Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
		
							parent
							
								
									00ad49a143
								
							
						
					
					
						commit
						45fb349a7d
					
				
					 5098 changed files with 952558 additions and 85 deletions
				
			
		
							
								
								
									
										973
									
								
								venv/Lib/site-packages/networkx/algorithms/threshold.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										973
									
								
								venv/Lib/site-packages/networkx/algorithms/threshold.py
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,973 @@ | |||
| """ | ||||
| Threshold Graphs - Creation, manipulation and identification. | ||||
| """ | ||||
| from math import sqrt | ||||
| import networkx as nx | ||||
| from networkx.utils import py_random_state | ||||
| 
 | ||||
| __all__ = ["is_threshold_graph", "find_threshold_graph"] | ||||
| 
 | ||||
| 
 | ||||
| def is_threshold_graph(G): | ||||
|     """ | ||||
|     Returns `True` if `G` is a threshold graph. | ||||
| 
 | ||||
|     Parameters | ||||
|     ---------- | ||||
|     G : NetworkX graph instance | ||||
|         An instance of `Graph`, `DiGraph`, `MultiGraph` or `MultiDiGraph` | ||||
| 
 | ||||
|     Returns | ||||
|     ------- | ||||
|     bool | ||||
|         `True` if `G` is a threshold graph, `False` otherwise. | ||||
| 
 | ||||
|     Examples | ||||
|     -------- | ||||
|     >>> from networkx.algorithms.threshold import is_threshold_graph | ||||
|     >>> G = nx.path_graph(3) | ||||
|     >>> is_threshold_graph(G) | ||||
|     True | ||||
|     >>> G = nx.barbell_graph(3, 3) | ||||
|     >>> is_threshold_graph(G) | ||||
|     False | ||||
| 
 | ||||
|     References | ||||
|     ---------- | ||||
|     .. [1] Threshold graphs: https://en.wikipedia.org/wiki/Threshold_graph | ||||
|     """ | ||||
|     return is_threshold_sequence(list(d for n, d in G.degree())) | ||||
| 
 | ||||
| 
 | ||||
| def is_threshold_sequence(degree_sequence): | ||||
|     """ | ||||
|     Returns True if the sequence is a threshold degree seqeunce. | ||||
| 
 | ||||
|     Uses the property that a threshold graph must be constructed by | ||||
|     adding either dominating or isolated nodes. Thus, it can be | ||||
|     deconstructed iteratively by removing a node of degree zero or a | ||||
|     node that connects to the remaining nodes.  If this deconstruction | ||||
|     failes then the sequence is not a threshold sequence. | ||||
|     """ | ||||
|     ds = degree_sequence[:]  # get a copy so we don't destroy original | ||||
|     ds.sort() | ||||
|     while ds: | ||||
|         if ds[0] == 0:  # if isolated node | ||||
|             ds.pop(0)  # remove it | ||||
|             continue | ||||
|         if ds[-1] != len(ds) - 1:  # is the largest degree node dominating? | ||||
|             return False  # no, not a threshold degree sequence | ||||
|         ds.pop()  # yes, largest is the dominating node | ||||
|         ds = [d - 1 for d in ds]  # remove it and decrement all degrees | ||||
|     return True | ||||
| 
 | ||||
| 
 | ||||
| def creation_sequence(degree_sequence, with_labels=False, compact=False): | ||||
|     """ | ||||
|     Determines the creation sequence for the given threshold degree sequence. | ||||
| 
 | ||||
|     The creation sequence is a list of single characters 'd' | ||||
|     or 'i': 'd' for dominating or 'i' for isolated vertices. | ||||
|     Dominating vertices are connected to all vertices present when it | ||||
|     is added.  The first node added is by convention 'd'. | ||||
|     This list can be converted to a string if desired using "".join(cs) | ||||
| 
 | ||||
|     If with_labels==True: | ||||
|     Returns a list of 2-tuples containing the vertex number | ||||
|     and a character 'd' or 'i' which describes the type of vertex. | ||||
| 
 | ||||
|     If compact==True: | ||||
|     Returns the creation sequence in a compact form that is the number | ||||
|     of 'i's and 'd's alternating. | ||||
|     Examples: | ||||
|     [1,2,2,3] represents d,i,i,d,d,i,i,i | ||||
|     [3,1,2] represents d,d,d,i,d,d | ||||
| 
 | ||||
|     Notice that the first number is the first vertex to be used for | ||||
|     construction and so is always 'd'. | ||||
| 
 | ||||
|     with_labels and compact cannot both be True. | ||||
| 
 | ||||
|     Returns None if the sequence is not a threshold sequence | ||||
|     """ | ||||
|     if with_labels and compact: | ||||
|         raise ValueError("compact sequences cannot be labeled") | ||||
| 
 | ||||
|     # make an indexed copy | ||||
|     if isinstance(degree_sequence, dict):  # labeled degree seqeunce | ||||
|         ds = [[degree, label] for (label, degree) in degree_sequence.items()] | ||||
|     else: | ||||
|         ds = [[d, i] for i, d in enumerate(degree_sequence)] | ||||
|     ds.sort() | ||||
|     cs = []  # creation sequence | ||||
|     while ds: | ||||
|         if ds[0][0] == 0:  # isolated node | ||||
|             (d, v) = ds.pop(0) | ||||
|             if len(ds) > 0:  # make sure we start with a d | ||||
|                 cs.insert(0, (v, "i")) | ||||
|             else: | ||||
|                 cs.insert(0, (v, "d")) | ||||
|             continue | ||||
|         if ds[-1][0] != len(ds) - 1:  # Not dominating node | ||||
|             return None  # not a threshold degree sequence | ||||
|         (d, v) = ds.pop() | ||||
|         cs.insert(0, (v, "d")) | ||||
|         ds = [[d[0] - 1, d[1]] for d in ds]  # decrement due to removing node | ||||
| 
 | ||||
|     if with_labels: | ||||
|         return cs | ||||
|     if compact: | ||||
|         return make_compact(cs) | ||||
|     return [v[1] for v in cs]  # not labeled | ||||
| 
 | ||||
| 
 | ||||
| def make_compact(creation_sequence): | ||||
|     """ | ||||
|     Returns the creation sequence in a compact form | ||||
|     that is the number of 'i's and 'd's alternating. | ||||
| 
 | ||||
|     Examples | ||||
|     -------- | ||||
|     >>> from networkx.algorithms.threshold import make_compact | ||||
|     >>> make_compact(["d", "i", "i", "d", "d", "i", "i", "i"]) | ||||
|     [1, 2, 2, 3] | ||||
|     >>> make_compact(["d", "d", "d", "i", "d", "d"]) | ||||
|     [3, 1, 2] | ||||
| 
 | ||||
|     Notice that the first number is the first vertex | ||||
|     to be used for construction and so is always 'd'. | ||||
| 
 | ||||
|     Labeled creation sequences lose their labels in the | ||||
|     compact representation. | ||||
| 
 | ||||
|     >>> make_compact([3, 1, 2]) | ||||
|     [3, 1, 2] | ||||
|     """ | ||||
|     first = creation_sequence[0] | ||||
|     if isinstance(first, str):  # creation sequence | ||||
|         cs = creation_sequence[:] | ||||
|     elif isinstance(first, tuple):  # labeled creation sequence | ||||
|         cs = [s[1] for s in creation_sequence] | ||||
|     elif isinstance(first, int):  # compact creation sequence | ||||
|         return creation_sequence | ||||
|     else: | ||||
|         raise TypeError("Not a valid creation sequence type") | ||||
| 
 | ||||
|     ccs = [] | ||||
|     count = 1  # count the run lengths of d's or i's. | ||||
|     for i in range(1, len(cs)): | ||||
|         if cs[i] == cs[i - 1]: | ||||
|             count += 1 | ||||
|         else: | ||||
|             ccs.append(count) | ||||
|             count = 1 | ||||
|     ccs.append(count)  # don't forget the last one | ||||
|     return ccs | ||||
| 
 | ||||
| 
 | ||||
| def uncompact(creation_sequence): | ||||
|     """ | ||||
|     Converts a compact creation sequence for a threshold | ||||
|     graph to a standard creation sequence (unlabeled). | ||||
|     If the creation_sequence is already standard, return it. | ||||
|     See creation_sequence. | ||||
|     """ | ||||
|     first = creation_sequence[0] | ||||
|     if isinstance(first, str):  # creation sequence | ||||
|         return creation_sequence | ||||
|     elif isinstance(first, tuple):  # labeled creation sequence | ||||
|         return creation_sequence | ||||
|     elif isinstance(first, int):  # compact creation sequence | ||||
|         ccscopy = creation_sequence[:] | ||||
|     else: | ||||
|         raise TypeError("Not a valid creation sequence type") | ||||
|     cs = [] | ||||
|     while ccscopy: | ||||
|         cs.extend(ccscopy.pop(0) * ["d"]) | ||||
|         if ccscopy: | ||||
|             cs.extend(ccscopy.pop(0) * ["i"]) | ||||
|     return cs | ||||
| 
 | ||||
| 
 | ||||
| def creation_sequence_to_weights(creation_sequence): | ||||
|     """ | ||||
|     Returns a list of node weights which create the threshold | ||||
|     graph designated by the creation sequence.  The weights | ||||
|     are scaled so that the threshold is 1.0.  The order of the | ||||
|     nodes is the same as that in the creation sequence. | ||||
|     """ | ||||
|     # Turn input sequence into a labeled creation sequence | ||||
|     first = creation_sequence[0] | ||||
|     if isinstance(first, str):  # creation sequence | ||||
|         if isinstance(creation_sequence, list): | ||||
|             wseq = creation_sequence[:] | ||||
|         else: | ||||
|             wseq = list(creation_sequence)  # string like 'ddidid' | ||||
|     elif isinstance(first, tuple):  # labeled creation sequence | ||||
|         wseq = [v[1] for v in creation_sequence] | ||||
|     elif isinstance(first, int):  # compact creation sequence | ||||
|         wseq = uncompact(creation_sequence) | ||||
|     else: | ||||
|         raise TypeError("Not a valid creation sequence type") | ||||
|     # pass through twice--first backwards | ||||
|     wseq.reverse() | ||||
|     w = 0 | ||||
|     prev = "i" | ||||
|     for j, s in enumerate(wseq): | ||||
|         if s == "i": | ||||
|             wseq[j] = w | ||||
|             prev = s | ||||
|         elif prev == "i": | ||||
|             prev = s | ||||
|             w += 1 | ||||
|     wseq.reverse()  # now pass through forwards | ||||
|     for j, s in enumerate(wseq): | ||||
|         if s == "d": | ||||
|             wseq[j] = w | ||||
|             prev = s | ||||
|         elif prev == "d": | ||||
|             prev = s | ||||
|             w += 1 | ||||
|     # Now scale weights | ||||
|     if prev == "d": | ||||
|         w += 1 | ||||
|     wscale = 1.0 / float(w) | ||||
|     return [ww * wscale for ww in wseq] | ||||
|     # return wseq | ||||
| 
 | ||||
| 
 | ||||
| def weights_to_creation_sequence( | ||||
|     weights, threshold=1, with_labels=False, compact=False | ||||
| ): | ||||
|     """ | ||||
|     Returns a creation sequence for a threshold graph | ||||
|     determined by the weights and threshold given as input. | ||||
|     If the sum of two node weights is greater than the | ||||
|     threshold value, an edge is created between these nodes. | ||||
| 
 | ||||
|     The creation sequence is a list of single characters 'd' | ||||
|     or 'i': 'd' for dominating or 'i' for isolated vertices. | ||||
|     Dominating vertices are connected to all vertices present | ||||
|     when it is added.  The first node added is by convention 'd'. | ||||
| 
 | ||||
|     If with_labels==True: | ||||
|     Returns a list of 2-tuples containing the vertex number | ||||
|     and a character 'd' or 'i' which describes the type of vertex. | ||||
| 
 | ||||
|     If compact==True: | ||||
|     Returns the creation sequence in a compact form that is the number | ||||
|     of 'i's and 'd's alternating. | ||||
|     Examples: | ||||
|     [1,2,2,3] represents d,i,i,d,d,i,i,i | ||||
|     [3,1,2] represents d,d,d,i,d,d | ||||
| 
 | ||||
|     Notice that the first number is the first vertex to be used for | ||||
|     construction and so is always 'd'. | ||||
| 
 | ||||
|     with_labels and compact cannot both be True. | ||||
|     """ | ||||
|     if with_labels and compact: | ||||
|         raise ValueError("compact sequences cannot be labeled") | ||||
| 
 | ||||
|     # make an indexed copy | ||||
|     if isinstance(weights, dict):  # labeled weights | ||||
|         wseq = [[w, label] for (label, w) in weights.items()] | ||||
|     else: | ||||
|         wseq = [[w, i] for i, w in enumerate(weights)] | ||||
|     wseq.sort() | ||||
|     cs = []  # creation sequence | ||||
|     cutoff = threshold - wseq[-1][0] | ||||
|     while wseq: | ||||
|         if wseq[0][0] < cutoff:  # isolated node | ||||
|             (w, label) = wseq.pop(0) | ||||
|             cs.append((label, "i")) | ||||
|         else: | ||||
|             (w, label) = wseq.pop() | ||||
|             cs.append((label, "d")) | ||||
|             cutoff = threshold - wseq[-1][0] | ||||
|         if len(wseq) == 1:  # make sure we start with a d | ||||
|             (w, label) = wseq.pop() | ||||
|             cs.append((label, "d")) | ||||
|     # put in correct order | ||||
|     cs.reverse() | ||||
| 
 | ||||
|     if with_labels: | ||||
|         return cs | ||||
|     if compact: | ||||
|         return make_compact(cs) | ||||
|     return [v[1] for v in cs]  # not labeled | ||||
| 
 | ||||
| 
 | ||||
| # Manipulating NetworkX.Graphs in context of threshold graphs | ||||
| def threshold_graph(creation_sequence, create_using=None): | ||||
|     """ | ||||
|     Create a threshold graph from the creation sequence or compact | ||||
|     creation_sequence. | ||||
| 
 | ||||
|     The input sequence can be a | ||||
| 
 | ||||
|     creation sequence (e.g. ['d','i','d','d','d','i']) | ||||
|     labeled creation sequence (e.g. [(0,'d'),(2,'d'),(1,'i')]) | ||||
|     compact creation sequence (e.g. [2,1,1,2,0]) | ||||
| 
 | ||||
|     Use cs=creation_sequence(degree_sequence,labeled=True) | ||||
|     to convert a degree sequence to a creation sequence. | ||||
| 
 | ||||
|     Returns None if the sequence is not valid | ||||
|     """ | ||||
|     # Turn input sequence into a labeled creation sequence | ||||
|     first = creation_sequence[0] | ||||
|     if isinstance(first, str):  # creation sequence | ||||
|         ci = list(enumerate(creation_sequence)) | ||||
|     elif isinstance(first, tuple):  # labeled creation sequence | ||||
|         ci = creation_sequence[:] | ||||
|     elif isinstance(first, int):  # compact creation sequence | ||||
|         cs = uncompact(creation_sequence) | ||||
|         ci = list(enumerate(cs)) | ||||
|     else: | ||||
|         print("not a valid creation sequence type") | ||||
|         return None | ||||
| 
 | ||||
|     G = nx.empty_graph(0, create_using) | ||||
|     if G.is_directed(): | ||||
|         raise nx.NetworkXError("Directed Graph not supported") | ||||
| 
 | ||||
|     G.name = "Threshold Graph" | ||||
| 
 | ||||
|     # add nodes and edges | ||||
|     # if type is 'i' just add nodea | ||||
|     # if type is a d connect to everything previous | ||||
|     while ci: | ||||
|         (v, node_type) = ci.pop(0) | ||||
|         if node_type == "d":  # dominating type, connect to all existing nodes | ||||
|             # We use `for u in list(G):` instead of | ||||
|             # `for u in G:` because we edit the graph `G` in | ||||
|             # the loop. Hence using an iterator will result in | ||||
|             # `RuntimeError: dictionary changed size during iteration` | ||||
|             for u in list(G): | ||||
|                 G.add_edge(v, u) | ||||
|         G.add_node(v) | ||||
|     return G | ||||
| 
 | ||||
| 
 | ||||
| def find_alternating_4_cycle(G): | ||||
|     """ | ||||
|     Returns False if there aren't any alternating 4 cycles. | ||||
|     Otherwise returns the cycle as [a,b,c,d] where (a,b) | ||||
|     and (c,d) are edges and (a,c) and (b,d) are not. | ||||
|     """ | ||||
|     for (u, v) in G.edges(): | ||||
|         for w in G.nodes(): | ||||
|             if not G.has_edge(u, w) and u != w: | ||||
|                 for x in G.neighbors(w): | ||||
|                     if not G.has_edge(v, x) and v != x: | ||||
|                         return [u, v, w, x] | ||||
|     return False | ||||
| 
 | ||||
| 
 | ||||
| def find_threshold_graph(G, create_using=None): | ||||
|     """ | ||||
|     Returns a threshold subgraph that is close to largest in `G`. | ||||
| 
 | ||||
|     The threshold graph will contain the largest degree node in G. | ||||
| 
 | ||||
|     Parameters | ||||
|     ---------- | ||||
|     G : NetworkX graph instance | ||||
|         An instance of `Graph`, or `MultiDiGraph` | ||||
|     create_using : NetworkX graph class or `None` (default), optional | ||||
|         Type of graph to use when constructing the threshold graph. | ||||
|         If `None`, infer the appropriate graph type from the input. | ||||
| 
 | ||||
|     Returns | ||||
|     ------- | ||||
|     graph : | ||||
|         A graph instance representing the threshold graph | ||||
| 
 | ||||
|     Examples | ||||
|     -------- | ||||
|     >>> from networkx.algorithms.threshold import find_threshold_graph | ||||
|     >>> G = nx.barbell_graph(3, 3) | ||||
|     >>> T = find_threshold_graph(G) | ||||
|     >>> T.nodes # may vary | ||||
|     NodeView((7, 8, 5, 6)) | ||||
| 
 | ||||
|     References | ||||
|     ---------- | ||||
|     .. [1] Threshold graphs: https://en.wikipedia.org/wiki/Threshold_graph | ||||
|     """ | ||||
|     return threshold_graph(find_creation_sequence(G), create_using) | ||||
| 
 | ||||
| 
 | ||||
| def find_creation_sequence(G): | ||||
|     """ | ||||
|     Find a threshold subgraph that is close to largest in G. | ||||
|     Returns the labeled creation sequence of that threshold graph. | ||||
|     """ | ||||
|     cs = [] | ||||
|     # get a local pointer to the working part of the graph | ||||
|     H = G | ||||
|     while H.order() > 0: | ||||
|         # get new degree sequence on subgraph | ||||
|         dsdict = dict(H.degree()) | ||||
|         ds = [(d, v) for v, d in dsdict.items()] | ||||
|         ds.sort() | ||||
|         # Update threshold graph nodes | ||||
|         if ds[-1][0] == 0:  # all are isolated | ||||
|             cs.extend(zip(dsdict, ["i"] * (len(ds) - 1) + ["d"])) | ||||
|             break  # Done! | ||||
|         # pull off isolated nodes | ||||
|         while ds[0][0] == 0: | ||||
|             (d, iso) = ds.pop(0) | ||||
|             cs.append((iso, "i")) | ||||
|         # find new biggest node | ||||
|         (d, bigv) = ds.pop() | ||||
|         # add edges of star to t_g | ||||
|         cs.append((bigv, "d")) | ||||
|         # form subgraph of neighbors of big node | ||||
|         H = H.subgraph(H.neighbors(bigv)) | ||||
|     cs.reverse() | ||||
|     return cs | ||||
| 
 | ||||
| 
 | ||||
| # Properties of Threshold Graphs | ||||
| def triangles(creation_sequence): | ||||
|     """ | ||||
|     Compute number of triangles in the threshold graph with the | ||||
|     given creation sequence. | ||||
|     """ | ||||
|     # shortcut algorithm that doesn't require computing number | ||||
|     # of triangles at each node. | ||||
|     cs = creation_sequence  # alias | ||||
|     dr = cs.count("d")  # number of d's in sequence | ||||
|     ntri = dr * (dr - 1) * (dr - 2) / 6  # number of triangles in clique of nd d's | ||||
|     # now add dr choose 2 triangles for every 'i' in sequence where | ||||
|     # dr is the number of d's to the right of the current i | ||||
|     for i, typ in enumerate(cs): | ||||
|         if typ == "i": | ||||
|             ntri += dr * (dr - 1) / 2 | ||||
|         else: | ||||
|             dr -= 1 | ||||
|     return ntri | ||||
| 
 | ||||
| 
 | ||||
| def triangle_sequence(creation_sequence): | ||||
|     """ | ||||
|     Return triangle sequence for the given threshold graph creation sequence. | ||||
| 
 | ||||
|     """ | ||||
|     cs = creation_sequence | ||||
|     seq = [] | ||||
|     dr = cs.count("d")  # number of d's to the right of the current pos | ||||
|     dcur = (dr - 1) * (dr - 2) // 2  # number of triangles through a node of clique dr | ||||
|     irun = 0  # number of i's in the last run | ||||
|     drun = 0  # number of d's in the last run | ||||
|     for i, sym in enumerate(cs): | ||||
|         if sym == "d": | ||||
|             drun += 1 | ||||
|             tri = dcur + (dr - 1) * irun  # new triangles at this d | ||||
|         else:  # cs[i]="i": | ||||
|             if prevsym == "d":  # new string of i's | ||||
|                 dcur += (dr - 1) * irun  # accumulate shared shortest paths | ||||
|                 irun = 0  # reset i run counter | ||||
|                 dr -= drun  # reduce number of d's to right | ||||
|                 drun = 0  # reset d run counter | ||||
|             irun += 1 | ||||
|             tri = dr * (dr - 1) // 2  # new triangles at this i | ||||
|         seq.append(tri) | ||||
|         prevsym = sym | ||||
|     return seq | ||||
| 
 | ||||
| 
 | ||||
| def cluster_sequence(creation_sequence): | ||||
|     """ | ||||
|     Return cluster sequence for the given threshold graph creation sequence. | ||||
|     """ | ||||
|     triseq = triangle_sequence(creation_sequence) | ||||
|     degseq = degree_sequence(creation_sequence) | ||||
|     cseq = [] | ||||
|     for i, deg in enumerate(degseq): | ||||
|         tri = triseq[i] | ||||
|         if deg <= 1:  # isolated vertex or single pair gets cc 0 | ||||
|             cseq.append(0) | ||||
|             continue | ||||
|         max_size = (deg * (deg - 1)) // 2 | ||||
|         cseq.append(float(tri) / float(max_size)) | ||||
|     return cseq | ||||
| 
 | ||||
| 
 | ||||
| def degree_sequence(creation_sequence): | ||||
|     """ | ||||
|     Return degree sequence for the threshold graph with the given | ||||
|     creation sequence | ||||
|     """ | ||||
|     cs = creation_sequence  # alias | ||||
|     seq = [] | ||||
|     rd = cs.count("d")  # number of d to the right | ||||
|     for i, sym in enumerate(cs): | ||||
|         if sym == "d": | ||||
|             rd -= 1 | ||||
|             seq.append(rd + i) | ||||
|         else: | ||||
|             seq.append(rd) | ||||
|     return seq | ||||
| 
 | ||||
| 
 | ||||
| def density(creation_sequence): | ||||
|     """ | ||||
|     Return the density of the graph with this creation_sequence. | ||||
|     The density is the fraction of possible edges present. | ||||
|     """ | ||||
|     N = len(creation_sequence) | ||||
|     two_size = sum(degree_sequence(creation_sequence)) | ||||
|     two_possible = N * (N - 1) | ||||
|     den = two_size / float(two_possible) | ||||
|     return den | ||||
| 
 | ||||
| 
 | ||||
| def degree_correlation(creation_sequence): | ||||
|     """ | ||||
|     Return the degree-degree correlation over all edges. | ||||
|     """ | ||||
|     cs = creation_sequence | ||||
|     s1 = 0  # deg_i*deg_j | ||||
|     s2 = 0  # deg_i^2+deg_j^2 | ||||
|     s3 = 0  # deg_i+deg_j | ||||
|     m = 0  # number of edges | ||||
|     rd = cs.count("d")  # number of d nodes to the right | ||||
|     rdi = [i for i, sym in enumerate(cs) if sym == "d"]  # index of "d"s | ||||
|     ds = degree_sequence(cs) | ||||
|     for i, sym in enumerate(cs): | ||||
|         if sym == "d": | ||||
|             if i != rdi[0]: | ||||
|                 print("Logic error in degree_correlation", i, rdi) | ||||
|                 raise ValueError | ||||
|             rdi.pop(0) | ||||
|         degi = ds[i] | ||||
|         for dj in rdi: | ||||
|             degj = ds[dj] | ||||
|             s1 += degj * degi | ||||
|             s2 += degi ** 2 + degj ** 2 | ||||
|             s3 += degi + degj | ||||
|             m += 1 | ||||
|     denom = 2 * m * s2 - s3 * s3 | ||||
|     numer = 4 * m * s1 - s3 * s3 | ||||
|     if denom == 0: | ||||
|         if numer == 0: | ||||
|             return 1 | ||||
|         raise ValueError(f"Zero Denominator but Numerator is {numer}") | ||||
|     return numer / float(denom) | ||||
| 
 | ||||
| 
 | ||||
| def shortest_path(creation_sequence, u, v): | ||||
|     """ | ||||
|     Find the shortest path between u and v in a | ||||
|     threshold graph G with the given creation_sequence. | ||||
| 
 | ||||
|     For an unlabeled creation_sequence, the vertices | ||||
|     u and v must be integers in (0,len(sequence)) referring | ||||
|     to the position of the desired vertices in the sequence. | ||||
| 
 | ||||
|     For a labeled creation_sequence, u and v are labels of veritices. | ||||
| 
 | ||||
|     Use cs=creation_sequence(degree_sequence,with_labels=True) | ||||
|     to convert a degree sequence to a creation sequence. | ||||
| 
 | ||||
|     Returns a list of vertices from u to v. | ||||
|     Example: if they are neighbors, it returns [u,v] | ||||
|     """ | ||||
|     # Turn input sequence into a labeled creation sequence | ||||
|     first = creation_sequence[0] | ||||
|     if isinstance(first, str):  # creation sequence | ||||
|         cs = [(i, creation_sequence[i]) for i in range(len(creation_sequence))] | ||||
|     elif isinstance(first, tuple):  # labeled creation sequence | ||||
|         cs = creation_sequence[:] | ||||
|     elif isinstance(first, int):  # compact creation sequence | ||||
|         ci = uncompact(creation_sequence) | ||||
|         cs = [(i, ci[i]) for i in range(len(ci))] | ||||
|     else: | ||||
|         raise TypeError("Not a valid creation sequence type") | ||||
| 
 | ||||
|     verts = [s[0] for s in cs] | ||||
|     if v not in verts: | ||||
|         raise ValueError(f"Vertex {v} not in graph from creation_sequence") | ||||
|     if u not in verts: | ||||
|         raise ValueError(f"Vertex {u} not in graph from creation_sequence") | ||||
|     # Done checking | ||||
|     if u == v: | ||||
|         return [u] | ||||
| 
 | ||||
|     uindex = verts.index(u) | ||||
|     vindex = verts.index(v) | ||||
|     bigind = max(uindex, vindex) | ||||
|     if cs[bigind][1] == "d": | ||||
|         return [u, v] | ||||
|     # must be that cs[bigind][1]=='i' | ||||
|     cs = cs[bigind:] | ||||
|     while cs: | ||||
|         vert = cs.pop() | ||||
|         if vert[1] == "d": | ||||
|             return [u, vert[0], v] | ||||
|     # All after u are type 'i' so no connection | ||||
|     return -1 | ||||
| 
 | ||||
| 
 | ||||
| def shortest_path_length(creation_sequence, i): | ||||
|     """ | ||||
|     Return the shortest path length from indicated node to | ||||
|     every other node for the threshold graph with the given | ||||
|     creation sequence. | ||||
|     Node is indicated by index i in creation_sequence unless | ||||
|     creation_sequence is labeled in which case, i is taken to | ||||
|     be the label of the node. | ||||
| 
 | ||||
|     Paths lengths in threshold graphs are at most 2. | ||||
|     Length to unreachable nodes is set to -1. | ||||
|     """ | ||||
|     # Turn input sequence into a labeled creation sequence | ||||
|     first = creation_sequence[0] | ||||
|     if isinstance(first, str):  # creation sequence | ||||
|         if isinstance(creation_sequence, list): | ||||
|             cs = creation_sequence[:] | ||||
|         else: | ||||
|             cs = list(creation_sequence) | ||||
|     elif isinstance(first, tuple):  # labeled creation sequence | ||||
|         cs = [v[1] for v in creation_sequence] | ||||
|         i = [v[0] for v in creation_sequence].index(i) | ||||
|     elif isinstance(first, int):  # compact creation sequence | ||||
|         cs = uncompact(creation_sequence) | ||||
|     else: | ||||
|         raise TypeError("Not a valid creation sequence type") | ||||
| 
 | ||||
|     # Compute | ||||
|     N = len(cs) | ||||
|     spl = [2] * N  # length 2 to every node | ||||
|     spl[i] = 0  # except self which is 0 | ||||
|     # 1 for all d's to the right | ||||
|     for j in range(i + 1, N): | ||||
|         if cs[j] == "d": | ||||
|             spl[j] = 1 | ||||
|     if cs[i] == "d":  # 1 for all nodes to the left | ||||
|         for j in range(i): | ||||
|             spl[j] = 1 | ||||
|     # and -1 for any trailing i to indicate unreachable | ||||
|     for j in range(N - 1, 0, -1): | ||||
|         if cs[j] == "d": | ||||
|             break | ||||
|         spl[j] = -1 | ||||
|     return spl | ||||
| 
 | ||||
| 
 | ||||
| def betweenness_sequence(creation_sequence, normalized=True): | ||||
|     """ | ||||
|     Return betweenness for the threshold graph with the given creation | ||||
|     sequence.  The result is unscaled.  To scale the values | ||||
|     to the iterval [0,1] divide by (n-1)*(n-2). | ||||
|     """ | ||||
|     cs = creation_sequence | ||||
|     seq = []  # betweenness | ||||
|     lastchar = "d"  # first node is always a 'd' | ||||
|     dr = float(cs.count("d"))  # number of d's to the right of curren pos | ||||
|     irun = 0  # number of i's in the last run | ||||
|     drun = 0  # number of d's in the last run | ||||
|     dlast = 0.0  # betweenness of last d | ||||
|     for i, c in enumerate(cs): | ||||
|         if c == "d":  # cs[i]=="d": | ||||
|             # betweennees = amt shared with eariler d's and i's | ||||
|             #             + new isolated nodes covered | ||||
|             #             + new paths to all previous nodes | ||||
|             b = dlast + (irun - 1) * irun / dr + 2 * irun * (i - drun - irun) / dr | ||||
|             drun += 1  # update counter | ||||
|         else:  # cs[i]="i": | ||||
|             if lastchar == "d":  # if this is a new run of i's | ||||
|                 dlast = b  # accumulate betweenness | ||||
|                 dr -= drun  # update number of d's to the right | ||||
|                 drun = 0  # reset d counter | ||||
|                 irun = 0  # reset i counter | ||||
|             b = 0  # isolated nodes have zero betweenness | ||||
|             irun += 1  # add another i to the run | ||||
|         seq.append(float(b)) | ||||
|         lastchar = c | ||||
| 
 | ||||
|     # normalize by the number of possible shortest paths | ||||
|     if normalized: | ||||
|         order = len(cs) | ||||
|         scale = 1.0 / ((order - 1) * (order - 2)) | ||||
|         seq = [s * scale for s in seq] | ||||
| 
 | ||||
|     return seq | ||||
| 
 | ||||
| 
 | ||||
| def eigenvectors(creation_sequence): | ||||
|     """ | ||||
|     Return a 2-tuple of Laplacian eigenvalues and eigenvectors | ||||
|     for the threshold network with creation_sequence. | ||||
|     The first value is a list of eigenvalues. | ||||
|     The second value is a list of eigenvectors. | ||||
|     The lists are in the same order so corresponding eigenvectors | ||||
|     and eigenvalues are in the same position in the two lists. | ||||
| 
 | ||||
|     Notice that the order of the eigenvalues returned by eigenvalues(cs) | ||||
|     may not correspond to the order of these eigenvectors. | ||||
|     """ | ||||
|     ccs = make_compact(creation_sequence) | ||||
|     N = sum(ccs) | ||||
|     vec = [0] * N | ||||
|     val = vec[:] | ||||
|     # get number of type d nodes to the right (all for first node) | ||||
|     dr = sum(ccs[::2]) | ||||
| 
 | ||||
|     nn = ccs[0] | ||||
|     vec[0] = [1.0 / sqrt(N)] * N | ||||
|     val[0] = 0 | ||||
|     e = dr | ||||
|     dr -= nn | ||||
|     type_d = True | ||||
|     i = 1 | ||||
|     dd = 1 | ||||
|     while dd < nn: | ||||
|         scale = 1.0 / sqrt(dd * dd + i) | ||||
|         vec[i] = i * [-scale] + [dd * scale] + [0] * (N - i - 1) | ||||
|         val[i] = e | ||||
|         i += 1 | ||||
|         dd += 1 | ||||
|     if len(ccs) == 1: | ||||
|         return (val, vec) | ||||
|     for nn in ccs[1:]: | ||||
|         scale = 1.0 / sqrt(nn * i * (i + nn)) | ||||
|         vec[i] = i * [-nn * scale] + nn * [i * scale] + [0] * (N - i - nn) | ||||
|         # find eigenvalue | ||||
|         type_d = not type_d | ||||
|         if type_d: | ||||
|             e = i + dr | ||||
|             dr -= nn | ||||
|         else: | ||||
|             e = dr | ||||
|         val[i] = e | ||||
|         st = i | ||||
|         i += 1 | ||||
|         dd = 1 | ||||
|         while dd < nn: | ||||
|             scale = 1.0 / sqrt(i - st + dd * dd) | ||||
|             vec[i] = [0] * st + (i - st) * [-scale] + [dd * scale] + [0] * (N - i - 1) | ||||
|             val[i] = e | ||||
|             i += 1 | ||||
|             dd += 1 | ||||
|     return (val, vec) | ||||
| 
 | ||||
| 
 | ||||
| def spectral_projection(u, eigenpairs): | ||||
|     """ | ||||
|     Returns the coefficients of each eigenvector | ||||
|     in a projection of the vector u onto the normalized | ||||
|     eigenvectors which are contained in eigenpairs. | ||||
| 
 | ||||
|     eigenpairs should be a list of two objects.  The | ||||
|     first is a list of eigenvalues and the second a list | ||||
|     of eigenvectors.  The eigenvectors should be lists. | ||||
| 
 | ||||
|     There's not a lot of error checking on lengths of | ||||
|     arrays, etc. so be careful. | ||||
|     """ | ||||
|     coeff = [] | ||||
|     evect = eigenpairs[1] | ||||
|     for ev in evect: | ||||
|         c = sum([evv * uv for (evv, uv) in zip(ev, u)]) | ||||
|         coeff.append(c) | ||||
|     return coeff | ||||
| 
 | ||||
| 
 | ||||
| def eigenvalues(creation_sequence): | ||||
|     """ | ||||
|     Return sequence of eigenvalues of the Laplacian of the threshold | ||||
|     graph for the given creation_sequence. | ||||
| 
 | ||||
|     Based on the Ferrer's diagram method.  The spectrum is integral | ||||
|     and is the conjugate of the degree sequence. | ||||
| 
 | ||||
|     See:: | ||||
| 
 | ||||
|       @Article{degree-merris-1994, | ||||
|        author = {Russel Merris}, | ||||
|        title = {Degree maximal graphs are Laplacian integral}, | ||||
|        journal = {Linear Algebra Appl.}, | ||||
|        year = {1994}, | ||||
|        volume = {199}, | ||||
|        pages = {381--389}, | ||||
|       } | ||||
| 
 | ||||
|     """ | ||||
|     degseq = degree_sequence(creation_sequence) | ||||
|     degseq.sort() | ||||
|     eiglist = []  # zero is always one eigenvalue | ||||
|     eig = 0 | ||||
|     row = len(degseq) | ||||
|     bigdeg = degseq.pop() | ||||
|     while row: | ||||
|         if bigdeg < row: | ||||
|             eiglist.append(eig) | ||||
|             row -= 1 | ||||
|         else: | ||||
|             eig += 1 | ||||
|             if degseq: | ||||
|                 bigdeg = degseq.pop() | ||||
|             else: | ||||
|                 bigdeg = 0 | ||||
|     return eiglist | ||||
| 
 | ||||
| 
 | ||||
| # Threshold graph creation routines | ||||
| 
 | ||||
| 
 | ||||
| @py_random_state(2) | ||||
| def random_threshold_sequence(n, p, seed=None): | ||||
|     """ | ||||
|     Create a random threshold sequence of size n. | ||||
|     A creation sequence is built by randomly choosing d's with | ||||
|     probabiliy p and i's with probability 1-p. | ||||
| 
 | ||||
|     s=nx.random_threshold_sequence(10,0.5) | ||||
| 
 | ||||
|     returns a threshold sequence of length 10 with equal | ||||
|     probably of an i or a d at each position. | ||||
| 
 | ||||
|     A "random" threshold graph can be built with | ||||
| 
 | ||||
|     G=nx.threshold_graph(s) | ||||
| 
 | ||||
|     seed : integer, random_state, or None (default) | ||||
|         Indicator of random number generation state. | ||||
|         See :ref:`Randomness<randomness>`. | ||||
|     """ | ||||
|     if not (0 <= p <= 1): | ||||
|         raise ValueError("p must be in [0,1]") | ||||
| 
 | ||||
|     cs = ["d"]  # threshold sequences always start with a d | ||||
|     for i in range(1, n): | ||||
|         if seed.random() < p: | ||||
|             cs.append("d") | ||||
|         else: | ||||
|             cs.append("i") | ||||
|     return cs | ||||
| 
 | ||||
| 
 | ||||
| # maybe *_d_threshold_sequence routines should | ||||
| # be (or be called from) a single routine with a more descriptive name | ||||
| # and a keyword parameter? | ||||
| def right_d_threshold_sequence(n, m): | ||||
|     """ | ||||
|     Create a skewed threshold graph with a given number | ||||
|     of vertices (n) and a given number of edges (m). | ||||
| 
 | ||||
|     The routine returns an unlabeled creation sequence | ||||
|     for the threshold graph. | ||||
| 
 | ||||
|     FIXME: describe algorithm | ||||
| 
 | ||||
|     """ | ||||
|     cs = ["d"] + ["i"] * (n - 1)  # create sequence with n insolated nodes | ||||
| 
 | ||||
|     #  m <n : not enough edges, make disconnected | ||||
|     if m < n: | ||||
|         cs[m] = "d" | ||||
|         return cs | ||||
| 
 | ||||
|     # too many edges | ||||
|     if m > n * (n - 1) / 2: | ||||
|         raise ValueError("Too many edges for this many nodes.") | ||||
| 
 | ||||
|     # connected case m >n-1 | ||||
|     ind = n - 1 | ||||
|     sum = n - 1 | ||||
|     while sum < m: | ||||
|         cs[ind] = "d" | ||||
|         ind -= 1 | ||||
|         sum += ind | ||||
|     ind = m - (sum - ind) | ||||
|     cs[ind] = "d" | ||||
|     return cs | ||||
| 
 | ||||
| 
 | ||||
| def left_d_threshold_sequence(n, m): | ||||
|     """ | ||||
|     Create a skewed threshold graph with a given number | ||||
|     of vertices (n) and a given number of edges (m). | ||||
| 
 | ||||
|     The routine returns an unlabeled creation sequence | ||||
|     for the threshold graph. | ||||
| 
 | ||||
|     FIXME: describe algorithm | ||||
| 
 | ||||
|     """ | ||||
|     cs = ["d"] + ["i"] * (n - 1)  # create sequence with n insolated nodes | ||||
| 
 | ||||
|     #  m <n : not enough edges, make disconnected | ||||
|     if m < n: | ||||
|         cs[m] = "d" | ||||
|         return cs | ||||
| 
 | ||||
|     # too many edges | ||||
|     if m > n * (n - 1) / 2: | ||||
|         raise ValueError("Too many edges for this many nodes.") | ||||
| 
 | ||||
|     # Connected case when M>N-1 | ||||
|     cs[n - 1] = "d" | ||||
|     sum = n - 1 | ||||
|     ind = 1 | ||||
|     while sum < m: | ||||
|         cs[ind] = "d" | ||||
|         sum += ind | ||||
|         ind += 1 | ||||
|     if sum > m:  # be sure not to change the first vertex | ||||
|         cs[sum - m] = "i" | ||||
|     return cs | ||||
| 
 | ||||
| 
 | ||||
| @py_random_state(3) | ||||
| def swap_d(cs, p_split=1.0, p_combine=1.0, seed=None): | ||||
|     """ | ||||
|     Perform a "swap" operation on a threshold sequence. | ||||
| 
 | ||||
|     The swap preserves the number of nodes and edges | ||||
|     in the graph for the given sequence. | ||||
|     The resulting sequence is still a threshold sequence. | ||||
| 
 | ||||
|     Perform one split and one combine operation on the | ||||
|     'd's of a creation sequence for a threshold graph. | ||||
|     This operation maintains the number of nodes and edges | ||||
|     in the graph, but shifts the edges from node to node | ||||
|     maintaining the threshold quality of the graph. | ||||
| 
 | ||||
|     seed : integer, random_state, or None (default) | ||||
|         Indicator of random number generation state. | ||||
|         See :ref:`Randomness<randomness>`. | ||||
|     """ | ||||
|     # preprocess the creation sequence | ||||
|     dlist = [i for (i, node_type) in enumerate(cs[1:-1]) if node_type == "d"] | ||||
|     # split | ||||
|     if seed.random() < p_split: | ||||
|         choice = seed.choice(dlist) | ||||
|         split_to = seed.choice(range(choice)) | ||||
|         flip_side = choice - split_to | ||||
|         if split_to != flip_side and cs[split_to] == "i" and cs[flip_side] == "i": | ||||
|             cs[choice] = "i" | ||||
|             cs[split_to] = "d" | ||||
|             cs[flip_side] = "d" | ||||
|             dlist.remove(choice) | ||||
|             # don't add or combine may reverse this action | ||||
|             # dlist.extend([split_to,flip_side]) | ||||
|     #            print >>sys.stderr,"split at %s to %s and %s"%(choice,split_to,flip_side) | ||||
|     # combine | ||||
|     if seed.random() < p_combine and dlist: | ||||
|         first_choice = seed.choice(dlist) | ||||
|         second_choice = seed.choice(dlist) | ||||
|         target = first_choice + second_choice | ||||
|         if target >= len(cs) or cs[target] == "d" or first_choice == second_choice: | ||||
|             return cs | ||||
|         # OK to combine | ||||
|         cs[first_choice] = "i" | ||||
|         cs[second_choice] = "i" | ||||
|         cs[target] = "d" | ||||
|     #        print >>sys.stderr,"combine %s and %s to make %s."%(first_choice,second_choice,target) | ||||
| 
 | ||||
|     return cs | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue