivial_graph(create_using=None):
""" Return the Trivial graph with one node (with label 0) and no edges.
"""
G = empty_graph(1, create_using)
return G
def turan_graph(n, r):
r""" Return the Turan Graph
The Turan Graph is a complete multipartite graph on $n$ vertices
with $r$ disjoint subsets. It is the graph with the edges for any graph with
$n$ vertices and $r$ disjoint subsets.
Given $n$ and $r$, we generate a complete multipartite graph with
$r-(n \mod r)$ partitions of size $n/r$, rounded down, and
$n \mod r$ partitions of size $n/r+1$, rounded down.
Parameters
----------
n : int
The number of vertices.
r : int
The number of partitions.
Must be less than or equal to n.
Notes
-----
Must satisfy $1 <= r <= n$.
The graph has $(r-1)(n^2)/(2r)$ edges, rounded down.
"""
if not 1 <= r <= n:
raise NetworkXError("Must satisfy 1 <= r <= n")
partitions = [n // r] * (r - (n % r)) + [n // r + 1] * (n % r)
G = complete_multipartite_graph(*partitions)
return G
@nodes_or_number(0)
def wheel_graph(n, create_using=None):
""" Return the wheel graph
The wheel graph consists of a hub node connected to a cycle of (n-1) nodes.
Parameters
----------
n : int or iterable
If an integer, node labels are 0 to n with center 0.
If an iterable of nodes, the center is the first.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Node labels are the integers 0 to n - 1.
"""
n_name, nodes = n
if n_name == 0:
G = empty_graph(0, create_using)
return G
G = star_graph(nodes, create_using)
if len(G) > 2:
G.add_edges_from(pairwise(nodes[1:]))
G.add_edge(nodes[-1], nodes[1])
return G
def complete_multipartite_graph(*subset_sizes):
"""Returns the complete multipartite graph with the specified subset sizes.
Parameters
----------
subset_sizes : tuple of integers or tuple of node iterables
The arguments can either all be integer number of nodes or they
can all be iterables of nodes. If integers, they represent the
number of vertices in each subset of the multipartite graph.
If iterables, each is used to create the nodes for that subset.
The length of subset_sizes is the number of subsets.
Returns
-------
G : NetworkX Graph
Returns the complete multipartite graph with the specified subsets.
For each node, the node attribute 'subset' is an integer
indicating which subset contains the node.
Examples
--------
Creating a complete tripartite graph, with subsets of one, two, and three
vertices, respectively.
>>> G = nx.complete_multipartite_graph(1, 2, 3)
>>> [G.nodes[u]["subset"] for u in G]
[0, 1, 1, 2, 2, 2]
>>> list(G.edges(0))
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
>>> list(G.edges(2))
[(2, 0), (2, 3), (2, 4), (2, 5)]
>>> list(G.edges(4))
[(4, 0), (4, 1), (4, 2)]
>>> G = nx.complete_multipartite_graph("a", "bc", "def")
>>> [G.nodes[u]["subset"] for u in sorted(G)]
[0, 1, 1, 2, 2, 2]
Notes
-----
This function generalizes several other graph generator functions.
- If no subset sizes are given, this returns the null graph.
- If a single subset size `n` is given, this returns the empty graph on
`n` nodes.
- If two subset sizes `m` and `n` are given, this returns the complete
bipartite graph on `m + n` nodes.
- If subset sizes `1` and `n` are given, this returns the star graph on
`n + 1` nodes.
See also
--------
complete_bipartite_graph
"""
# The complete multipartite graph is an undirected simple graph.
G = Graph()
if len(subset_sizes) == 0:
return G
# set up subsets of nodes
try:
extents = pairwise(accumulate((0,) + subset_sizes))
subsets = [range(start, end) for start, end in extents]
except TypeError:
subsets = subset_sizes
# add nodes with subset attribute
# while checking that ints are not mixed with iterables
try:
for (i, subset) in enumerate(subsets):
G.add_nodes_from(subset, subset=i)
except TypeError as e:
raise NetworkXError("Arguments must be all ints or all iterables") from e
# Across subsets, all vertices should be adjacent.
# We can use itertools.combinations() because undirected.
for subset1, subset2 in itertools.combinations(subsets, 2):
G.add_edges_from(itertools.product(subset1, subset2))
return G

View file

@ -0,0 +1,66 @@
r"""Generators for cographs
A cograph is a graph containing no path on four vertices.
Cographs or $P_4$-free graphs can be obtained from a single vertex
by disjoint union and complementation operations.
References
----------
.. [0] D.G. Corneil, H. Lerchs, L.Stewart Burlingham,
"Complement reducible graphs",
Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174,
ISSN 0166-218X.
"""
import networkx as nx
from networkx.utils import py_random_state
__all__ = ["random_cograph"]
@py_random_state(1)
def random_cograph(n, seed=None):
r"""Returns a random cograph with $2 ^ n$ nodes.
A cograph is a graph containing no path on four vertices.
Cographs or $P_4$-free graphs can be obtained from a single vertex
by disjoint union and complementation operations.
This generator starts off from a single vertex and performes disjoint
union and full join operations on itself.
The decision on which operation will take place is random.
Parameters
----------
n : int
The order of the cograph.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
G : A random graph containing no path on four vertices.
See Also
--------
full_join
union
References
----------
.. [1] D.G. Corneil, H. Lerchs, L.Stewart Burlingham,
"Complement reducible graphs",
Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174,
ISSN 0166-218X.
"""
R = nx.empty_graph(1)
for i in range(n):
RR = nx.relabel_nodes(R.copy(), lambda x: x + len(R))
if seed.randint(0, 1) == 0:
R = nx.full_join(R, RR)
else:
R = nx.disjoint_union(R, RR)
return R

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,863 @@
"""Generate graphs with a given degree sequence or expected degree sequence.
"""
import heapq
from itertools import chain
from itertools import combinations
from itertools import zip_longest
import math
from operator import itemgetter
import networkx as nx
from networkx.utils import random_weighted_sample, py_random_state
__all__ = [
"configuration_model",
"directed_configuration_model",
"expected_degree_graph",
"havel_hakimi_graph",
"directed_havel_hakimi_graph",
"degree_sequence_tree",
"random_degree_sequence_graph",
]
chaini = chain.from_iterable
def _to_stublist(degree_sequence):
"""Returns a list of degree-repeated node numbers.
``degree_sequence`` is a list of nonnegative integers representing
the degrees of nodes in a graph.
This function returns a list of node numbers with multiplicities
according to the given degree sequence. For example, if the first
element of ``degree_sequence`` is ``3``, then the first node number,
``0``, will appear at the head of the returned list three times. The
node numbers are assumed to be the numbers zero through
``len(degree_sequence) - 1``.
Examples
--------
>>> degree_sequence = [1, 2, 3]
>>> _to_stublist(degree_sequence)
[0, 1, 1, 2, 2, 2]
If a zero appears in the sequence, that means the node exists but
has degree zero, so that number will be skipped in the returned
list::
>>> degree_sequence = [2, 0, 1]
>>> _to_stublist(degree_sequence)
[0, 0, 2]
"""
return list(chaini([n] * d for n, d in enumerate(degree_sequence)))
def _configuration_model(
deg_sequence, create_using, directed=False, in_deg_sequence=None, seed=None
):
"""Helper function for generating either undirected or directed
configuration model graphs.
``deg_sequence`` is a list of nonnegative integers representing the
degree of the node whose label is the index of the list element.
``create_using`` see :func:`~networkx.empty_graph`.
``directed`` and ``in_deg_sequence`` are required if you want the
returned graph to be generated using the directed configuration
model algorithm. If ``directed`` is ``False``, then ``deg_sequence``
is interpreted as the degree sequence of an undirected graph and
``in_deg_sequence`` is ignored. Otherwise, if ``directed`` is
``True``, then ``deg_sequence`` is interpreted as the out-degree
sequence and ``in_deg_sequence`` as the in-degree sequence of a
directed graph.
.. note::
``deg_sequence`` and ``in_deg_sequence`` need not be the same
length.
``seed`` is a random.Random or numpy.random.RandomState instance
This function returns a graph, directed if and only if ``directed``
is ``True``, generated according to the configuration model
algorithm. For more information on the algorithm, see the
:func:`configuration_model` or :func:`directed_configuration_model`
functions.
"""
n = len(deg_sequence)
G = nx.empty_graph(n, create_using)
# If empty, return the null graph immediately.
if n == 0:
return G
# Build a list of available degree-repeated nodes. For example,
# for degree sequence [3, 2, 1, 1, 1], the "stub list" is
# initially [0, 0, 0, 1, 1, 2, 3, 4], that is, node 0 has degree
# 3 and thus is repeated 3 times, etc.
#
# Also, shuffle the stub list in order to get a random sequence of
# node pairs.
if directed:
pairs = zip_longest(deg_sequence, in_deg_sequence, fillvalue=0)
# Unzip the list of pairs into a pair of lists.
out_deg, in_deg = zip(*pairs)
out_stublist = _to_stublist(out_deg)
in_stublist = _to_stublist(in_deg)
seed.shuffle(out_stublist)
seed.shuffle(in_stublist)
else:
stublist = _to_stublist(deg_sequence)
# Choose a random balanced bipartition of the stublist, which
# gives a random pairing of nodes. In this implementation, we
# shuffle the list and then split it in half.
n = len(stublist)
half = n // 2
seed.shuffle(stublist)
out_stublist, in_stublist = stublist[:half], stublist[half:]
G.add_edges_from(zip(out_stublist, in_stublist))
return G
@py_random_state(2)
def configuration_model(deg_sequence, create_using=None, seed=None):
"""Returns a random graph with the given degree sequence.
The configuration model generates a random pseudograph (graph with
parallel edges and self loops) by randomly assigning edges to
match the given degree sequence.
Parameters
----------
deg_sequence : list of nonnegative integers
Each list entry corresponds to the degree of a node.
create_using : NetworkX graph constructor, optional (default MultiGraph)
Graph type to create. If graph instance, then cleared before populated.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
G : MultiGraph
A graph with the specified degree sequence.
Nodes are labeled starting at 0 with an index
corresponding to the position in deg_sequence.
Raises
------
NetworkXError
If the degree sequence does not have an even sum.
See Also
--------
is_graphical
Notes
-----
As described by Newman [1]_.
A non-graphical degree sequence (not realizable by some simple
graph) is allowed since this function returns graphs with self
loops and parallel edges. An exception is raised if the degree
sequence does not have an even sum.
This configuration model construction process can lead to
duplicate edges and loops. You can remove the self-loops and
parallel edges (see below) which will likely result in a graph
that doesn't have the exact degree sequence specified.
The density of self-loops and parallel edges tends to decrease as
the number of nodes increases. However, typically the number of
self-loops will approach a Poisson distribution with a nonzero mean,
and similarly for the number of parallel edges. Consider a node
with *k* stubs. The probability of being joined to another stub of
the same node is basically (*k* - *1*) / *N*, where *k* is the
degree and *N* is the number of nodes. So the probability of a
self-loop scales like *c* / *N* for some constant *c*. As *N* grows,
this means we expect *c* self-loops. Similarly for parallel edges.
References
----------
.. [1] M.E.J. Newman, "The structure and function of complex networks",
SIAM REVIEW 45-2, pp 167-256, 2003.
Examples
--------
You can create a degree sequence following a particular distribution
by using the one of the distribution functions in
:mod:`~networkx.utils.random_sequence` (or one of your own). For
example, to create an undirected multigraph on one hundred nodes
with degree sequence chosen from the power law distribution:
>>> sequence = nx.random_powerlaw_tree_sequence(100, tries=5000)
>>> G = nx.configuration_model(sequence)
>>> len(G)
100
>>> actual_degrees = [d for v, d in G.degree()]
>>> actual_degrees == sequence
True
The returned graph is a multigraph, which may have parallel
edges. To remove any parallel edges from the returned graph:
>>> G = nx.Graph(G)
Similarly, to remove self-loops:
>>> G.remove_edges_from(nx.selfloop_edges(G))
"""
if sum(deg_sequence) % 2 != 0:
msg = "Invalid degree sequence: sum of degrees must be even, not odd"
raise nx.NetworkXError(msg)
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
if G.is_directed():
raise nx.NetworkXNotImplemented("not implemented for directed graphs")
G = _configuration_model(deg_sequence, G, seed=seed)
return G
@py_random_state(3)
def directed_configuration_model(
in_degree_sequence, out_degree_sequence, create_using=None, seed=None
):
"""Returns a directed_random graph with the given degree sequences.
The configuration model generates a random directed pseudograph
(graph with parallel edges and self loops) by randomly assigning
edges to match the given degree sequences.
Parameters
----------
in_degree_sequence : list of nonnegative integers
Each list entry corresponds to the in-degree of a node.
out_degree_sequence : list of nonnegative integers
Each list entry corresponds to the out-degree of a node.
create_using : NetworkX graph constructor, optional (default MultiDiGraph)
Graph type to create. If graph instance, then cleared before populated.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
G : MultiDiGraph
A graph with the specified degree sequences.
Nodes are labeled starting at 0 with an index
corresponding to the position in deg_sequence.
Raises
------
NetworkXError
If the degree sequences do not have the same sum.
See Also
--------
configuration_model
Notes
-----
Algorithm as described by Newman [1]_.
A non-graphical degree sequence (not realizable by some simple
graph) is allowed since this function returns graphs with self
loops and parallel edges. An exception is raised if the degree
sequences does not have the same sum.
This configuration model construction process can lead to
duplicate edges and loops. You can remove the self-loops and
parallel edges (see below) which will likely result in a graph
that doesn't have the exact degree sequence specified. This
"finite-size effect" decreases as the size of the graph increases.
References
----------
.. [1] Newman, M. E. J. and Strogatz, S. H. and Watts, D. J.
Random graphs with arbitrary degree distributions and their applications
Phys. Rev. E, 64, 026118 (2001)
Examples
--------
One can modify the in- and out-degree sequences from an existing
directed graph in order to create a new directed graph. For example,
here we modify the directed path graph:
>>> D = nx.DiGraph([(0, 1), (1, 2), (2, 3)])
>>> din = list(d for n, d in D.in_degree())
>>> dout = list(d for n, d in D.out_degree())
>>> din.append(1)
>>> dout[0] = 2
>>> # We now expect an edge from node 0 to a new node, node 3.
... D = nx.directed_configuration_model(din, dout)
The returned graph is a directed multigraph, which may have parallel
edges. To remove any parallel edges from the returned graph:
>>> D = nx.DiGraph(D)
Similarly, to remove self-loops:
>>> D.remove_edges_from(nx.selfloop_edges(D))
"""
if sum(in_degree_sequence) != sum(out_degree_sequence):
msg = "Invalid degree sequences: sequences must have equal sums"
raise nx.NetworkXError(msg)
if create_using is None:
create_using = nx.MultiDiGraph
G = _configuration_model(
out_degree_sequence,
create_using,
directed=True,
in_deg_sequence=in_degree_sequence,
seed=seed,
)
name = "directed configuration_model {} nodes {} edges"
return G
@py_random_state(1)
def expected_degree_graph(w, seed=None, selfloops=True):
r"""Returns a random graph with given expected degrees.
Given a sequence of expected degrees $W=(w_0,w_1,\ldots,w_{n-1})$
of length $n$ this algorithm assigns an edge between node $u$ and
node $v$ with probability
.. math::
p_{uv} = \frac{w_u w_v}{\sum_k w_k} .
Parameters
----------
w : list
The list of expected degrees.
selfloops: bool (default=True)
Set to False to remove the possibility of self-loop edges.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
Graph
Examples
--------
>>> z = [10 for i in range(100)]
>>> G = nx.expected_degree_graph(z)
Notes
-----
The nodes have integer labels corresponding to index of expected degrees
input sequence.
The complexity of this algorithm is $\mathcal{O}(n+m)$ where $n$ is the
number of nodes and $m$ is the expected number of edges.
The model in [1]_ includes the possibility of self-loop edges.
Set selfloops=False to produce a graph without self loops.
For finite graphs this model doesn't produce exactly the given
expected degree sequence. Instead the expected degrees are as
follows.
For the case without self loops (selfloops=False),
.. math::
E[deg(u)] = \sum_{v \ne u} p_{uv}
= w_u \left( 1 - \frac{w_u}{\sum_k w_k} \right) .
NetworkX uses the standard convention that a self-loop edge counts 2
in the degree of a node, so with self loops (selfloops=True),
.. math::
E[deg(u)] = \sum_{v \ne u} p_{uv} + 2 p_{uu}
= w_u \left( 1 + \frac{w_u}{\sum_k w_k} \right) .
References
----------
.. [1] Fan Chung and L. Lu, Connected components in random graphs with
given expected degree sequences, Ann. Combinatorics, 6,
pp. 125-145, 2002.
.. [2] Joel Miller and Aric Hagberg,
Efficient generation of networks with given expected degrees,
in Algorithms and Models for the Web-Graph (WAW 2011),
Alan Frieze, Paul Horn, and Paweł Prałat (Eds), LNCS 6732,
pp. 115-126, 2011.
"""
n = len(w)
G = nx.empty_graph(n)
# If there are no nodes are no edges in the graph, return the empty graph.
if n == 0 or max(w) == 0:
return G
rho = 1 / sum(w)
# Sort the weights in decreasing order. The original order of the
# weights dictates the order of the (integer) node labels, so we
# need to remember the permutation applied in the sorting.
order = sorted(enumerate(w), key=itemgetter(1), reverse=True)
mapping = {c: u for c, (u, v) in enumerate(order)}
seq = [v for u, v in order]
last = n
if not selfloops:
last -= 1
for u in range(last):
v = u
if not selfloops:
v += 1
factor = seq[u] * rho
p = min(seq[v] * factor, 1)
while v < n and p > 0:
if p != 1:
r = seed.random()
v += int(math.floor(math.log(r, 1 - p)))
if v < n:
q = min(seq[v] * factor, 1)
if seed.random() < q / p:
G.add_edge(mapping[u], mapping[v])
v += 1
p = q
return G
def havel_hakimi_graph(deg_sequence, create_using=None):
"""Returns a simple graph with given degree sequence constructed
using the Havel-Hakimi algorithm.
Parameters
----------
deg_sequence: list of integers
Each integer corresponds to the degree of a node (need not be sorted).
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Directed graphs are not allowed.
Raises
------
NetworkXException
For a non-graphical degree sequence (i.e. one
not realizable by some simple graph).
Notes
-----
The Havel-Hakimi algorithm constructs a simple graph by
successively connecting the node of highest degree to other nodes
of highest degree, resorting remaining nodes by degree, and
repeating the process. The resulting graph has a high
degree-associativity. Nodes are labeled 1,.., len(deg_sequence),
corresponding to their position in deg_sequence.
The basic algorithm is from Hakimi [1]_ and was generalized by
Kleitman and Wang [2]_.
References
----------
.. [1] Hakimi S., On Realizability of a Set of Integers as
Degrees of the Vertices of a Linear Graph. I,
Journal of SIAM, 10(3), pp. 496-506 (1962)
.. [2] Kleitman D.J. and Wang D.L.
Algorithms for Constructing Graphs and Digraphs with Given Valences
and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)
"""
if not nx.is_graphical(deg_sequence):
raise nx.NetworkXError("Invalid degree sequence")
p = len(deg_sequence)
G = nx.empty_graph(p, create_using)
if G.is_directed():
raise nx.NetworkXError("Directed graphs are not supported")
num_degs = [[] for i in range(p)]
dmax, dsum, n = 0, 0, 0
for d in deg_sequence:
# Process only the non-zero integers
if d > 0:
num_degs[d].append(n)
dmax, dsum, n = max(dmax, d), dsum + d, n + 1
# Return graph if no edges
if n == 0:
return G
modstubs = [(0, 0)] * (dmax + 1)
# Successively reduce degree sequence by removing the maximum degree
while n > 0:
# Retrieve the maximum degree in the sequence
while len(num_degs[dmax]) == 0:
dmax -= 1
# If there are not enough stubs to connect to, then the sequence is
# not graphical
if dmax > n - 1:
raise nx.NetworkXError("Non-graphical integer sequence")
# Remove largest stub in list
source = num_degs[dmax].pop()
n -= 1
# Reduce the next dmax largest stubs
mslen = 0
k = dmax
for i in range(dmax):
while len(num_degs[k]) == 0:
k -= 1
target = num_degs[k].pop()
G.add_edge(source, target)
n -= 1
if k > 1:
modstubs[mslen] = (k - 1, target)
mslen += 1
# Add back to the list any nonzero stubs that were removed
for i in range(mslen):
(stubval, stubtarget) = modstubs[i]
num_degs[stubval].append(stubtarget)
n += 1
return G
def directed_havel_hakimi_graph(in_deg_sequence, out_deg_sequence, create_using=None):
"""Returns a directed graph with the given degree sequences.
Parameters
----------
in_deg_sequence : list of integers
Each list entry corresponds to the in-degree of a node.
out_deg_sequence : list of integers
Each list entry corresponds to the out-degree of a node.
create_using : NetworkX graph constructor, optional (default DiGraph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
G : DiGraph
A graph with the specified degree sequences.
Nodes are labeled starting at 0 with an index
corresponding to the position in deg_sequence
Raises
------
NetworkXError
If the degree sequences are not digraphical.
See Also
--------
configuration_model
Notes
-----
Algorithm as described by Kleitman and Wang [1]_.
References
----------
.. [1] D.J. Kleitman and D.L. Wang
Algorithms for Constructing Graphs and Digraphs with Given Valences
and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)
"""
in_deg_sequence = nx.utils.make_list_of_ints(in_deg_sequence)
out_deg_sequence = nx.utils.make_list_of_ints(out_deg_sequence)
# Process the sequences and form two heaps to store degree pairs with
# either zero or nonzero out degrees
sumin, sumout = 0, 0
nin, nout = len(in_deg_sequence), len(out_deg_sequence)
maxn = max(nin, nout)
G = nx.empty_graph(maxn, create_using, default=nx.DiGraph)
if maxn == 0:
return G
maxin = 0
stubheap, zeroheap = [], []
for n in range(maxn):
in_deg, out_deg = 0, 0
if n < nout:
out_deg = out_deg_sequence[n]
if n < nin:
in_deg = in_deg_sequence[n]
if in_deg < 0 or out_deg < 0:
raise nx.NetworkXError(
"Invalid degree sequences. Sequence values must be positive."
)
sumin, sumout, maxin = sumin + in_deg, sumout + out_deg, max(maxin, in_deg)
if in_deg > 0:
stubheap.append((-1 * out_deg, -1 * in_deg, n))
elif out_deg > 0:
zeroheap.append((-1 * out_deg, n))
if sumin != sumout:
raise nx.NetworkXError(
"Invalid degree sequences. Sequences must have equal sums."
)
heapq.heapify(stubheap)
heapq.heapify(zeroheap)
modstubs = [(0, 0, 0)] * (maxin + 1)
# Successively reduce degree sequence by removing the maximum
while stubheap:
# Remove first value in the sequence with a non-zero in degree
(freeout, freein, target) = heapq.heappop(stubheap)
freein *= -1
if freein > len(stubheap) + len(zeroheap):
raise nx.NetworkXError("Non-digraphical integer sequence")
# Attach arcs from the nodes with the most stubs
mslen = 0
for i in range(freein):
if zeroheap and (not stubheap or stubheap[0][0] > zeroheap[0][0]):
(stubout, stubsource) = heapq.heappop(zeroheap)
stubin = 0
else:
(stubout, stubin, stubsource) = heapq.heappop(stubheap)
if stubout == 0:
raise nx.NetworkXError("Non-digraphical integer sequence")
G.add_edge(stubsource, target)
# Check if source is now totally connected
if stubout + 1 < 0 or stubin < 0:
modstubs[mslen] = (stubout + 1, stubin, stubsource)
mslen += 1
# Add the nodes back to the heaps that still have available stubs
for i in range(mslen):
stub = modstubs[i]
if stub[1] < 0:
heapq.heappush(stubheap, stub)
else:
heapq.heappush(zeroheap, (stub[0], stub[2]))
if freeout < 0:
heapq.heappush(zeroheap, (freeout, target))
return G
def degree_sequence_tree(deg_sequence, create_using=None):
"""Make a tree for the given degree sequence.
A tree has #nodes-#edges=1 so
the degree sequence must have
len(deg_sequence)-sum(deg_sequence)/2=1
"""
# The sum of the degree sequence must be even (for any undirected graph).
degree_sum = sum(deg_sequence)
if degree_sum % 2 != 0:
msg = "Invalid degree sequence: sum of degrees must be even, not odd"
raise nx.NetworkXError(msg)
if len(deg_sequence) - degree_sum // 2 != 1:
msg = (
"Invalid degree sequence: tree must have number of nodes equal"
" to one less than the number of edges"
)
raise nx.NetworkXError(msg)
G = nx.empty_graph(0, create_using)
if G.is_directed():
raise nx.NetworkXError("Directed Graph not supported")
# Sort all degrees greater than 1 in decreasing order.
#
# TODO Does this need to be sorted in reverse order?
deg = sorted((s for s in deg_sequence if s > 1), reverse=True)
# make path graph as backbone
n = len(deg) + 2
nx.add_path(G, range(n))
last = n
# add the leaves
for source in range(1, n - 1):
nedges = deg.pop() - 2
for target in range(last, last + nedges):
G.add_edge(source, target)
last += nedges
# in case we added one too many
if len(G) > len(deg_sequence):
G.remove_node(0)
return G
@py_random_state(1)
def random_degree_sequence_graph(sequence, seed=None, tries=10):
r"""Returns a simple random graph with the given degree sequence.
If the maximum degree $d_m$ in the sequence is $O(m^{1/4})$ then the
algorithm produces almost uniform random graphs in $O(m d_m)$ time
where $m$ is the number of edges.
Parameters
----------
sequence : list of integers
Sequence of degrees
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
tries : int, optional
Maximum number of tries to create a graph
Returns
-------
G : Graph
A graph with the specified degree sequence.
Nodes are labeled starting at 0 with an index
corresponding to the position in the sequence.
Raises
------
NetworkXUnfeasible
If the degree sequence is not graphical.
NetworkXError
If a graph is not produced in specified number of tries
See Also
--------
is_graphical, configuration_model
Notes
-----
The generator algorithm [1]_ is not guaranteed to produce a graph.
References
----------
.. [1] Moshen Bayati, Jeong Han Kim, and Amin Saberi,
A sequential algorithm for generating random graphs.
Algorithmica, Volume 58, Number 4, 860-910,
DOI: 10.1007/s00453-009-9340-1
Examples
--------
>>> sequence = [1, 2, 2, 3]
>>> G = nx.random_degree_sequence_graph(sequence, seed=42)
>>> sorted(d for n, d in G.degree())
[1, 2, 2, 3]
"""
DSRG = DegreeSequenceRandomGraph(sequence, seed)
for try_n in range(tries):
try:
return DSRG.generate()
except nx.NetworkXUnfeasible:
pass
raise nx.NetworkXError(f"failed to generate graph in {tries} tries")
class DegreeSequenceRandomGraph:
# class to generate random graphs with a given degree sequence
# use random_degree_sequence_graph()
def __init__(self, degree, rng):
if not nx.is_graphical(degree):
raise nx.NetworkXUnfeasible("degree sequence is not graphical")
self.rng = rng
self.degree = list(degree)
# node labels are integers 0,...,n-1
self.m = sum(self.degree) / 2.0 # number of edges
try:
self.dmax = max(self.degree) # maximum degree
except ValueError:
self.dmax = 0
def generate(self):
# remaining_degree is mapping from int->remaining degree
self.remaining_degree = dict(enumerate(self.degree))
# add all nodes to make sure we get isolated nodes
self.graph = nx.Graph()
self.graph.add_nodes_from(self.remaining_degree)
# remove zero degree nodes
for n, d in list(self.remaining_degree.items()):
if d == 0:
del self.remaining_degree[n]
if len(self.remaining_degree) > 0:
# build graph in three phases according to how many unmatched edges
self.phase1()
self.phase2()
self.phase3()
return self.graph
def update_remaining(self, u, v, aux_graph=None):
# decrement remaining nodes, modify auxiliary graph if in phase3
if aux_graph is not None:
# remove edges from auxiliary graph
aux_graph.remove_edge(u, v)
if self.remaining_degree[u] == 1:
del self.remaining_degree[u]
if aux_graph is not None:
aux_graph.remove_node(u)
else:
self.remaining_degree[u] -= 1
if self.remaining_degree[v] == 1:
del self.remaining_degree[v]
if aux_graph is not None:
aux_graph.remove_node(v)
else:
self.remaining_degree[v] -= 1
def p(self, u, v):
# degree probability
return 1 - self.degree[u] * self.degree[v] / (4.0 * self.m)
def q(self, u, v):
# remaining degree probability
norm = float(max(self.remaining_degree.values())) ** 2
return self.remaining_degree[u] * self.remaining_degree[v] / norm
def suitable_edge(self):
"""Returns True if and only if an arbitrary remaining node can
potentially be joined with some other remaining node.
"""
nodes = iter(self.remaining_degree)
u = next(nodes)
return any(v not in self.graph[u] for v in nodes)
def phase1(self):
# choose node pairs from (degree) weighted distribution
rem_deg = self.remaining_degree
while sum(rem_deg.values()) >= 2 * self.dmax ** 2:
u, v = sorted(random_weighted_sample(rem_deg, 2, self.rng))
if self.graph.has_edge(u, v):
continue
if self.rng.random() < self.p(u, v): # accept edge
self.graph.add_edge(u, v)
self.update_remaining(u, v)
def phase2(self):
# choose remaining nodes uniformly at random and use rejection sampling
remaining_deg = self.remaining_degree
rng = self.rng
while len(remaining_deg) >= 2 * self.dmax:
while True:
u, v = sorted(rng.sample(remaining_deg.keys(), 2))
if self.graph.has_edge(u, v):
continue
if rng.random() < self.q(u, v):
break
if rng.random() < self.p(u, v): # accept edge
self.graph.add_edge(u, v)
self.update_remaining(u, v)
def phase3(self):
# build potential remaining edges and choose with rejection sampling
potential_edges = combinations(self.remaining_degree, 2)
# build auxiliary graph of potential edges not already in graph
H = nx.Graph(
[(u, v) for (u, v) in potential_edges if not self.graph.has_edge(u, v)]
)
rng = self.rng
while self.remaining_degree:
if not self.suitable_edge():
raise nx.NetworkXUnfeasible("no suitable edges left")
while True:
u, v = sorted(rng.choice(list(H.edges())))
if rng.random() < self.q(u, v):
break
if rng.random() < self.p(u, v): # accept edge
self.graph.add_edge(u, v)
self.update_remaining(u, v, aux_graph=H)

View file

@ -0,0 +1,462 @@
"""
Generators for some directed graphs, including growing network (GN) graphs and
scale-free graphs.
"""
from collections import Counter
import networkx as nx
from networkx.generators.classic import empty_graph
from networkx.utils import discrete_sequence
from networkx.utils import weighted_choice
from networkx.utils import py_random_state
__all__ = [
"gn_graph",
"gnc_graph",
"gnr_graph",
"random_k_out_graph",
"scale_free_graph",
]
@py_random_state(3)
def gn_graph(n, kernel=None, create_using=None, seed=None):
"""Returns the growing network (GN) digraph with `n` nodes.
The GN graph is built by adding nodes one at a time with a link to one
previously added node. The target node for the link is chosen with
probability based on degree. The default attachment kernel is a linear
function of the degree of a node.
The graph is always a (directed) tree.
Parameters
----------
n : int
The number of nodes for the generated graph.
kernel : function
The attachment kernel.
create_using : NetworkX graph constructor, optional (default DiGraph)
Graph type to create. If graph instance, then cleared before populated.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Examples
--------
To create the undirected GN graph, use the :meth:`~DiGraph.to_directed`
method::
>>> D = nx.gn_graph(10) # the GN graph
>>> G = D.to_undirected() # the undirected version
To specify an attachment kernel, use the `kernel` keyword argument::
>>> D = nx.gn_graph(10, kernel=lambda x: x ** 1.5) # A_k = k^1.5
References
----------
.. [1] P. L. Krapivsky and S. Redner,
Organization of Growing Random Networks,
Phys. Rev. E, 63, 066123, 2001.
"""
G = empty_graph(1, create_using, default=nx.DiGraph)
if not G.is_directed():
raise nx.NetworkXError("create_using must indicate a Directed Graph")
if kernel is None:
def kernel(x):
return x
if n == 1:
return G
G.add_edge(1, 0) # get started
ds = [1, 1] # degree sequence
for source in range(2, n):
# compute distribution from kernel and degree
dist = [kernel(d) for d in ds]
# choose target from discrete distribution
target = discrete_sequence(1, distribution=dist, seed=seed)[0]
G.add_edge(source, target)
ds.append(1) # the source has only one link (degree one)
ds[target] += 1 # add one to the target link degree
return G
@py_random_state(3)
def gnr_graph(n, p, create_using=None, seed=None):
"""Returns the growing network with redirection (GNR) digraph with `n`
nodes and redirection probability `p`.
The GNR graph is built by adding nodes one at a time with a link to one
previously added node. The previous target node is chosen uniformly at
random. With probabiliy `p` the link is instead "redirected" to the
successor node of the target.
The graph is always a (directed) tree.
Parameters
----------
n : int
The number of nodes for the generated graph.
p : float
The redirection probability.
create_using : NetworkX graph constructor, optional (default DiGraph)
Graph type to create. If graph instance, then cleared before populated.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Examples
--------
To create the undirected GNR graph, use the :meth:`~DiGraph.to_directed`
method::
>>> D = nx.gnr_graph(10, 0.5) # the GNR graph
>>> G = D.to_undirected() # the undirected version
References
----------
.. [1] P. L. Krapivsky and S. Redner,
Organization of Growing Random Networks,
Phys. Rev. E, 63, 066123, 2001.
"""
G = empty_graph(1, create_using, default=nx.DiGraph)
if not G.is_directed():
raise nx.NetworkXError("create_using must indicate a Directed Graph")
if n == 1:
return G
for source in range(1, n):
target = seed.randrange(0, source)
if seed.random() < p and target != 0:
target = next(G.successors(target))
G.add_edge(source, target)
return G
@py_random_state(2)
def gnc_graph(n, create_using=None, seed=None):
"""Returns the growing network with copying (GNC) digraph with `n` nodes.
The GNC graph is built by adding nodes one at a time with a link to one
previously added node (chosen uniformly at random) and to all of that
node's successors.
Parameters
----------
n : int
The number of nodes for the generated graph.
create_using : NetworkX graph constructor, optional (default DiGraph)
Graph type to create. If graph instance, then cleared before populated.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
References
----------
.. [1] P. L. Krapivsky and S. Redner,
Network Growth by Copying,
Phys. Rev. E, 71, 036118, 2005k.},
"""
G = empty_graph(1, create_using, default=nx.DiGraph)
if not G.is_directed():
raise nx.NetworkXError("create_using must indicate a Directed Graph")
if n == 1:
return G
for source in range(1, n):
target = seed.randrange(0, source)
for succ in G.successors(target):
G.add_edge(source, succ)
G.add_edge(source, target)
return G
@py_random_state(7)
def scale_free_graph(
n,
alpha=0.41,
beta=0.54,
gamma=0.05,
delta_in=0.2,
delta_out=0,
create_using=None,
seed=None,
):
"""Returns a scale-free directed graph.
Parameters
----------
n : integer
Number of nodes in graph
alpha : float
Probability for adding a new node connected to an existing node
chosen randomly according to the in-degree distribution.
beta : float
Probability for adding an edge between two existing nodes.
One existing node is chosen randomly according the in-degree
distribution and the other chosen randomly according to the out-degree
distribution.
gamma : float
Probability for adding a new node connected to an existing node
chosen randomly according to the out-degree distribution.
delta_in : float
Bias for choosing nodes from in-degree distribution.
delta_out : float
Bias for choosing nodes from out-degree distribution.
create_using : NetworkX graph constructor, optional
The default is a MultiDiGraph 3-cycle.
If a graph instance, use it without clearing first.
If a graph constructor, call it to construct an empty graph.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Examples
--------
Create a scale-free graph on one hundred nodes::
>>> G = nx.scale_free_graph(100)
Notes
-----
The sum of `alpha`, `beta`, and `gamma` must be 1.
References
----------
.. [1] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan,
Directed scale-free graphs,
Proceedings of the fourteenth annual ACM-SIAM Symposium on
Discrete Algorithms, 132--139, 2003.
"""
def _choose_node(G, distribution, delta, psum):
cumsum = 0.0
# normalization
r = seed.random()
for n, d in distribution:
cumsum += (d + delta) / psum
if r < cumsum:
break
return n
if create_using is None or not hasattr(create_using, "_adj"):
# start with 3-cycle
G = nx.empty_graph(3, create_using, default=nx.MultiDiGraph)
G.add_edges_from([(0, 1), (1, 2), (2, 0)])
else:
G = create_using
if not (G.is_directed() and G.is_multigraph()):
raise nx.NetworkXError("MultiDiGraph required in create_using")
if alpha <= 0:
raise ValueError("alpha must be > 0.")
if beta <= 0:
raise ValueError("beta must be > 0.")
if gamma <= 0:
raise ValueError("gamma must be > 0.")
if abs(alpha + beta + gamma - 1.0) >= 1e-9:
raise ValueError("alpha+beta+gamma must equal 1.")
number_of_edges = G.number_of_edges()
while len(G) < n:
psum_in = number_of_edges + delta_in * len(G)
psum_out = number_of_edges + delta_out * len(G)
r = seed.random()
# random choice in alpha,beta,gamma ranges
if r < alpha:
# alpha
# add new node v
v = len(G)
# choose w according to in-degree and delta_in
w = _choose_node(G, G.in_degree(), delta_in, psum_in)
elif r < alpha + beta:
# beta
# choose v according to out-degree and delta_out
v = _choose_node(G, G.out_degree(), delta_out, psum_out)
# choose w according to in-degree and delta_in
w = _choose_node(G, G.in_degree(), delta_in, psum_in)
else:
# gamma
# choose v according to out-degree and delta_out
v = _choose_node(G, G.out_degree(), delta_out, psum_out)
# add new node w
w = len(G)
G.add_edge(v, w)
number_of_edges += 1
return G
@py_random_state(4)
def random_uniform_k_out_graph(n, k, self_loops=True, with_replacement=True, seed=None):
"""Returns a random `k`-out graph with uniform attachment.
A random `k`-out graph with uniform attachment is a multidigraph
generated by the following algorithm. For each node *u*, choose
`k` nodes *v* uniformly at random (with replacement). Add a
directed edge joining *u* to *v*.
Parameters
----------
n : int
The number of nodes in the returned graph.
k : int
The out-degree of each node in the returned graph.
self_loops : bool
If True, self-loops are allowed when generating the graph.
with_replacement : bool
If True, neighbors are chosen with replacement and the
returned graph will be a directed multigraph. Otherwise,
neighbors are chosen without replacement and the returned graph
will be a directed graph.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
NetworkX graph
A `k`-out-regular directed graph generated according to the
above algorithm. It will be a multigraph if and only if
`with_replacement` is True.
Raises
------
ValueError
If `with_replacement` is False and `k` is greater than
`n`.
See also
--------
random_k_out_graph
Notes
-----
The return digraph or multidigraph may not be strongly connected, or
even weakly connected.
If `with_replacement` is True, this function is similar to
:func:`random_k_out_graph`, if that function had parameter `alpha`
set to positive infinity.
"""
if with_replacement:
create_using = nx.MultiDiGraph()
def sample(v, nodes):
if not self_loops:
nodes = nodes - {v}
return (seed.choice(list(nodes)) for i in range(k))
else:
create_using = nx.DiGraph()
def sample(v, nodes):
if not self_loops:
nodes = nodes - {v}
return seed.sample(nodes, k)
G = nx.empty_graph(n, create_using)
nodes = set(G)
for u in G:
G.add_edges_from((u, v) for v in sample(u, nodes))
return G
@py_random_state(4)
def random_k_out_graph(n, k, alpha, self_loops=True, seed=None):
"""Returns a random `k`-out graph with preferential attachment.
A random `k`-out graph with preferential attachment is a
multidigraph generated by the following algorithm.
1. Begin with an empty digraph, and initially set each node to have
weight `alpha`.
2. Choose a node `u` with out-degree less than `k` uniformly at
random.
3. Choose a node `v` from with probability proportional to its
weight.
4. Add a directed edge from `u` to `v`, and increase the weight
of `v` by one.
5. If each node has out-degree `k`, halt, otherwise repeat from
step 2.
For more information on this model of random graph, see [1].
Parameters
----------
n : int
The number of nodes in the returned graph.
k : int
The out-degree of each node in the returned graph.
alpha : float
A positive :class:`float` representing the initial weight of
each vertex. A higher number means that in step 3 above, nodes
will be chosen more like a true uniformly random sample, and a
lower number means that nodes are more likely to be chosen as
their in-degree increases. If this parameter is not positive, a
:exc:`ValueError` is raised.
self_loops : bool
If True, self-loops are allowed when generating the graph.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
:class:`~networkx.classes.MultiDiGraph`
A `k`-out-regular multidigraph generated according to the above
algorithm.
Raises
------
ValueError
If `alpha` is not positive.
Notes
-----
The returned multidigraph may not be strongly connected, or even
weakly connected.
References
----------
[1]: Peterson, Nicholas R., and Boris Pittel.
"Distance between two random `k`-out digraphs, with and without
preferential attachment."
arXiv preprint arXiv:1311.5961 (2013).
<https://arxiv.org/abs/1311.5961>
"""
if alpha < 0:
raise ValueError("alpha must be positive")
G = nx.empty_graph(n, create_using=nx.MultiDiGraph)
weights = Counter({v: alpha for v in G})
for i in range(k * n):
u = seed.choice([v for v, d in G.out_degree() if d < k])
# If self-loops are not allowed, make the source node `u` have
# weight zero.
if not self_loops:
adjustment = Counter({u: weights[u]})
else:
adjustment = Counter()
v = weighted_choice(weights - adjustment, seed=seed)
G.add_edge(u, v)
weights[v] += 1
return G

View file

@ -0,0 +1,161 @@
"""Functions for generating graphs based on the "duplication" method.
These graph generators start with a small initial graph then duplicate
nodes and (partially) duplicate their edges. These functions are
generally inspired by biological networks.
"""
import networkx as nx
from networkx.utils import py_random_state
from networkx.exception import NetworkXError
__all__ = ["partial_duplication_graph", "duplication_divergence_graph"]
@py_random_state(4)
def partial_duplication_graph(N, n, p, q, seed=None):
"""Returns a random graph using the partial duplication model.
Parameters
----------
N : int
The total number of nodes in the final graph.
n : int
The number of nodes in the initial clique.
p : float
The probability of joining each neighbor of a node to the
duplicate node. Must be a number in the between zero and one,
inclusive.
q : float
The probability of joining the source node to the duplicate
node. Must be a number in the between zero and one, inclusive.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Notes
-----
A graph of nodes is grown by creating a fully connected graph
of size `n`. The following procedure is then repeated until
a total of `N` nodes have been reached.
1. A random node, *u*, is picked and a new node, *v*, is created.
2. For each neighbor of *u* an edge from the neighbor to *v* is created
with probability `p`.
3. An edge from *u* to *v* is created with probability `q`.
This algorithm appears in [1].
This implementation allows the possibility of generating
disconnected graphs.
References
----------
.. [1] Knudsen Michael, and Carsten Wiuf. "A Markov chain approach to
randomly grown graphs." Journal of Applied Mathematics 2008.
<https://doi.org/10.1155/2008/190836>
"""
if p < 0 or p > 1 or q < 0 or q > 1:
msg = "partial duplication graph must have 0 <= p, q <= 1."
raise NetworkXError(msg)
if n > N:
raise NetworkXError("partial duplication graph must have n <= N.")
G = nx.complete_graph(n)
for new_node in range(n, N):
# Pick a random vertex, u, already in the graph.
src_node = seed.randint(0, new_node - 1)
# Add a new vertex, v, to the graph.
G.add_node(new_node)
# For each neighbor of u...
for neighbor_node in list(nx.all_neighbors(G, src_node)):
# Add the neighbor to v with probability p.
if seed.random() < p:
G.add_edge(new_node, neighbor_node)
# Join v and u with probability q.
if seed.random() < q:
G.add_edge(new_node, src_node)
return G
@py_random_state(2)
def duplication_divergence_graph(n, p, seed=None):
"""Returns an undirected graph using the duplication-divergence model.
A graph of `n` nodes is created by duplicating the initial nodes
and retaining edges incident to the original nodes with a retention
probability `p`.
Parameters
----------
n : int
The desired number of nodes in the graph.
p : float
The probability for retaining the edge of the replicated node.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
G : Graph
Raises
------
NetworkXError
If `p` is not a valid probability.
If `n` is less than 2.
Notes
-----
This algorithm appears in [1].
This implementation disallows the possibility of generating
disconnected graphs.
References
----------
.. [1] I. Ispolatov, P. L. Krapivsky, A. Yuryev,
"Duplication-divergence model of protein interaction network",
Phys. Rev. E, 71, 061911, 2005.
"""
if p > 1 or p < 0:
msg = f"NetworkXError p={p} is not in [0,1]."
raise nx.NetworkXError(msg)
if n < 2:
msg = "n must be greater than or equal to 2"
raise nx.NetworkXError(msg)
G = nx.Graph()
# Initialize the graph with two connected nodes.
G.add_edge(0, 1)
i = 2
while i < n:
# Choose a random node from current graph to duplicate.
random_node = seed.choice(list(G))
# Make the replica.
G.add_node(i)
# flag indicates whether at least one edge is connected on the replica.
flag = False
for nbr in G.neighbors(random_node):
if seed.random() < p:
# Link retention step.
G.add_edge(i, nbr)
flag = True
if not flag:
# Delete replica if no edges retained.
G.remove_node(i)
else:
# Successful duplication.
i += 1
return G

View file

@ -0,0 +1,64 @@
"""
Ego graph.
"""
__all__ = ["ego_graph"]
import networkx as nx
def ego_graph(G, n, radius=1, center=True, undirected=False, distance=None):
"""Returns induced subgraph of neighbors centered at node n within
a given radius.
Parameters
----------
G : graph
A NetworkX Graph or DiGraph
n : node
A single node
radius : number, optional
Include all neighbors of distance<=radius from n.
center : bool, optional
If False, do not include center node in graph
undirected : bool, optional
If True use both in- and out-neighbors of directed graphs.
distance : key, optional
Use specified edge data key as distance. For example, setting
distance='weight' will use the edge weight to measure the
distance from the node n.
Notes
-----
For directed graphs D this produces the "out" neighborhood
or successors. If you want the neighborhood of predecessors
first reverse the graph with D.reverse(). If you want both
directions use the keyword argument undirected=True.
Node, edge, and graph attributes are copied to the returned subgraph.
"""
if undirected:
if distance is not None:
sp, _ = nx.single_source_dijkstra(
G.to_undirected(), n, cutoff=radius, weight=distance
)
else:
sp = dict(
nx.single_source_shortest_path_length(
G.to_undirected(), n, cutoff=radius
)
)
else:
if distance is not None:
sp, _ = nx.single_source_dijkstra(G, n, cutoff=radius, weight=distance)
else:
sp = dict(nx.single_source_shortest_path_length(G, n, cutoff=radius))
H = G.subgraph(sp).copy()
if not center:
H.remove_node(n)
return H

View file

@ -0,0 +1,202 @@
"""Provides explicit constructions of expander graphs.
"""
import itertools
import networkx as nx
__all__ = ["margulis_gabber_galil_graph", "chordal_cycle_graph", "paley_graph"]
# Other discrete torus expanders can be constructed by using the following edge
# sets. For more information, see Chapter 4, "Expander Graphs", in
# "Pseudorandomness", by Salil Vadhan.
#
# For a directed expander, add edges from (x, y) to:
#
# (x, y),
# ((x + 1) % n, y),
# (x, (y + 1) % n),
# (x, (x + y) % n),
# (-y % n, x)
#
# For an undirected expander, add the reverse edges.
#
# Also appearing in the paper of Gabber and Galil:
#
# (x, y),
# (x, (x + y) % n),
# (x, (x + y + 1) % n),
# ((x + y) % n, y),
# ((x + y + 1) % n, y)
#
# and:
#
# (x, y),
# ((x + 2*y) % n, y),
# ((x + (2*y + 1)) % n, y),
# ((x + (2*y + 2)) % n, y),
# (x, (y + 2*x) % n),
# (x, (y + (2*x + 1)) % n),
# (x, (y + (2*x + 2)) % n),
#
def margulis_gabber_galil_graph(n, create_using=None):
r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes.
The undirected MultiGraph is regular with degree `8`. Nodes are integer
pairs. The second-largest eigenvalue of the adjacency matrix of the graph
is at most `5 \sqrt{2}`, regardless of `n`.
Parameters
----------
n : int
Determines the number of nodes in the graph: `n^2`.
create_using : NetworkX graph constructor, optional (default MultiGraph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
G : graph
The constructed undirected multigraph.
Raises
------
NetworkXError
If the graph is directed or not a multigraph.
"""
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
if G.is_directed() or not G.is_multigraph():
msg = "`create_using` must be an undirected multigraph."
raise nx.NetworkXError(msg)
for (x, y) in itertools.product(range(n), repeat=2):
for (u, v) in (
((x + 2 * y) % n, y),
((x + (2 * y + 1)) % n, y),
(x, (y + 2 * x) % n),
(x, (y + (2 * x + 1)) % n),
):
G.add_edge((x, y), (u, v))
G.graph["name"] = f"margulis_gabber_galil_graph({n})"
return G
def chordal_cycle_graph(p, create_using=None):
"""Returns the chordal cycle graph on `p` nodes.
The returned graph is a cycle graph on `p` nodes with chords joining each
vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit)
3-regular expander [1]_.
`p` *must* be a prime number.
Parameters
----------
p : a prime number
The number of vertices in the graph. This also indicates where the
chordal edges in the cycle will be created.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
G : graph
The constructed undirected multigraph.
Raises
------
NetworkXError
If `create_using` indicates directed or not a multigraph.
References
----------
.. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and
invariant measures", volume 125 of Progress in Mathematics.
Birkhäuser Verlag, Basel, 1994.
"""
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
if G.is_directed() or not G.is_multigraph():
msg = "`create_using` must be an undirected multigraph."
raise nx.NetworkXError(msg)
for x in range(p):
left = (x - 1) % p
right = (x + 1) % p
# Here we apply Fermat's Little Theorem to compute the multiplicative
# inverse of x in Z/pZ. By Fermat's Little Theorem,
#
# x^p = x (mod p)
#
# Therefore,
#
# x * x^(p - 2) = 1 (mod p)
#
# The number 0 is a special case: we just let its inverse be itself.
chord = pow(x, p - 2, p) if x > 0 else 0
for y in (left, right, chord):
G.add_edge(x, y)
G.graph["name"] = f"chordal_cycle_graph({p})"
return G
def paley_graph(p, create_using=None):
"""Returns the Paley (p-1)/2-regular graph on p nodes.
The returned graph is a graph on Z/pZ with edges between x and y
if and only if x-y is a nonzero square in Z/pZ.
If p = 1 mod 4, -1 is a square in Z/pZ and therefore x-y is a square if and
only if y-x is also a square, i.e the edges in the Paley graph are symmetric.
If p = 3 mod 4, -1 is not a square in Z/pZ and therefore either x-y or y-x
is a square in Z/pZ but not both.
Note that a more general definition of Paley graphs extends this construction
to graphs over q=p^n vertices, by using the finite field F_q instead of Z/pZ.
This construction requires to compute squares in general finite fields and is
not what is implemented here (i.e paley_graph(25) does not return the true
Paley graph associated with 5^2).
Parameters
----------
p : int, an odd prime number.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
G : graph
The constructed directed graph.
Raises
------
NetworkXError
If the graph is a multigraph.
References
----------
Chapter 13 in B. Bollobas, Random Graphs. Second edition.
Cambridge Studies in Advanced Mathematics, 73.
Cambridge University Press, Cambridge (2001).
"""
G = nx.empty_graph(0, create_using, default=nx.DiGraph)
if G.is_multigraph():
msg = "`create_using` cannot be a multigraph."
raise nx.NetworkXError(msg)
# Compute the squares in Z/pZ.
# Make it a set to uniquify (there are exactly (p-1)/2 squares in Z/pZ
# when is prime).
square_set = {(x ** 2) % p for x in range(1, p) if (x ** 2) % p != 0}
for x in range(p):
for x2 in square_set:
G.add_edge(x, (x + x2) % p)
G.graph["name"] = f"paley({p})"
return G

View file

@ -0,0 +1,796 @@
"""Generators for geometric graphs.
"""
from bisect import bisect_left
from itertools import accumulate, combinations, product
from math import sqrt
import math
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
_is_scipy_available = False
else:
_is_scipy_available = True
import networkx as nx
from networkx.utils import nodes_or_number, py_random_state
__all__ = [
"geographical_threshold_graph",
"waxman_graph",
"navigable_small_world_graph",
"random_geometric_graph",
"soft_random_geometric_graph",
"thresholded_random_geometric_graph",
]
def euclidean(x, y):
"""Returns the Euclidean distance between the vectors ``x`` and ``y``.
Each of ``x`` and ``y`` can be any iterable of numbers. The
iterables must be of the same length.
"""
return sqrt(sum((a - b) ** 2 for a, b in zip(x, y)))
def _fast_edges(G, radius, p):
"""Returns edge list of node pairs within `radius` of each other
using scipy KDTree and Minkowski distance metric `p`
Requires scipy to be installed.
"""
pos = nx.get_node_attributes(G, "pos")
nodes, coords = list(zip(*pos.items()))
kdtree = KDTree(coords) # Cannot provide generator.
edge_indexes = kdtree.query_pairs(radius, p)
edges = ((nodes[u], nodes[v]) for u, v in edge_indexes)
return edges
def _slow_edges(G, radius, p):
"""Returns edge list of node pairs within `radius` of each other
using Minkowski distance metric `p`
Works without scipy, but in `O(n^2)` time.
"""
# TODO This can be parallelized.
edges = []
for (u, pu), (v, pv) in combinations(G.nodes(data="pos"), 2):
if sum(abs(a - b) ** p for a, b in zip(pu, pv)) <= radius ** p:
edges.append((u, v))
return edges
@py_random_state(5)
@nodes_or_number(0)
def random_geometric_graph(n, radius, dim=2, pos=None, p=2, seed=None):
"""Returns a random geometric graph in the unit cube of dimensions `dim`.
The random geometric graph model places `n` nodes uniformly at
random in the unit cube. Two nodes are joined by an edge if the
distance between the nodes is at most `radius`.
Edges are determined using a KDTree when SciPy is available.
This reduces the time complexity from $O(n^2)$ to $O(n)$.
Parameters
----------
n : int or iterable
Number of nodes or iterable of nodes
radius: float
Distance threshold value
dim : int, optional
Dimension of graph
pos : dict, optional
A dictionary keyed by node with node positions as values.
p : float, optional
Which Minkowski distance metric to use. `p` has to meet the condition
``1 <= p <= infinity``.
If this argument is not specified, the :math:`L^2` metric
(the Euclidean distance metric), p = 2 is used.
This should not be confused with the `p` of an Erdős-Rényi random
graph, which represents probability.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
Graph
A random geometric graph, undirected and without self-loops.
Each node has a node attribute ``'pos'`` that stores the
position of that node in Euclidean space as provided by the
``pos`` keyword argument or, if ``pos`` was not provided, as
generated by this function.
Examples
--------
Create a random geometric graph on twenty nodes where nodes are joined by
an edge if their distance is at most 0.1::
>>> G = nx.random_geometric_graph(20, 0.1)
Notes
-----
This uses a *k*-d tree to build the graph.
The `pos` keyword argument can be used to specify node positions so you
can create an arbitrary distribution and domain for positions.
For example, to use a 2D Gaussian distribution of node positions with mean
(0, 0) and standard deviation 2::
>>> import random
>>> n = 20
>>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
>>> G = nx.random_geometric_graph(n, 0.2, pos=pos)
References
----------
.. [1] Penrose, Mathew, *Random Geometric Graphs*,
Oxford Studies in Probability, 5, 2003.
"""
# TODO Is this function just a special case of the geographical
# threshold graph?
#
# n_name, nodes = n
# half_radius = {v: radius / 2 for v in nodes}
# return geographical_threshold_graph(nodes, theta=1, alpha=1,
# weight=half_radius)
#
n_name, nodes = n
G = nx.Graph()
G.add_nodes_from(nodes)
# If no positions are provided, choose uniformly random vectors in
# Euclidean space of the specified dimension.
if pos is None:
pos = {v: [seed.random() for i in range(dim)] for v in nodes}
nx.set_node_attributes(G, pos, "pos")
if _is_scipy_available:
edges = _fast_edges(G, radius, p)
else:
edges = _slow_edges(G, radius, p)
G.add_edges_from(edges)
return G
@py_random_state(6)
@nodes_or_number(0)
def soft_random_geometric_graph(
n, radius, dim=2, pos=None, p=2, p_dist=None, seed=None
):
r"""Returns a soft random geometric graph in the unit cube.
The soft random geometric graph [1] model places `n` nodes uniformly at
random in the unit cube in dimension `dim`. Two nodes of distance, `dist`,
computed by the `p`-Minkowski distance metric are joined by an edge with
probability `p_dist` if the computed distance metric value of the nodes
is at most `radius`, otherwise they are not joined.
Edges within `radius` of each other are determined using a KDTree when
SciPy is available. This reduces the time complexity from :math:`O(n^2)`
to :math:`O(n)`.
Parameters
----------
n : int or iterable
Number of nodes or iterable of nodes
radius: float
Distance threshold value
dim : int, optional
Dimension of graph
pos : dict, optional
A dictionary keyed by node with node positions as values.
p : float, optional
Which Minkowski distance metric to use.
`p` has to meet the condition ``1 <= p <= infinity``.
If this argument is not specified, the :math:`L^2` metric
(the Euclidean distance metric), p = 2 is used.
This should not be confused with the `p` of an Erdős-Rényi random
graph, which represents probability.
p_dist : function, optional
A probability density function computing the probability of
connecting two nodes that are of distance, dist, computed by the
Minkowski distance metric. The probability density function, `p_dist`,
must be any function that takes the metric value as input
and outputs a single probability value between 0-1. The scipy.stats
package has many probability distribution functions implemented and
tools for custom probability distribution definitions [2], and passing
the .pdf method of scipy.stats distributions can be used here. If the
probability function, `p_dist`, is not supplied, the default function
is an exponential distribution with rate parameter :math:`\lambda=1`.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
Graph
A soft random geometric graph, undirected and without self-loops.
Each node has a node attribute ``'pos'`` that stores the
position of that node in Euclidean space as provided by the
``pos`` keyword argument or, if ``pos`` was not provided, as
generated by this function.
Examples
--------
Default Graph:
G = nx.soft_random_geometric_graph(50, 0.2)
Custom Graph:
Create a soft random geometric graph on 100 uniformly distributed nodes
where nodes are joined by an edge with probability computed from an
exponential distribution with rate parameter :math:`\lambda=1` if their
Euclidean distance is at most 0.2.
Notes
-----
This uses a *k*-d tree to build the graph.
The `pos` keyword argument can be used to specify node positions so you
can create an arbitrary distribution and domain for positions.
For example, to use a 2D Gaussian distribution of node positions with mean
(0, 0) and standard deviation 2
The scipy.stats package can be used to define the probability distribution
with the .pdf method used as `p_dist`.
::
>>> import random
>>> import math
>>> n = 100
>>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
>>> p_dist = lambda dist: math.exp(-dist)
>>> G = nx.soft_random_geometric_graph(n, 0.2, pos=pos, p_dist=p_dist)
References
----------
.. [1] Penrose, Mathew D. "Connectivity of soft random geometric graphs."
The Annals of Applied Probability 26.2 (2016): 986-1028.
[2] scipy.stats -
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
"""
n_name, nodes = n
G = nx.Graph()
G.name = f"soft_random_geometric_graph({n}, {radius}, {dim})"
G.add_nodes_from(nodes)
# If no positions are provided, choose uniformly random vectors in
# Euclidean space of the specified dimension.
if pos is None:
pos = {v: [seed.random() for i in range(dim)] for v in nodes}
nx.set_node_attributes(G, pos, "pos")
# if p_dist function not supplied the default function is an exponential
# distribution with rate parameter :math:`\lambda=1`.
if p_dist is None:
def p_dist(dist):
return math.exp(-dist)
def should_join(pair):
u, v = pair
u_pos, v_pos = pos[u], pos[v]
dist = (sum(abs(a - b) ** p for a, b in zip(u_pos, v_pos))) ** (1 / p)
# Check if dist <= radius parameter. This check is redundant if scipy
# is available and _fast_edges routine is used, but provides the
# check in case scipy is not available and all edge combinations
# need to be checked
if dist <= radius:
return seed.random() < p_dist(dist)
else:
return False
if _is_scipy_available:
edges = _fast_edges(G, radius, p)
G.add_edges_from(filter(should_join, edges))
else:
G.add_edges_from(filter(should_join, combinations(G, 2)))
return G
@py_random_state(7)
@nodes_or_number(0)
def geographical_threshold_graph(
n, theta, dim=2, pos=None, weight=None, metric=None, p_dist=None, seed=None
):
r"""Returns a geographical threshold graph.
The geographical threshold graph model places $n$ nodes uniformly at
random in a rectangular domain. Each node $u$ is assigned a weight
$w_u$. Two nodes $u$ and $v$ are joined by an edge if
.. math::
(w_u + w_v)h(r) \ge \theta
where `r` is the distance between `u` and `v`, h(r) is a probability of
connection as a function of `r`, and :math:`\theta` as the threshold
parameter. h(r) corresponds to the p_dist parameter.
Parameters
----------
n : int or iterable
Number of nodes or iterable of nodes
theta: float
Threshold value
dim : int, optional
Dimension of graph
pos : dict
Node positions as a dictionary of tuples keyed by node.
weight : dict
Node weights as a dictionary of numbers keyed by node.
metric : function
A metric on vectors of numbers (represented as lists or
tuples). This must be a function that accepts two lists (or
tuples) as input and yields a number as output. The function
must also satisfy the four requirements of a `metric`_.
Specifically, if $d$ is the function and $x$, $y$,
and $z$ are vectors in the graph, then $d$ must satisfy
1. $d(x, y) \ge 0$,
2. $d(x, y) = 0$ if and only if $x = y$,
3. $d(x, y) = d(y, x)$,
4. $d(x, z) \le d(x, y) + d(y, z)$.
If this argument is not specified, the Euclidean distance metric is
used.
.. _metric: https://en.wikipedia.org/wiki/Metric_%28mathematics%29
p_dist : function, optional
A probability density function computing the probability of
connecting two nodes that are of distance, r, computed by metric.
The probability density function, `p_dist`, must
be any function that takes the metric value as input
and outputs a single probability value between 0-1.
The scipy.stats package has many probability distribution functions
implemented and tools for custom probability distribution
definitions [2], and passing the .pdf method of scipy.stats
distributions can be used here. If the probability
function, `p_dist`, is not supplied, the default exponential function
:math: `r^{-2}` is used.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
Graph
A random geographic threshold graph, undirected and without
self-loops.
Each node has a node attribute ``pos`` that stores the
position of that node in Euclidean space as provided by the
``pos`` keyword argument or, if ``pos`` was not provided, as
generated by this function. Similarly, each node has a node
attribute ``weight`` that stores the weight of that node as
provided or as generated.
Examples
--------
Specify an alternate distance metric using the ``metric`` keyword
argument. For example, to use the `taxicab metric`_ instead of the
default `Euclidean metric`_::
>>> dist = lambda x, y: sum(abs(a - b) for a, b in zip(x, y))
>>> G = nx.geographical_threshold_graph(10, 0.1, metric=dist)
.. _taxicab metric: https://en.wikipedia.org/wiki/Taxicab_geometry
.. _Euclidean metric: https://en.wikipedia.org/wiki/Euclidean_distance
Notes
-----
If weights are not specified they are assigned to nodes by drawing randomly
from the exponential distribution with rate parameter $\lambda=1$.
To specify weights from a different distribution, use the `weight` keyword
argument::
>>> import random
>>> n = 20
>>> w = {i: random.expovariate(5.0) for i in range(n)}
>>> G = nx.geographical_threshold_graph(20, 50, weight=w)
If node positions are not specified they are randomly assigned from the
uniform distribution.
References
----------
.. [1] Masuda, N., Miwa, H., Konno, N.:
Geographical threshold graphs with small-world and scale-free
properties.
Physical Review E 71, 036108 (2005)
.. [2] Milan Bradonjić, Aric Hagberg and Allon G. Percus,
Giant component and connectivity in geographical threshold graphs,
in Algorithms and Models for the Web-Graph (WAW 2007),
Antony Bonato and Fan Chung (Eds), pp. 209--216, 2007
"""
n_name, nodes = n
G = nx.Graph()
G.add_nodes_from(nodes)
# If no weights are provided, choose them from an exponential
# distribution.
if weight is None:
weight = {v: seed.expovariate(1) for v in G}
# If no positions are provided, choose uniformly random vectors in
# Euclidean space of the specified dimension.
if pos is None:
pos = {v: [seed.random() for i in range(dim)] for v in nodes}
# If no distance metric is provided, use Euclidean distance.
if metric is None:
metric = euclidean
nx.set_node_attributes(G, weight, "weight")
nx.set_node_attributes(G, pos, "pos")
# if p_dist is not supplied, use default r^-2
if p_dist is None:
def p_dist(r):
return r ** -2
# Returns ``True`` if and only if the nodes whose attributes are
# ``du`` and ``dv`` should be joined, according to the threshold
# condition.
def should_join(pair):
u, v = pair
u_pos, v_pos = pos[u], pos[v]
u_weight, v_weight = weight[u], weight[v]
return (u_weight + v_weight) * p_dist(metric(u_pos, v_pos)) >= theta
G.add_edges_from(filter(should_join, combinations(G, 2)))
return G
@py_random_state(6)
@nodes_or_number(0)
def waxman_graph(
n, beta=0.4, alpha=0.1, L=None, domain=(0, 0, 1, 1), metric=None, seed=None
):
r"""Returns a Waxman random graph.
The Waxman random graph model places `n` nodes uniformly at random
in a rectangular domain. Each pair of nodes at distance `d` is
joined by an edge with probability
.. math::
p = \beta \exp(-d / \alpha L).
This function implements both Waxman models, using the `L` keyword
argument.
* Waxman-1: if `L` is not specified, it is set to be the maximum distance
between any pair of nodes.
* Waxman-2: if `L` is specified, the distance between a pair of nodes is
chosen uniformly at random from the interval `[0, L]`.
Parameters
----------
n : int or iterable
Number of nodes or iterable of nodes
beta: float
Model parameter
alpha: float
Model parameter
L : float, optional
Maximum distance between nodes. If not specified, the actual distance
is calculated.
domain : four-tuple of numbers, optional
Domain size, given as a tuple of the form `(x_min, y_min, x_max,
y_max)`.
metric : function
A metric on vectors of numbers (represented as lists or
tuples). This must be a function that accepts two lists (or
tuples) as input and yields a number as output. The function
must also satisfy the four requirements of a `metric`_.
Specifically, if $d$ is the function and $x$, $y$,
and $z$ are vectors in the graph, then $d$ must satisfy
1. $d(x, y) \ge 0$,
2. $d(x, y) = 0$ if and only if $x = y$,
3. $d(x, y) = d(y, x)$,
4. $d(x, z) \le d(x, y) + d(y, z)$.
If this argument is not specified, the Euclidean distance metric is
used.
.. _metric: https://en.wikipedia.org/wiki/Metric_%28mathematics%29
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
Graph
A random Waxman graph, undirected and without self-loops. Each
node has a node attribute ``'pos'`` that stores the position of
that node in Euclidean space as generated by this function.
Examples
--------
Specify an alternate distance metric using the ``metric`` keyword
argument. For example, to use the "`taxicab metric`_" instead of the
default `Euclidean metric`_::
>>> dist = lambda x, y: sum(abs(a - b) for a, b in zip(x, y))
>>> G = nx.waxman_graph(10, 0.5, 0.1, metric=dist)
.. _taxicab metric: https://en.wikipedia.org/wiki/Taxicab_geometry
.. _Euclidean metric: https://en.wikipedia.org/wiki/Euclidean_distance
Notes
-----
Starting in NetworkX 2.0 the parameters alpha and beta align with their
usual roles in the probability distribution. In earlier versions their
positions in the expression were reversed. Their position in the calling
sequence reversed as well to minimize backward incompatibility.
References
----------
.. [1] B. M. Waxman, *Routing of multipoint connections*.
IEEE J. Select. Areas Commun. 6(9),(1988) 1617--1622.
"""
n_name, nodes = n
G = nx.Graph()
G.add_nodes_from(nodes)
(xmin, ymin, xmax, ymax) = domain
# Each node gets a uniformly random position in the given rectangle.
pos = {v: (seed.uniform(xmin, xmax), seed.uniform(ymin, ymax)) for v in G}
nx.set_node_attributes(G, pos, "pos")
# If no distance metric is provided, use Euclidean distance.
if metric is None:
metric = euclidean
# If the maximum distance L is not specified (that is, we are in the
# Waxman-1 model), then find the maximum distance between any pair
# of nodes.
#
# In the Waxman-1 model, join nodes randomly based on distance. In
# the Waxman-2 model, join randomly based on random l.
if L is None:
L = max(metric(x, y) for x, y in combinations(pos.values(), 2))
def dist(u, v):
return metric(pos[u], pos[v])
else:
def dist(u, v):
return seed.random() * L
# `pair` is the pair of nodes to decide whether to join.
def should_join(pair):
return seed.random() < beta * math.exp(-dist(*pair) / (alpha * L))
G.add_edges_from(filter(should_join, combinations(G, 2)))
return G
@py_random_state(5)
def navigable_small_world_graph(n, p=1, q=1, r=2, dim=2, seed=None):
r"""Returns a navigable small-world graph.
A navigable small-world graph is a directed grid with additional long-range
connections that are chosen randomly.
[...] we begin with a set of nodes [...] that are identified with the set
of lattice points in an $n \times n$ square,
$\{(i, j): i \in \{1, 2, \ldots, n\}, j \in \{1, 2, \ldots, n\}\}$,
and we define the *lattice distance* between two nodes $(i, j)$ and
$(k, l)$ to be the number of "lattice steps" separating them:
$d((i, j), (k, l)) = |k - i| + |l - j|$.
For a universal constant $p >= 1$, the node $u$ has a directed edge to
every other node within lattice distance $p$---these are its *local
contacts*. For universal constants $q >= 0$ and $r >= 0$ we also
construct directed edges from $u$ to $q$ other nodes (the *long-range
contacts*) using independent random trials; the $i$th directed edge from
$u$ has endpoint $v$ with probability proportional to $[d(u,v)]^{-r}$.
-- [1]_
Parameters
----------
n : int
The length of one side of the lattice; the number of nodes in
the graph is therefore $n^2$.
p : int
The diameter of short range connections. Each node is joined with every
other node within this lattice distance.
q : int
The number of long-range connections for each node.
r : float
Exponent for decaying probability of connections. The probability of
connecting to a node at lattice distance $d$ is $1/d^r$.
dim : int
Dimension of grid
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
References
----------
.. [1] J. Kleinberg. The small-world phenomenon: An algorithmic
perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000.
"""
if p < 1:
raise nx.NetworkXException("p must be >= 1")
if q < 0:
raise nx.NetworkXException("q must be >= 0")
if r < 0:
raise nx.NetworkXException("r must be >= 1")
G = nx.DiGraph()
nodes = list(product(range(n), repeat=dim))
for p1 in nodes:
probs = [0]
for p2 in nodes:
if p1 == p2:
continue
d = sum((abs(b - a) for a, b in zip(p1, p2)))
if d <= p:
G.add_edge(p1, p2)
probs.append(d ** -r)
cdf = list(accumulate(probs))
for _ in range(q):
target = nodes[bisect_left(cdf, seed.uniform(0, cdf[-1]))]
G.add_edge(p1, target)
return G
@py_random_state(7)
@nodes_or_number(0)
def thresholded_random_geometric_graph(
n, radius, theta, dim=2, pos=None, weight=None, p=2, seed=None
):
r"""Returns a thresholded random geometric graph in the unit cube.
The thresholded random geometric graph [1] model places `n` nodes
uniformly at random in the unit cube of dimensions `dim`. Each node
`u` is assigned a weight :math:`w_u`. Two nodes `u` and `v` are
joined by an edge if they are within the maximum connection distance,
`radius` computed by the `p`-Minkowski distance and the summation of
weights :math:`w_u` + :math:`w_v` is greater than or equal
to the threshold parameter `theta`.
Edges within `radius` of each other are determined using a KDTree when
SciPy is available. This reduces the time complexity from :math:`O(n^2)`
to :math:`O(n)`.
Parameters
----------
n : int or iterable
Number of nodes or iterable of nodes
radius: float
Distance threshold value
theta: float
Threshold value
dim : int, optional
Dimension of graph
pos : dict, optional
A dictionary keyed by node with node positions as values.
weight : dict, optional
Node weights as a dictionary of numbers keyed by node.
p : float, optional
Which Minkowski distance metric to use. `p` has to meet the condition
``1 <= p <= infinity``.
If this argument is not specified, the :math:`L^2` metric
(the Euclidean distance metric), p = 2 is used.
This should not be confused with the `p` of an Erdős-Rényi random
graph, which represents probability.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
Graph
A thresholded random geographic graph, undirected and without
self-loops.
Each node has a node attribute ``'pos'`` that stores the
position of that node in Euclidean space as provided by the
``pos`` keyword argument or, if ``pos`` was not provided, as
generated by this function. Similarly, each node has a nodethre
attribute ``'weight'`` that stores the weight of that node as
provided or as generated.
Examples
--------
Default Graph:
G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1)
Custom Graph:
Create a thresholded random geometric graph on 50 uniformly distributed
nodes where nodes are joined by an edge if their sum weights drawn from
a exponential distribution with rate = 5 are >= theta = 0.1 and their
Euclidean distance is at most 0.2.
Notes
-----
This uses a *k*-d tree to build the graph.
The `pos` keyword argument can be used to specify node positions so you
can create an arbitrary distribution and domain for positions.
For example, to use a 2D Gaussian distribution of node positions with mean
(0, 0) and standard deviation 2
If weights are not specified they are assigned to nodes by drawing randomly
from the exponential distribution with rate parameter :math:`\lambda=1`.
To specify weights from a different distribution, use the `weight` keyword
argument::
::
>>> import random
>>> import math
>>> n = 50
>>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
>>> w = {i: random.expovariate(5.0) for i in range(n)}
>>> G = nx.thresholded_random_geometric_graph(n, 0.2, 0.1, 2, pos, w)
References
----------
.. [1] http://cole-maclean.github.io/blog/files/thesis.pdf
"""
n_name, nodes = n
G = nx.Graph()
G.name = f"thresholded_random_geometric_graph({n}, {radius}, {theta}, {dim})"
G.add_nodes_from(nodes)
# If no weights are provided, choose them from an exponential
# distribution.
if weight is None:
weight = {v: seed.expovariate(1) for v in G}
# If no positions are provided, choose uniformly random vectors in
# Euclidean space of the specified dimension.
if pos is None:
pos = {v: [seed.random() for i in range(dim)] for v in nodes}
# If no distance metric is provided, use Euclidean distance.
nx.set_node_attributes(G, weight, "weight")
nx.set_node_attributes(G, pos, "pos")
# Returns ``True`` if and only if the nodes whose attributes are
# ``du`` and ``dv`` should be joined, according to the threshold
# condition and node pairs are within the maximum connection
# distance, ``radius``.
def should_join(pair):
u, v = pair
u_weight, v_weight = weight[u], weight[v]
u_pos, v_pos = pos[u], pos[v]
dist = (sum(abs(a - b) ** p for a, b in zip(u_pos, v_pos))) ** (1 / p)
# Check if dist is <= radius parameter. This check is redundant if
# scipy is available and _fast_edges routine is used, but provides
# the check in case scipy is not available and all edge combinations
# need to be checked
if dist <= radius:
return theta <= u_weight + v_weight
else:
return False
if _is_scipy_available:
edges = _fast_edges(G, radius, p)
G.add_edges_from(filter(should_join, edges))
else:
G.add_edges_from(filter(should_join, combinations(G, 2)))
return G

View file

@ -0,0 +1,197 @@
"""Generators for Harary graphs
This module gives two generators for the Harary graph, which was
introduced by the famous mathematician Frank Harary in his 1962 work [H]_.
The first generator gives the Harary graph that maximizes the node
connectivity with given number of nodes and given number of edges.
The second generator gives the Harary graph that minimizes
the number of edges in the graph with given node connectivity and
number of nodes.
References
----------
.. [H] Harary, F. "The Maximum Connectivity of a Graph."
Proc. Nat. Acad. Sci. USA 48, 1142-1146, 1962.
"""
import networkx as nx
from networkx.exception import NetworkXError
__all__ = ["hnm_harary_graph", "hkn_harary_graph"]
def hnm_harary_graph(n, m, create_using=None):
"""Returns the Harary graph with given numbers of nodes and edges.
The Harary graph $H_{n,m}$ is the graph that maximizes node connectivity
with $n$ nodes and $m$ edges.
This maximum node connectivity is known to be floor($2m/n$). [1]_
Parameters
----------
n: integer
The number of nodes the generated graph is to contain
m: integer
The number of edges the generated graph is to contain
create_using : NetworkX graph constructor, optional Graph type
to create (default=nx.Graph). If graph instance, then cleared
before populated.
Returns
-------
NetworkX graph
The Harary graph $H_{n,m}$.
See Also
--------
hkn_harary_graph
Notes
-----
This algorithm runs in $O(m)$ time.
It is implemented by following the Reference [2]_.
References
----------
.. [1] F. T. Boesch, A. Satyanarayana, and C. L. Suffel,
"A Survey of Some Network Reliability Analysis and Synthesis Results,"
Networks, pp. 99-107, 2009.
.. [2] Harary, F. "The Maximum Connectivity of a Graph."
Proc. Nat. Acad. Sci. USA 48, 1142-1146, 1962.
"""
if n < 1:
raise NetworkXError("The number of nodes must be >= 1!")
if m < n - 1:
raise NetworkXError("The number of edges must be >= n - 1 !")
if m > n * (n - 1) // 2:
raise NetworkXError("The number of edges must be <= n(n-1)/2")
# Construct an empty graph with n nodes first
H = nx.empty_graph(n, create_using)
# Get the floor of average node degree
d = 2 * m // n
# Test the parity of n and d
if (n % 2 == 0) or (d % 2 == 0):
# Start with a regular graph of d degrees
offset = d // 2
for i in range(n):
for j in range(1, offset + 1):
H.add_edge(i, (i - j) % n)
H.add_edge(i, (i + j) % n)
if d & 1:
# in case d is odd; n must be even in this case
half = n // 2
for i in range(0, half):
# add edges diagonally
H.add_edge(i, i + half)
# Get the remainder of 2*m modulo n
r = 2 * m % n
if r > 0:
# add remaining edges at offset+1
for i in range(0, r // 2):
H.add_edge(i, i + offset + 1)
else:
# Start with a regular graph of (d - 1) degrees
offset = (d - 1) // 2
for i in range(n):
for j in range(1, offset + 1):
H.add_edge(i, (i - j) % n)
H.add_edge(i, (i + j) % n)
half = n // 2
for i in range(0, m - n * offset):
# add the remaining m - n*offset edges between i and i+half
H.add_edge(i, (i + half) % n)
return H
def hkn_harary_graph(k, n, create_using=None):
"""Returns the Harary graph with given node connectivity and node number.
The Harary graph $H_{k,n}$ is the graph that minimizes the number of
edges needed with given node connectivity $k$ and node number $n$.
This smallest number of edges is known to be ceil($kn/2$) [1]_.
Parameters
----------
k: integer
The node connectivity of the generated graph
n: integer
The number of nodes the generated graph is to contain
create_using : NetworkX graph constructor, optional Graph type
to create (default=nx.Graph). If graph instance, then cleared
before populated.
Returns
-------
NetworkX graph
The Harary graph $H_{k,n}$.
See Also
--------
hnm_harary_graph
Notes
-----
This algorithm runs in $O(kn)$ time.
It is implemented by following the Reference [2]_.
References
----------
.. [1] Weisstein, Eric W. "Harary Graph." From MathWorld--A Wolfram Web
Resource. http://mathworld.wolfram.com/HararyGraph.html.
.. [2] Harary, F. "The Maximum Connectivity of a Graph."
Proc. Nat. Acad. Sci. USA 48, 1142-1146, 1962.
"""
if k < 1:
raise NetworkXError("The node connectivity must be >= 1!")
if n < k + 1:
raise NetworkXError("The number of nodes must be >= k+1 !")
# in case of connectivity 1, simply return the path graph
if k == 1:
H = nx.path_graph(n, create_using)
return H
# Construct an empty graph with n nodes first
H = nx.empty_graph(n, create_using)
# Test the parity of k and n
if (k % 2 == 0) or (n % 2 == 0):
# Construct a regular graph with k degrees
offset = k // 2
for i in range(n):
for j in range(1, offset + 1):
H.add_edge(i, (i - j) % n)
H.add_edge(i, (i + j) % n)
if k & 1:
# odd degree; n must be even in this case
half = n // 2
for i in range(0, half):
# add edges diagonally
H.add_edge(i, i + half)
else:
# Construct a regular graph with (k - 1) degrees
offset = (k - 1) // 2
for i in range(n):
for j in range(1, offset + 1):
H.add_edge(i, (i - j) % n)
H.add_edge(i, (i + j) % n)
half = n // 2
for i in range(0, half + 1):
# add half+1 edges between i and i+half
H.add_edge(i, (i + half) % n)
return H

View file

@ -0,0 +1,442 @@
"""Generates graphs resembling the Internet Autonomous System network"""
import networkx as nx
from networkx.utils import py_random_state
__all__ = ["random_internet_as_graph"]
def uniform_int_from_avg(a, m, seed):
""" Pick a random integer with uniform probability.
Returns a random integer uniformly taken from a distribution with
minimum value 'a' and average value 'm', X~U(a,b), E[X]=m, X in N where
b = 2*m - a.
Notes
-----
p = (b-floor(b))/2
X = X1 + X2; X1~U(a,floor(b)), X2~B(p)
E[X] = E[X1] + E[X2] = (floor(b)+a)/2 + (b-floor(b))/2 = (b+a)/2 = m
"""
from math import floor
assert m >= a
b = 2 * m - a
p = (b - floor(b)) / 2
X1 = int(round(seed.random() * (floor(b) - a) + a))
if seed.random() < p:
X2 = 1
else:
X2 = 0
return X1 + X2
def choose_pref_attach(degs, seed):
""" Pick a random value, with a probability given by its weight.
Returns a random choice among degs keys, each of which has a
probability proportional to the corresponding dictionary value.
Parameters
----------
degs: dictionary
It contains the possible values (keys) and the corresponding
probabilities (values)
seed: random state
Returns
-------
v: object
A key of degs or None if degs is empty
"""
if len(degs) == 0:
return None
s = sum(degs.values())
if s == 0:
return seed.choice(list(degs.keys()))
v = seed.random() * s
nodes = list(degs.keys())
i = 0
acc = degs[nodes[i]]
while v > acc:
i += 1
acc += degs[nodes[i]]
return nodes[i]
class AS_graph_generator:
""" Generates random internet AS graphs.
"""
def __init__(self, n, seed):
""" Initializes variables. Immediate numbers are taken from [1].
Parameters
----------
n: integer
Number of graph nodes
seed: random state
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
GG: AS_graph_generator object
References
----------
[1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
"""
self.seed = seed
self.n_t = min(n, int(round(self.seed.random() * 2 + 4))) # num of T nodes
self.n_m = int(round(0.15 * n)) # number of M nodes
self.n_cp = int(round(0.05 * n)) # number of CP nodes
self.n_c = max(0, n - self.n_t - self.n_m - self.n_cp) # number of C nodes
self.d_m = 2 + (2.5 * n) / 10000 # average multihoming degree for M nodes
self.d_cp = 2 + (1.5 * n) / 10000 # avg multihoming degree for CP nodes
self.d_c = 1 + (5 * n) / 100000 # average multihoming degree for C nodes
self.p_m_m = 1 + (2 * n) / 10000 # avg num of peer edges between M and M
self.p_cp_m = 0.2 + (2 * n) / 10000 # avg num of peer edges between CP, M
self.p_cp_cp = 0.05 + (2 * n) / 100000 # avg num of peer edges btwn CP, CP
self.t_m = 0.375 # probability M's provider is T
self.t_cp = 0.375 # probability CP's provider is T
self.t_c = 0.125 # probability C's provider is T
def t_graph(self):
""" Generates the core mesh network of tier one nodes of a AS graph.
Returns
-------
G: Networkx Graph
Core network
"""
self.G = nx.Graph()
for i in range(self.n_t):
self.G.add_node(i, type="T")
for r in self.regions:
self.regions[r].add(i)
for j in self.G.nodes():
if i != j:
self.add_edge(i, j, "peer")
self.customers[i] = set()
self.providers[i] = set()
return self.G
def add_edge(self, i, j, kind):
if kind == "transit":
customer = str(i)
else:
customer = "none"
self.G.add_edge(i, j, type=kind, customer=customer)
def choose_peer_pref_attach(self, node_list):
""" Pick a node with a probability weighted by its peer degree.
Pick a node from node_list with preferential attachment
computed only on their peer degree
"""
d = {}
for n in node_list:
d[n] = self.G.nodes[n]["peers"]
return choose_pref_attach(d, self.seed)
def choose_node_pref_attach(self, node_list):
""" Pick a node with a probability weighted by its degree.
Pick a node from node_list with preferential attachment
computed on their degree
"""
degs = dict(self.G.degree(node_list))
return choose_pref_attach(degs, self.seed)
def add_customer(self, i, j):
""" Keep the dictionaries 'customers' and 'providers' consistent.
"""
self.customers[j].add(i)
self.providers[i].add(j)
for z in self.providers[j]:
self.customers[z].add(i)
self.providers[i].add(z)
def add_node(self, i, kind, reg2prob, avg_deg, t_edge_prob):
""" Add a node and its customer transit edges to the graph.
Parameters
----------
i: object
Identifier of the new node
kind: string
Type of the new node. Options are: 'M' for middle node, 'CP' for
content provider and 'C' for customer.
reg2prob: float
Probability the new node can be in two different regions.
avg_deg: float
Average number of transit nodes of which node i is customer.
t_edge_prob: float
Probability node i establish a customer transit edge with a tier
one (T) node
Returns
-------
i: object
Identifier of the new node
"""
regs = 1 # regions in which node resides
if self.seed.random() < reg2prob: # node is in two regions
regs = 2
node_options = set()
self.G.add_node(i, type=kind, peers=0)
self.customers[i] = set()
self.providers[i] = set()
self.nodes[kind].add(i)
for r in self.seed.sample(list(self.regions), regs):
node_options = node_options.union(self.regions[r])
self.regions[r].add(i)
edge_num = uniform_int_from_avg(1, avg_deg, self.seed)
t_options = node_options.intersection(self.nodes["T"])
m_options = node_options.intersection(self.nodes["M"])
if i in m_options:
m_options.remove(i)
d = 0
while d < edge_num and (len(t_options) > 0 or len(m_options) > 0):
if len(m_options) == 0 or (
len(t_options) > 0 and self.seed.random() < t_edge_prob
): # add edge to a T node
j = self.choose_node_pref_attach(t_options)
t_options.remove(j)
else:
j = self.choose_node_pref_attach(m_options)
m_options.remove(j)
self.add_edge(i, j, "transit")
self.add_customer(i, j)
d += 1
return i
def add_m_peering_link(self, m, to_kind):
""" Add a peering link between two middle tier (M) nodes.
Target node j is drawn considering a preferential attachment based on
other M node peering degree.
Parameters
----------
m: object
Node identifier
to_kind: string
type for target node j (must be always M)
Returns
-------
success: boolean
"""
# candidates are of type 'M' and are not customers of m
node_options = self.nodes["M"].difference(self.customers[m])
# candidates are not providers of m
node_options = node_options.difference(self.providers[m])
# remove self
if m in node_options:
node_options.remove(m)
# remove candidates we are already connected to
for j in self.G.neighbors(m):
if j in node_options:
node_options.remove(j)
if len(node_options) > 0:
j = self.choose_peer_pref_attach(node_options)
self.add_edge(m, j, "peer")
self.G.nodes[m]["peers"] += 1
self.G.nodes[j]["peers"] += 1
return True
else:
return False
def add_cp_peering_link(self, cp, to_kind):
""" Add a peering link to a content provider (CP) node.
Target node j can be CP or M and it is drawn uniformely among the nodes
belonging to the same region as cp.
Parameters
----------
cp: object
Node identifier
to_kind: string
type for target node j (must be M or CP)
Returns
-------
success: boolean
"""
node_options = set()
for r in self.regions: # options include nodes in the same region(s)
if cp in self.regions[r]:
node_options = node_options.union(self.regions[r])
# options are restricted to the indicated kind ('M' or 'CP')
node_options = self.nodes[to_kind].intersection(node_options)
# remove self
if cp in node_options:
node_options.remove(cp)
# remove nodes that are cp's providers
node_options = node_options.difference(self.providers[cp])
# remove nodes we are already connected to
for j in self.G.neighbors(cp):
if j in node_options:
node_options.remove(j)
if len(node_options) > 0:
j = self.seed.sample(node_options, 1)[0]
self.add_edge(cp, j, "peer")
self.G.nodes[cp]["peers"] += 1
self.G.nodes[j]["peers"] += 1
return True
else:
return False
def graph_regions(self, rn):
""" Initializes AS network regions.
Parameters
----------
rn: integer
Number of regions
"""
self.regions = {}
for i in range(rn):
self.regions["REG" + str(i)] = set()
def add_peering_links(self, from_kind, to_kind):
""" Utility function to add peering links among node groups.
"""
peer_link_method = None
if from_kind == "M":
peer_link_method = self.add_m_peering_link
m = self.p_m_m
if from_kind == "CP":
peer_link_method = self.add_cp_peering_link
if to_kind == "M":
m = self.p_cp_m
else:
m = self.p_cp_cp
for i in self.nodes[from_kind]:
num = uniform_int_from_avg(0, m, self.seed)
for _ in range(num):
peer_link_method(i, to_kind)
def generate(self):
""" Generates a random AS network graph as described in [1].
Returns
-------
G: Graph object
Notes
-----
The process steps are the following: first we create the core network
of tier one nodes, then we add the middle tier (M), the content
provider (CP) and the customer (C) nodes along with their transit edges
(link i,j means i is customer of j). Finally we add peering links
between M nodes, between M and CP nodes and between CP node couples.
For a detailed description of the algorithm, please refer to [1].
References
----------
[1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
"""
self.graph_regions(5)
self.customers = {}
self.providers = {}
self.nodes = {"T": set(), "M": set(), "CP": set(), "C": set()}
self.t_graph()
self.nodes["T"] = set(list(self.G.nodes()))
i = len(self.nodes["T"])
for _ in range(self.n_m):
self.nodes["M"].add(self.add_node(i, "M", 0.2, self.d_m, self.t_m))
i += 1
for _ in range(self.n_cp):
self.nodes["CP"].add(self.add_node(i, "CP", 0.05, self.d_cp, self.t_cp))
i += 1
for _ in range(self.n_c):
self.nodes["C"].add(self.add_node(i, "C", 0, self.d_c, self.t_c))
i += 1
self.add_peering_links("M", "M")
self.add_peering_links("CP", "M")
self.add_peering_links("CP", "CP")
return self.G
@py_random_state(1)
def random_internet_as_graph(n, seed=None):
""" Generates a random undirected graph resembling the Internet AS network
Parameters
----------
n: integer in [1000, 10000]
Number of graph nodes
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
G: Networkx Graph object
A randomly generated undirected graph
Notes
-----
This algorithm returns an undirected graph resembling the Internet
Autonomous System (AS) network, it uses the approach by Elmokashfi et al.
[1] and it grants the properties described in the related paper [1].
Each node models an autonomous system, with an attribute 'type' specifying
its kind; tier-1 (T), mid-level (M), customer (C) or content-provider (CP).
Each edge models an ADV communication link (hence, bidirectional) with
attributes:
- type: transit|peer, the kind of commercial agreement between nodes;
- customer: <node id>, the identifier of the node acting as customer
('none' if type is peer).
References
----------
[1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
"""
GG = AS_graph_generator(n, seed)
G = GG.generate()
return G

View file

@ -0,0 +1,120 @@
"""
Generators for random intersection graphs.
"""
import networkx as nx
from networkx.algorithms import bipartite
from networkx.utils import py_random_state
__all__ = [
"uniform_random_intersection_graph",
"k_random_intersection_graph",
"general_random_intersection_graph",
]
@py_random_state(3)
def uniform_random_intersection_graph(n, m, p, seed=None):
"""Returns a uniform random intersection graph.
Parameters
----------
n : int
The number of nodes in the first bipartite set (nodes)
m : int
The number of nodes in the second bipartite set (attributes)
p : float
Probability of connecting nodes between bipartite sets
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
See Also
--------
gnp_random_graph
References
----------
.. [1] K.B. Singer-Cohen, Random Intersection Graphs, 1995,
PhD thesis, Johns Hopkins University
.. [2] Fill, J. A., Scheinerman, E. R., and Singer-Cohen, K. B.,
Random intersection graphs when m = !(n):
An equivalence theorem relating the evolution of the g(n, m, p)
and g(n, p) models. Random Struct. Algorithms 16, 2 (2000), 156176.
"""
G = bipartite.random_graph(n, m, p, seed)
return nx.projected_graph(G, range(n))
@py_random_state(3)
def k_random_intersection_graph(n, m, k, seed=None):
"""Returns a intersection graph with randomly chosen attribute sets for
each node that are of equal size (k).
Parameters
----------
n : int
The number of nodes in the first bipartite set (nodes)
m : int
The number of nodes in the second bipartite set (attributes)
k : float
Size of attribute set to assign to each node.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
See Also
--------
gnp_random_graph, uniform_random_intersection_graph
References
----------
.. [1] Godehardt, E., and Jaworski, J.
Two models of random intersection graphs and their applications.
Electronic Notes in Discrete Mathematics 10 (2001), 129--132.
"""
G = nx.empty_graph(n + m)
mset = range(n, n + m)
for v in range(n):
targets = seed.sample(mset, k)
G.add_edges_from(zip([v] * len(targets), targets))
return nx.projected_graph(G, range(n))
@py_random_state(3)
def general_random_intersection_graph(n, m, p, seed=None):
"""Returns a random intersection graph with independent probabilities
for connections between node and attribute sets.
Parameters
----------
n : int
The number of nodes in the first bipartite set (nodes)
m : int
The number of nodes in the second bipartite set (attributes)
p : list of floats of length m
Probabilities for connecting nodes to each attribute
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
See Also
--------
gnp_random_graph, uniform_random_intersection_graph
References
----------
.. [1] Nikoletseas, S. E., Raptopoulos, C., and Spirakis, P. G.
The existence and efficient construction of large independent sets
in general random intersection graphs. In ICALP (2004), J. D´ıaz,
J. Karhum¨aki, A. Lepist¨o, and D. Sannella, Eds., vol. 3142
of Lecture Notes in Computer Science, Springer, pp. 10291040.
"""
if len(p) != m:
raise ValueError("Probability list p must have m elements.")
G = nx.empty_graph(n + m)
mset = range(n, n + m)
for u in range(n):
for v, q in zip(mset, p):
if seed.random() < q:
G.add_edge(u, v)
return nx.projected_graph(G, range(n))

View file

@ -0,0 +1,69 @@
"""
Generators for interval graph.
"""
from collections.abc import Sequence
import networkx as nx
__all__ = ["interval_graph"]
def interval_graph(intervals):
""" Generates an interval graph for a list of intervals given.
In graph theory, an interval graph is an undirected graph formed from a set
of closed intervals on the real line, with a vertex for each interval
and an edge between vertices whose intervals intersect.
It is the intersection graph of the intervals.
More information can be found at:
https://en.wikipedia.org/wiki/Interval_graph
Parameters
----------
intervals : a sequence of intervals, say (l, r) where l is the left end,
and r is the right end of the closed interval.
Returns
-------
G : networkx graph
Examples
--------
>>> intervals = [(-2, 3), [1, 4], (2, 3), (4, 6)]
>>> G = nx.interval_graph(intervals)
>>> sorted(G.edges)
[((-2, 3), (1, 4)), ((-2, 3), (2, 3)), ((1, 4), (2, 3)), ((1, 4), (4, 6))]
Raises
--------
:exc:`TypeError`
if `intervals` contains None or an element which is not
collections.abc.Sequence or not a length of 2.
:exc:`ValueError`
if `intervals` contains an interval such that min1 > max1
where min1,max1 = interval
"""
intervals = list(intervals)
for interval in intervals:
if not (isinstance(interval, Sequence) and len(interval) == 2):
raise TypeError(
"Each interval must have length 2, and be a "
"collections.abc.Sequence such as tuple or list."
)
if interval[0] > interval[1]:
raise ValueError(
f"Interval must have lower value first. " f"Got {interval}"
)
graph = nx.Graph()
tupled_intervals = [tuple(interval) for interval in intervals]
graph.add_nodes_from(tupled_intervals)
while tupled_intervals:
min1, max1 = interval1 = tupled_intervals.pop()
for interval2 in tupled_intervals:
min2, max2 = interval2
if max1 >= min2 and max2 >= min1:
graph.add_edge(interval1, interval2)
return graph

View file

@ -0,0 +1,670 @@
"""Generate graphs with a given joint degree and directed joint degree"""
import networkx as nx
from networkx.utils import py_random_state
__all__ = [
"is_valid_joint_degree",
"is_valid_directed_joint_degree",
"joint_degree_graph",
"directed_joint_degree_graph",
]
def is_valid_joint_degree(joint_degrees):
""" Checks whether the given joint degree dictionary is realizable.
A *joint degree dictionary* is a dictionary of dictionaries, in
which entry ``joint_degrees[k][l]`` is an integer representing the
number of edges joining nodes of degree *k* with nodes of degree
*l*. Such a dictionary is realizable as a simple graph if and only
if the following conditions are satisfied.
- each entry must be an integer,
- the total number of nodes of degree *k*, computed by
``sum(joint_degrees[k].values()) / k``, must be an integer,
- the total number of edges joining nodes of degree *k* with
nodes of degree *l* cannot exceed the total number of possible edges,
- each diagonal entry ``joint_degrees[k][k]`` must be even (this is
a convention assumed by the :func:`joint_degree_graph` function).
Parameters
----------
joint_degrees : dictionary of dictionary of integers
A joint degree dictionary in which entry ``joint_degrees[k][l]``
is the number of edges joining nodes of degree *k* with nodes of
degree *l*.
Returns
-------
bool
Whether the given joint degree dictionary is realizable as a
simple graph.
References
----------
.. [1] M. Gjoka, M. Kurant, A. Markopoulou, "2.5K Graphs: from Sampling
to Generation", IEEE Infocom, 2013.
.. [2] I. Stanton, A. Pinar, "Constructing and sampling graphs with a
prescribed joint degree distribution", Journal of Experimental
Algorithmics, 2012.
"""
degree_count = {}
for k in joint_degrees:
if k > 0:
k_size = sum(joint_degrees[k].values()) / k
if not k_size.is_integer():
return False
degree_count[k] = k_size
for k in joint_degrees:
for l in joint_degrees[k]:
if not float(joint_degrees[k][l]).is_integer():
return False
if (k != l) and (joint_degrees[k][l] > degree_count[k] * degree_count[l]):
return False
elif k == l:
if joint_degrees[k][k] > degree_count[k] * (degree_count[k] - 1):
return False
if joint_degrees[k][k] % 2 != 0:
return False
# if all above conditions have been satisfied then the input
# joint degree is realizable as a simple graph.
return True
def _neighbor_switch(G, w, unsat, h_node_residual, avoid_node_id=None):
""" Releases one free stub for ``w``, while preserving joint degree in G.
Parameters
----------
G : NetworkX graph
Graph in which the neighbor switch will take place.
w : integer
Node id for which we will execute this neighbor switch.
unsat : set of integers
Set of unsaturated node ids that have the same degree as w.
h_node_residual: dictionary of integers
Keeps track of the remaining stubs for a given node.
avoid_node_id: integer
Node id to avoid when selecting w_prime.
Notes
-----
First, it selects *w_prime*, an unsaturated node that has the same degree
as ``w``. Second, it selects *switch_node*, a neighbor node of ``w`` that
is not connected to *w_prime*. Then it executes an edge swap i.e. removes
(``w``,*switch_node*) and adds (*w_prime*,*switch_node*). Gjoka et. al. [1]
prove that such an edge swap is always possible.
References
----------
.. [1] M. Gjoka, B. Tillman, A. Markopoulou, "Construction of Simple
Graphs with a Target Joint Degree Matrix and Beyond", IEEE Infocom, '15
"""
if (avoid_node_id is None) or (h_node_residual[avoid_node_id] > 1):
# select unsatured node w_prime that has the same degree as w
w_prime = next(iter(unsat))
else:
# assume that the node pair (v,w) has been selected for connection. if
# - neighbor_switch is called for node w,
# - nodes v and w have the same degree,
# - node v=avoid_node_id has only one stub left,
# then prevent v=avoid_node_id from being selected as w_prime.
iter_var = iter(unsat)
while True:
w_prime = next(iter_var)
if w_prime != avoid_node_id:
break
# select switch_node, a neighbor of w, that is not connected to w_prime
w_prime_neighbs = G[w_prime] # slightly faster declaring this variable
for v in G[w]:
if (v not in w_prime_neighbs) and (v != w_prime):
switch_node = v
break
# remove edge (w,switch_node), add edge (w_prime,switch_node) and update
# data structures
G.remove_edge(w, switch_node)
G.add_edge(w_prime, switch_node)
h_node_residual[w] += 1
h_node_residual[w_prime] -= 1
if h_node_residual[w_prime] == 0:
unsat.remove(w_prime)
@py_random_state(1)
def joint_degree_graph(joint_degrees, seed=None):
""" Generates a random simple graph with the given joint degree dictionary.
Parameters
----------
joint_degrees : dictionary of dictionary of integers
A joint degree dictionary in which entry ``joint_degrees[k][l]`` is the
number of edges joining nodes of degree *k* with nodes of degree *l*.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
G : Graph
A graph with the specified joint degree dictionary.
Raises
------
NetworkXError
If *joint_degrees* dictionary is not realizable.
Notes
-----
In each iteration of the "while loop" the algorithm picks two disconnected
nodes *v* and *w*, of degree *k* and *l* correspondingly, for which
``joint_degrees[k][l]`` has not reached its target yet. It then adds
edge (*v*, *w*) and increases the number of edges in graph G by one.
The intelligence of the algorithm lies in the fact that it is always
possible to add an edge between such disconnected nodes *v* and *w*,
even if one or both nodes do not have free stubs. That is made possible by
executing a "neighbor switch", an edge rewiring move that releases
a free stub while keeping the joint degree of G the same.
The algorithm continues for E (number of edges) iterations of
the "while loop", at the which point all entries of the given
``joint_degrees[k][l]`` have reached their target values and the
construction is complete.
References
----------
.. [1] M. Gjoka, B. Tillman, A. Markopoulou, "Construction of Simple
Graphs with a Target Joint Degree Matrix and Beyond", IEEE Infocom, '15
Examples
--------
>>> joint_degrees = {
... 1: {4: 1},
... 2: {2: 2, 3: 2, 4: 2},
... 3: {2: 2, 4: 1},
... 4: {1: 1, 2: 2, 3: 1},
... }
>>> G = nx.joint_degree_graph(joint_degrees)
>>>
"""
if not is_valid_joint_degree(joint_degrees):
msg = "Input joint degree dict not realizable as a simple graph"
raise nx.NetworkXError(msg)
# compute degree count from joint_degrees
degree_count = {k: sum(l.values()) // k for k, l in joint_degrees.items() if k > 0}
# start with empty N-node graph
N = sum(degree_count.values())
G = nx.empty_graph(N)
# for a given degree group, keep the list of all node ids
h_degree_nodelist = {}
# for a given node, keep track of the remaining stubs
h_node_residual = {}
# populate h_degree_nodelist and h_node_residual
nodeid = 0
for degree, num_nodes in degree_count.items():
h_degree_nodelist[degree] = range(nodeid, nodeid + num_nodes)
for v in h_degree_nodelist[degree]:
h_node_residual[v] = degree
nodeid += int(num_nodes)
# iterate over every degree pair (k,l) and add the number of edges given
# for each pair
for k in joint_degrees:
for l in joint_degrees[k]:
# n_edges_add is the number of edges to add for the
# degree pair (k,l)
n_edges_add = joint_degrees[k][l]
if (n_edges_add > 0) and (k >= l):
# number of nodes with degree k and l
k_size = degree_count[k]
l_size = degree_count[l]
# k_nodes and l_nodes consist of all nodes of degree k and l
k_nodes = h_degree_nodelist[k]
l_nodes = h_degree_nodelist[l]
# k_unsat and l_unsat consist of nodes of degree k and l that
# are unsaturated (nodes that have at least 1 available stub)
k_unsat = {v for v in k_nodes if h_node_residual[v] > 0}
if k != l:
l_unsat = {w for w in l_nodes if h_node_residual[w] > 0}
else:
l_unsat = k_unsat
n_edges_add = joint_degrees[k][l] // 2
while n_edges_add > 0:
# randomly pick nodes v and w that have degrees k and l
v = k_nodes[seed.randrange(k_size)]
w = l_nodes[seed.randrange(l_size)]
# if nodes v and w are disconnected then attempt to connect
if not G.has_edge(v, w) and (v != w):
# if node v has no free stubs then do neighbor switch
if h_node_residual[v] == 0:
_neighbor_switch(G, v, k_unsat, h_node_residual)
# if node w has no free stubs then do neighbor switch
if h_node_residual[w] == 0:
if k != l:
_neighbor_switch(G, w, l_unsat, h_node_residual)
else:
_neighbor_switch(
G, w, l_unsat, h_node_residual, avoid_node_id=v
)
# add edge (v, w) and update data structures
G.add_edge(v, w)
h_node_residual[v] -= 1
h_node_residual[w] -= 1
n_edges_add -= 1
if h_node_residual[v] == 0:
k_unsat.discard(v)
if h_node_residual[w] == 0:
l_unsat.discard(w)
return G
def is_valid_directed_joint_degree(in_degrees, out_degrees, nkk):
""" Checks whether the given directed joint degree input is realizable
Parameters
----------
in_degrees : list of integers
in degree sequence contains the in degrees of nodes.
out_degrees : list of integers
out degree sequence contains the out degrees of nodes.
nkk : dictionary of dictionary of integers
directed joint degree dictionary. for nodes of out degree k (first
level of dict) and nodes of in degree l (seconnd level of dict)
describes the number of edges.
Returns
-------
boolean
returns true if given input is realizable, else returns false.
Notes
-----
Here is the list of conditions that the inputs (in/out degree sequences,
nkk) need to satisfy for simple directed graph realizability:
- Condition 0: in_degrees and out_degrees have the same length
- Condition 1: nkk[k][l] is integer for all k,l
- Condition 2: sum(nkk[k])/k = number of nodes with partition id k, is an
integer and matching degree sequence
- Condition 3: number of edges and non-chords between k and l cannot exceed
maximum possible number of edges
References
----------
[1] B. Tillman, A. Markopoulou, C. T. Butts & M. Gjoka,
"Construction of Directed 2K Graphs". In Proc. of KDD 2017.
"""
V = {} # number of nodes with in/out degree.
forbidden = {}
if len(in_degrees) != len(out_degrees):
return False
for idx in range(0, len(in_degrees)):
i = in_degrees[idx]
o = out_degrees[idx]
V[(i, 0)] = V.get((i, 0), 0) + 1
V[(o, 1)] = V.get((o, 1), 0) + 1
forbidden[(o, i)] = forbidden.get((o, i), 0) + 1
S = {} # number of edges going from in/out degree nodes.
for k in nkk:
for l in nkk[k]:
val = nkk[k][l]
if not float(val).is_integer(): # condition 1
return False
if val > 0:
S[(k, 1)] = S.get((k, 1), 0) + val
S[(l, 0)] = S.get((l, 0), 0) + val
# condition 3
if val + forbidden.get((k, l), 0) > V[(k, 1)] * V[(l, 0)]:
return False
for s in S:
if not float(S[s]) / s[0] == V[s]: # condition 2
return False
# if all conditions abive have been satisfied then the input nkk is
# realizable as a simple graph.
return True
def _directed_neighbor_switch(
G, w, unsat, h_node_residual_out, chords, h_partition_in, partition
):
""" Releases one free stub for node w, while preserving joint degree in G.
Parameters
----------
G : networkx directed graph
graph within which the edge swap will take place.
w : integer
node id for which we need to perform a neighbor switch.
unsat: set of integers
set of node ids that have the same degree as w and are unsaturated.
h_node_residual_out: dict of integers
for a given node, keeps track of the remaining stubs to be added.
chords: set of tuples
keeps track of available positions to add edges.
h_partition_in: dict of integers
for a given node, keeps track of its partition id (in degree).
partition: integer
partition id to check if chords have to be updated.
Notes
-----
First, it selects node w_prime that (1) has the same degree as w and
(2) is unsaturated. Then, it selects node v, a neighbor of w, that is
not connected to w_prime and does an edge swap i.e. removes (w,v) and
adds (w_prime,v). If neighbor switch is not possible for w using
w_prime and v, then return w_prime; in [1] it's proven that
such unsaturated nodes can be used.
References
----------
[1] B. Tillman, A. Markopoulou, C. T. Butts & M. Gjoka,
"Construction of Directed 2K Graphs". In Proc. of KDD 2017.
"""
w_prime = unsat.pop()
unsat.add(w_prime)
# select node t, a neighbor of w, that is not connected to w_prime
w_neighbs = list(G.successors(w))
# slightly faster declaring this variable
w_prime_neighbs = list(G.successors(w_prime))
for v in w_neighbs:
if (v not in w_prime_neighbs) and w_prime != v:
# removes (w,v), add (w_prime,v) and update data structures
G.remove_edge(w, v)
G.add_edge(w_prime, v)
if h_partition_in[v] == partition:
chords.add((w, v))
chords.discard((w_prime, v))
h_node_residual_out[w] += 1
h_node_residual_out[w_prime] -= 1
if h_node_residual_out[w_prime] == 0:
unsat.remove(w_prime)
return None
# If neighbor switch didn't work, use unsaturated node
return w_prime
def _directed_neighbor_switch_rev(
G, w, unsat, h_node_residual_in, chords, h_partition_out, partition
):
""" The reverse of directed_neighbor_switch.
Parameters
----------
G : networkx directed graph
graph within which the edge swap will take place.
w : integer
node id for which we need to perform a neighbor switch.
unsat: set of integers
set of node ids that have the same degree as w and are unsaturated.
h_node_residual_in: dict of integers
for a given node, keeps track of the remaining stubs to be added.
chords: set of tuples
keeps track of available positions to add edges.
h_partition_out: dict of integers
for a given node, keeps track of its partition id (out degree).
partition: integer
partition id to check if chords have to be updated.
Notes
-----
Same operation as directed_neighbor_switch except it handles this operation
for incoming edges instead of outgoing.
"""
w_prime = unsat.pop()
unsat.add(w_prime)
# slightly faster declaring these as variables.
w_neighbs = list(G.predecessors(w))
w_prime_neighbs = list(G.predecessors(w_prime))
# select node v, a neighbor of w, that is not connected to w_prime.
for v in w_neighbs:
if (v not in w_prime_neighbs) and w_prime != v:
# removes (v,w), add (v,w_prime) and update data structures.
G.remove_edge(v, w)
G.add_edge(v, w_prime)
if h_partition_out[v] == partition:
chords.add((v, w))
chords.discard((v, w_prime))
h_node_residual_in[w] += 1
h_node_residual_in[w_prime] -= 1
if h_node_residual_in[w_prime] == 0:
unsat.remove(w_prime)
return None
# If neighbor switch didn't work, use the unsaturated node.
return w_prime
@py_random_state(3)
def directed_joint_degree_graph(in_degrees, out_degrees, nkk, seed=None):
""" Generates a random simple directed graph with the joint degree.
Parameters
----------
degree_seq : list of tuples (of size 3)
degree sequence contains tuples of nodes with node id, in degree and
out degree.
nkk : dictionary of dictionary of integers
directed joint degree dictionary, for nodes of out degree k (first
level of dict) and nodes of in degree l (second level of dict)
describes the number of edges.
seed : hashable object, optional
Seed for random number generator.
Returns
-------
G : Graph
A directed graph with the specified inputs.
Raises
------
NetworkXError
If degree_seq and nkk are not realizable as a simple directed graph.
Notes
-----
Similarly to the undirected version:
In each iteration of the "while loop" the algorithm picks two disconnected
nodes v and w, of degree k and l correspondingly, for which nkk[k][l] has
not reached its target yet i.e. (for given k,l): n_edges_add < nkk[k][l].
It then adds edge (v,w) and always increases the number of edges in graph G
by one.
The intelligence of the algorithm lies in the fact that it is always
possible to add an edge between disconnected nodes v and w, for which
nkk[degree(v)][degree(w)] has not reached its target, even if one or both
nodes do not have free stubs. If either node v or w does not have a free
stub, we perform a "neighbor switch", an edge rewiring move that releases a
free stub while keeping nkk the same.
The difference for the directed version lies in the fact that neighbor
switches might not be able to rewire, but in these cases unsaturated nodes
can be reassigned to use instead, see [1] for detailed description and
proofs.
The algorithm continues for E (number of edges in the graph) iterations of
the "while loop", at which point all entries of the given nkk[k][l] have
reached their target values and the construction is complete.
References
----------
[1] B. Tillman, A. Markopoulou, C. T. Butts & M. Gjoka,
"Construction of Directed 2K Graphs". In Proc. of KDD 2017.
Examples
--------
>>> in_degrees = [0, 1, 1, 2]
>>> out_degrees = [1, 1, 1, 1]
>>> nkk = {1: {1: 2, 2: 2}}
>>> G = nx.directed_joint_degree_graph(in_degrees, out_degrees, nkk)
>>>
"""
if not is_valid_directed_joint_degree(in_degrees, out_degrees, nkk):
msg = "Input is not realizable as a simple graph"
raise nx.NetworkXError(msg)
# start with an empty directed graph.
G = nx.DiGraph()
# for a given group, keep the list of all node ids.
h_degree_nodelist_in = {}
h_degree_nodelist_out = {}
# for a given group, keep the list of all unsaturated node ids.
h_degree_nodelist_in_unsat = {}
h_degree_nodelist_out_unsat = {}
# for a given node, keep track of the remaining stubs to be added.
h_node_residual_out = {}
h_node_residual_in = {}
# for a given node, keep track of the partition id.
h_partition_out = {}
h_partition_in = {}
# keep track of non-chords between pairs of partition ids.
non_chords = {}
# populate data structures
for idx, i in enumerate(in_degrees):
idx = int(idx)
if i > 0:
h_degree_nodelist_in.setdefault(i, [])
h_degree_nodelist_in_unsat.setdefault(i, set())
h_degree_nodelist_in[i].append(idx)
h_degree_nodelist_in_unsat[i].add(idx)
h_node_residual_in[idx] = i
h_partition_in[idx] = i
for idx, o in enumerate(out_degrees):
o = out_degrees[idx]
non_chords[(o, in_degrees[idx])] = non_chords.get((o, in_degrees[idx]), 0) + 1
idx = int(idx)
if o > 0:
h_degree_nodelist_out.setdefault(o, [])
h_degree_nodelist_out_unsat.setdefault(o, set())
h_degree_nodelist_out[o].append(idx)
h_degree_nodelist_out_unsat[o].add(idx)
h_node_residual_out[idx] = o
h_partition_out[idx] = o
G.add_node(idx)
nk_in = {}
nk_out = {}
for p in h_degree_nodelist_in:
nk_in[p] = len(h_degree_nodelist_in[p])
for p in h_degree_nodelist_out:
nk_out[p] = len(h_degree_nodelist_out[p])
# iterate over every degree pair (k,l) and add the number of edges given
# for each pair.
for k in nkk:
for l in nkk[k]:
n_edges_add = nkk[k][l]
if n_edges_add > 0:
# chords contains a random set of potential edges.
chords = set()
k_len = nk_out[k]
l_len = nk_in[l]
chords_sample = seed.sample(
range(k_len * l_len), n_edges_add + non_chords.get((k, l), 0)
)
num = 0
while len(chords) < n_edges_add:
i = h_degree_nodelist_out[k][chords_sample[num] % k_len]
j = h_degree_nodelist_in[l][chords_sample[num] // k_len]
num += 1
if i != j:
chords.add((i, j))
# k_unsat and l_unsat consist of nodes of in/out degree k and l
# that are unsaturated i.e. those nodes that have at least one
# available stub
k_unsat = h_degree_nodelist_out_unsat[k]
l_unsat = h_degree_nodelist_in_unsat[l]
while n_edges_add > 0:
v, w = chords.pop()
chords.add((v, w))
# if node v has no free stubs then do neighbor switch.
if h_node_residual_out[v] == 0:
_v = _directed_neighbor_switch(
G,
v,
k_unsat,
h_node_residual_out,
chords,
h_partition_in,
l,
)
if _v is not None:
v = _v
# if node w has no free stubs then do neighbor switch.
if h_node_residual_in[w] == 0:
_w = _directed_neighbor_switch_rev(
G,
w,
l_unsat,
h_node_residual_in,
chords,
h_partition_out,
k,
)
if _w is not None:
w = _w
# add edge (v,w) and update data structures.
G.add_edge(v, w)
h_node_residual_out[v] -= 1
h_node_residual_in[w] -= 1
n_edges_add -= 1
chords.discard((v, w))
if h_node_residual_out[v] == 0:
k_unsat.discard(v)
if h_node_residual_in[w] == 0:
l_unsat.discard(w)
return G

View file

@ -0,0 +1,359 @@
"""Functions for generating grid graphs and lattices
The :func:`grid_2d_graph`, :func:`triangular_lattice_graph`, and
:func:`hexagonal_lattice_graph` functions correspond to the three
`regular tilings of the plane`_, the square, triangular, and hexagonal
tilings, respectively. :func:`grid_graph` and :func:`hypercube_graph`
are similar for arbitrary dimensions. Useful relevant discussion can
be found about `Triangular Tiling`_, and `Square, Hex and Triangle Grids`_
.. _regular tilings of the plane: https://en.wikipedia.org/wiki/List_of_regular_polytopes_and_compounds#Euclidean_tilings
.. _Square, Hex and Triangle Grids: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
.. _Triangular Tiling: https://en.wikipedia.org/wiki/Triangular_tiling
"""
from math import sqrt
from networkx.classes import set_node_attributes
from networkx.algorithms.minors import contracted_nodes
from networkx.algorithms.operators.product import cartesian_product
from networkx.exception import NetworkXError
from networkx.relabel import relabel_nodes
from networkx.utils import flatten, nodes_or_number, pairwise, iterable
from networkx.generators.classic import cycle_graph
from networkx.generators.classic import empty_graph
from networkx.generators.classic import path_graph
from itertools import repeat
__all__ = [
"grid_2d_graph",
"grid_graph",
"hypercube_graph",
"triangular_lattice_graph",
"hexagonal_lattice_graph",
]
@nodes_or_number([0, 1])
def grid_2d_graph(m, n, periodic=False, create_using=None):
"""Returns the two-dimensional grid graph.
The grid graph has each node connected to its four nearest neighbors.
Parameters
----------
m, n : int or iterable container of nodes
If an integer, nodes are from `range(n)`.
If a container, elements become the coordinate of the nodes.
periodic : bool or iterable
If `periodic` is True, both dimensions are periodic. If False, none
are periodic. If `periodic` is iterable, it should yield 2 bool
values indicating whether the 1st and 2nd axes, respectively, are
periodic.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
NetworkX graph
The (possibly periodic) grid graph of the specified dimensions.
"""
G = empty_graph(0, create_using)
row_name, rows = m
col_name, cols = n
G.add_nodes_from((i, j) for i in rows for j in cols)
G.add_edges_from(((i, j), (pi, j)) for pi, i in pairwise(rows) for j in cols)
G.add_edges_from(((i, j), (i, pj)) for i in rows for pj, j in pairwise(cols))
if iterable(periodic):
periodic_r, periodic_c = periodic
else:
periodic_r = periodic_c = periodic
if periodic_r and len(rows) > 2:
first = rows[0]
last = rows[-1]
G.add_edges_from(((first, j), (last, j)) for j in cols)
if periodic_c and len(cols) > 2:
first = cols[0]
last = cols[-1]
G.add_edges_from(((i, first), (i, last)) for i in rows)
# both directions for directed
if G.is_directed():
G.add_edges_from((v, u) for u, v in G.edges())
return G
def grid_graph(dim, periodic=False):
"""Returns the *n*-dimensional grid graph.
The dimension *n* is the length of the list `dim` and the size in
each dimension is the value of the corresponding list element.
Parameters
----------
dim : list or tuple of numbers or iterables of nodes
'dim' is a tuple or list with, for each dimension, either a number
that is the size of that dimension or an iterable of nodes for
that dimension. The dimension of the grid_graph is the length
of `dim`.
periodic : bool or iterable
If `periodic` is True, all dimensions are periodic. If False all
dimensions are not periodic. If `periodic` is iterable, it should
yield `dim` bool values each of which indicates whether the
corresponding axis is periodic.
Returns
-------
NetworkX graph
The (possibly periodic) grid graph of the specified dimensions.
Examples
--------
To produce a 2 by 3 by 4 grid graph, a graph on 24 nodes:
>>> from networkx import grid_graph
>>> G = grid_graph(dim=(2, 3, 4))
>>> len(G)
24
>>> G = grid_graph(dim=(range(7, 9), range(3, 6)))
>>> len(G)
6
"""
if not dim:
return empty_graph(0)
if iterable(periodic):
func = (cycle_graph if p else path_graph for p in periodic)
else:
func = repeat(cycle_graph if periodic else path_graph)
G = next(func)(dim[0])
for current_dim in dim[1:]:
Gnew = next(func)(current_dim)
G = cartesian_product(Gnew, G)
# graph G is done but has labels of the form (1, (2, (3, 1))) so relabel
H = relabel_nodes(G, flatten)
return H
def hypercube_graph(n):
"""Returns the *n*-dimensional hypercube graph.
The nodes are the integers between 0 and ``2 ** n - 1``, inclusive.
For more information on the hypercube graph, see the Wikipedia
article `Hypercube graph`_.
.. _Hypercube graph: https://en.wikipedia.org/wiki/Hypercube_graph
Parameters
----------
n : int
The dimension of the hypercube.
The number of nodes in the graph will be ``2 ** n``.
Returns
-------
NetworkX graph
The hypercube graph of dimension *n*.
"""
dim = n * [2]
G = grid_graph(dim)
return G
def triangular_lattice_graph(
m, n, periodic=False, with_positions=True, create_using=None
):
r"""Returns the $m$ by $n$ triangular lattice graph.
The `triangular lattice graph`_ is a two-dimensional `grid graph`_ in
which each square unit has a diagonal edge (each grid unit has a chord).
The returned graph has $m$ rows and $n$ columns of triangles. Rows and
columns include both triangles pointing up and down. Rows form a strip
of constant height. Columns form a series of diamond shapes, staggered
with the columns on either side. Another way to state the size is that
the nodes form a grid of `m+1` rows and `(n + 1) // 2` columns.
The odd row nodes are shifted horizontally relative to the even rows.
Directed graph types have edges pointed up or right.
Positions of nodes are computed by default or `with_positions is True`.
The position of each node (embedded in a euclidean plane) is stored in
the graph using equilateral triangles with sidelength 1.
The height between rows of nodes is thus $\sqrt(3)/2$.
Nodes lie in the first quadrant with the node $(0, 0)$ at the origin.
.. _triangular lattice graph: http://mathworld.wolfram.com/TriangularGrid.html
.. _grid graph: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
.. _Triangular Tiling: https://en.wikipedia.org/wiki/Triangular_tiling
Parameters
----------
m : int
The number of rows in the lattice.
n : int
The number of columns in the lattice.
periodic : bool (default: False)
If True, join the boundary vertices of the grid using periodic
boundary conditions. The join between boundaries is the final row
and column of triangles. This means there is one row and one column
fewer nodes for the periodic lattice. Periodic lattices require
`m >= 3`, `n >= 5` and are allowed but misaligned if `m` or `n` are odd
with_positions : bool (default: True)
Store the coordinates of each node in the graph node attribute 'pos'.
The coordinates provide a lattice with equilateral triangles.
Periodic positions shift the nodes vertically in a nonlinear way so
the edges don't overlap so much.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
NetworkX graph
The *m* by *n* triangular lattice graph.
"""
H = empty_graph(0, create_using)
if n == 0 or m == 0:
return H
if periodic:
if n < 5 or m < 3:
msg = f"m > 2 and n > 4 required for periodic. m={m}, n={n}"
raise NetworkXError(msg)
N = (n + 1) // 2 # number of nodes in row
rows = range(m + 1)
cols = range(N + 1)
# Make grid
H.add_edges_from(((i, j), (i + 1, j)) for j in rows for i in cols[:N])
H.add_edges_from(((i, j), (i, j + 1)) for j in rows[:m] for i in cols)
# add diagonals
H.add_edges_from(((i, j), (i + 1, j + 1)) for j in rows[1:m:2] for i in cols[:N])
H.add_edges_from(((i + 1, j), (i, j + 1)) for j in rows[:m:2] for i in cols[:N])
# identify boundary nodes if periodic
if periodic is True:
for i in cols:
H = contracted_nodes(H, (i, 0), (i, m))
for j in rows[:m]:
H = contracted_nodes(H, (0, j), (N, j))
elif n % 2:
# remove extra nodes
H.remove_nodes_from((N, j) for j in rows[1::2])
# Add position node attributes
if with_positions:
ii = (i for i in cols for j in rows)
jj = (j for i in cols for j in rows)
xx = (0.5 * (j % 2) + i for i in cols for j in rows)
h = sqrt(3) / 2
if periodic:
yy = (h * j + 0.01 * i * i for i in cols for j in rows)
else:
yy = (h * j for i in cols for j in rows)
pos = {(i, j): (x, y) for i, j, x, y in zip(ii, jj, xx, yy) if (i, j) in H}
set_node_attributes(H, pos, "pos")
return H
def hexagonal_lattice_graph(
m, n, periodic=False, with_positions=True, create_using=None
):
"""Returns an `m` by `n` hexagonal lattice graph.
The *hexagonal lattice graph* is a graph whose nodes and edges are
the `hexagonal tiling`_ of the plane.
The returned graph will have `m` rows and `n` columns of hexagons.
`Odd numbered columns`_ are shifted up relative to even numbered columns.
Positions of nodes are computed by default or `with_positions is True`.
Node positions creating the standard embedding in the plane
with sidelength 1 and are stored in the node attribute 'pos'.
`pos = nx.get_node_attributes(G, 'pos')` creates a dict ready for drawing.
.. _hexagonal tiling: https://en.wikipedia.org/wiki/Hexagonal_tiling
.. _Odd numbered columns: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
Parameters
----------
m : int
The number of rows of hexagons in the lattice.
n : int
The number of columns of hexagons in the lattice.
periodic : bool
Whether to make a periodic grid by joining the boundary vertices.
For this to work `n` must be odd and both `n > 1` and `m > 1`.
The periodic connections create another row and column of hexagons
so these graphs have fewer nodes as boundary nodes are identified.
with_positions : bool (default: True)
Store the coordinates of each node in the graph node attribute 'pos'.
The coordinates provide a lattice with vertical columns of hexagons
offset to interleave and cover the plane.
Periodic positions shift the nodes vertically in a nonlinear way so
the edges don't overlap so much.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
If graph is directed, edges will point up or right.
Returns
-------
NetworkX graph
The *m* by *n* hexagonal lattice graph.
"""
G = empty_graph(0, create_using)
if m == 0 or n == 0:
return G
if periodic and (n % 2 == 1 or m < 2 or n < 2):
msg = "periodic hexagonal lattice needs m > 1, n > 1 and even n"
raise NetworkXError(msg)
M = 2 * m # twice as many nodes as hexagons vertically
rows = range(M + 2)
cols = range(n + 1)
# make lattice
col_edges = (((i, j), (i, j + 1)) for i in cols for j in rows[: M + 1])
row_edges = (((i, j), (i + 1, j)) for i in cols[:n] for j in rows if i % 2 == j % 2)
G.add_edges_from(col_edges)
G.add_edges_from(row_edges)
# Remove corner nodes with one edge
G.remove_node((0, M + 1))
G.remove_node((n, (M + 1) * (n % 2)))
# identify boundary nodes if periodic
if periodic:
for i in cols[:n]:
G = contracted_nodes(G, (i, 0), (i, M))
for i in cols[1:]:
G = contracted_nodes(G, (i, 1), (i, M + 1))
for j in rows[1:M]:
G = contracted_nodes(G, (0, j), (n, j))
G.remove_node((n, M))
# calc position in embedded space
ii = (i for i in cols for j in rows)
jj = (j for i in cols for j in rows)
xx = (0.5 + i + i // 2 + (j % 2) * ((i % 2) - 0.5) for i in cols for j in rows)
h = sqrt(3) / 2
if periodic:
yy = (h * j + 0.01 * i * i for i in cols for j in rows)
else:
yy = (h * j for i in cols for j in rows)
# exclude nodes not in G
pos = {(i, j): (x, y) for i, j, x, y in zip(ii, jj, xx, yy) if (i, j) in G}
set_node_attributes(G, pos, "pos")
return G

View file

@ -0,0 +1,530 @@
"""Functions for generating line graphs."""
from itertools import combinations
from collections import defaultdict
import networkx as nx
from networkx.utils import arbitrary_element, generate_unique_node
from networkx.utils.decorators import not_implemented_for
__all__ = ["line_graph", "inverse_line_graph"]
def line_graph(G, create_using=None):
r"""Returns the line graph of the graph or digraph `G`.
The line graph of a graph `G` has a node for each edge in `G` and an
edge joining those nodes if the two edges in `G` share a common node. For
directed graphs, nodes are adjacent exactly when the edges they represent
form a directed path of length two.
The nodes of the line graph are 2-tuples of nodes in the original graph (or
3-tuples for multigraphs, with the key of the edge as the third element).
For information about self-loops and more discussion, see the **Notes**
section below.
Parameters
----------
G : graph
A NetworkX Graph, DiGraph, MultiGraph, or MultiDigraph.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
L : graph
The line graph of G.
Examples
--------
>>> G = nx.star_graph(3)
>>> L = nx.line_graph(G)
>>> print(sorted(map(sorted, L.edges()))) # makes a 3-clique, K3
[[(0, 1), (0, 2)], [(0, 1), (0, 3)], [(0, 2), (0, 3)]]
Notes
-----
Graph, node, and edge data are not propagated to the new graph. For
undirected graphs, the nodes in G must be sortable, otherwise the
constructed line graph may not be correct.
*Self-loops in undirected graphs*
For an undirected graph `G` without multiple edges, each edge can be
written as a set `\{u, v\}`. Its line graph `L` has the edges of `G` as
its nodes. If `x` and `y` are two nodes in `L`, then `\{x, y\}` is an edge
in `L` if and only if the intersection of `x` and `y` is nonempty. Thus,
the set of all edges is determined by the set of all pairwise intersections
of edges in `G`.
Trivially, every edge in G would have a nonzero intersection with itself,
and so every node in `L` should have a self-loop. This is not so
interesting, and the original context of line graphs was with simple
graphs, which had no self-loops or multiple edges. The line graph was also
meant to be a simple graph and thus, self-loops in `L` are not part of the
standard definition of a line graph. In a pairwise intersection matrix,
this is analogous to excluding the diagonal entries from the line graph
definition.
Self-loops and multiple edges in `G` add nodes to `L` in a natural way, and
do not require any fundamental changes to the definition. It might be
argued that the self-loops we excluded before should now be included.
However, the self-loops are still "trivial" in some sense and thus, are
usually excluded.
*Self-loops in directed graphs*
For a directed graph `G` without multiple edges, each edge can be written
as a tuple `(u, v)`. Its line graph `L` has the edges of `G` as its
nodes. If `x` and `y` are two nodes in `L`, then `(x, y)` is an edge in `L`
if and only if the tail of `x` matches the head of `y`, for example, if `x
= (a, b)` and `y = (b, c)` for some vertices `a`, `b`, and `c` in `G`.
Due to the directed nature of the edges, it is no longer the case that
every edge in `G` should have a self-loop in `L`. Now, the only time
self-loops arise is if a node in `G` itself has a self-loop. So such
self-loops are no longer "trivial" but instead, represent essential
features of the topology of `G`. For this reason, the historical
development of line digraphs is such that self-loops are included. When the
graph `G` has multiple edges, once again only superficial changes are
required to the definition.
References
----------
* Harary, Frank, and Norman, Robert Z., "Some properties of line digraphs",
Rend. Circ. Mat. Palermo, II. Ser. 9 (1960), 161--168.
* Hemminger, R. L.; Beineke, L. W. (1978), "Line graphs and line digraphs",
in Beineke, L. W.; Wilson, R. J., Selected Topics in Graph Theory,
Academic Press Inc., pp. 271--305.
"""
if G.is_directed():
L = _lg_directed(G, create_using=create_using)
else:
L = _lg_undirected(G, selfloops=False, create_using=create_using)
return L
def _node_func(G):
"""Returns a function which returns a sorted node for line graphs.
When constructing a line graph for undirected graphs, we must normalize
the ordering of nodes as they appear in the edge.
"""
if G.is_multigraph():
def sorted_node(u, v, key):
return (u, v, key) if u <= v else (v, u, key)
else:
def sorted_node(u, v):
return (u, v) if u <= v else (v, u)
return sorted_node
def _edge_func(G):
"""Returns the edges from G, handling keys for multigraphs as necessary.
"""
if G.is_multigraph():
def get_edges(nbunch=None):
return G.edges(nbunch, keys=True)
else:
def get_edges(nbunch=None):
return G.edges(nbunch)
return get_edges
def _sorted_edge(u, v):
"""Returns a sorted edge.
During the construction of a line graph for undirected graphs, the data
structure can be a multigraph even though the line graph will never have
multiple edges between its nodes. For this reason, we must make sure not
to add any edge more than once. This requires that we build up a list of
edges to add and then remove all duplicates. And so, we must normalize
the representation of the edges.
"""
return (u, v) if u <= v else (v, u)
def _lg_directed(G, create_using=None):
"""Returns the line graph L of the (multi)digraph G.
Edges in G appear as nodes in L, represented as tuples of the form (u,v)
or (u,v,key) if G is a multidigraph. A node in L corresponding to the edge
(u,v) is connected to every node corresponding to an edge (v,w).
Parameters
----------
G : digraph
A directed graph or directed multigraph.
create_using : NetworkX graph constructor, optional
Graph type to create. If graph instance, then cleared before populated.
Default is to use the same graph class as `G`.
"""
L = nx.empty_graph(0, create_using, default=G.__class__)
# Create a graph specific edge function.
get_edges = _edge_func(G)
for from_node in get_edges():
# from_node is: (u,v) or (u,v,key)
L.add_node(from_node)
for to_node in get_edges(from_node[1]):
L.add_edge(from_node, to_node)
return L
def _lg_undirected(G, selfloops=False, create_using=None):
"""Returns the line graph L of the (multi)graph G.
Edges in G appear as nodes in L, represented as sorted tuples of the form
(u,v), or (u,v,key) if G is a multigraph. A node in L corresponding to
the edge {u,v} is connected to every node corresponding to an edge that
involves u or v.
Parameters
----------
G : graph
An undirected graph or multigraph.
selfloops : bool
If `True`, then self-loops are included in the line graph. If `False`,
they are excluded.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Notes
-----
The standard algorithm for line graphs of undirected graphs does not
produce self-loops.
"""
L = nx.empty_graph(0, create_using, default=G.__class__)
# Graph specific functions for edges and sorted nodes.
get_edges = _edge_func(G)
sorted_node = _node_func(G)
# Determine if we include self-loops or not.
shift = 0 if selfloops else 1
edges = set()
for u in G:
# Label nodes as a sorted tuple of nodes in original graph.
nodes = [sorted_node(*x) for x in get_edges(u)]
if len(nodes) == 1:
# Then the edge will be an isolated node in L.
L.add_node(nodes[0])
# Add a clique of `nodes` to graph. To prevent double adding edges,
# especially important for multigraphs, we store the edges in
# canonical form in a set.
for i, a in enumerate(nodes):
edges.update([_sorted_edge(a, b) for b in nodes[i + shift :]])
L.add_edges_from(edges)
return L
@not_implemented_for("directed")
@not_implemented_for("multigraph")
def inverse_line_graph(G):
""" Returns the inverse line graph of graph G.
If H is a graph, and G is the line graph of H, such that H = L(G).
Then H is the inverse line graph of G.
Not all graphs are line graphs and these do not have an inverse line graph.
In these cases this generator returns a NetworkXError.
Parameters
----------
G : graph
A NetworkX Graph
Returns
-------
H : graph
The inverse line graph of G.
Raises
------
NetworkXNotImplemented
If G is directed or a multigraph
NetworkXError
If G is not a line graph
Notes
-----
This is an implementation of the Roussopoulos algorithm.
If G consists of multiple components, then the algorithm doesn't work.
You should invert every component seperately:
>>> K5 = nx.complete_graph(5)
>>> P4 = nx.Graph([("a", "b"), ("b", "c"), ("c", "d")])
>>> G = nx.union(K5, P4)
>>> root_graphs = []
>>> for comp in nx.connected_components(G):
... root_graphs.append(nx.inverse_line_graph(G.subgraph(comp)))
>>> len(root_graphs)
2
References
----------
* Roussopolous, N, "A max {m, n} algorithm for determining the graph H from
its line graph G", Information Processing Letters 2, (1973), 108--112.
"""
if G.number_of_nodes() == 0:
a = generate_unique_node()
H = nx.Graph()
H.add_node(a)
return H
elif G.number_of_nodes() == 1:
v = list(G)[0]
a = (v, 0)
b = (v, 1)
H = nx.Graph([(a, b)])
return H
elif G.number_of_nodes() > 1 and G.number_of_edges() == 0:
msg = (
"inverse_line_graph() doesn't work on an edgeless graph. "
"Please use this function on each component seperately."
)
raise nx.NetworkXError(msg)
starting_cell = _select_starting_cell(G)
P = _find_partition(G, starting_cell)
# count how many times each vertex appears in the partition set
P_count = {u: 0 for u in G.nodes()}
for p in P:
for u in p:
P_count[u] += 1
if max(P_count.values()) > 2:
msg = "G is not a line graph (vertex found in more " "than two partition cells)"
raise nx.NetworkXError(msg)
W = tuple([(u,) for u in P_count if P_count[u] == 1])
H = nx.Graph()
H.add_nodes_from(P)
H.add_nodes_from(W)
for a, b in combinations(H.nodes(), 2):
if len(set(a).intersection(set(b))) > 0:
H.add_edge(a, b)
return H
def _triangles(G, e):
""" Return list of all triangles containing edge e"""
u, v = e
if u not in G:
raise nx.NetworkXError(f"Vertex {u} not in graph")
if v not in G[u]:
raise nx.NetworkXError(f"Edge ({u}, {v}) not in graph")
triangle_list = []
for x in G[u]:
if x in G[v]:
triangle_list.append((u, v, x))
return triangle_list
def _odd_triangle(G, T):
""" Test whether T is an odd triangle in G
Parameters
----------
G : NetworkX Graph
T : 3-tuple of vertices forming triangle in G
Returns
-------
True is T is an odd triangle
False otherwise
Raises
------
NetworkXError
T is not a triangle in G
Notes
-----
An odd triangle is one in which there exists another vertex in G which is
adjacent to either exactly one or exactly all three of the vertices in the
triangle.
"""
for u in T:
if u not in G.nodes():
raise nx.NetworkXError(f"Vertex {u} not in graph")
for e in list(combinations(T, 2)):
if e[0] not in G[e[1]]:
raise nx.NetworkXError(f"Edge ({e[0]}, {e[1]}) not in graph")
T_neighbors = defaultdict(int)
for t in T:
for v in G[t]:
if v not in T:
T_neighbors[v] += 1
for v in T_neighbors:
if T_neighbors[v] in [1, 3]:
return True
return False
def _find_partition(G, starting_cell):
""" Find a partition of the vertices of G into cells of complete graphs
Parameters
----------
G : NetworkX Graph
starting_cell : tuple of vertices in G which form a cell
Returns
-------
List of tuples of vertices of G
Raises
------
NetworkXError
If a cell is not a complete subgraph then G is not a line graph
"""
G_partition = G.copy()
P = [starting_cell] # partition set
G_partition.remove_edges_from(list(combinations(starting_cell, 2)))
# keep list of partitioned nodes which might have an edge in G_partition
partitioned_vertices = list(starting_cell)
while G_partition.number_of_edges() > 0:
# there are still edges left and so more cells to be made
u = partitioned_vertices[-1]
deg_u = len(G_partition[u])
if deg_u == 0:
# if u has no edges left in G_partition then we have found
# all of its cells so we do not need to keep looking
partitioned_vertices.pop()
else:
# if u still has edges then we need to find its other cell
# this other cell must be a complete subgraph or else G is
# not a line graph
new_cell = [u] + list(G_partition[u])
for u in new_cell:
for v in new_cell:
if (u != v) and (v not in G_partition[u]):
msg = (
"G is not a line graph"
"(partition cell not a complete subgraph)"
)
raise nx.NetworkXError(msg)
P.append(tuple(new_cell))
G_partition.remove_edges_from(list(combinations(new_cell, 2)))
partitioned_vertices += new_cell
return P
def _select_starting_cell(G, starting_edge=None):
""" Select a cell to initiate _find_partition
Parameters
----------
G : NetworkX Graph
starting_edge: an edge to build the starting cell from
Returns
-------
Tuple of vertices in G
Raises
------
NetworkXError
If it is determined that G is not a line graph
Notes
-----
If starting edge not specified then pick an arbitrary edge - doesn't
matter which. However, this function may call itself requiring a
specific starting edge. Note that the r, s notation for counting
triangles is the same as in the Roussopoulos paper cited above.
"""
if starting_edge is None:
e = arbitrary_element(list(G.edges()))
else:
e = starting_edge
if e[0] not in G[e[1]]:
msg = f"starting_edge ({e[0]}, {e[1]}) is not in the Graph"
raise nx.NetworkXError(msg)
e_triangles = _triangles(G, e)
r = len(e_triangles)
if r == 0:
# there are no triangles containing e, so the starting cell is just e
starting_cell = e
elif r == 1:
# there is exactly one triangle, T, containing e. If other 2 edges
# of T belong only to this triangle then T is starting cell
T = e_triangles[0]
a, b, c = T
# ab was original edge so check the other 2 edges
ac_edges = [x for x in _triangles(G, (a, c))]
bc_edges = [x for x in _triangles(G, (b, c))]
if len(ac_edges) == 1:
if len(bc_edges) == 1:
starting_cell = T
else:
return _select_starting_cell(G, starting_edge=(b, c))
else:
return _select_starting_cell(G, starting_edge=(a, c))
else:
# r >= 2 so we need to count the number of odd triangles, s
s = 0
odd_triangles = []
for T in e_triangles:
if _odd_triangle(G, T):
s += 1
odd_triangles.append(T)
if r == 2 and s == 0:
# in this case either triangle works, so just use T
starting_cell = T
elif r - 1 <= s <= r:
# check if odd triangles containing e form complete subgraph
# there must be exactly s+2 of them
# and they must all be connected
triangle_nodes = set()
for T in odd_triangles:
for x in T:
triangle_nodes.add(x)
if len(triangle_nodes) == s + 2:
for u in triangle_nodes:
for v in triangle_nodes:
if u != v and (v not in G[u]):
msg = (
"G is not a line graph (odd triangles "
"do not form complete subgraph)"
)
raise nx.NetworkXError(msg)
# otherwise then we can use this as the starting cell
starting_cell = tuple(triangle_nodes)
else:
msg = (
"G is not a line graph (odd triangles "
"do not form complete subgraph)"
)
raise nx.NetworkXError(msg)
else:
msg = (
"G is not a line graph (incorrect number of "
"odd triangles around starting edge)"
)
raise nx.NetworkXError(msg)
return starting_cell

View file

@ -0,0 +1,109 @@
"""Functions related to the Mycielski Operation and the Mycielskian family
of graphs.
"""
import networkx as nx
from networkx.utils import not_implemented_for
__all__ = ["mycielskian", "mycielski_graph"]
@not_implemented_for("directed")
@not_implemented_for("multigraph")
def mycielskian(G, iterations=1):
r"""Returns the Mycielskian of a simple, undirected graph G
The Mycielskian of graph preserves a graph's triangle free
property while increasing the chromatic number by 1.
The Mycielski Operation on a graph, :math:`G=(V, E)`, constructs a new
graph with :math:`2|V| + 1` nodes and :math:`3|E| + |V|` edges.
The construction is as follows:
Let :math:`V = {0, ..., n-1}`. Construct another vertex set
:math:`U = {n, ..., 2n}` and a vertex, `w`.
Construct a new graph, `M`, with vertices :math:`U \bigcup V \bigcup w`.
For edges, :math:`(u, v) \in E` add edges :math:`(u, v), (u, v + n)`, and
:math:`(u + n, v)` to M. Finally, for all vertices :math:`u \in U`, add
edge :math:`(u, w)` to M.
The Mycielski Operation can be done multiple times by repeating the above
process iteratively.
More information can be found at https://en.wikipedia.org/wiki/Mycielskian
Parameters
----------
G : graph
A simple, undirected NetworkX graph
iterations : int
The number of iterations of the Mycielski operation to
perform on G. Defaults to 1. Must be a non-negative integer.
Returns
-------
M : graph
The Mycielskian of G after the specified number of iterations.
Notes
------
Graph, node, and edge data are not necessarily propagated to the new graph.
"""
n = G.number_of_nodes()
M = nx.convert_node_labels_to_integers(G)
for i in range(iterations):
n = M.number_of_nodes()
M.add_nodes_from(range(n, 2 * n))
old_edges = list(M.edges())
M.add_edges_from((u, v + n) for u, v in old_edges)
M.add_edges_from((u + n, v) for u, v in old_edges)
M.add_node(2 * n)
M.add_edges_from((u + n, 2 * n) for u in range(n))
return M
def mycielski_graph(n):
"""Generator for the n_th Mycielski Graph.
The Mycielski family of graphs is an infinite set of graphs.
:math:`M_1` is the singleton graph, :math:`M_2` is two vertices with an
edge, and, for :math:`i > 2`, :math:`M_i` is the Mycielskian of
:math:`M_{i-1}`.
More information can be found at
http://mathworld.wolfram.com/MycielskiGraph.html
Parameters
----------
n : int
The desired Mycielski Graph.
Returns
-------
M : graph
The n_th Mycielski Graph
Notes
-----
The first graph in the Mycielski sequence is the singleton graph.
The Mycielskian of this graph is not the :math:`P_2` graph, but rather the
:math:`P_2` graph with an extra, isolated vertex. The second Mycielski
graph is the :math:`P_2` graph, so the first two are hard coded.
The remaining graphs are generated using the Mycielski operation.
"""
if n < 1:
raise nx.NetworkXError("must satisfy n >= 0")
if n == 1:
return nx.empty_graph(1)
else:
return mycielskian(nx.path_graph(2), n - 2)

View file

@ -0,0 +1,191 @@
"""
Implementation of the Wright, Richmond, Odlyzko and McKay (WROM)
algorithm for the enumeration of all non-isomorphic free trees of a
given order. Rooted trees are represented by level sequences, i.e.,
lists in which the i-th element specifies the distance of vertex i to
the root.
"""
__all__ = ["nonisomorphic_trees", "number_of_nonisomorphic_trees"]
import networkx as nx
def nonisomorphic_trees(order, create="graph"):
"""Returns a list of nonisomporphic trees
Parameters
----------
order : int
order of the desired tree(s)
create : graph or matrix (default="Graph)
If graph is selected a list of trees will be returned,
if matrix is selected a list of adjancency matrix will
be returned
Returns
-------
G : List of NetworkX Graphs
M : List of Adjacency matrices
References
----------
"""
if order < 2:
raise ValueError
# start at the path graph rooted at its center
layout = list(range(order // 2 + 1)) + list(range(1, (order + 1) // 2))
while layout is not None:
layout = _next_tree(layout)
if layout is not None:
if create == "graph":
yield _layout_to_graph(layout)
elif create == "matrix":
yield _layout_to_matrix(layout)
layout = _next_rooted_tree(layout)
def number_of_nonisomorphic_trees(order):
"""Returns the number of nonisomorphic trees
Parameters
----------
order : int
order of the desired tree(s)
Returns
-------
length : Number of nonisomorphic graphs for the given order
References
----------
"""
return sum(1 for _ in nonisomorphic_trees(order))
def _next_rooted_tree(predecessor, p=None):
"""One iteration of the Beyer-Hedetniemi algorithm."""
if p is None:
p = len(predecessor) - 1
while predecessor[p] == 1:
p -= 1
if p == 0:
return None
q = p - 1
while predecessor[q] != predecessor[p] - 1:
q -= 1
result = list(predecessor)
for i in range(p, len(result)):
result[i] = result[i - p + q]
return result
def _next_tree(candidate):
"""One iteration of the Wright, Richmond, Odlyzko and McKay
algorithm."""
# valid representation of a free tree if:
# there are at least two vertices at layer 1
# (this is always the case because we start at the path graph)
left, rest = _split_tree(candidate)
# and the left subtree of the root
# is less high than the tree with the left subtree removed
left_height = max(left)
rest_height = max(rest)
valid = rest_height >= left_height
if valid and rest_height == left_height:
# and, if left and rest are of the same height,
# if left does not encompass more vertices
if len(left) > len(rest):
valid = False
# and, if they have the same number or vertices,
# if left does not come after rest lexicographically
elif len(left) == len(rest) and left > rest:
valid = False
if valid:
return candidate
else:
# jump to the next valid free tree
p = len(left)
new_candidate = _next_rooted_tree(candidate, p)
if candidate[p] > 2:
new_left, new_rest = _split_tree(new_candidate)
new_left_height = max(new_left)
suffix = range(1, new_left_height + 2)
new_candidate[-len(suffix) :] = suffix
return new_candidate
def _split_tree(layout):
"""Returns a tuple of two layouts, one containing the left
subtree of the root vertex, and one containing the original tree
with the left subtree removed."""
one_found = False
m = None
for i in range(len(layout)):
if layout[i] == 1:
if one_found:
m = i
break
else:
one_found = True
if m is None:
m = len(layout)
left = [layout[i] - 1 for i in range(1, m)]
rest = [0] + [layout[i] for i in range(m, len(layout))]
return (left, rest)
def _layout_to_matrix(layout):
"""Create the adjacency matrix for the tree specified by the
given layout (level sequence)."""
result = [[0] * len(layout) for i in range(len(layout))]
stack = []
for i in range(len(layout)):
i_level = layout[i]
if stack:
j = stack[-1]
j_level = layout[j]
while j_level >= i_level:
stack.pop()
j = stack[-1]
j_level = layout[j]
result[i][j] = result[j][i] = 1
stack.append(i)
return result
def _layout_to_graph(layout):
"""Create a NetworkX Graph for the tree specified by the
given layout(level sequence)"""
result = [[0] * len(layout) for i in range(len(layout))]
G = nx.Graph()
stack = []
for i in range(len(layout)):
i_level = layout[i]
if stack:
j = stack[-1]
j_level = layout[j]
while j_level >= i_level:
stack.pop()
j = stack[-1]
j_level = layout[j]
G.add_edge(i, j)
stack.append(i)
return G

View file

@ -0,0 +1,116 @@
"""Generate graphs with given degree and triangle sequence.
"""
import networkx as nx
from networkx.utils import py_random_state
__all__ = ["random_clustered_graph"]
@py_random_state(2)
def random_clustered_graph(joint_degree_sequence, create_using=None, seed=None):
r"""Generate a random graph with the given joint independent edge degree and
triangle degree sequence.
This uses a configuration model-like approach to generate a random graph
(with parallel edges and self-loops) by randomly assigning edges to match
the given joint degree sequence.
The joint degree sequence is a list of pairs of integers of the form
$[(d_{1,i}, d_{1,t}), \dotsc, (d_{n,i}, d_{n,t})]$. According to this list,
vertex $u$ is a member of $d_{u,t}$ triangles and has $d_{u, i}$ other
edges. The number $d_{u,t}$ is the *triangle degree* of $u$ and the number
$d_{u,i}$ is the *independent edge degree*.
Parameters
----------
joint_degree_sequence : list of integer pairs
Each list entry corresponds to the independent edge degree and
triangle degree of a node.
create_using : NetworkX graph constructor, optional (default MultiGraph)
Graph type to create. If graph instance, then cleared before populated.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
G : MultiGraph
A graph with the specified degree sequence. Nodes are labeled
starting at 0 with an index corresponding to the position in
deg_sequence.
Raises
------
NetworkXError
If the independent edge degree sequence sum is not even
or the triangle degree sequence sum is not divisible by 3.
Notes
-----
As described by Miller [1]_ (see also Newman [2]_ for an equivalent
description).
A non-graphical degree sequence (not realizable by some simple
graph) is allowed since this function returns graphs with self
loops and parallel edges. An exception is raised if the
independent degree sequence does not have an even sum or the
triangle degree sequence sum is not divisible by 3.
This configuration model-like construction process can lead to
duplicate edges and loops. You can remove the self-loops and
parallel edges (see below) which will likely result in a graph
that doesn't have the exact degree sequence specified. This
"finite-size effect" decreases as the size of the graph increases.
References
----------
.. [1] Joel C. Miller. "Percolation and epidemics in random clustered
networks". In: Physical review. E, Statistical, nonlinear, and soft
matter physics 80 (2 Part 1 August 2009).
.. [2] M. E. J. Newman. "Random Graphs with Clustering".
In: Physical Review Letters 103 (5 July 2009)
Examples
--------
>>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)]
>>> G = nx.random_clustered_graph(deg)
To remove parallel edges:
>>> G = nx.Graph(G)
To remove self loops:
>>> G.remove_edges_from(nx.selfloop_edges(G))
"""
# In Python 3, zip() returns an iterator. Make this into a list.
joint_degree_sequence = list(joint_degree_sequence)
N = len(joint_degree_sequence)
G = nx.empty_graph(N, create_using, default=nx.MultiGraph)
if G.is_directed():
raise nx.NetworkXError("Directed Graph not supported")
ilist = []
tlist = []
for n in G:
degrees = joint_degree_sequence[n]
for icount in range(degrees[0]):
ilist.append(n)
for tcount in range(degrees[1]):
tlist.append(n)
if len(ilist) % 2 != 0 or len(tlist) % 3 != 0:
raise nx.NetworkXError("Invalid degree sequence")
seed.shuffle(ilist)
seed.shuffle(tlist)
while ilist:
G.add_edge(ilist.pop(), ilist.pop())
while tlist:
n1 = tlist.pop()
n2 = tlist.pop()
n3 = tlist.pop()
G.add_edges_from([(n1, n2), (n1, n3), (n2, n3)])
return G

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,575 @@
"""
Various small and named graphs, together with some compact generators.
"""
__all__ = [
"make_small_graph",
"LCF_graph",
"bull_graph",
"chvatal_graph",
"cubical_graph",
"desargues_graph",
"diamond_graph",
"dodecahedral_graph",
"frucht_graph",
"heawood_graph",
"hoffman_singleton_graph",
"house_graph",
"house_x_graph",
"icosahedral_graph",
"krackhardt_kite_graph",
"moebius_kantor_graph",
"octahedral_graph",
"pappus_graph",
"petersen_graph",
"sedgewick_maze_graph",
"tetrahedral_graph",
"truncated_cube_graph",
"truncated_tetrahedron_graph",
"tutte_graph",
]
import networkx as nx
from networkx.generators.classic import (
empty_graph,
cycle_graph,
path_graph,
complete_graph,
)
from networkx.exception import NetworkXError
def make_small_undirected_graph(graph_description, create_using=None):
"""
Return a small undirected graph described by graph_description.
See make_small_graph.
"""
G = empty_graph(0, create_using)
if G.is_directed():
raise NetworkXError("Directed Graph not supported")
return make_small_graph(graph_description, G)
def make_small_graph(graph_description, create_using=None):
"""
Return the small graph described by graph_description.
graph_description is a list of the form [ltype,name,n,xlist]
Here ltype is one of "adjacencylist" or "edgelist",
name is the name of the graph and n the number of nodes.
This constructs a graph of n nodes with integer labels 0,..,n-1.
If ltype="adjacencylist" then xlist is an adjacency list
with exactly n entries, in with the j'th entry (which can be empty)
specifies the nodes connected to vertex j.
e.g. the "square" graph C_4 can be obtained by
>>> G = nx.make_small_graph(
... ["adjacencylist", "C_4", 4, [[2, 4], [1, 3], [2, 4], [1, 3]]]
... )
or, since we do not need to add edges twice,
>>> G = nx.make_small_graph(["adjacencylist", "C_4", 4, [[2, 4], [3], [4], []]])
If ltype="edgelist" then xlist is an edge list
written as [[v1,w2],[v2,w2],...,[vk,wk]],
where vj and wj integers in the range 1,..,n
e.g. the "square" graph C_4 can be obtained by
>>> G = nx.make_small_graph(
... ["edgelist", "C_4", 4, [[1, 2], [3, 4], [2, 3], [4, 1]]]
... )
Use the create_using argument to choose the graph class/type.
"""
if graph_description[0] not in ("adjacencylist", "edgelist"):
raise NetworkXError("ltype must be either adjacencylist or edgelist")
ltype = graph_description[0]
name = graph_description[1]
n = graph_description[2]
G = empty_graph(n, create_using)
nodes = G.nodes()
if ltype == "adjacencylist":
adjlist = graph_description[3]
if len(adjlist) != n:
raise NetworkXError("invalid graph_description")
G.add_edges_from([(u - 1, v) for v in nodes for u in adjlist[v]])
elif ltype == "edgelist":
edgelist = graph_description[3]
for e in edgelist:
v1 = e[0] - 1
v2 = e[1] - 1
if v1 < 0 or v1 > n - 1 or v2 < 0 or v2 > n - 1:
raise NetworkXError("invalid graph_description")
else:
G.add_edge(v1, v2)
G.name = name
return G
def LCF_graph(n, shift_list, repeats, create_using=None):
"""
Return the cubic graph specified in LCF notation.
LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed
notation used in the generation of various cubic Hamiltonian
graphs of high symmetry. See, for example, dodecahedral_graph,
desargues_graph, heawood_graph and pappus_graph below.
n (number of nodes)
The starting graph is the n-cycle with nodes 0,...,n-1.
(The null graph is returned if n < 0.)
shift_list = [s1,s2,..,sk], a list of integer shifts mod n,
repeats
integer specifying the number of times that shifts in shift_list
are successively applied to each v_current in the n-cycle
to generate an edge between v_current and v_current+shift mod n.
For v1 cycling through the n-cycle a total of k*repeats
with shift cycling through shiftlist repeats times connect
v1 with v1+shift mod n
The utility graph $K_{3,3}$
>>> G = nx.LCF_graph(6, [3, -3], 3)
The Heawood graph
>>> G = nx.LCF_graph(14, [5, -5], 7)
See http://mathworld.wolfram.com/LCFNotation.html for a description
and references.
"""
if n <= 0:
return empty_graph(0, create_using)
# start with the n-cycle
G = cycle_graph(n, create_using)
if G.is_directed():
raise NetworkXError("Directed Graph not supported")
G.name = "LCF_graph"
nodes = sorted(list(G))
n_extra_edges = repeats * len(shift_list)
# edges are added n_extra_edges times
# (not all of these need be new)
if n_extra_edges < 1:
return G
for i in range(n_extra_edges):
shift = shift_list[i % len(shift_list)] # cycle through shift_list
v1 = nodes[i % n] # cycle repeatedly through nodes
v2 = nodes[(i + shift) % n]
G.add_edge(v1, v2)
return G
# -------------------------------------------------------------------------------
# Various small and named graphs
# -------------------------------------------------------------------------------
def bull_graph(create_using=None):
"""Returns the Bull graph. """
description = [
"adjacencylist",
"Bull Graph",
5,
[[2, 3], [1, 3, 4], [1, 2, 5], [2], [3]],
]
G = make_small_undirected_graph(description, create_using)
return G
def chvatal_graph(create_using=None):
"""Returns the Chvátal graph."""
description = [
"adjacencylist",
"Chvatal Graph",
12,
[
[2, 5, 7, 10],
[3, 6, 8],
[4, 7, 9],
[5, 8, 10],
[6, 9],
[11, 12],
[11, 12],
[9, 12],
[11],
[11, 12],
[],
[],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def cubical_graph(create_using=None):
"""Returns the 3-regular Platonic Cubical graph."""
description = [
"adjacencylist",
"Platonic Cubical Graph",
8,
[
[2, 4, 5],
[1, 3, 8],
[2, 4, 7],
[1, 3, 6],
[1, 6, 8],
[4, 5, 7],
[3, 6, 8],
[2, 5, 7],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def desargues_graph(create_using=None):
""" Return the Desargues graph."""
G = LCF_graph(20, [5, -5, 9, -9], 5, create_using)
G.name = "Desargues Graph"
return G
def diamond_graph(create_using=None):
"""Returns the Diamond graph. """
description = [
"adjacencylist",
"Diamond Graph",
4,
[[2, 3], [1, 3, 4], [1, 2, 4], [2, 3]],
]
G = make_small_undirected_graph(description, create_using)
return G
def dodecahedral_graph(create_using=None):
""" Return the Platonic Dodecahedral graph. """
G = LCF_graph(20, [10, 7, 4, -4, -7, 10, -4, 7, -7, 4], 2, create_using)
G.name = "Dodecahedral Graph"
return G
def frucht_graph(create_using=None):
"""Returns the Frucht Graph.
The Frucht Graph is the smallest cubical graph whose
automorphism group consists only of the identity element.
"""
G = cycle_graph(7, create_using)
G.add_edges_from(
[
[0, 7],
[1, 7],
[2, 8],
[3, 9],
[4, 9],
[5, 10],
[6, 10],
[7, 11],
[8, 11],
[8, 9],
[10, 11],
]
)
G.name = "Frucht Graph"
return G
def heawood_graph(create_using=None):
""" Return the Heawood graph, a (3,6) cage. """
G = LCF_graph(14, [5, -5], 7, create_using)
G.name = "Heawood Graph"
return G
def hoffman_singleton_graph():
"""Return the Hoffman-Singleton Graph."""
G = nx.Graph()
for i in range(5):
for j in range(5):
G.add_edge(("pentagon", i, j), ("pentagon", i, (j - 1) % 5))
G.add_edge(("pentagon", i, j), ("pentagon", i, (j + 1) % 5))
G.add_edge(("pentagram", i, j), ("pentagram", i, (j - 2) % 5))
G.add_edge(("pentagram", i, j), ("pentagram", i, (j + 2) % 5))
for k in range(5):
G.add_edge(("pentagon", i, j), ("pentagram", k, (i * k + j) % 5))
G = nx.convert_node_labels_to_integers(G)
G.name = "Hoffman-Singleton Graph"
return G
def house_graph(create_using=None):
"""Returns the House graph (square with triangle on top)."""
description = [
"adjacencylist",
"House Graph",
5,
[[2, 3], [1, 4], [1, 4, 5], [2, 3, 5], [3, 4]],
]
G = make_small_undirected_graph(description, create_using)
return G
def house_x_graph(create_using=None):
"""Returns the House graph with a cross inside the house square."""
description = [
"adjacencylist",
"House-with-X-inside Graph",
5,
[[2, 3, 4], [1, 3, 4], [1, 2, 4, 5], [1, 2, 3, 5], [3, 4]],
]
G = make_small_undirected_graph(description, create_using)
return G
def icosahedral_graph(create_using=None):
"""Returns the Platonic Icosahedral graph."""
description = [
"adjacencylist",
"Platonic Icosahedral Graph",
12,
[
[2, 6, 8, 9, 12],
[3, 6, 7, 9],
[4, 7, 9, 10],
[5, 7, 10, 11],
[6, 7, 11, 12],
[7, 12],
[],
[9, 10, 11, 12],
[10],
[11],
[12],
[],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def krackhardt_kite_graph(create_using=None):
"""
Return the Krackhardt Kite Social Network.
A 10 actor social network introduced by David Krackhardt
to illustrate: degree, betweenness, centrality, closeness, etc.
The traditional labeling is:
Andre=1, Beverley=2, Carol=3, Diane=4,
Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.
"""
description = [
"adjacencylist",
"Krackhardt Kite Social Network",
10,
[
[2, 3, 4, 6],
[1, 4, 5, 7],
[1, 4, 6],
[1, 2, 3, 5, 6, 7],
[2, 4, 7],
[1, 3, 4, 7, 8],
[2, 4, 5, 6, 8],
[6, 7, 9],
[8, 10],
[9],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def moebius_kantor_graph(create_using=None):
"""Returns the Moebius-Kantor graph."""
G = LCF_graph(16, [5, -5], 8, create_using)
G.name = "Moebius-Kantor Graph"
return G
def octahedral_graph(create_using=None):
"""Returns the Platonic Octahedral graph."""
description = [
"adjacencylist",
"Platonic Octahedral Graph",
6,
[[2, 3, 4, 5], [3, 4, 6], [5, 6], [5, 6], [6], []],
]
G = make_small_undirected_graph(description, create_using)
return G
def pappus_graph():
""" Return the Pappus graph."""
G = LCF_graph(18, [5, 7, -7, 7, -7, -5], 3)
G.name = "Pappus Graph"
return G
def petersen_graph(create_using=None):
"""Returns the Petersen graph."""
description = [
"adjacencylist",
"Petersen Graph",
10,
[
[2, 5, 6],
[1, 3, 7],
[2, 4, 8],
[3, 5, 9],
[4, 1, 10],
[1, 8, 9],
[2, 9, 10],
[3, 6, 10],
[4, 6, 7],
[5, 7, 8],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def sedgewick_maze_graph(create_using=None):
"""
Return a small maze with a cycle.
This is the maze used in Sedgewick,3rd Edition, Part 5, Graph
Algorithms, Chapter 18, e.g. Figure 18.2 and following.
Nodes are numbered 0,..,7
"""
G = empty_graph(0, create_using)
G.add_nodes_from(range(8))
G.add_edges_from([[0, 2], [0, 7], [0, 5]])
G.add_edges_from([[1, 7], [2, 6]])
G.add_edges_from([[3, 4], [3, 5]])
G.add_edges_from([[4, 5], [4, 7], [4, 6]])
G.name = "Sedgewick Maze"
return G
def tetrahedral_graph(create_using=None):
""" Return the 3-regular Platonic Tetrahedral graph."""
G = complete_graph(4, create_using)
G.name = "Platonic Tetrahedral graph"
return G
def truncated_cube_graph(create_using=None):
"""Returns the skeleton of the truncated cube."""
description = [
"adjacencylist",
"Truncated Cube Graph",
24,
[
[2, 3, 5],
[12, 15],
[4, 5],
[7, 9],
[6],
[17, 19],
[8, 9],
[11, 13],
[10],
[18, 21],
[12, 13],
[15],
[14],
[22, 23],
[16],
[20, 24],
[18, 19],
[21],
[20],
[24],
[22],
[23],
[24],
[],
],
]
G = make_small_undirected_graph(description, create_using)
return G
def truncated_tetrahedron_graph(create_using=None):
"""Returns the skeleton of the truncated Platonic tetrahedron."""
G = path_graph(12, create_using)
# G.add_edges_from([(1,3),(1,10),(2,7),(4,12),(5,12),(6,8),(9,11)])
G.add_edges_from([(0, 2), (0, 9), (1, 6), (3, 11), (4, 11), (5, 7), (8, 10)])
G.name = "Truncated Tetrahedron Graph"
return G
def tutte_graph(create_using=None):
"""Returns the Tutte graph."""
description = [
"adjacencylist",
"Tutte's Graph",
46,
[
[2, 3, 4],
[5, 27],
[11, 12],
[19, 20],
[6, 34],
[7, 30],
[8, 28],
[9, 15],
[10, 39],
[11, 38],
[40],
[13, 40],
[14, 36],
[15, 16],
[35],
[17, 23],
[18, 45],
[19, 44],
[46],
[21, 46],
[22, 42],
[23, 24],
[41],
[25, 28],
[26, 33],
[27, 32],
[34],
[29],
[30, 33],
[31],
[32, 34],
[33],
[],
[],
[36, 39],
[37],
[38, 40],
[39],
[],
[],
[42, 45],
[43],
[44, 46],
[45],
[],
[],
],
]
G = make_small_undirected_graph(description, create_using)
return G

View file

@ -0,0 +1,544 @@
"""
Famous social networks.
"""
import networkx as nx
__all__ = [
"karate_club_graph",
"davis_southern_women_graph",
"florentine_families_graph",
"les_miserables_graph",
]
def karate_club_graph():
"""Returns Zachary's Karate Club graph.
Each node in the returned graph has a node attribute 'club' that
indicates the name of the club to which the member represented by that node
belongs, either 'Mr. Hi' or 'Officer'.
Examples
--------
To get the name of the club to which a node belongs::
>>> G = nx.karate_club_graph()
>>> G.nodes[5]["club"]
'Mr. Hi'
>>> G.nodes[9]["club"]
'Officer'
References
----------
.. [1] Zachary, Wayne W.
"An Information Flow Model for Conflict and Fission in Small Groups."
*Journal of Anthropological Research*, 33, 452--473, (1977).
.. [2] Data file from:
http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm
"""
# Create the set of all members, and the members of each club.
all_members = set(range(34))
club1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 19, 21}
# club2 = all_members - club1
G = nx.Graph()
G.add_nodes_from(all_members)
G.name = "Zachary's Karate Club"
zacharydat = """\
0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0
1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0"""
for row, line in enumerate(zacharydat.split("\n")):
thisrow = [int(b) for b in line.split()]
for col, entry in enumerate(thisrow):
if entry == 1:
G.add_edge(row, col)
# Add the name of each member's club as a node attribute.
for v in G:
G.nodes[v]["club"] = "Mr. Hi" if v in club1 else "Officer"
return G
def davis_southern_women_graph():
"""Returns Davis Southern women social network.
This is a bipartite graph.
References
----------
.. [1] A. Davis, Gardner, B. B., Gardner, M. R., 1941. Deep South.
University of Chicago Press, Chicago, IL.
"""
G = nx.Graph()
# Top nodes
women = [
"Evelyn Jefferson",
"Laura Mandeville",
"Theresa Anderson",
"Brenda Rogers",
"Charlotte McDowd",
"Frances Anderson",
"Eleanor Nye",
"Pearl Oglethorpe",
"Ruth DeSand",
"Verne Sanderson",
"Myra Liddel",
"Katherina Rogers",
"Sylvia Avondale",
"Nora Fayette",
"Helen Lloyd",
"Dorothy Murchison",
"Olivia Carleton",
"Flora Price",
]
G.add_nodes_from(women, bipartite=0)
# Bottom nodes
events = [
"E1",
"E2",
"E3",
"E4",
"E5",
"E6",
"E7",
"E8",
"E9",
"E10",
"E11",
"E12",
"E13",
"E14",
]
G.add_nodes_from(events, bipartite=1)
G.add_edges_from(
[
("Evelyn Jefferson", "E1"),
("Evelyn Jefferson", "E2"),
("Evelyn Jefferson", "E3"),
("Evelyn Jefferson", "E4"),
("Evelyn Jefferson", "E5"),
("Evelyn Jefferson", "E6"),
("Evelyn Jefferson", "E8"),
("Evelyn Jefferson", "E9"),
("Laura Mandeville", "E1"),
("Laura Mandeville", "E2"),
("Laura Mandeville", "E3"),
("Laura Mandeville", "E5"),
("Laura Mandeville", "E6"),
("Laura Mandeville", "E7"),
("Laura Mandeville", "E8"),
("Theresa Anderson", "E2"),
("Theresa Anderson", "E3"),
("Theresa Anderson", "E4"),
("Theresa Anderson", "E5"),
("Theresa Anderson", "E6"),
("Theresa Anderson", "E7"),
("Theresa Anderson", "E8"),
("Theresa Anderson", "E9"),
("Brenda Rogers", "E1"),
("Brenda Rogers", "E3"),
("Brenda Rogers", "E4"),
("Brenda Rogers", "E5"),
("Brenda Rogers", "E6"),
("Brenda Rogers", "E7"),
("Brenda Rogers", "E8"),
("Charlotte McDowd", "E3"),
("Charlotte McDowd", "E4"),
("Charlotte McDowd", "E5"),
("Charlotte McDowd", "E7"),
("Frances Anderson", "E3"),
("Frances Anderson", "E5"),
("Frances Anderson", "E6"),
("Frances Anderson", "E8"),
("Eleanor Nye", "E5"),
("Eleanor Nye", "E6"),
("Eleanor Nye", "E7"),
("Eleanor Nye", "E8"),
("Pearl Oglethorpe", "E6"),
("Pearl Oglethorpe", "E8"),
("Pearl Oglethorpe", "E9"),
("Ruth DeSand", "E5"),
("Ruth DeSand", "E7"),
("Ruth DeSand", "E8"),
("Ruth DeSand", "E9"),
("Verne Sanderson", "E7"),
("Verne Sanderson", "E8"),
("Verne Sanderson", "E9"),
("Verne Sanderson", "E12"),
("Myra Liddel", "E8"),
("Myra Liddel", "E9"),
("Myra Liddel", "E10"),
("Myra Liddel", "E12"),
("Katherina Rogers", "E8"),
("Katherina Rogers", "E9"),
("Katherina Rogers", "E10"),
("Katherina Rogers", "E12"),
("Katherina Rogers", "E13"),
("Katherina Rogers", "E14"),
("Sylvia Avondale", "E7"),
("Sylvia Avondale", "E8"),
("Sylvia Avondale", "E9"),
("Sylvia Avondale", "E10"),
("Sylvia Avondale", "E12"),
("Sylvia Avondale", "E13"),
("Sylvia Avondale", "E14"),
("Nora Fayette", "E6"),
("Nora Fayette", "E7"),
("Nora Fayette", "E9"),
("Nora Fayette", "E10"),
("Nora Fayette", "E11"),
("Nora Fayette", "E12"),
("Nora Fayette", "E13"),
("Nora Fayette", "E14"),
("Helen Lloyd", "E7"),
("Helen Lloyd", "E8"),
("Helen Lloyd", "E10"),
("Helen Lloyd", "E11"),
("Helen Lloyd", "E12"),
("Dorothy Murchison", "E8"),
("Dorothy Murchison", "E9"),
("Olivia Carleton", "E9"),
("Olivia Carleton", "E11"),
("Flora Price", "E9"),
("Flora Price", "E11"),
]
)
G.graph["top"] = women
G.graph["bottom"] = events
return G
def florentine_families_graph():
"""Returns Florentine families graph.
References
----------
.. [1] Ronald L. Breiger and Philippa E. Pattison
Cumulated social roles: The duality of persons and their algebras,1
Social Networks, Volume 8, Issue 3, September 1986, Pages 215-256
"""
G = nx.Graph()
G.add_edge("Acciaiuoli", "Medici")
G.add_edge("Castellani", "Peruzzi")
G.add_edge("Castellani", "Strozzi")
G.add_edge("Castellani", "Barbadori")
G.add_edge("Medici", "Barbadori")
G.add_edge("Medici", "Ridolfi")
G.add_edge("Medici", "Tornabuoni")
G.add_edge("Medici", "Albizzi")
G.add_edge("Medici", "Salviati")
G.add_edge("Salviati", "Pazzi")
G.add_edge("Peruzzi", "Strozzi")
G.add_edge("Peruzzi", "Bischeri")
G.add_edge("Strozzi", "Ridolfi")
G.add_edge("Strozzi", "Bischeri")
G.add_edge("Ridolfi", "Tornabuoni")
G.add_edge("Tornabuoni", "Guadagni")
G.add_edge("Albizzi", "Ginori")
G.add_edge("Albizzi", "Guadagni")
G.add_edge("Bischeri", "Guadagni")
G.add_edge("Guadagni", "Lamberteschi")
return G
def les_miserables_graph():
"""Returns coappearance network of characters in the novel Les Miserables.
References
----------
.. [1] D. E. Knuth, 1993.
The Stanford GraphBase: a platform for combinatorial computing,
pp. 74-87. New York: AcM Press.
"""
G = nx.Graph()
G.add_edge("Napoleon", "Myriel", weight=1)
G.add_edge("MlleBaptistine", "Myriel", weight=8)
G.add_edge("MmeMagloire", "Myriel", weight=10)
G.add_edge("MmeMagloire", "MlleBaptistine", weight=6)
G.add_edge("CountessDeLo", "Myriel", weight=1)
G.add_edge("Geborand", "Myriel", weight=1)
G.add_edge("Champtercier", "Myriel", weight=1)
G.add_edge("Cravatte", "Myriel", weight=1)
G.add_edge("Count", "Myriel", weight=2)
G.add_edge("OldMan", "Myriel", weight=1)
G.add_edge("Valjean", "Labarre", weight=1)
G.add_edge("Valjean", "MmeMagloire", weight=3)
G.add_edge("Valjean", "MlleBaptistine", weight=3)
G.add_edge("Valjean", "Myriel", weight=5)
G.add_edge("Marguerite", "Valjean", weight=1)
G.add_edge("MmeDeR", "Valjean", weight=1)
G.add_edge("Isabeau", "Valjean", weight=1)
G.add_edge("Gervais", "Valjean", weight=1)
G.add_edge("Listolier", "Tholomyes", weight=4)
G.add_edge("Fameuil", "Tholomyes", weight=4)
G.add_edge("Fameuil", "Listolier", weight=4)
G.add_edge("Blacheville", "Tholomyes", weight=4)
G.add_edge("Blacheville", "Listolier", weight=4)
G.add_edge("Blacheville", "Fameuil", weight=4)
G.add_edge("Favourite", "Tholomyes", weight=3)
G.add_edge("Favourite", "Listolier", weight=3)
G.add_edge("Favourite", "Fameuil", weight=3)
G.add_edge("Favourite", "Blacheville", weight=4)
G.add_edge("Dahlia", "Tholomyes", weight=3)
G.add_edge("Dahlia", "Listolier", weight=3)
G.add_edge("Dahlia", "Fameuil", weight=3)
G.add_edge("Dahlia", "Blacheville", weight=3)
G.add_edge("Dahlia", "Favourite", weight=5)
G.add_edge("Zephine", "Tholomyes", weight=3)
G.add_edge("Zephine", "Listolier", weight=3)
G.add_edge("Zephine", "Fameuil", weight=3)
G.add_edge("Zephine", "Blacheville", weight=3)
G.add_edge("Zephine", "Favourite", weight=4)
G.add_edge("Zephine", "Dahlia", weight=4)
G.add_edge("Fantine", "Tholomyes", weight=3)
G.add_edge("Fantine", "Listolier", weight=3)
G.add_edge("Fantine", "Fameuil", weight=3)
G.add_edge("Fantine", "Blacheville", weight=3)
G.add_edge("Fantine", "Favourite", weight=4)
G.add_edge("Fantine", "Dahlia", weight=4)
G.add_edge("Fantine", "Zephine", weight=4)
G.add_edge("Fantine", "Marguerite", weight=2)
G.add_edge("Fantine", "Valjean", weight=9)
G.add_edge("MmeThenardier", "Fantine", weight=2)
G.add_edge("MmeThenardier", "Valjean", weight=7)
G.add_edge("Thenardier", "MmeThenardier", weight=13)
G.add_edge("Thenardier", "Fantine", weight=1)
G.add_edge("Thenardier", "Valjean", weight=12)
G.add_edge("Cosette", "MmeThenardier", weight=4)
G.add_edge("Cosette", "Valjean", weight=31)
G.add_edge("Cosette", "Tholomyes", weight=1)
G.add_edge("Cosette", "Thenardier", weight=1)
G.add_edge("Javert", "Valjean", weight=17)
G.add_edge("Javert", "Fantine", weight=5)
G.add_edge("Javert", "Thenardier", weight=5)
G.add_edge("Javert", "MmeThenardier", weight=1)
G.add_edge("Javert", "Cosette", weight=1)
G.add_edge("Fauchelevent", "Valjean", weight=8)
G.add_edge("Fauchelevent", "Javert", weight=1)
G.add_edge("Bamatabois", "Fantine", weight=1)
G.add_edge("Bamatabois", "Javert", weight=1)
G.add_edge("Bamatabois", "Valjean", weight=2)
G.add_edge("Perpetue", "Fantine", weight=1)
G.add_edge("Simplice", "Perpetue", weight=2)
G.add_edge("Simplice", "Valjean", weight=3)
G.add_edge("Simplice", "Fantine", weight=2)
G.add_edge("Simplice", "Javert", weight=1)
G.add_edge("Scaufflaire", "Valjean", weight=1)
G.add_edge("Woman1", "Valjean", weight=2)
G.add_edge("Woman1", "Javert", weight=1)
G.add_edge("Judge", "Valjean", weight=3)
G.add_edge("Judge", "Bamatabois", weight=2)
G.add_edge("Champmathieu", "Valjean", weight=3)
G.add_edge("Champmathieu", "Judge", weight=3)
G.add_edge("Champmathieu", "Bamatabois", weight=2)
G.add_edge("Brevet", "Judge", weight=2)
G.add_edge("Brevet", "Champmathieu", weight=2)
G.add_edge("Brevet", "Valjean", weight=2)
G.add_edge("Brevet", "Bamatabois", weight=1)
G.add_edge("Chenildieu", "Judge", weight=2)
G.add_edge("Chenildieu", "Champmathieu", weight=2)
G.add_edge("Chenildieu", "Brevet", weight=2)
G.add_edge("Chenildieu", "Valjean", weight=2)
G.add_edge("Chenildieu", "Bamatabois", weight=1)
G.add_edge("Cochepaille", "Judge", weight=2)
G.add_edge("Cochepaille", "Champmathieu", weight=2)
G.add_edge("Cochepaille", "Brevet", weight=2)
G.add_edge("Cochepaille", "Chenildieu", weight=2)
G.add_edge("Cochepaille", "Valjean", weight=2)
G.add_edge("Cochepaille", "Bamatabois", weight=1)
G.add_edge("Pontmercy", "Thenardier", weight=1)
G.add_edge("Boulatruelle", "Thenardier", weight=1)
G.add_edge("Eponine", "MmeThenardier", weight=2)
G.add_edge("Eponine", "Thenardier", weight=3)
G.add_edge("Anzelma", "Eponine", weight=2)
G.add_edge("Anzelma", "Thenardier", weight=2)
G.add_edge("Anzelma", "MmeThenardier", weight=1)
G.add_edge("Woman2", "Valjean", weight=3)
G.add_edge("Woman2", "Cosette", weight=1)
G.add_edge("Woman2", "Javert", weight=1)
G.add_edge("MotherInnocent", "Fauchelevent", weight=3)
G.add_edge("MotherInnocent", "Valjean", weight=1)
G.add_edge("Gribier", "Fauchelevent", weight=2)
G.add_edge("MmeBurgon", "Jondrette", weight=1)
G.add_edge("Gavroche", "MmeBurgon", weight=2)
G.add_edge("Gavroche", "Thenardier", weight=1)
G.add_edge("Gavroche", "Javert", weight=1)
G.add_edge("Gavroche", "Valjean", weight=1)
G.add_edge("Gillenormand", "Cosette", weight=3)
G.add_edge("Gillenormand", "Valjean", weight=2)
G.add_edge("Magnon", "Gillenormand", weight=1)
G.add_edge("Magnon", "MmeThenardier", weight=1)
G.add_edge("MlleGillenormand", "Gillenormand", weight=9)
G.add_edge("MlleGillenormand", "Cosette", weight=2)
G.add_edge("MlleGillenormand", "Valjean", weight=2)
G.add_edge("MmePontmercy", "MlleGillenormand", weight=1)
G.add_edge("MmePontmercy", "Pontmercy", weight=1)
G.add_edge("MlleVaubois", "MlleGillenormand", weight=1)
G.add_edge("LtGillenormand", "MlleGillenormand", weight=2)
G.add_edge("LtGillenormand", "Gillenormand", weight=1)
G.add_edge("LtGillenormand", "Cosette", weight=1)
G.add_edge("Marius", "MlleGillenormand", weight=6)
G.add_edge("Marius", "Gillenormand", weight=12)
G.add_edge("Marius", "Pontmercy", weight=1)
G.add_edge("Marius", "LtGillenormand", weight=1)
G.add_edge("Marius", "Cosette", weight=21)
G.add_edge("Marius", "Valjean", weight=19)
G.add_edge("Marius", "Tholomyes", weight=1)
G.add_edge("Marius", "Thenardier", weight=2)
G.add_edge("Marius", "Eponine", weight=5)
G.add_edge("Marius", "Gavroche", weight=4)
G.add_edge("BaronessT", "Gillenormand", weight=1)
G.add_edge("BaronessT", "Marius", weight=1)
G.add_edge("Mabeuf", "Marius", weight=1)
G.add_edge("Mabeuf", "Eponine", weight=1)
G.add_edge("Mabeuf", "Gavroche", weight=1)
G.add_edge("Enjolras", "Marius", weight=7)
G.add_edge("Enjolras", "Gavroche", weight=7)
G.add_edge("Enjolras", "Javert", weight=6)
G.add_edge("Enjolras", "Mabeuf", weight=1)
G.add_edge("Enjolras", "Valjean", weight=4)
G.add_edge("Combeferre", "Enjolras", weight=15)
G.add_edge("Combeferre", "Marius", weight=5)
G.add_edge("Combeferre", "Gavroche", weight=6)
G.add_edge("Combeferre", "Mabeuf", weight=2)
G.add_edge("Prouvaire", "Gavroche", weight=1)
G.add_edge("Prouvaire", "Enjolras", weight=4)
G.add_edge("Prouvaire", "Combeferre", weight=2)
G.add_edge("Feuilly", "Gavroche", weight=2)
G.add_edge("Feuilly", "Enjolras", weight=6)
G.add_edge("Feuilly", "Prouvaire", weight=2)
G.add_edge("Feuilly", "Combeferre", weight=5)
G.add_edge("Feuilly", "Mabeuf", weight=1)
G.add_edge("Feuilly", "Marius", weight=1)
G.add_edge("Courfeyrac", "Marius", weight=9)
G.add_edge("Courfeyrac", "Enjolras", weight=17)
G.add_edge("Courfeyrac", "Combeferre", weight=13)
G.add_edge("Courfeyrac", "Gavroche", weight=7)
G.add_edge("Courfeyrac", "Mabeuf", weight=2)
G.add_edge("Courfeyrac", "Eponine", weight=1)
G.add_edge("Courfeyrac", "Feuilly", weight=6)
G.add_edge("Courfeyrac", "Prouvaire", weight=3)
G.add_edge("Bahorel", "Combeferre", weight=5)
G.add_edge("Bahorel", "Gavroche", weight=5)
G.add_edge("Bahorel", "Courfeyrac", weight=6)
G.add_edge("Bahorel", "Mabeuf", weight=2)
G.add_edge("Bahorel", "Enjolras", weight=4)
G.add_edge("Bahorel", "Feuilly", weight=3)
G.add_edge("Bahorel", "Prouvaire", weight=2)
G.add_edge("Bahorel", "Marius", weight=1)
G.add_edge("Bossuet", "Marius", weight=5)
G.add_edge("Bossuet", "Courfeyrac", weight=12)
G.add_edge("Bossuet", "Gavroche", weight=5)
G.add_edge("Bossuet", "Bahorel", weight=4)
G.add_edge("Bossuet", "Enjolras", weight=10)
G.add_edge("Bossuet", "Feuilly", weight=6)
G.add_edge("Bossuet", "Prouvaire", weight=2)
G.add_edge("Bossuet", "Combeferre", weight=9)
G.add_edge("Bossuet", "Mabeuf", weight=1)
G.add_edge("Bossuet", "Valjean", weight=1)
G.add_edge("Joly", "Bahorel", weight=5)
G.add_edge("Joly", "Bossuet", weight=7)
G.add_edge("Joly", "Gavroche", weight=3)
G.add_edge("Joly", "Courfeyrac", weight=5)
G.add_edge("Joly", "Enjolras", weight=5)
G.add_edge("Joly", "Feuilly", weight=5)
G.add_edge("Joly", "Prouvaire", weight=2)
G.add_edge("Joly", "Combeferre", weight=5)
G.add_edge("Joly", "Mabeuf", weight=1)
G.add_edge("Joly", "Marius", weight=2)
G.add_edge("Grantaire", "Bossuet", weight=3)
G.add_edge("Grantaire", "Enjolras", weight=3)
G.add_edge("Grantaire", "Combeferre", weight=1)
G.add_edge("Grantaire", "Courfeyrac", weight=2)
G.add_edge("Grantaire", "Joly", weight=2)
G.add_edge("Grantaire", "Gavroche", weight=1)
G.add_edge("Grantaire", "Bahorel", weight=1)
G.add_edge("Grantaire", "Feuilly", weight=1)
G.add_edge("Grantaire", "Prouvaire", weight=1)
G.add_edge("MotherPlutarch", "Mabeuf", weight=3)
G.add_edge("Gueulemer", "Thenardier", weight=5)
G.add_edge("Gueulemer", "Valjean", weight=1)
G.add_edge("Gueulemer", "MmeThenardier", weight=1)
G.add_edge("Gueulemer", "Javert", weight=1)
G.add_edge("Gueulemer", "Gavroche", weight=1)
G.add_edge("Gueulemer", "Eponine", weight=1)
G.add_edge("Babet", "Thenardier", weight=6)
G.add_edge("Babet", "Gueulemer", weight=6)
G.add_edge("Babet", "Valjean", weight=1)
G.add_edge("Babet", "MmeThenardier", weight=1)
G.add_edge("Babet", "Javert", weight=2)
G.add_edge("Babet", "Gavroche", weight=1)
G.add_edge("Babet", "Eponine", weight=1)
G.add_edge("Claquesous", "Thenardier", weight=4)
G.add_edge("Claquesous", "Babet", weight=4)
G.add_edge("Claquesous", "Gueulemer", weight=4)
G.add_edge("Claquesous", "Valjean", weight=1)
G.add_edge("Claquesous", "MmeThenardier", weight=1)
G.add_edge("Claquesous", "Javert", weight=1)
G.add_edge("Claquesous", "Eponine", weight=1)
G.add_edge("Claquesous", "Enjolras", weight=1)
G.add_edge("Montparnasse", "Javert", weight=1)
G.add_edge("Montparnasse", "Babet", weight=2)
G.add_edge("Montparnasse", "Gueulemer", weight=2)
G.add_edge("Montparnasse", "Claquesous", weight=2)
G.add_edge("Montparnasse", "Valjean", weight=1)
G.add_edge("Montparnasse", "Gavroche", weight=1)
G.add_edge("Montparnasse", "Eponine", weight=1)
G.add_edge("Montparnasse", "Thenardier", weight=1)
G.add_edge("Toussaint", "Cosette", weight=2)
G.add_edge("Toussaint", "Javert", weight=1)
G.add_edge("Toussaint", "Valjean", weight=1)
G.add_edge("Child1", "Gavroche", weight=2)
G.add_edge("Child2", "Gavroche", weight=2)
G.add_edge("Child2", "Child1", weight=3)
G.add_edge("Brujon", "Babet", weight=3)
G.add_edge("Brujon", "Gueulemer", weight=3)
G.add_edge("Brujon", "Thenardier", weight=3)
G.add_edge("Brujon", "Gavroche", weight=1)
G.add_edge("Brujon", "Eponine", weight=1)
G.add_edge("Brujon", "Claquesous", weight=1)
G.add_edge("Brujon", "Montparnasse", weight=1)
G.add_edge("MmeHucheloup", "Bossuet", weight=1)
G.add_edge("MmeHucheloup", "Joly", weight=1)
G.add_edge("MmeHucheloup", "Grantaire", weight=1)
G.add_edge("MmeHucheloup", "Bahorel", weight=1)
G.add_edge("MmeHucheloup", "Courfeyrac", weight=1)
G.add_edge("MmeHucheloup", "Gavroche", weight=1)
G.add_edge("MmeHucheloup", "Enjolras", weight=1)
return G

View file

@ -0,0 +1,179 @@
"""Generates graphs with a given eigenvector structure"""
import networkx as nx
from networkx.utils import np_random_state
__all__ = ["spectral_graph_forge"]
def _mat_spect_approx(A, level, sorteigs=True, reverse=False, absolute=True):
""" Returns the low-rank approximation of the given matrix A
Parameters
----------
A : 2D numpy array
level : integer
It represents the fixed rank for the output approximation matrix
sorteigs : boolean
Whether eigenvectors should be sorted according to their associated
eigenvalues before removing the firsts of them
reverse : boolean
Whether eigenvectors list should be reversed before removing the firsts
of them
absolute : boolean
Whether eigenvectors should be sorted considering the absolute values
of the corresponding eigenvalues
Returns
-------
B : 2D numpy array
low-rank approximation of A
Notes
-----
Low-rank matrix approximation is about finding a fixed rank matrix close
enough to the input one with respect to a given norm (distance).
In the case of real symmetric input matrix and euclidean distance, the best
low-rank approximation is given by the sum of first eigenvector matrices.
References
----------
.. [1] G. Eckart and G. Young, The approximation of one matrix by another
of lower rank
.. [2] L. Mirsky, Symmetric gauge functions and unitarily invariant norms
"""
import numpy as np
d, V = np.linalg.eigh(A)
d = np.ravel(d)
n = len(d)
if sorteigs:
if absolute:
k = np.argsort(np.abs(d))
else:
k = np.argsort(d)
# ordered from the lowest to the highest
else:
k = range(n)
if not reverse:
k = np.flipud(k)
z = np.zeros(n)
for i in range(level, n):
V[:, k[i]] = z
B = V @ np.diag(d) @ V.T
return B
@np_random_state(3)
def spectral_graph_forge(G, alpha, transformation="identity", seed=None):
"""Returns a random simple graph with spectrum resembling that of `G`
This algorithm, called Spectral Graph Forge (SGF), computes the
eigenvectors of a given graph adjacency matrix, filters them and
builds a random graph with a similar eigenstructure.
SGF has been proved to be particularly useful for synthesizing
realistic social networks and it can also be used to anonymize
graph sensitive data.
Parameters
----------
G : Graph
alpha : float
Ratio representing the percentage of eigenvectors of G to consider,
values in [0,1].
transformation : string, optional
Represents the intended matrix linear transformation, possible values
are 'identity' and 'modularity'
seed : integer, random_state, or None (default)
Indicator of numpy random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
H : Graph
A graph with a similar eigenvector structure of the input one.
Raises
------
NetworkXError
If transformation has a value different from 'identity' or 'modularity'
Notes
-----
Spectral Graph Forge (SGF) generates a random simple graph resembling the
global properties of the given one.
It leverages the low-rank approximation of the associated adjacency matrix
driven by the *alpha* precision parameter.
SGF preserves the number of nodes of the input graph and their ordering.
This way, nodes of output graphs resemble the properties of the input one
and attributes can be directly mapped.
It considers the graph adjacency matrices which can optionally be
transformed to other symmetric real matrices (currently transformation
options include *identity* and *modularity*).
The *modularity* transformation, in the sense of Newman's modularity matrix
allows the focusing on community structure related properties of the graph.
SGF applies a low-rank approximation whose fixed rank is computed from the
ratio *alpha* of the input graph adjacency matrix dimension.
This step performs a filtering on the input eigenvectors similar to the low
pass filtering common in telecommunications.
The filtered values (after truncation) are used as input to a Bernoulli
sampling for constructing a random adjacency matrix.
References
----------
.. [1] L. Baldesi, C. T. Butts, A. Markopoulou, "Spectral Graph Forge:
Graph Generation Targeting Modularity", IEEE Infocom, '18.
https://arxiv.org/abs/1801.01715
.. [2] M. Newman, "Networks: an introduction", Oxford university press,
2010
Examples
--------
>>> G = nx.karate_club_graph()
>>> H = nx.spectral_graph_forge(G, 0.3)
>>>
"""
import numpy as np
import scipy.stats as stats
available_transformations = ["identity", "modularity"]
alpha = np.clip(alpha, 0, 1)
A = nx.to_numpy_array(G)
n = A.shape[1]
level = int(round(n * alpha))
if transformation not in available_transformations:
msg = f"'{transformation}' is not a valid transformation. "
msg += f"Transformations: {available_transformations}"
raise nx.NetworkXError(msg)
K = np.ones((1, n)) @ A
B = A
if transformation == "modularity":
B -= K.T @ K / K.sum()
B = _mat_spect_approx(B, level, sorteigs=True, absolute=True)
if transformation == "modularity":
B += K.T @ K / K.sum()
B = np.clip(B, 0, 1)
np.fill_diagonal(B, 0)
for i in range(n - 1):
B[i, i + 1 :] = stats.bernoulli.rvs(B[i, i + 1 :], random_state=seed)
B[i + 1 :, i] = np.transpose(B[i, i + 1 :])
H = nx.from_numpy_array(B)
return H

View file

@ -0,0 +1,50 @@
"""Functions for generating stochastic graphs from a given weighted directed
graph.
"""
from networkx.classes import DiGraph
from networkx.classes import MultiDiGraph
from networkx.utils import not_implemented_for
__all__ = ["stochastic_graph"]
@not_implemented_for("undirected")
def stochastic_graph(G, copy=True, weight="weight"):
"""Returns a right-stochastic representation of directed graph `G`.
A right-stochastic graph is a weighted digraph in which for each
node, the sum of the weights of all the out-edges of that node is
1. If the graph is already weighted (for example, via a 'weight'
edge attribute), the reweighting takes that into account.
Parameters
----------
G : directed graph
A :class:`~networkx.DiGraph` or :class:`~networkx.MultiDiGraph`.
copy : boolean, optional
If this is True, then this function returns a new graph with
the stochastic reweighting. Otherwise, the original graph is
modified in-place (and also returned, for convenience).
weight : edge attribute key (optional, default='weight')
Edge attribute key used for reading the existing weight and
setting the new weight. If no attribute with this key is found
for an edge, then the edge weight is assumed to be 1. If an edge
has a weight, it must be a a positive number.
"""
if copy:
G = MultiDiGraph(G) if G.is_multigraph() else DiGraph(G)
# There is a tradeoff here: the dictionary of node degrees may
# require a lot of memory, whereas making a call to `G.out_degree`
# inside the loop may be costly in computation time.
degree = dict(G.out_degree(weight=weight))
for u, v, d in G.edges(data=True):
if degree[u] == 0:
d[weight] = 0
else:
d[weight] = d.get(weight, 1) / degree[u]
return G

View file

@ -0,0 +1,128 @@
"""Generator for Sudoku graphs
This module gives a generator for n-Sudoku graphs. It can be used to develop
algorithms for solving or generating Sudoku puzzles.
A completed Sudoku grid is a 9x9 array of integers between 1 and 9, with no
number appearing twice in the same row, column, or 3x3 box.
8 6 4 | 3 7 1 | 2 5 9
3 2 5 | 8 4 9 | 7 6 1
9 7 1 | 2 6 5 | 8 4 3
------+-------+------
4 3 6 | 1 9 2 | 5 8 7
1 9 8 | 6 5 7 | 4 3 2
2 5 7 | 4 8 3 | 9 1 6
------+-------+------
6 8 9 | 7 3 4 | 1 2 5
7 1 3 | 5 2 8 | 6 9 4
5 4 2 | 9 1 6 | 3 7 8
The Sudoku graph is an undirected graph with 81 vertices, corresponding to
the cells of a Sudoku grid. It is a regular graph of degree 20. Two distinct
vertices are adjacent if and only if the corresponding cells belong to the
same row, column, or box. A completed Sudoku grid corresponds to a vertex
coloring of the Sudoku graph with nine colors.
More generally, the n-Sudoku graph is a graph with n^4 vertices, corresponding
to the cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if and
only if they belong to the same row, column, or n by n box.
References
----------
.. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic
polynomials. Notices of the AMS, 54(6), 708-717.
.. [2] Sander, Torsten (2009), "Sudoku graphs are integral",
Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816
.. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free
Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019.
"""
import networkx as nx
from networkx.exception import NetworkXError
__all__ = ["sudoku_graph"]
def sudoku_graph(n=3):
"""Returns the n-Sudoku graph. The default value of n is 3.
The n-Sudoku graph is a graph with n^4 vertices, corresponding to the
cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if and
only if they belong to the same row, column, or n-by-n box.
Parameters
----------
n: integer
The order of the Sudoku graph, equal to the square root of the
number of rows. The default is 3.
Returns
-------
NetworkX graph
The n-Sudoku graph Sud(n).
Examples
--------
>>> G = nx.sudoku_graph()
>>> G.number_of_nodes()
81
>>> G.number_of_edges()
810
>>> sorted(G.neighbors(42))
[6, 15, 24, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 51, 52, 53, 60, 69, 78]
>>> G = nx.sudoku_graph(2)
>>> G.number_of_nodes()
16
>>> G.number_of_edges()
56
References
----------
.. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic
polynomials. Notices of the AMS, 54(6), 708-717.
.. [2] Sander, Torsten (2009), "Sudoku graphs are integral",
Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816
.. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free
Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019.
"""
if n < 0:
raise NetworkXError("The order must be greater than or equal to zero.")
n2 = n * n
n3 = n2 * n
n4 = n3 * n
# Construct an empty graph with n^4 nodes
G = nx.empty_graph(n4)
# A Sudoku graph of order 0 or 1 has no edges
if n < 2:
return G
# Add edges for cells in the same row
for row_no in range(0, n2):
row_start = row_no * n2
for j in range(1, n2):
for i in range(j):
G.add_edge(row_start + i, row_start + j)
# Add edges for cells in the same column
for col_no in range(0, n2):
for j in range(col_no, n4, n2):
for i in range(col_no, j, n2):
G.add_edge(i, j)
# Add edges for cells in the same box
for band_no in range(n):
for stack_no in range(n):
box_start = n3 * band_no + n * stack_no
for j in range(1, n2):
for i in range(j):
u = box_start + (i % n) + n2 * (i // n)
v = box_start + (j % n) + n2 * (j // n)
G.add_edge(u, v)
return G

View file

@ -0,0 +1,77 @@
from itertools import groupby
import pytest
import networkx as nx
from networkx.testing import assert_edges_equal, assert_nodes_equal
from networkx import graph_atlas
from networkx import graph_atlas_g
from networkx.generators.atlas import NUM_GRAPHS
from networkx.utils import pairwise
class TestAtlasGraph:
"""Unit tests for the :func:`~networkx.graph_atlas` function."""
def test_index_too_small(self):
with pytest.raises(ValueError):
graph_atlas(-1)
def test_index_too_large(self):
with pytest.raises(ValueError):
graph_atlas(NUM_GRAPHS)
def test_graph(self):
G = graph_atlas(6)
assert_nodes_equal(G.nodes(), range(3))
assert_edges_equal(G.edges(), [(0, 1), (0, 2)])
class TestAtlasGraphG:
"""Unit tests for the :func:`~networkx.graph_atlas_g` function."""
@classmethod
def setup_class(cls):
cls.GAG = graph_atlas_g()
def test_sizes(self):
G = self.GAG[0]
assert G.number_of_nodes() == 0
assert G.number_of_edges() == 0
G = self.GAG[7]
assert G.number_of_nodes() == 3
assert G.number_of_edges() == 3
def test_names(self):
for i, G in enumerate(self.GAG):
assert int(G.name[1:]) == i
def test_nondecreasing_nodes(self):
# check for nondecreasing number of nodes
for n1, n2 in pairwise(map(len, self.GAG)):
assert n2 <= n1 + 1
def test_nondecreasing_edges(self):
# check for nondecreasing number of edges (for fixed number of
# nodes)
for n, group in groupby(self.GAG, key=nx.number_of_nodes):
for m1, m2 in pairwise(map(nx.number_of_edges, group)):
assert m2 <= m1 + 1
def test_nondecreasing_degree_sequence(self):
# Check for lexicographically nondecreasing degree sequences
# (for fixed number of nodes and edges).
#
# There are three exceptions to this rule in the order given in
# the "Atlas of Graphs" book, so we need to manually exclude
# those.
exceptions = [("G55", "G56"), ("G1007", "G1008"), ("G1012", "G1013")]
for n, group in groupby(self.GAG, key=nx.number_of_nodes):
for m, group in groupby(group, key=nx.number_of_edges):
for G1, G2 in pairwise(group):
if (G1.name, G2.name) in exceptions:
continue
d1 = sorted(d for v, d in G1.degree())
d2 = sorted(d for v, d in G2.degree())
assert d1 <= d2

View file

@ -0,0 +1,467 @@
"""
====================
Generators - Classic
====================
Unit tests for various classic graph generators in generators/classic.py
"""
import itertools
import pytest
import networkx as nx
from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic
from networkx.testing import assert_edges_equal
from networkx.testing import assert_nodes_equal
is_isomorphic = graph_could_be_isomorphic
class TestGeneratorClassic:
def test_balanced_tree(self):
# balanced_tree(r,h) is a tree with (r**(h+1)-1)/(r-1) edges
for r, h in [(2, 2), (3, 3), (6, 2)]:
t = nx.balanced_tree(r, h)
order = t.order()
assert order == (r ** (h + 1) - 1) / (r - 1)
assert nx.is_connected(t)
assert t.size() == order - 1
dh = nx.degree_histogram(t)
assert dh[0] == 0 # no nodes of 0
assert dh[1] == r ** h # nodes of degree 1 are leaves
assert dh[r] == 1 # root is degree r
assert dh[r + 1] == order - r ** h - 1 # everyone else is degree r+1
assert len(dh) == r + 2
def test_balanced_tree_star(self):
# balanced_tree(r,1) is the r-star
t = nx.balanced_tree(r=2, h=1)
assert is_isomorphic(t, nx.star_graph(2))
t = nx.balanced_tree(r=5, h=1)
assert is_isomorphic(t, nx.star_graph(5))
t = nx.balanced_tree(r=10, h=1)
assert is_isomorphic(t, nx.star_graph(10))
def test_balanced_tree_path(self):
"""Tests that the balanced tree with branching factor one is the
path graph.
"""
# A tree of height four has five levels.
T = nx.balanced_tree(1, 4)
P = nx.path_graph(5)
assert is_isomorphic(T, P)
def test_full_rary_tree(self):
r = 2
n = 9
t = nx.full_rary_tree(r, n)
assert t.order() == n
assert nx.is_connected(t)
dh = nx.degree_histogram(t)
assert dh[0] == 0 # no nodes of 0
assert dh[1] == 5 # nodes of degree 1 are leaves
assert dh[r] == 1 # root is degree r
assert dh[r + 1] == 9 - 5 - 1 # everyone else is degree r+1
assert len(dh) == r + 2
def test_full_rary_tree_balanced(self):
t = nx.full_rary_tree(2, 15)
th = nx.balanced_tree(2, 3)
assert is_isomorphic(t, th)
def test_full_rary_tree_path(self):
t = nx.full_rary_tree(1, 10)
assert is_isomorphic(t, nx.path_graph(10))
def test_full_rary_tree_empty(self):
t = nx.full_rary_tree(0, 10)
assert is_isomorphic(t, nx.empty_graph(10))
t = nx.full_rary_tree(3, 0)
assert is_isomorphic(t, nx.empty_graph(0))
def test_full_rary_tree_3_20(self):
t = nx.full_rary_tree(3, 20)
assert t.order() == 20
def test_barbell_graph(self):
# number of nodes = 2*m1 + m2 (2 m1-complete graphs + m2-path + 2 edges)
# number of edges = 2*(nx.number_of_edges(m1-complete graph) + m2 + 1
m1 = 3
m2 = 5
b = nx.barbell_graph(m1, m2)
assert nx.number_of_nodes(b) == 2 * m1 + m2
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
m1 = 4
m2 = 10
b = nx.barbell_graph(m1, m2)
assert nx.number_of_nodes(b) == 2 * m1 + m2
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
m1 = 3
m2 = 20
b = nx.barbell_graph(m1, m2)
assert nx.number_of_nodes(b) == 2 * m1 + m2
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
# Raise NetworkXError if m1<2
m1 = 1
m2 = 20
pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
# Raise NetworkXError if m2<0
m1 = 5
m2 = -2
pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
# nx.barbell_graph(2,m) = nx.path_graph(m+4)
m1 = 2
m2 = 5
b = nx.barbell_graph(m1, m2)
assert is_isomorphic(b, nx.path_graph(m2 + 4))
m1 = 2
m2 = 10
b = nx.barbell_graph(m1, m2)
assert is_isomorphic(b, nx.path_graph(m2 + 4))
m1 = 2
m2 = 20
b = nx.barbell_graph(m1, m2)
assert is_isomorphic(b, nx.path_graph(m2 + 4))
pytest.raises(
nx.NetworkXError, nx.barbell_graph, m1, m2, create_using=nx.DiGraph()
)
mb = nx.barbell_graph(m1, m2, create_using=nx.MultiGraph())
assert_edges_equal(mb.edges(), b.edges())
def test_binomial_tree(self):
for n in range(0, 4):
b = nx.binomial_tree(n)
assert nx.number_of_nodes(b) == 2 ** n
assert nx.number_of_edges(b) == (2 ** n - 1)
def test_complete_graph(self):
# complete_graph(m) is a connected graph with
# m nodes and m*(m+1)/2 edges
for m in [0, 1, 3, 5]:
g = nx.complete_graph(m)
assert nx.number_of_nodes(g) == m
assert nx.number_of_edges(g) == m * (m - 1) // 2
mg = nx.complete_graph(m, create_using=nx.MultiGraph)
assert_edges_equal(mg.edges(), g.edges())
g = nx.complete_graph("abc")
assert_nodes_equal(g.nodes(), ["a", "b", "c"])
assert g.size() == 3
def test_complete_digraph(self):
# complete_graph(m) is a connected graph with
# m nodes and m*(m+1)/2 edges
for m in [0, 1, 3, 5]:
g = nx.complete_graph(m, create_using=nx.DiGraph)
assert nx.number_of_nodes(g) == m
assert nx.number_of_edges(g) == m * (m - 1)
g = nx.complete_graph("abc", create_using=nx.DiGraph)
assert len(g) == 3
assert g.size() == 6
assert g.is_directed()
def test_circular_ladder_graph(self):
G = nx.circular_ladder_graph(5)
pytest.raises(
nx.NetworkXError, nx.circular_ladder_graph, 5, create_using=nx.DiGraph
)
mG = nx.circular_ladder_graph(5, create_using=nx.MultiGraph)
assert_edges_equal(mG.edges(), G.edges())
def test_circulant_graph(self):
# Ci_n(1) is the cycle graph for all n
Ci6_1 = nx.circulant_graph(6, [1])
C6 = nx.cycle_graph(6)
assert_edges_equal(Ci6_1.edges(), C6.edges())
# Ci_n(1, 2, ..., n div 2) is the complete graph for all n
Ci7 = nx.circulant_graph(7, [1, 2, 3])
K7 = nx.complete_graph(7)
assert_edges_equal(Ci7.edges(), K7.edges())
# Ci_6(1, 3) is K_3,3 i.e. the utility graph
Ci6_1_3 = nx.circulant_graph(6, [1, 3])
K3_3 = nx.complete_bipartite_graph(3, 3)
assert is_isomorphic(Ci6_1_3, K3_3)
def test_cycle_graph(self):
G = nx.cycle_graph(4)
assert_edges_equal(G.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
mG = nx.cycle_graph(4, create_using=nx.MultiGraph)
assert_edges_equal(mG.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
G = nx.cycle_graph(4, create_using=nx.DiGraph)
assert not G.has_edge(2, 1)
assert G.has_edge(1, 2)
assert G.is_directed()
G = nx.cycle_graph("abc")
assert len(G) == 3
assert G.size() == 3
g = nx.cycle_graph("abc", nx.DiGraph)
assert len(g) == 3
assert g.size() == 3
assert g.is_directed()
def test_dorogovtsev_goltsev_mendes_graph(self):
G = nx.dorogovtsev_goltsev_mendes_graph(0)
assert_edges_equal(G.edges(), [(0, 1)])
assert_nodes_equal(list(G), [0, 1])
G = nx.dorogovtsev_goltsev_mendes_graph(1)
assert_edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
assert nx.average_clustering(G) == 1.0
assert sorted(nx.triangles(G).values()) == [1, 1, 1]
G = nx.dorogovtsev_goltsev_mendes_graph(10)
assert nx.number_of_nodes(G) == 29526
assert nx.number_of_edges(G) == 59049
assert G.degree(0) == 1024
assert G.degree(1) == 1024
assert G.degree(2) == 1024
pytest.raises(
nx.NetworkXError,
nx.dorogovtsev_goltsev_mendes_graph,
7,
create_using=nx.DiGraph,
)
pytest.raises(
nx.NetworkXError,
nx.dorogovtsev_goltsev_mendes_graph,
7,
create_using=nx.MultiGraph,
)
def test_create_using(self):
G = nx.empty_graph()
assert isinstance(G, nx.Graph)
pytest.raises(TypeError, nx.empty_graph, create_using=0.0)
pytest.raises(TypeError, nx.empty_graph, create_using="Graph")
G = nx.empty_graph(create_using=nx.MultiGraph)
assert isinstance(G, nx.MultiGraph)
G = nx.empty_graph(create_using=nx.DiGraph)
assert isinstance(G, nx.DiGraph)
G = nx.empty_graph(create_using=nx.DiGraph, default=nx.MultiGraph)
assert isinstance(G, nx.DiGraph)
G = nx.empty_graph(create_using=None, default=nx.MultiGraph)
assert isinstance(G, nx.MultiGraph)
G = nx.empty_graph(default=nx.MultiGraph)
assert isinstance(G, nx.MultiGraph)
G = nx.path_graph(5)
H = nx.empty_graph(create_using=G)
assert not H.is_multigraph()
assert not H.is_directed()
assert len(H) == 0
assert G is H
H = nx.empty_graph(create_using=nx.MultiGraph())
assert H.is_multigraph()
assert not H.is_directed()
assert G is not H
def test_empty_graph(self):
G = nx.empty_graph()
assert nx.number_of_nodes(G) == 0
G = nx.empty_graph(42)
assert nx.number_of_nodes(G) == 42
assert nx.number_of_edges(G) == 0
G = nx.empty_graph("abc")
assert len(G) == 3
assert G.size() == 0
# create empty digraph
G = nx.empty_graph(42, create_using=nx.DiGraph(name="duh"))
assert nx.number_of_nodes(G) == 42
assert nx.number_of_edges(G) == 0
assert isinstance(G, nx.DiGraph)
# create empty multigraph
G = nx.empty_graph(42, create_using=nx.MultiGraph(name="duh"))
assert nx.number_of_nodes(G) == 42
assert nx.number_of_edges(G) == 0
assert isinstance(G, nx.MultiGraph)
# create empty graph from another
pete = nx.petersen_graph()
G = nx.empty_graph(42, create_using=pete)
assert nx.number_of_nodes(G) == 42
assert nx.number_of_edges(G) == 0
assert isinstance(G, nx.Graph)
def test_ladder_graph(self):
for i, G in [
(0, nx.empty_graph(0)),
(1, nx.path_graph(2)),
(2, nx.hypercube_graph(2)),
(10, nx.grid_graph([2, 10])),
]:
assert is_isomorphic(nx.ladder_graph(i), G)
pytest.raises(nx.NetworkXError, nx.ladder_graph, 2, create_using=nx.DiGraph)
g = nx.ladder_graph(2)
mg = nx.ladder_graph(2, create_using=nx.MultiGraph)
assert_edges_equal(mg.edges(), g.edges())
def test_lollipop_graph(self):
# number of nodes = m1 + m2
# number of edges = nx.number_of_edges(nx.complete_graph(m1)) + m2
for m1, m2 in [(3, 5), (4, 10), (3, 20)]:
b = nx.lollipop_graph(m1, m2)
assert nx.number_of_nodes(b) == m1 + m2
assert nx.number_of_edges(b) == m1 * (m1 - 1) / 2 + m2
# Raise NetworkXError if m<2
pytest.raises(nx.NetworkXError, nx.lollipop_graph, 1, 20)
# Raise NetworkXError if n<0
pytest.raises(nx.NetworkXError, nx.lollipop_graph, 5, -2)
# lollipop_graph(2,m) = path_graph(m+2)
for m1, m2 in [(2, 5), (2, 10), (2, 20)]:
b = nx.lollipop_graph(m1, m2)
assert is_isomorphic(b, nx.path_graph(m2 + 2))
pytest.raises(
nx.NetworkXError, nx.lollipop_graph, m1, m2, create_using=nx.DiGraph
)
mb = nx.lollipop_graph(m1, m2, create_using=nx.MultiGraph)
assert_edges_equal(mb.edges(), b.edges())
g = nx.lollipop_graph([1, 2, 3, 4], "abc")
assert len(g) == 7
assert g.size() == 9
def test_null_graph(self):
assert nx.number_of_nodes(nx.null_graph()) == 0
def test_path_graph(self):
p = nx.path_graph(0)
assert is_isomorphic(p, nx.null_graph())
p = nx.path_graph(1)
assert is_isomorphic(p, nx.empty_graph(1))
p = nx.path_graph(10)
assert nx.is_connected(p)
assert sorted(d for n, d in p.degree()) == [1, 1, 2, 2, 2, 2, 2, 2, 2, 2]
assert p.order() - 1 == p.size()
dp = nx.path_graph(3, create_using=nx.DiGraph)
assert dp.has_edge(0, 1)
assert not dp.has_edge(1, 0)
mp = nx.path_graph(10, create_using=nx.MultiGraph)
assert_edges_equal(mp.edges(), p.edges())
G = nx.path_graph("abc")
assert len(G) == 3
assert G.size() == 2
g = nx.path_graph("abc", nx.DiGraph)
assert len(g) == 3
assert g.size() == 2
assert g.is_directed()
def test_star_graph(self):
star_graph = nx.star_graph
assert is_isomorphic(star_graph(0), nx.empty_graph(1))
assert is_isomorphic(star_graph(1), nx.path_graph(2))
assert is_isomorphic(star_graph(2), nx.path_graph(3))
assert is_isomorphic(star_graph(5), nx.complete_bipartite_graph(1, 5))
s = star_graph(10)
assert sorted(d for n, d in s.degree()) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10]
pytest.raises(nx.NetworkXError, star_graph, 10, create_using=nx.DiGraph)
ms = star_graph(10, create_using=nx.MultiGraph)
assert_edges_equal(ms.edges(), s.edges())
G = star_graph("abcdefg")
assert len(G) == 7
assert G.size() == 6
def test_trivial_graph(self):
assert nx.number_of_nodes(nx.trivial_graph()) == 1
def test_turan_graph(self):
assert nx.number_of_edges(nx.turan_graph(13, 4)) == 63
assert is_isomorphic(
nx.turan_graph(13, 4), nx.complete_multipartite_graph(3, 4, 3, 3)
)
def test_wheel_graph(self):
for n, G in [
(0, nx.null_graph()),
(1, nx.empty_graph(1)),
(2, nx.path_graph(2)),
(3, nx.complete_graph(3)),
(4, nx.complete_graph(4)),
]:
g = nx.wheel_graph(n)
assert is_isomorphic(g, G)
g = nx.wheel_graph(10)
assert sorted(d for n, d in g.degree()) == [3, 3, 3, 3, 3, 3, 3, 3, 3, 9]
pytest.raises(nx.NetworkXError, nx.wheel_graph, 10, create_using=nx.DiGraph)
mg = nx.wheel_graph(10, create_using=nx.MultiGraph())
assert_edges_equal(mg.edges(), g.edges())
G = nx.wheel_graph("abc")
assert len(G) == 3
assert G.size() == 3
def test_complete_0_partite_graph(self):
"""Tests that the complete 0-partite graph is the null graph."""
G = nx.complete_multipartite_graph()
H = nx.null_graph()
assert_nodes_equal(G, H)
assert_edges_equal(G.edges(), H.edges())
def test_complete_1_partite_graph(self):
"""Tests that the complete 1-partite graph is the empty graph."""
G = nx.complete_multipartite_graph(3)
H = nx.empty_graph(3)
assert_nodes_equal(G, H)
assert_edges_equal(G.edges(), H.edges())
def test_complete_2_partite_graph(self):
"""Tests that the complete 2-partite graph is the complete bipartite
graph.
"""
G = nx.complete_multipartite_graph(2, 3)
H = nx.complete_bipartite_graph(2, 3)
assert_nodes_equal(G, H)
assert_edges_equal(G.edges(), H.edges())
def test_complete_multipartite_graph(self):
"""Tests for generating the complete multipartite graph."""
G = nx.complete_multipartite_graph(2, 3, 4)
blocks = [(0, 1), (2, 3, 4), (5, 6, 7, 8)]
# Within each block, no two vertices should be adjacent.
for block in blocks:
for u, v in itertools.combinations_with_replacement(block, 2):
assert v not in G[u]
assert G.nodes[u] == G.nodes[v]
# Across blocks, all vertices should be adjacent.
for (block1, block2) in itertools.combinations(blocks, 2):
for u, v in itertools.product(block1, block2):
assert v in G[u]
assert G.nodes[u] != G.nodes[v]

View file

@ -0,0 +1,20 @@
"""Unit tests for the :mod:`networkx.generators.cographs` module.
"""
import networkx as nx
def test_random_cograph():
n = 3
G = nx.random_cograph(n)
assert len(G) == 2 ** n
# Every connected subgraph of G has diameter <= 2
if nx.is_connected(G):
assert nx.diameter(G) <= 2
else:
components = nx.connected_components(G)
for component in components:
assert nx.diameter(G.subgraph(component)) <= 2

View file

@ -0,0 +1,267 @@
import networkx as nx
import pytest
def test_random_partition_graph():
G = nx.random_partition_graph([3, 3, 3], 1, 0, seed=42)
C = G.graph["partition"]
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
assert len(G) == 9
assert len(list(G.edges())) == 9
G = nx.random_partition_graph([3, 3, 3], 0, 1)
C = G.graph["partition"]
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
assert len(G) == 9
assert len(list(G.edges())) == 27
G = nx.random_partition_graph([3, 3, 3], 1, 0, directed=True)
C = G.graph["partition"]
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
assert len(G) == 9
assert len(list(G.edges())) == 18
G = nx.random_partition_graph([3, 3, 3], 0, 1, directed=True)
C = G.graph["partition"]
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
assert len(G) == 9
assert len(list(G.edges())) == 54
G = nx.random_partition_graph([1, 2, 3, 4, 5], 0.5, 0.1)
C = G.graph["partition"]
assert C == [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}, {10, 11, 12, 13, 14}]
assert len(G) == 15
rpg = nx.random_partition_graph
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 1.1, 0.1)
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], -0.1, 0.1)
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, 1.1)
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, -0.1)
def test_planted_partition_graph():
G = nx.planted_partition_graph(4, 3, 1, 0, seed=42)
C = G.graph["partition"]
assert len(C) == 4
assert len(G) == 12
assert len(list(G.edges())) == 12
G = nx.planted_partition_graph(4, 3, 0, 1)
C = G.graph["partition"]
assert len(C) == 4
assert len(G) == 12
assert len(list(G.edges())) == 54
G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42)
C = G.graph["partition"]
assert len(C) == 10
assert len(G) == 40
G = nx.planted_partition_graph(4, 3, 1, 0, directed=True)
C = G.graph["partition"]
assert len(C) == 4
assert len(G) == 12
assert len(list(G.edges())) == 24
G = nx.planted_partition_graph(4, 3, 0, 1, directed=True)
C = G.graph["partition"]
assert len(C) == 4
assert len(G) == 12
assert len(list(G.edges())) == 108
G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42, directed=True)
C = G.graph["partition"]
assert len(C) == 10
assert len(G) == 40
ppg = nx.planted_partition_graph
pytest.raises(nx.NetworkXError, ppg, 3, 3, 1.1, 0.1)
pytest.raises(nx.NetworkXError, ppg, 3, 3, -0.1, 0.1)
pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, 1.1)
pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, -0.1)
def test_relaxed_caveman_graph():
G = nx.relaxed_caveman_graph(4, 3, 0)
assert len(G) == 12
G = nx.relaxed_caveman_graph(4, 3, 1)
assert len(G) == 12
G = nx.relaxed_caveman_graph(4, 3, 0.5)
assert len(G) == 12
G = nx.relaxed_caveman_graph(4, 3, 0.5, seed=42)
assert len(G) == 12
def test_connected_caveman_graph():
G = nx.connected_caveman_graph(4, 3)
assert len(G) == 12
G = nx.connected_caveman_graph(1, 5)
K5 = nx.complete_graph(5)
K5.remove_edge(3, 4)
assert nx.is_isomorphic(G, K5)
# need at least 2 nodes in each clique
pytest.raises(nx.NetworkXError, nx.connected_caveman_graph, 4, 1)
def test_caveman_graph():
G = nx.caveman_graph(4, 3)
assert len(G) == 12
G = nx.caveman_graph(1, 5)
K5 = nx.complete_graph(5)
assert nx.is_isomorphic(G, K5)
def test_gaussian_random_partition_graph():
G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01)
assert len(G) == 100
G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01, directed=True)
assert len(G) == 100
G = nx.gaussian_random_partition_graph(
100, 10, 10, 0.3, 0.01, directed=False, seed=42
)
assert len(G) == 100
assert not isinstance(G, nx.DiGraph)
G = nx.gaussian_random_partition_graph(
100, 10, 10, 0.3, 0.01, directed=True, seed=42
)
assert len(G) == 100
assert isinstance(G, nx.DiGraph)
pytest.raises(
nx.NetworkXError, nx.gaussian_random_partition_graph, 100, 101, 10, 1, 0
)
def test_ring_of_cliques():
for i in range(2, 20, 3):
for j in range(2, 20, 3):
G = nx.ring_of_cliques(i, j)
assert G.number_of_nodes() == i * j
if i != 2 or j != 1:
expected_num_edges = i * (((j * (j - 1)) // 2) + 1)
else:
# the edge that already exists cannot be duplicated
expected_num_edges = i * (((j * (j - 1)) // 2) + 1) - 1
assert G.number_of_edges() == expected_num_edges
pytest.raises(nx.NetworkXError, nx.ring_of_cliques, 1, 5)
pytest.raises(nx.NetworkXError, nx.ring_of_cliques, 3, 0)
def test_windmill_graph():
for n in range(2, 20, 3):
for k in range(2, 20, 3):
G = nx.windmill_graph(n, k)
assert G.number_of_nodes() == (k - 1) * n + 1
assert G.number_of_edges() == n * k * (k - 1) / 2
assert G.degree(0) == G.number_of_nodes() - 1
for i in range(1, G.number_of_nodes()):
assert G.degree(i) == k - 1
pytest.raises(nx.NetworkXError, nx.ring_of_cliques, 1, 3)
pytest.raises(nx.NetworkXError, nx.ring_of_cliques, 15, 0)
def test_stochastic_block_model():
sizes = [75, 75, 300]
probs = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
G = nx.stochastic_block_model(sizes, probs, seed=0)
C = G.graph["partition"]
assert len(C) == 3
assert len(G) == 450
assert G.size() == 22160
GG = nx.stochastic_block_model(sizes, probs, range(450), seed=0)
assert G.nodes == GG.nodes
# Test Exceptions
sbm = nx.stochastic_block_model
badnodelist = list(range(400)) # not enough nodes to match sizes
badprobs1 = [[0.25, 0.05, 1.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
badprobs2 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]]
probs_rect1 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07]]
probs_rect2 = [[0.25, 0.05], [0.05, -0.35], [0.02, 0.07]]
asymprobs = [[0.25, 0.05, 0.01], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]]
pytest.raises(nx.NetworkXException, sbm, sizes, badprobs1)
pytest.raises(nx.NetworkXException, sbm, sizes, badprobs2)
pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect1, directed=True)
pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect2, directed=True)
pytest.raises(nx.NetworkXException, sbm, sizes, asymprobs, directed=False)
pytest.raises(nx.NetworkXException, sbm, sizes, probs, badnodelist)
nodelist = [0] + list(range(449)) # repeated node name in nodelist
pytest.raises(nx.NetworkXException, sbm, sizes, probs, nodelist)
# Extra keyword arguments test
GG = nx.stochastic_block_model(sizes, probs, seed=0, selfloops=True)
assert G.nodes == GG.nodes
GG = nx.stochastic_block_model(sizes, probs, selfloops=True, directed=True)
assert G.nodes == GG.nodes
GG = nx.stochastic_block_model(sizes, probs, seed=0, sparse=False)
assert G.nodes == GG.nodes
def test_generator():
n = 250
tau1 = 3
tau2 = 1.5
mu = 0.1
G = nx.LFR_benchmark_graph(
n, tau1, tau2, mu, average_degree=5, min_community=20, seed=10
)
assert len(G) == 250
C = {frozenset(G.nodes[v]["community"]) for v in G}
assert nx.community.is_partition(G.nodes(), C)
def test_invalid_tau1():
with pytest.raises(nx.NetworkXError):
n = 100
tau1 = 2
tau2 = 1
mu = 0.1
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
def test_invalid_tau2():
with pytest.raises(nx.NetworkXError):
n = 100
tau1 = 1
tau2 = 2
mu = 0.1
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
def test_mu_too_large():
with pytest.raises(nx.NetworkXError):
n = 100
tau1 = 2
tau2 = 2
mu = 1.1
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
def test_mu_too_small():
with pytest.raises(nx.NetworkXError):
n = 100
tau1 = 2
tau2 = 2
mu = -1
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
def test_both_degrees_none():
with pytest.raises(nx.NetworkXError):
n = 100
tau1 = 2
tau2 = 2
mu = -1
nx.LFR_benchmark_graph(n, tau1, tau2, mu)
def test_neither_degrees_none():
with pytest.raises(nx.NetworkXError):
n = 100
tau1 = 2
tau2 = 2
mu = -1
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, average_degree=5)

View file

@ -0,0 +1,230 @@
import pytest
import networkx as nx
class TestConfigurationModel:
"""Unit tests for the :func:`~networkx.configuration_model`
function.
"""
def test_empty_degree_sequence(self):
"""Tests that an empty degree sequence yields the null graph."""
G = nx.configuration_model([])
assert len(G) == 0
def test_degree_zero(self):
"""Tests that a degree sequence of all zeros yields the empty
graph.
"""
G = nx.configuration_model([0, 0, 0])
assert len(G) == 3
assert G.number_of_edges() == 0
def test_degree_sequence(self):
"""Tests that the degree sequence of the generated graph matches
the input degree sequence.
"""
deg_seq = [5, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
G = nx.configuration_model(deg_seq, seed=12345678)
assert sorted((d for n, d in G.degree()), reverse=True) == [
5,
3,
3,
3,
3,
2,
2,
2,
1,
1,
1,
]
assert sorted((d for n, d in G.degree(range(len(deg_seq)))), reverse=True) == [
5,
3,
3,
3,
3,
2,
2,
2,
1,
1,
1,
]
def test_random_seed(self):
"""Tests that each call with the same random seed generates the
same graph.
"""
deg_seq = [3] * 12
G1 = nx.configuration_model(deg_seq, seed=1000)
G2 = nx.configuration_model(deg_seq, seed=1000)
assert nx.is_isomorphic(G1, G2)
G1 = nx.configuration_model(deg_seq, seed=10)
G2 = nx.configuration_model(deg_seq, seed=10)
assert nx.is_isomorphic(G1, G2)
def test_directed_disallowed(self):
"""Tests that attempting to create a configuration model graph
using a directed graph yields an exception.
"""
with pytest.raises(nx.NetworkXNotImplemented):
nx.configuration_model([], create_using=nx.DiGraph())
def test_odd_degree_sum(self):
"""Tests that a degree sequence whose sum is odd yields an
exception.
"""
with pytest.raises(nx.NetworkXError):
nx.configuration_model([1, 2])
def test_directed_configuation_raise_unequal():
with pytest.raises(nx.NetworkXError):
zin = [5, 3, 3, 3, 3, 2, 2, 2, 1, 1]
zout = [5, 3, 3, 3, 3, 2, 2, 2, 1, 2]
nx.directed_configuration_model(zin, zout)
def test_directed_configuation_model():
G = nx.directed_configuration_model([], [], seed=0)
assert len(G) == 0
def test_simple_directed_configuation_model():
G = nx.directed_configuration_model([1, 1], [1, 1], seed=0)
assert len(G) == 2
def test_expected_degree_graph_empty():
# empty graph has empty degree sequence
deg_seq = []
G = nx.expected_degree_graph(deg_seq)
assert dict(G.degree()) == {}
def test_expected_degree_graph():
# test that fixed seed delivers the same graph
deg_seq = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
G1 = nx.expected_degree_graph(deg_seq, seed=1000)
assert len(G1) == 12
G2 = nx.expected_degree_graph(deg_seq, seed=1000)
assert nx.is_isomorphic(G1, G2)
G1 = nx.expected_degree_graph(deg_seq, seed=10)
G2 = nx.expected_degree_graph(deg_seq, seed=10)
assert nx.is_isomorphic(G1, G2)
def test_expected_degree_graph_selfloops():
deg_seq = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
G1 = nx.expected_degree_graph(deg_seq, seed=1000, selfloops=False)
G2 = nx.expected_degree_graph(deg_seq, seed=1000, selfloops=False)
assert nx.is_isomorphic(G1, G2)
assert len(G1) == 12
def test_expected_degree_graph_skew():
deg_seq = [10, 2, 2, 2, 2]
G1 = nx.expected_degree_graph(deg_seq, seed=1000)
G2 = nx.expected_degree_graph(deg_seq, seed=1000)
assert nx.is_isomorphic(G1, G2)
assert len(G1) == 5
def test_havel_hakimi_construction():
G = nx.havel_hakimi_graph([])
assert len(G) == 0
z = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z)
z = ["A", 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z)
z = [5, 4, 3, 3, 3, 2, 2, 2]
G = nx.havel_hakimi_graph(z)
G = nx.configuration_model(z)
z = [6, 5, 4, 4, 2, 1, 1, 1]
pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z)
z = [10, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2]
G = nx.havel_hakimi_graph(z)
pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z, create_using=nx.DiGraph())
def test_directed_havel_hakimi():
# Test range of valid directed degree sequences
n, r = 100, 10
p = 1.0 / r
for i in range(r):
G1 = nx.erdos_renyi_graph(n, p * (i + 1), None, True)
din1 = list(d for n, d in G1.in_degree())
dout1 = list(d for n, d in G1.out_degree())
G2 = nx.directed_havel_hakimi_graph(din1, dout1)
din2 = list(d for n, d in G2.in_degree())
dout2 = list(d for n, d in G2.out_degree())
assert sorted(din1) == sorted(din2)
assert sorted(dout1) == sorted(dout2)
# Test non-graphical sequence
dout = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
din = [103, 102, 102, 102, 102, 102, 102, 102, 102, 102]
pytest.raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout)
# Test valid sequences
dout = [1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
din = [2, 2, 2, 2, 2, 2, 2, 2, 0, 2]
G2 = nx.directed_havel_hakimi_graph(din, dout)
dout2 = (d for n, d in G2.out_degree())
din2 = (d for n, d in G2.in_degree())
assert sorted(dout) == sorted(dout2)
assert sorted(din) == sorted(din2)
# Test unequal sums
din = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
pytest.raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout)
# Test for negative values
din = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2]
pytest.raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout)
def test_degree_sequence_tree():
z = [1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
G = nx.degree_sequence_tree(z)
assert len(G) == len(z)
assert len(list(G.edges())) == sum(z) / 2
pytest.raises(
nx.NetworkXError, nx.degree_sequence_tree, z, create_using=nx.DiGraph()
)
z = [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
pytest.raises(nx.NetworkXError, nx.degree_sequence_tree, z)
def test_random_degree_sequence_graph():
d = [1, 2, 2, 3]
G = nx.random_degree_sequence_graph(d, seed=42)
assert d == sorted(d for n, d in G.degree())
def test_random_degree_sequence_graph_raise():
z = [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
pytest.raises(nx.NetworkXUnfeasible, nx.random_degree_sequence_graph, z)
def test_random_degree_sequence_large():
G1 = nx.fast_gnp_random_graph(100, 0.1, seed=42)
d1 = (d for n, d in G1.degree())
G2 = nx.random_degree_sequence_graph(d1, seed=42)
d2 = (d for n, d in G2.degree())
assert sorted(d1) == sorted(d2)

View file

@ -0,0 +1,121 @@
"""Generators - Directed Graphs
----------------------------
"""
import pytest
import networkx as nx
from networkx.classes import Graph
from networkx.classes import MultiDiGraph
from networkx.generators.directed import gn_graph
from networkx.generators.directed import gnr_graph
from networkx.generators.directed import gnc_graph
from networkx.generators.directed import random_k_out_graph
from networkx.generators.directed import random_uniform_k_out_graph
from networkx.generators.directed import scale_free_graph
class TestGeneratorsDirected:
def test_smoke_test_random_graphs(self):
gn_graph(100)
gnr_graph(100, 0.5)
gnc_graph(100)
scale_free_graph(100)
gn_graph(100, seed=42)
gnr_graph(100, 0.5, seed=42)
gnc_graph(100, seed=42)
scale_free_graph(100, seed=42)
def test_create_using_keyword_arguments(self):
pytest.raises(nx.NetworkXError, gn_graph, 100, create_using=Graph())
pytest.raises(nx.NetworkXError, gnr_graph, 100, 0.5, create_using=Graph())
pytest.raises(nx.NetworkXError, gnc_graph, 100, create_using=Graph())
pytest.raises(nx.NetworkXError, scale_free_graph, 100, create_using=Graph())
G = gn_graph(100, seed=1)
MG = gn_graph(100, create_using=MultiDiGraph(), seed=1)
assert sorted(G.edges()) == sorted(MG.edges())
G = gnr_graph(100, 0.5, seed=1)
MG = gnr_graph(100, 0.5, create_using=MultiDiGraph(), seed=1)
assert sorted(G.edges()) == sorted(MG.edges())
G = gnc_graph(100, seed=1)
MG = gnc_graph(100, create_using=MultiDiGraph(), seed=1)
assert sorted(G.edges()) == sorted(MG.edges())
G = scale_free_graph(
100,
alpha=0.3,
beta=0.4,
gamma=0.3,
delta_in=0.3,
delta_out=0.1,
create_using=MultiDiGraph,
seed=1,
)
pytest.raises(ValueError, scale_free_graph, 100, 0.5, 0.4, 0.3)
pytest.raises(ValueError, scale_free_graph, 100, alpha=-0.3)
pytest.raises(ValueError, scale_free_graph, 100, beta=-0.3)
pytest.raises(ValueError, scale_free_graph, 100, gamma=-0.3)
class TestRandomKOutGraph:
"""Unit tests for the
:func:`~networkx.generators.directed.random_k_out_graph` function.
"""
def test_regularity(self):
"""Tests that the generated graph is `k`-out-regular."""
n = 10
k = 3
alpha = 1
G = random_k_out_graph(n, k, alpha)
assert all(d == k for v, d in G.out_degree())
G = random_k_out_graph(n, k, alpha, seed=42)
assert all(d == k for v, d in G.out_degree())
def test_no_self_loops(self):
"""Tests for forbidding self-loops."""
n = 10
k = 3
alpha = 1
G = random_k_out_graph(n, k, alpha, self_loops=False)
assert nx.number_of_selfloops(G) == 0
class TestUniformRandomKOutGraph:
"""Unit tests for the
:func:`~networkx.generators.directed.random_uniform_k_out_graph`
function.
"""
def test_regularity(self):
"""Tests that the generated graph is `k`-out-regular."""
n = 10
k = 3
G = random_uniform_k_out_graph(n, k)
assert all(d == k for v, d in G.out_degree())
G = random_uniform_k_out_graph(n, k, seed=42)
assert all(d == k for v, d in G.out_degree())
def test_no_self_loops(self):
"""Tests for forbidding self-loops."""
n = 10
k = 3
G = random_uniform_k_out_graph(n, k, self_loops=False)
assert nx.number_of_selfloops(G) == 0
assert all(d == k for v, d in G.out_degree())
def test_with_replacement(self):
n = 10
k = 3
G = random_uniform_k_out_graph(n, k, with_replacement=True)
assert G.is_multigraph()
assert all(d == k for v, d in G.out_degree())
def test_without_replacement(self):
n = 10
k = 3
G = random_uniform_k_out_graph(n, k, with_replacement=False)
assert not G.is_multigraph()
assert all(d == k for v, d in G.out_degree())

View file

@ -0,0 +1,71 @@
"""Unit tests for the :mod:`networkx.generators.duplication` module.
"""
import pytest
from networkx.exception import NetworkXError
from networkx.generators.duplication import duplication_divergence_graph
from networkx.generators.duplication import partial_duplication_graph
class TestDuplicationDivergenceGraph:
"""Unit tests for the
:func:`networkx.generators.duplication.duplication_divergence_graph`
function.
"""
def test_final_size(self):
G = duplication_divergence_graph(3, 1)
assert len(G) == 3
G = duplication_divergence_graph(3, 1, seed=42)
assert len(G) == 3
def test_probability_too_large(self):
with pytest.raises(NetworkXError):
duplication_divergence_graph(3, 2)
def test_probability_too_small(self):
with pytest.raises(NetworkXError):
duplication_divergence_graph(3, -1)
class TestPartialDuplicationGraph:
"""Unit tests for the
:func:`networkx.generators.duplication.partial_duplication_graph`
function.
"""
def test_final_size(self):
N = 10
n = 5
p = 0.5
q = 0.5
G = partial_duplication_graph(N, n, p, q)
assert len(G) == N
G = partial_duplication_graph(N, n, p, q, seed=42)
assert len(G) == N
def test_initial_clique_size(self):
N = 10
n = 10
p = 0.5
q = 0.5
G = partial_duplication_graph(N, n, p, q)
assert len(G) == n
def test_invalid_initial_size(self):
with pytest.raises(NetworkXError):
N = 5
n = 10
p = 0.5
q = 0.5
G = partial_duplication_graph(N, n, p, q)
def test_invalid_probabilities(self):
N = 1
n = 1
for p, q in [(0.5, 2), (0.5, -1), (2, 0.5), (-1, 0.5)]:
args = (N, n, p, q)
pytest.raises(NetworkXError, partial_duplication_graph, *args)

View file

@ -0,0 +1,39 @@
"""
ego graph
---------
"""
import networkx as nx
from networkx.testing.utils import assert_edges_equal, assert_nodes_equal
class TestGeneratorEgo:
def test_ego(self):
G = nx.star_graph(3)
H = nx.ego_graph(G, 0)
assert nx.is_isomorphic(G, H)
G.add_edge(1, 11)
G.add_edge(2, 22)
G.add_edge(3, 33)
H = nx.ego_graph(G, 0)
assert nx.is_isomorphic(nx.star_graph(3), H)
G = nx.path_graph(3)
H = nx.ego_graph(G, 0)
assert_edges_equal(H.edges(), [(0, 1)])
H = nx.ego_graph(G, 0, undirected=True)
assert_edges_equal(H.edges(), [(0, 1)])
H = nx.ego_graph(G, 0, center=False)
assert_edges_equal(H.edges(), [])
def test_ego_distance(self):
G = nx.Graph()
G.add_edge(0, 1, weight=2, distance=1)
G.add_edge(1, 2, weight=2, distance=2)
G.add_edge(2, 3, weight=2, distance=1)
assert_nodes_equal(nx.ego_graph(G, 0, radius=3).nodes(), [0, 1, 2, 3])
eg = nx.ego_graph(G, 0, radius=3, distance="weight")
assert_nodes_equal(eg.nodes(), [0, 1])
eg = nx.ego_graph(G, 0, radius=3, distance="weight", undirected=True)
assert_nodes_equal(eg.nodes(), [0, 1])
eg = nx.ego_graph(G, 0, radius=3, distance="distance")
assert_nodes_equal(eg.nodes(), [0, 1, 2])

View file

@ -0,0 +1,71 @@
"""Unit tests for the :mod:`networkx.generators.expanders` module.
"""
import networkx as nx
from networkx import adjacency_matrix
from networkx import number_of_nodes
from networkx.generators.expanders import chordal_cycle_graph
from networkx.generators.expanders import margulis_gabber_galil_graph
from networkx.generators.expanders import paley_graph
import pytest
def test_margulis_gabber_galil_graph():
for n in 2, 3, 5, 6, 10:
g = margulis_gabber_galil_graph(n)
assert number_of_nodes(g) == n * n
for node in g:
assert g.degree(node) == 8
assert len(node) == 2
for i in node:
assert int(i) == i
assert 0 <= i < n
np = pytest.importorskip("numpy")
scipy = pytest.importorskip("scipy")
scipy.linalg = pytest.importorskip("scipy.linalg")
# Eigenvalues are already sorted using the scipy eigvalsh,
# but the implementation in numpy does not guarantee order.
w = sorted(scipy.linalg.eigvalsh(adjacency_matrix(g).A))
assert w[-2] < 5 * np.sqrt(2)
def test_chordal_cycle_graph():
"""Test for the :func:`networkx.chordal_cycle_graph` function."""
primes = [3, 5, 7, 11]
for p in primes:
G = chordal_cycle_graph(p)
assert len(G) == p
# TODO The second largest eigenvalue should be smaller than a constant,
# independent of the number of nodes in the graph:
#
# eigs = sorted(scipy.linalg.eigvalsh(adjacency_matrix(G).A))
# assert_less(eigs[-2], ...)
#
def test_paley_graph():
"""Test for the :func:`networkx.paley_graph` function."""
primes = [3, 5, 7, 11, 13]
for p in primes:
G = paley_graph(p)
# G has p nodes
assert len(G) == p
# G is (p-1)/2-regular
in_degrees = {G.in_degree(node) for node in G.nodes}
out_degrees = {G.out_degree(node) for node in G.nodes}
assert len(in_degrees) == 1 and in_degrees.pop() == (p - 1) // 2
assert len(out_degrees) == 1 and out_degrees.pop() == (p - 1) // 2
# If p = 1 mod 4, -1 is a square mod 4 and therefore the
# edge in the Paley graph are symmetric.
if p % 4 == 1:
for (u, v) in G.edges:
assert (v, u) in G.edges
def test_margulis_gabber_galil_graph_badinput():
pytest.raises(nx.NetworkXError, margulis_gabber_galil_graph, 3, nx.DiGraph())
pytest.raises(nx.NetworkXError, margulis_gabber_galil_graph, 3, nx.Graph())

View file

@ -0,0 +1,350 @@
from itertools import combinations
from math import sqrt
import random
import networkx as nx
from networkx.generators.geometric import euclidean
def l1dist(x, y):
return sum(abs(a - b) for a, b in zip(x, y))
class TestRandomGeometricGraph:
"""Unit tests for the :func:`~networkx.random_geometric_graph`
function.
"""
def test_number_of_nodes(self):
G = nx.random_geometric_graph(50, 0.25, seed=42)
assert len(G) == 50
G = nx.random_geometric_graph(range(50), 0.25, seed=42)
assert len(G) == 50
def test_distances(self):
"""Tests that pairs of vertices adjacent if and only if they are
within the prescribed radius.
"""
# Use the Euclidean metric, the default according to the
# documentation.
dist = euclidean
G = nx.random_geometric_graph(50, 0.25)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
# Nonadjacent vertices must be at greater distance.
else:
assert not dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_p(self):
"""Tests for providing an alternate distance metric to the
generator.
"""
# Use the L1 metric.
dist = l1dist
G = nx.random_geometric_graph(50, 0.25, p=1)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
# Nonadjacent vertices must be at greater distance.
else:
assert not dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_node_names(self):
"""Tests using values other than sequential numbers as node IDs.
"""
import string
nodes = list(string.ascii_lowercase)
G = nx.random_geometric_graph(nodes, 0.25)
assert len(G) == len(nodes)
dist = euclidean
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
# Nonadjacent vertices must be at greater distance.
else:
assert not dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
class TestSoftRandomGeometricGraph:
"""Unit tests for the :func:`~networkx.soft_random_geometric_graph`
function.
"""
def test_number_of_nodes(self):
G = nx.soft_random_geometric_graph(50, 0.25, seed=42)
assert len(G) == 50
G = nx.soft_random_geometric_graph(range(50), 0.25, seed=42)
assert len(G) == 50
def test_distances(self):
"""Tests that pairs of vertices adjacent if and only if they are
within the prescribed radius.
"""
# Use the Euclidean metric, the default according to the
# documentation.
def dist(x, y):
return sqrt(sum((a - b) ** 2 for a, b in zip(x, y)))
G = nx.soft_random_geometric_graph(50, 0.25)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_p(self):
"""Tests for providing an alternate distance metric to the
generator.
"""
# Use the L1 metric.
def dist(x, y):
return sum(abs(a - b) for a, b in zip(x, y))
G = nx.soft_random_geometric_graph(50, 0.25, p=1)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_node_names(self):
"""Tests using values other than sequential numbers as node IDs.
"""
import string
nodes = list(string.ascii_lowercase)
G = nx.soft_random_geometric_graph(nodes, 0.25)
assert len(G) == len(nodes)
def dist(x, y):
return sqrt(sum((a - b) ** 2 for a, b in zip(x, y)))
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_p_dist_default(self):
"""Tests default p_dict = 0.5 returns graph with edge count <= RGG with
same n, radius, dim and positions
"""
nodes = 50
dim = 2
pos = {v: [random.random() for i in range(dim)] for v in range(nodes)}
RGG = nx.random_geometric_graph(50, 0.25, pos=pos)
SRGG = nx.soft_random_geometric_graph(50, 0.25, pos=pos)
assert len(SRGG.edges()) <= len(RGG.edges())
def test_p_dist_zero(self):
"""Tests if p_dict = 0 returns disconencted graph with 0 edges
"""
def p_dist(dist):
return 0
G = nx.soft_random_geometric_graph(50, 0.25, p_dist=p_dist)
assert len(G.edges) == 0
def join(G, u, v, theta, alpha, metric):
"""Returns ``True`` if and only if the nodes whose attributes are
``du`` and ``dv`` should be joined, according to the threshold
condition for geographical threshold graphs.
``G`` is an undirected NetworkX graph, and ``u`` and ``v`` are nodes
in that graph. The nodes must have node attributes ``'pos'`` and
``'weight'``.
``metric`` is a distance metric.
"""
du, dv = G.nodes[u], G.nodes[v]
u_pos, v_pos = du["pos"], dv["pos"]
u_weight, v_weight = du["weight"], dv["weight"]
return (u_weight + v_weight) * metric(u_pos, v_pos) ** alpha >= theta
class TestGeographicalThresholdGraph:
"""Unit tests for the :func:`~networkx.geographical_threshold_graph`
function.
"""
def test_number_of_nodes(self):
G = nx.geographical_threshold_graph(50, 100, seed=42)
assert len(G) == 50
G = nx.geographical_threshold_graph(range(50), 100, seed=42)
assert len(G) == 50
def test_distances(self):
"""Tests that pairs of vertices adjacent if and only if their
distances meet the given threshold.
"""
# Use the Euclidean metric and alpha = -2
# the default according to the documentation.
dist = euclidean
G = nx.geographical_threshold_graph(50, 10)
for u, v in combinations(G, 2):
# Adjacent vertices must exceed the threshold.
if v in G[u]:
assert join(G, u, v, 10, -2, dist)
# Nonadjacent vertices must not exceed the threshold.
else:
assert not join(G, u, v, 10, -2, dist)
def test_metric(self):
"""Tests for providing an alternate distance metric to the
generator.
"""
# Use the L1 metric.
dist = l1dist
G = nx.geographical_threshold_graph(50, 10, metric=dist)
for u, v in combinations(G, 2):
# Adjacent vertices must exceed the threshold.
if v in G[u]:
assert join(G, u, v, 10, -2, dist)
# Nonadjacent vertices must not exceed the threshold.
else:
assert not join(G, u, v, 10, -2, dist)
def test_p_dist_zero(self):
"""Tests if p_dict = 0 returns disconencted graph with 0 edges
"""
def p_dist(dist):
return 0
G = nx.geographical_threshold_graph(50, 1, p_dist=p_dist)
assert len(G.edges) == 0
class TestWaxmanGraph:
"""Unit tests for the :func:`~networkx.waxman_graph` function."""
def test_number_of_nodes_1(self):
G = nx.waxman_graph(50, 0.5, 0.1, seed=42)
assert len(G) == 50
G = nx.waxman_graph(range(50), 0.5, 0.1, seed=42)
assert len(G) == 50
def test_number_of_nodes_2(self):
G = nx.waxman_graph(50, 0.5, 0.1, L=1)
assert len(G) == 50
G = nx.waxman_graph(range(50), 0.5, 0.1, L=1)
assert len(G) == 50
def test_metric(self):
"""Tests for providing an alternate distance metric to the
generator.
"""
# Use the L1 metric.
dist = l1dist
G = nx.waxman_graph(50, 0.5, 0.1, metric=dist)
assert len(G) == 50
class TestNavigableSmallWorldGraph:
def test_navigable_small_world(self):
G = nx.navigable_small_world_graph(5, p=1, q=0, seed=42)
gg = nx.grid_2d_graph(5, 5).to_directed()
assert nx.is_isomorphic(G, gg)
G = nx.navigable_small_world_graph(5, p=1, q=0, dim=3)
gg = nx.grid_graph([5, 5, 5]).to_directed()
assert nx.is_isomorphic(G, gg)
G = nx.navigable_small_world_graph(5, p=1, q=0, dim=1)
gg = nx.grid_graph([5]).to_directed()
assert nx.is_isomorphic(G, gg)
class TestThresholdedRandomGeometricGraph:
"""Unit tests for the :func:`~networkx.thresholded_random_geometric_graph`
function.
"""
def test_number_of_nodes(self):
G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1, seed=42)
assert len(G) == 50
G = nx.thresholded_random_geometric_graph(range(50), 0.2, 0.1)
assert len(G) == 50
def test_distances(self):
"""Tests that pairs of vertices adjacent if and only if they are
within the prescribed radius.
"""
# Use the Euclidean metric, the default according to the
# documentation.
def dist(x, y):
return sqrt(sum((a - b) ** 2 for a, b in zip(x, y)))
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_p(self):
"""Tests for providing an alternate distance metric to the
generator.
"""
# Use the L1 metric.
def dist(x, y):
return sum(abs(a - b) for a, b in zip(x, y))
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, p=1)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_node_names(self):
"""Tests using values other than sequential numbers as node IDs.
"""
import string
nodes = list(string.ascii_lowercase)
G = nx.thresholded_random_geometric_graph(nodes, 0.25, 0.1)
assert len(G) == len(nodes)
def dist(x, y):
return sqrt(sum((a - b) ** 2 for a, b in zip(x, y)))
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
def test_theta(self):
"""Tests that pairs of vertices adjacent if and only if their sum
weights exceeds the threshold parameter theta.
"""
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1)
for u, v in combinations(G, 2):
# Adjacent vertices must be within the given distance.
if v in G[u]:
assert (G.nodes[u]["weight"] + G.nodes[v]["weight"]) >= 0.1

View file

@ -0,0 +1,135 @@
"""Unit tests for the :mod:`networkx.generators.harary_graph` module.
"""
import pytest
import networkx as nx
from networkx.generators.harary_graph import hnm_harary_graph
from networkx.generators.harary_graph import hkn_harary_graph
from networkx.algorithms.isomorphism.isomorph import is_isomorphic
class TestHararyGraph:
"""
Suppose n nodes, m >= n-1 edges, d = 2m // n, r = 2m % n
"""
def test_hnm_harary_graph(self):
# When d is even and r = 0, the hnm_harary_graph(n,m) is
# the circulant_graph(n, list(range(1,d/2+1)))
for (n, m) in [(5, 5), (6, 12), (7, 14)]:
G1 = hnm_harary_graph(n, m)
d = 2 * m // n
G2 = nx.circulant_graph(n, list(range(1, d // 2 + 1)))
assert is_isomorphic(G1, G2)
# When d is even and r > 0, the hnm_harary_graph(n,m) is
# the circulant_graph(n, list(range(1,d/2+1)))
# with r edges added arbitrarily
for (n, m) in [(5, 7), (6, 13), (7, 16)]:
G1 = hnm_harary_graph(n, m)
d = 2 * m // n
G2 = nx.circulant_graph(n, list(range(1, d // 2 + 1)))
assert set(G2.edges) < set(G1.edges)
assert G1.number_of_edges() == m
# When d is odd and n is even and r = 0, the hnm_harary_graph(n,m)
# is the circulant_graph(n, list(range(1,(d+1)/2) plus [n//2])
for (n, m) in [(6, 9), (8, 12), (10, 15)]:
G1 = hnm_harary_graph(n, m)
d = 2 * m // n
L = list(range(1, (d + 1) // 2))
L.append(n // 2)
G2 = nx.circulant_graph(n, L)
assert is_isomorphic(G1, G2)
# When d is odd and n is even and r > 0, the hnm_harary_graph(n,m)
# is the circulant_graph(n, list(range(1,(d+1)/2) plus [n//2])
# with r edges added arbitrarily
for (n, m) in [(6, 10), (8, 13), (10, 17)]:
G1 = hnm_harary_graph(n, m)
d = 2 * m // n
L = list(range(1, (d + 1) // 2))
L.append(n // 2)
G2 = nx.circulant_graph(n, L)
assert set(G2.edges) < set(G1.edges)
assert G1.number_of_edges() == m
# When d is odd and n is odd, the hnm_harary_graph(n,m) is
# the circulant_graph(n, list(range(1,(d+1)/2))
# with m - n*(d-1)/2 edges added arbitrarily
for (n, m) in [(5, 4), (7, 12), (9, 14)]:
G1 = hnm_harary_graph(n, m)
d = 2 * m // n
L = list(range(1, (d + 1) // 2))
G2 = nx.circulant_graph(n, L)
assert set(G2.edges) < set(G1.edges)
assert G1.number_of_edges() == m
# Raise NetworkXError if n<1
n = 0
m = 0
pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m)
# Raise NetworkXError if m < n-1
n = 6
m = 4
pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m)
# Raise NetworkXError if m > n(n-1)/2
n = 6
m = 16
pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m)
"""
Suppose connectivity k, number of nodes n
"""
def test_hkn_harary_graph(self):
# When k == 1, the hkn_harary_graph(k,n) is
# the path_graph(n)
for (k, n) in [(1, 6), (1, 7)]:
G1 = hkn_harary_graph(k, n)
G2 = nx.path_graph(n)
assert is_isomorphic(G1, G2)
# When k is even, the hkn_harary_graph(k,n) is
# the circulant_graph(n, list(range(1,k/2+1)))
for (k, n) in [(2, 6), (2, 7), (4, 6), (4, 7)]:
G1 = hkn_harary_graph(k, n)
G2 = nx.circulant_graph(n, list(range(1, k // 2 + 1)))
assert is_isomorphic(G1, G2)
# When k is odd and n is even, the hkn_harary_graph(k,n) is
# the circulant_graph(n, list(range(1,(k+1)/2)) plus [n/2])
for (k, n) in [(3, 6), (5, 8), (7, 10)]:
G1 = hkn_harary_graph(k, n)
L = list(range(1, (k + 1) // 2))
L.append(n // 2)
G2 = nx.circulant_graph(n, L)
assert is_isomorphic(G1, G2)
# When k is odd and n is odd, the hkn_harary_graph(k,n) is
# the circulant_graph(n, list(range(1,(k+1)/2))) with
# n//2+1 edges added between node i and node i+n//2+1
for (k, n) in [(3, 5), (5, 9), (7, 11)]:
G1 = hkn_harary_graph(k, n)
G2 = nx.circulant_graph(n, list(range(1, (k + 1) // 2)))
eSet1 = set(G1.edges)
eSet2 = set(G2.edges)
eSet3 = set()
half = n // 2
for i in range(0, half + 1):
# add half+1 edges between i and i+half
eSet3.add((i, (i + half) % n))
assert eSet1 == eSet2 | eSet3
# Raise NetworkXError if k<1
k = 0
n = 0
pytest.raises(nx.NetworkXError, hkn_harary_graph, k, n)
# Raise NetworkXError if n<k+1
k = 6
n = 6
pytest.raises(nx.NetworkXError, hkn_harary_graph, k, n)

View file

@ -0,0 +1,189 @@
from networkx import is_connected, neighbors
from networkx.generators.internet_as_graphs import random_internet_as_graph
from networkx.testing import almost_equal
class TestInternetASTopology:
@classmethod
def setup_class(cls):
cls.n = 1000
cls.seed = 42
cls.G = random_internet_as_graph(cls.n, cls.seed)
cls.T = []
cls.M = []
cls.C = []
cls.CP = []
cls.customers = {}
cls.providers = {}
for i in cls.G.nodes():
if cls.G.nodes[i]["type"] == "T":
cls.T.append(i)
elif cls.G.nodes[i]["type"] == "M":
cls.M.append(i)
elif cls.G.nodes[i]["type"] == "C":
cls.C.append(i)
elif cls.G.nodes[i]["type"] == "CP":
cls.CP.append(i)
else:
raise ValueError(
"Inconsistent data in the graph\
node attributes"
)
cls.set_customers(i)
cls.set_providers(i)
@classmethod
def set_customers(cls, i):
if i not in cls.customers:
cls.customers[i] = set()
for j in neighbors(cls.G, i):
e = cls.G.edges[(i, j)]
if e["type"] == "transit":
customer = int(e["customer"])
if j == customer:
cls.set_customers(j)
cls.customers[i] = cls.customers[i].union(cls.customers[j])
cls.customers[i].add(j)
elif i != customer:
raise ValueError(
"Inconsistent data in the graph\
edge attributes"
)
@classmethod
def set_providers(cls, i):
if i not in cls.providers:
cls.providers[i] = set()
for j in neighbors(cls.G, i):
e = cls.G.edges[(i, j)]
if e["type"] == "transit":
customer = int(e["customer"])
if i == customer:
cls.set_providers(j)
cls.providers[i] = cls.providers[i].union(cls.providers[j])
cls.providers[i].add(j)
elif j != customer:
raise ValueError(
"Inconsistent data in the graph\
edge attributes"
)
def test_wrong_input(self):
G = random_internet_as_graph(0)
assert len(G.nodes()) == 0
G = random_internet_as_graph(-1)
assert len(G.nodes()) == 0
G = random_internet_as_graph(1)
assert len(G.nodes()) == 1
def test_node_numbers(self):
assert len(self.G.nodes()) == self.n
assert len(self.T) < 7
assert len(self.M) == int(round(self.n * 0.15))
assert len(self.CP) == int(round(self.n * 0.05))
numb = self.n - len(self.T) - len(self.M) - len(self.CP)
assert len(self.C) == numb
def test_connectivity(self):
assert is_connected(self.G)
def test_relationships(self):
# T nodes are not customers of anyone
for i in self.T:
assert len(self.providers[i]) == 0
# C nodes are not providers of anyone
for i in self.C:
assert len(self.customers[i]) == 0
# CP nodes are not providers of anyone
for i in self.CP:
assert len(self.customers[i]) == 0
# test whether there is a customer-provider loop
for i in self.G.nodes():
assert len(self.customers[i].intersection(self.providers[i])) == 0
# test whether there is a peering with a customer or provider
for i, j in self.G.edges():
if self.G.edges[(i, j)]["type"] == "peer":
assert j not in self.customers[i]
assert i not in self.customers[j]
assert j not in self.providers[i]
assert i not in self.providers[j]
def test_degree_values(self):
d_m = 0 # multihoming degree for M nodes
d_cp = 0 # multihoming degree for CP nodes
d_c = 0 # multihoming degree for C nodes
p_m_m = 0 # avg number of peering edges between M and M
p_cp_m = 0 # avg number of peering edges between CP and M
p_cp_cp = 0 # avg number of peering edges between CP and CP
t_m = 0 # probability M's provider is T
t_cp = 0 # probability CP's provider is T
t_c = 0 # probability C's provider is T
for i, j in self.G.edges():
e = self.G.edges[(i, j)]
if e["type"] == "transit":
cust = int(e["customer"])
if i == cust:
prov = j
elif j == cust:
prov = i
else:
raise ValueError(
"Inconsistent data in the graph edge\
attributes"
)
if cust in self.M:
d_m += 1
if self.G.nodes[prov]["type"] == "T":
t_m += 1
elif cust in self.C:
d_c += 1
if self.G.nodes[prov]["type"] == "T":
t_c += 1
elif cust in self.CP:
d_cp += 1
if self.G.nodes[prov]["type"] == "T":
t_cp += 1
else:
raise ValueError(
"Inconsistent data in the graph edge\
attributes"
)
elif e["type"] == "peer":
if self.G.nodes[i]["type"] == "M" and self.G.nodes[j]["type"] == "M":
p_m_m += 1
if self.G.nodes[i]["type"] == "CP" and self.G.nodes[j]["type"] == "CP":
p_cp_cp += 1
if (
self.G.nodes[i]["type"] == "M"
and self.G.nodes[j]["type"] == "CP"
or self.G.nodes[i]["type"] == "CP"
and self.G.nodes[j]["type"] == "M"
):
p_cp_m += 1
else:
raise ValueError(
"Unexpected data in the graph edge\
attributes"
)
assert almost_equal(d_m / len(self.M), 2 + (2.5 * self.n) / 10000, places=0)
assert almost_equal(d_cp / len(self.CP), 2 + (1.5 * self.n) / 10000, places=0)
assert almost_equal(d_c / len(self.C), 1 + (5 * self.n) / 100000, places=0)
assert almost_equal(p_m_m / len(self.M), 1 + (2 * self.n) / 10000, places=0)
assert almost_equal(p_cp_m / len(self.CP), 0.2 + (2 * self.n) / 10000, places=0)
assert almost_equal(
p_cp_cp / len(self.CP), 0.05 + (2 * self.n) / 100000, places=0
)
assert almost_equal(t_m / d_m, 0.375, places=1)
assert almost_equal(t_cp / d_cp, 0.375, places=1)
assert almost_equal(t_c / d_c, 0.125, places=1)

View file

@ -0,0 +1,27 @@
import pytest
import networkx as nx
class TestIntersectionGraph:
def test_random_intersection_graph(self):
G = nx.uniform_random_intersection_graph(10, 5, 0.5)
assert len(G) == 10
def test_k_random_intersection_graph(self):
G = nx.k_random_intersection_graph(10, 5, 2)
assert len(G) == 10
def test_k_random_intersection_graph_seeded(self):
G = nx.k_random_intersection_graph(10, 5, 2, seed=1234)
assert len(G) == 10
def test_general_random_intersection_graph(self):
G = nx.general_random_intersection_graph(10, 5, [0.1, 0.2, 0.2, 0.1, 0.1])
assert len(G) == 10
pytest.raises(
ValueError,
nx.general_random_intersection_graph,
10,
5,
[0.1, 0.2, 0.2, 0.1],
)

View file

@ -0,0 +1,144 @@
"""Unit tests for the :mod:`networkx.generators.interval_graph` module.
"""
import math
import pytest
import networkx as nx
from networkx.generators.interval_graph import interval_graph
from networkx.testing import assert_edges_equal
class TestIntervalGraph:
"""Unit tests for :func:`networkx.generators.interval_graph.interval_graph`"""
def test_empty(self):
""" Tests for trivial case of empty input"""
assert len(interval_graph([])) == 0
def test_interval_graph_check_invalid(self):
""" Tests for conditions that raise Exceptions """
invalids_having_none = [None, (1, 2)]
with pytest.raises(TypeError):
interval_graph(invalids_having_none)
invalids_having_set = [{1, 2}]
with pytest.raises(TypeError):
interval_graph(invalids_having_set)
invalids_having_seq_but_not_length2 = [(1, 2, 3)]
with pytest.raises(TypeError):
interval_graph(invalids_having_seq_but_not_length2)
invalids_interval = [[3, 2]]
with pytest.raises(ValueError):
interval_graph(invalids_interval)
def test_interval_graph_0(self):
intervals = [(1, 2), (1, 3)]
expected_graph = nx.Graph()
expected_graph.add_edge(*intervals)
actual_g = interval_graph(intervals)
assert set(actual_g.nodes) == set(expected_graph.nodes)
assert_edges_equal(expected_graph, actual_g)
def test_interval_graph_1(self):
intervals = [(1, 2), (2, 3), (3, 4), (1, 4)]
expected_graph = nx.Graph()
expected_graph.add_nodes_from(intervals)
e1 = ((1, 4), (1, 2))
e2 = ((1, 4), (2, 3))
e3 = ((1, 4), (3, 4))
e4 = ((3, 4), (2, 3))
e5 = ((1, 2), (2, 3))
expected_graph.add_edges_from([e1, e2, e3, e4, e5])
actual_g = interval_graph(intervals)
assert set(actual_g.nodes) == set(expected_graph.nodes)
assert_edges_equal(expected_graph, actual_g)
def test_interval_graph_2(self):
intervals = [(1, 2), [3, 5], [6, 8], (9, 10)]
expected_graph = nx.Graph()
expected_graph.add_nodes_from([(1, 2), (3, 5), (6, 8), (9, 10)])
actual_g = interval_graph(intervals)
assert set(actual_g.nodes) == set(expected_graph.nodes)
assert_edges_equal(expected_graph, actual_g)
def test_interval_graph_3(self):
intervals = [(1, 4), [3, 5], [2.5, 4]]
expected_graph = nx.Graph()
expected_graph.add_nodes_from([(1, 4), (3, 5), (2.5, 4)])
e1 = ((1, 4), (3, 5))
e2 = ((1, 4), (2.5, 4))
e3 = ((3, 5), (2.5, 4))
expected_graph.add_edges_from([e1, e2, e3])
actual_g = interval_graph(intervals)
assert set(actual_g.nodes) == set(expected_graph.nodes)
assert_edges_equal(expected_graph, actual_g)
def test_interval_graph_4(self):
""" test all possible overlaps """
intervals = [
(0, 2),
(-2, -1),
(-2, 0),
(-2, 1),
(-2, 2),
(-2, 3),
(0, 1),
(0, 2),
(0, 3),
(1, 2),
(1, 3),
(2, 3),
(3, 4),
]
expected_graph = nx.Graph()
expected_graph.add_nodes_from(intervals)
expected_nbrs = {
(-2, 0),
(-2, 1),
(-2, 2),
(-2, 3),
(0, 1),
(0, 2),
(0, 3),
(1, 2),
(1, 3),
(2, 3),
}
actual_g = nx.interval_graph(intervals)
actual_nbrs = nx.neighbors(actual_g, (0, 2))
assert set(actual_nbrs) == expected_nbrs
def test_interval_graph_5(self):
""" this test is to see that an interval supports infinite number"""
intervals = {(-math.inf, 0), (-1, -1), (0.5, 0.5), (1, 1), (1, math.inf)}
expected_graph = nx.Graph()
expected_graph.add_nodes_from(intervals)
e1 = ((-math.inf, 0), (-1, -1))
e2 = ((1, 1), (1, math.inf))
expected_graph.add_edges_from([e1, e2])
actual_g = interval_graph(intervals)
assert set(actual_g.nodes) == set(expected_graph.nodes)
assert_edges_equal(expected_graph, actual_g)

Some files were not shown because too many files have changed in this diff Show more