Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
464
venv/Lib/site-packages/networkx/algorithms/planar_drawing.py
Normal file
464
venv/Lib/site-packages/networkx/algorithms/planar_drawing.py
Normal file
|
@ -0,0 +1,464 @@
|
|||
import networkx as nx
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
__all__ = ["combinatorial_embedding_to_pos"]
|
||||
|
||||
|
||||
def combinatorial_embedding_to_pos(embedding, fully_triangulate=False):
|
||||
"""Assigns every node a (x, y) position based on the given embedding
|
||||
|
||||
The algorithm iteratively inserts nodes of the input graph in a certain
|
||||
order and rearranges previously inserted nodes so that the planar drawing
|
||||
stays valid. This is done efficiently by only maintaining relative
|
||||
positions during the node placements and calculating the absolute positions
|
||||
at the end. For more information see [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
embedding : nx.PlanarEmbedding
|
||||
This defines the order of the edges
|
||||
|
||||
fully_triangulate : bool
|
||||
If set to True the algorithm adds edges to a copy of the input
|
||||
embedding and makes it chordal.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pos : dict
|
||||
Maps each node to a tuple that defines the (x, y) position
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] M. Chrobak and T.H. Payne:
|
||||
A Linear-time Algorithm for Drawing a Planar Graph on a Grid 1989
|
||||
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6677
|
||||
|
||||
"""
|
||||
if len(embedding.nodes()) < 4:
|
||||
# Position the node in any triangle
|
||||
default_positions = [(0, 0), (2, 0), (1, 1)]
|
||||
pos = {}
|
||||
for i, v in enumerate(embedding.nodes()):
|
||||
pos[v] = default_positions[i]
|
||||
return pos
|
||||
|
||||
embedding, outer_face = triangulate_embedding(embedding, fully_triangulate)
|
||||
|
||||
# The following dicts map a node to another node
|
||||
# If a node is not in the key set it means that the node is not yet in G_k
|
||||
# If a node maps to None then the corresponding subtree does not exist
|
||||
left_t_child = {}
|
||||
right_t_child = {}
|
||||
|
||||
# The following dicts map a node to an integer
|
||||
delta_x = {}
|
||||
y_coordinate = {}
|
||||
|
||||
node_list = get_canonical_ordering(embedding, outer_face)
|
||||
|
||||
# 1. Phase: Compute relative positions
|
||||
|
||||
# Initialization
|
||||
v1, v2, v3 = node_list[0][0], node_list[1][0], node_list[2][0]
|
||||
|
||||
delta_x[v1] = 0
|
||||
y_coordinate[v1] = 0
|
||||
right_t_child[v1] = v3
|
||||
left_t_child[v1] = None
|
||||
|
||||
delta_x[v2] = 1
|
||||
y_coordinate[v2] = 0
|
||||
right_t_child[v2] = None
|
||||
left_t_child[v2] = None
|
||||
|
||||
delta_x[v3] = 1
|
||||
y_coordinate[v3] = 1
|
||||
right_t_child[v3] = v2
|
||||
left_t_child[v3] = None
|
||||
|
||||
for k in range(3, len(node_list)):
|
||||
vk, contour_neighbors = node_list[k]
|
||||
wp = contour_neighbors[0]
|
||||
wp1 = contour_neighbors[1]
|
||||
wq = contour_neighbors[-1]
|
||||
wq1 = contour_neighbors[-2]
|
||||
adds_mult_tri = len(contour_neighbors) > 2
|
||||
|
||||
# Stretch gaps:
|
||||
delta_x[wp1] += 1
|
||||
delta_x[wq] += 1
|
||||
|
||||
delta_x_wp_wq = sum(delta_x[x] for x in contour_neighbors[1:])
|
||||
|
||||
# Adjust offsets
|
||||
delta_x[vk] = (-y_coordinate[wp] + delta_x_wp_wq + y_coordinate[wq]) // 2
|
||||
y_coordinate[vk] = (y_coordinate[wp] + delta_x_wp_wq + y_coordinate[wq]) // 2
|
||||
delta_x[wq] = delta_x_wp_wq - delta_x[vk]
|
||||
if adds_mult_tri:
|
||||
delta_x[wp1] -= delta_x[vk]
|
||||
|
||||
# Install v_k:
|
||||
right_t_child[wp] = vk
|
||||
right_t_child[vk] = wq
|
||||
if adds_mult_tri:
|
||||
left_t_child[vk] = wp1
|
||||
right_t_child[wq1] = None
|
||||
else:
|
||||
left_t_child[vk] = None
|
||||
|
||||
# 2. Phase: Set absolute positions
|
||||
pos = dict()
|
||||
pos[v1] = (0, y_coordinate[v1])
|
||||
remaining_nodes = [v1]
|
||||
while remaining_nodes:
|
||||
parent_node = remaining_nodes.pop()
|
||||
|
||||
# Calculate position for left child
|
||||
set_position(
|
||||
parent_node, left_t_child, remaining_nodes, delta_x, y_coordinate, pos
|
||||
)
|
||||
# Calculate position for right child
|
||||
set_position(
|
||||
parent_node, right_t_child, remaining_nodes, delta_x, y_coordinate, pos
|
||||
)
|
||||
return pos
|
||||
|
||||
|
||||
def set_position(parent, tree, remaining_nodes, delta_x, y_coordinate, pos):
|
||||
"""Helper method to calculate the absolute position of nodes."""
|
||||
child = tree[parent]
|
||||
parent_node_x = pos[parent][0]
|
||||
if child is not None:
|
||||
# Calculate pos of child
|
||||
child_x = parent_node_x + delta_x[child]
|
||||
pos[child] = (child_x, y_coordinate[child])
|
||||
# Remember to calculate pos of its children
|
||||
remaining_nodes.append(child)
|
||||
|
||||
|
||||
def get_canonical_ordering(embedding, outer_face):
|
||||
"""Returns a canonical ordering of the nodes
|
||||
|
||||
The canonical ordering of nodes (v1, ..., vn) must fulfill the following
|
||||
conditions:
|
||||
(See Lemma 1 in [2]_)
|
||||
|
||||
- For the subgraph G_k of the input graph induced by v1, ..., vk it holds:
|
||||
- 2-connected
|
||||
- internally triangulated
|
||||
- the edge (v1, v2) is part of the outer face
|
||||
- For a node v(k+1) the following holds:
|
||||
- The node v(k+1) is part of the outer face of G_k
|
||||
- It has at least two neighbors in G_k
|
||||
- All neighbors of v(k+1) in G_k lie consecutively on the outer face of
|
||||
G_k (excluding the edge (v1, v2)).
|
||||
|
||||
The algorithm used here starts with G_n (containing all nodes). It first
|
||||
selects the nodes v1 and v2. And then tries to find the order of the other
|
||||
nodes by checking which node can be removed in order to fulfill the
|
||||
conditions mentioned above. This is done by calculating the number of
|
||||
chords of nodes on the outer face. For more information see [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
embedding : nx.PlanarEmbedding
|
||||
The embedding must be triangulated
|
||||
outer_face : list
|
||||
The nodes on the outer face of the graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
ordering : list
|
||||
A list of tuples `(vk, wp_wq)`. Here `vk` is the node at this position
|
||||
in the canonical ordering. The element `wp_wq` is a list of nodes that
|
||||
make up the outer face of G_k.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Steven Chaplick.
|
||||
Canonical Orders of Planar Graphs and (some of) Their Applications 2015
|
||||
https://wuecampus2.uni-wuerzburg.de/moodle/pluginfile.php/545727/mod_resource/content/0/vg-ss15-vl03-canonical-orders-druckversion.pdf
|
||||
.. [2] M. Chrobak and T.H. Payne:
|
||||
A Linear-time Algorithm for Drawing a Planar Graph on a Grid 1989
|
||||
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6677
|
||||
|
||||
"""
|
||||
v1 = outer_face[0]
|
||||
v2 = outer_face[1]
|
||||
chords = defaultdict(int) # Maps nodes to the number of their chords
|
||||
marked_nodes = set()
|
||||
ready_to_pick = set(outer_face)
|
||||
|
||||
# Initialize outer_face_ccw_nbr (do not include v1 -> v2)
|
||||
outer_face_ccw_nbr = {}
|
||||
prev_nbr = v2
|
||||
for idx in range(2, len(outer_face)):
|
||||
outer_face_ccw_nbr[prev_nbr] = outer_face[idx]
|
||||
prev_nbr = outer_face[idx]
|
||||
outer_face_ccw_nbr[prev_nbr] = v1
|
||||
|
||||
# Initialize outer_face_cw_nbr (do not include v2 -> v1)
|
||||
outer_face_cw_nbr = {}
|
||||
prev_nbr = v1
|
||||
for idx in range(len(outer_face) - 1, 0, -1):
|
||||
outer_face_cw_nbr[prev_nbr] = outer_face[idx]
|
||||
prev_nbr = outer_face[idx]
|
||||
|
||||
def is_outer_face_nbr(x, y):
|
||||
if x not in outer_face_ccw_nbr:
|
||||
return outer_face_cw_nbr[x] == y
|
||||
if x not in outer_face_cw_nbr:
|
||||
return outer_face_ccw_nbr[x] == y
|
||||
return outer_face_ccw_nbr[x] == y or outer_face_cw_nbr[x] == y
|
||||
|
||||
def is_on_outer_face(x):
|
||||
return x not in marked_nodes and (x in outer_face_ccw_nbr.keys() or x == v1)
|
||||
|
||||
# Initialize number of chords
|
||||
for v in outer_face:
|
||||
for nbr in embedding.neighbors_cw_order(v):
|
||||
if is_on_outer_face(nbr) and not is_outer_face_nbr(v, nbr):
|
||||
chords[v] += 1
|
||||
ready_to_pick.discard(v)
|
||||
|
||||
# Initialize canonical_ordering
|
||||
canonical_ordering = [None] * len(embedding.nodes()) # type: list
|
||||
canonical_ordering[0] = (v1, [])
|
||||
canonical_ordering[1] = (v2, [])
|
||||
ready_to_pick.discard(v1)
|
||||
ready_to_pick.discard(v2)
|
||||
|
||||
for k in range(len(embedding.nodes()) - 1, 1, -1):
|
||||
# 1. Pick v from ready_to_pick
|
||||
v = ready_to_pick.pop()
|
||||
marked_nodes.add(v)
|
||||
|
||||
# v has exactly two neighbors on the outer face (wp and wq)
|
||||
wp = None
|
||||
wq = None
|
||||
# Iterate over neighbors of v to find wp and wq
|
||||
nbr_iterator = iter(embedding.neighbors_cw_order(v))
|
||||
while True:
|
||||
nbr = next(nbr_iterator)
|
||||
if nbr in marked_nodes:
|
||||
# Only consider nodes that are not yet removed
|
||||
continue
|
||||
if is_on_outer_face(nbr):
|
||||
# nbr is either wp or wq
|
||||
if nbr == v1:
|
||||
wp = v1
|
||||
elif nbr == v2:
|
||||
wq = v2
|
||||
else:
|
||||
if outer_face_cw_nbr[nbr] == v:
|
||||
# nbr is wp
|
||||
wp = nbr
|
||||
else:
|
||||
# nbr is wq
|
||||
wq = nbr
|
||||
if wp is not None and wq is not None:
|
||||
# We don't need to iterate any further
|
||||
break
|
||||
|
||||
# Obtain new nodes on outer face (neighbors of v from wp to wq)
|
||||
wp_wq = [wp]
|
||||
nbr = wp
|
||||
while nbr != wq:
|
||||
# Get next next neighbor (clockwise on the outer face)
|
||||
next_nbr = embedding[v][nbr]["ccw"]
|
||||
wp_wq.append(next_nbr)
|
||||
# Update outer face
|
||||
outer_face_cw_nbr[nbr] = next_nbr
|
||||
outer_face_ccw_nbr[next_nbr] = nbr
|
||||
# Move to next neighbor of v
|
||||
nbr = next_nbr
|
||||
|
||||
if len(wp_wq) == 2:
|
||||
# There was a chord between wp and wq, decrease number of chords
|
||||
chords[wp] -= 1
|
||||
if chords[wp] == 0:
|
||||
ready_to_pick.add(wp)
|
||||
chords[wq] -= 1
|
||||
if chords[wq] == 0:
|
||||
ready_to_pick.add(wq)
|
||||
else:
|
||||
# Update all chords involving w_(p+1) to w_(q-1)
|
||||
new_face_nodes = set(wp_wq[1:-1])
|
||||
for w in new_face_nodes:
|
||||
# If we do not find a chord for w later we can pick it next
|
||||
ready_to_pick.add(w)
|
||||
for nbr in embedding.neighbors_cw_order(w):
|
||||
if is_on_outer_face(nbr) and not is_outer_face_nbr(w, nbr):
|
||||
# There is a chord involving w
|
||||
chords[w] += 1
|
||||
ready_to_pick.discard(w)
|
||||
if nbr not in new_face_nodes:
|
||||
# Also increase chord for the neighbor
|
||||
# We only iterator over new_face_nodes
|
||||
chords[nbr] += 1
|
||||
ready_to_pick.discard(nbr)
|
||||
# Set the canonical ordering node and the list of contour neighbors
|
||||
canonical_ordering[k] = (v, wp_wq)
|
||||
|
||||
return canonical_ordering
|
||||
|
||||
|
||||
def triangulate_face(embedding, v1, v2):
|
||||
"""Triangulates the face given by half edge (v, w)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
embedding : nx.PlanarEmbedding
|
||||
v1 : node
|
||||
The half-edge (v1, v2) belongs to the face that gets triangulated
|
||||
v2 : node
|
||||
"""
|
||||
_, v3 = embedding.next_face_half_edge(v1, v2)
|
||||
_, v4 = embedding.next_face_half_edge(v2, v3)
|
||||
if v1 == v2 or v1 == v3:
|
||||
# The component has less than 3 nodes
|
||||
return
|
||||
while v1 != v4:
|
||||
# Add edge if not already present on other side
|
||||
if embedding.has_edge(v1, v3):
|
||||
# Cannot triangulate at this position
|
||||
v1, v2, v3 = v2, v3, v4
|
||||
else:
|
||||
# Add edge for triangulation
|
||||
embedding.add_half_edge_cw(v1, v3, v2)
|
||||
embedding.add_half_edge_ccw(v3, v1, v2)
|
||||
v1, v2, v3 = v1, v3, v4
|
||||
# Get next node
|
||||
_, v4 = embedding.next_face_half_edge(v2, v3)
|
||||
|
||||
|
||||
def triangulate_embedding(embedding, fully_triangulate=True):
|
||||
"""Triangulates the embedding.
|
||||
|
||||
Traverses faces of the embedding and adds edges to a copy of the
|
||||
embedding to triangulate it.
|
||||
The method also ensures that the resulting graph is 2-connected by adding
|
||||
edges if the same vertex is contained twice on a path around a face.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
embedding : nx.PlanarEmbedding
|
||||
The input graph must contain at least 3 nodes.
|
||||
|
||||
fully_triangulate : bool
|
||||
If set to False the face with the most nodes is chooses as outer face.
|
||||
This outer face does not get triangulated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(embedding, outer_face) : (nx.PlanarEmbedding, list) tuple
|
||||
The element `embedding` is a new embedding containing all edges from
|
||||
the input embedding and the additional edges to triangulate the graph.
|
||||
The element `outer_face` is a list of nodes that lie on the outer face.
|
||||
If the graph is fully triangulated these are three arbitrary connected
|
||||
nodes.
|
||||
|
||||
"""
|
||||
if len(embedding.nodes) <= 1:
|
||||
return embedding, list(embedding.nodes)
|
||||
embedding = nx.PlanarEmbedding(embedding)
|
||||
|
||||
# Get a list with a node for each connected component
|
||||
component_nodes = [next(iter(x)) for x in nx.connected_components(embedding)]
|
||||
|
||||
# 1. Make graph a single component (add edge between components)
|
||||
for i in range(len(component_nodes) - 1):
|
||||
v1 = component_nodes[i]
|
||||
v2 = component_nodes[i + 1]
|
||||
embedding.connect_components(v1, v2)
|
||||
|
||||
# 2. Calculate faces, ensure 2-connectedness and determine outer face
|
||||
outer_face = [] # A face with the most number of nodes
|
||||
face_list = []
|
||||
edges_visited = set() # Used to keep track of already visited faces
|
||||
for v in embedding.nodes():
|
||||
for w in embedding.neighbors_cw_order(v):
|
||||
new_face = make_bi_connected(embedding, v, w, edges_visited)
|
||||
if new_face:
|
||||
# Found a new face
|
||||
face_list.append(new_face)
|
||||
if len(new_face) > len(outer_face):
|
||||
# The face is a candidate to be the outer face
|
||||
outer_face = new_face
|
||||
|
||||
# 3. Triangulate (internal) faces
|
||||
for face in face_list:
|
||||
if face is not outer_face or fully_triangulate:
|
||||
# Triangulate this face
|
||||
triangulate_face(embedding, face[0], face[1])
|
||||
|
||||
if fully_triangulate:
|
||||
v1 = outer_face[0]
|
||||
v2 = outer_face[1]
|
||||
v3 = embedding[v2][v1]["ccw"]
|
||||
outer_face = [v1, v2, v3]
|
||||
|
||||
return embedding, outer_face
|
||||
|
||||
|
||||
def make_bi_connected(embedding, starting_node, outgoing_node, edges_counted):
|
||||
"""Triangulate a face and make it 2-connected
|
||||
|
||||
This method also adds all edges on the face to `edges_counted`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
embedding: nx.PlanarEmbedding
|
||||
The embedding that defines the faces
|
||||
starting_node : node
|
||||
A node on the face
|
||||
outgoing_node : node
|
||||
A node such that the half edge (starting_node, outgoing_node) belongs
|
||||
to the face
|
||||
edges_counted: set
|
||||
Set of all half-edges that belong to a face that have been visited
|
||||
|
||||
Returns
|
||||
-------
|
||||
face_nodes: list
|
||||
A list of all nodes at the border of this face
|
||||
"""
|
||||
|
||||
# Check if the face has already been calculated
|
||||
if (starting_node, outgoing_node) in edges_counted:
|
||||
# This face was already counted
|
||||
return []
|
||||
edges_counted.add((starting_node, outgoing_node))
|
||||
|
||||
# Add all edges to edges_counted which have this face to their left
|
||||
v1 = starting_node
|
||||
v2 = outgoing_node
|
||||
face_list = [starting_node] # List of nodes around the face
|
||||
face_set = set(face_list) # Set for faster queries
|
||||
_, v3 = embedding.next_face_half_edge(v1, v2)
|
||||
|
||||
# Move the nodes v1, v2, v3 around the face:
|
||||
while v2 != starting_node or v3 != outgoing_node:
|
||||
if v1 == v2:
|
||||
raise nx.NetworkXException("Invalid half-edge")
|
||||
# cycle is not completed yet
|
||||
if v2 in face_set:
|
||||
# v2 encountered twice: Add edge to ensure 2-connectedness
|
||||
embedding.add_half_edge_cw(v1, v3, v2)
|
||||
embedding.add_half_edge_ccw(v3, v1, v2)
|
||||
edges_counted.add((v2, v3))
|
||||
edges_counted.add((v3, v1))
|
||||
v2 = v1
|
||||
else:
|
||||
face_set.add(v2)
|
||||
face_list.append(v2)
|
||||
|
||||
# set next edge
|
||||
v1 = v2
|
||||
v2, v3 = embedding.next_face_half_edge(v2, v3)
|
||||
|
||||
# remember that this edge has been counted
|
||||
edges_counted.add((v1, v2))
|
||||
|
||||
return face_list
|
Loading…
Add table
Add a link
Reference in a new issue