Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
82
venv/Lib/site-packages/networkx/algorithms/non_randomness.py
Normal file
82
venv/Lib/site-packages/networkx/algorithms/non_randomness.py
Normal file
|
@ -0,0 +1,82 @@
|
|||
r""" Computation of graph non-randomness
|
||||
"""
|
||||
|
||||
import math
|
||||
import networkx as nx
|
||||
from networkx.utils import not_implemented_for
|
||||
|
||||
__all__ = ["non_randomness"]
|
||||
|
||||
|
||||
@not_implemented_for("directed")
|
||||
@not_implemented_for("multigraph")
|
||||
def non_randomness(G, k=None):
|
||||
"""Compute the non-randomness of graph G.
|
||||
|
||||
The first returned value nr is the sum of non-randomness values of all
|
||||
edges within the graph (where the non-randomness of an edge tends to be
|
||||
small when the two nodes linked by that edge are from two different
|
||||
communities).
|
||||
|
||||
The second computed value nr_rd is a relative measure that indicates
|
||||
to what extent graph G is different from random graphs in terms
|
||||
of probability. When it is close to 0, the graph tends to be more
|
||||
likely generated by an Erdos Renyi model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Graph must be binary, symmetric, connected, and without self-loops.
|
||||
|
||||
k : int
|
||||
The number of communities in G.
|
||||
If k is not set, the function will use a default community
|
||||
detection algorithm to set it.
|
||||
|
||||
Returns
|
||||
-------
|
||||
non-randomness : (float, float) tuple
|
||||
Non-randomness, Relative non-randomness w.r.t.
|
||||
Erdos Renyi random graphs.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> G = nx.karate_club_graph()
|
||||
>>> nr, nr_rd = nx.non_randomness(G, 2)
|
||||
|
||||
Notes
|
||||
-----
|
||||
This computes Eq. (4.4) and (4.5) in Ref. [1]_.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Xiaowei Ying and Xintao Wu,
|
||||
On Randomness Measures for Social Networks,
|
||||
SIAM International Conference on Data Mining. 2009
|
||||
"""
|
||||
|
||||
if not nx.is_connected(G):
|
||||
raise nx.NetworkXException("Non connected graph.")
|
||||
if len(list(nx.selfloop_edges(G))) > 0:
|
||||
raise nx.NetworkXError("Graph must not contain self-loops")
|
||||
|
||||
if k is None:
|
||||
k = len(tuple(nx.community.label_propagation_communities(G)))
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
except ImportError as e:
|
||||
msg = "non_randomness requires NumPy: http://numpy.org/"
|
||||
raise ImportError(msg) from e
|
||||
|
||||
# eq. 4.4
|
||||
nr = np.real(np.sum(np.linalg.eigvals(nx.to_numpy_array(G))[:k]))
|
||||
|
||||
n = G.number_of_nodes()
|
||||
m = G.number_of_edges()
|
||||
p = (2 * k * m) / (n * (n - k))
|
||||
|
||||
# eq. 4.5
|
||||
nr_rd = (nr - ((n - 2 * k) * p + k)) / math.sqrt(2 * k * p * (1 - p))
|
||||
|
||||
return nr, nr_rd
|
Loading…
Add table
Add a link
Reference in a new issue