Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
183
venv/Lib/site-packages/networkx/algorithms/flow/utils.py
Normal file
183
venv/Lib/site-packages/networkx/algorithms/flow/utils.py
Normal file
|
@ -0,0 +1,183 @@
|
|||
"""
|
||||
Utility classes and functions for network flow algorithms.
|
||||
"""
|
||||
|
||||
from collections import deque
|
||||
import networkx as nx
|
||||
|
||||
__all__ = [
|
||||
"CurrentEdge",
|
||||
"Level",
|
||||
"GlobalRelabelThreshold",
|
||||
"build_residual_network",
|
||||
"detect_unboundedness",
|
||||
"build_flow_dict",
|
||||
]
|
||||
|
||||
|
||||
class CurrentEdge:
|
||||
"""Mechanism for iterating over out-edges incident to a node in a circular
|
||||
manner. StopIteration exception is raised when wraparound occurs.
|
||||
"""
|
||||
|
||||
__slots__ = ("_edges", "_it", "_curr")
|
||||
|
||||
def __init__(self, edges):
|
||||
self._edges = edges
|
||||
if self._edges:
|
||||
self._rewind()
|
||||
|
||||
def get(self):
|
||||
return self._curr
|
||||
|
||||
def move_to_next(self):
|
||||
try:
|
||||
self._curr = next(self._it)
|
||||
except StopIteration:
|
||||
self._rewind()
|
||||
raise
|
||||
|
||||
def _rewind(self):
|
||||
self._it = iter(self._edges.items())
|
||||
self._curr = next(self._it)
|
||||
|
||||
|
||||
class Level:
|
||||
"""Active and inactive nodes in a level.
|
||||
"""
|
||||
|
||||
__slots__ = ("active", "inactive")
|
||||
|
||||
def __init__(self):
|
||||
self.active = set()
|
||||
self.inactive = set()
|
||||
|
||||
|
||||
class GlobalRelabelThreshold:
|
||||
"""Measurement of work before the global relabeling heuristic should be
|
||||
applied.
|
||||
"""
|
||||
|
||||
def __init__(self, n, m, freq):
|
||||
self._threshold = (n + m) / freq if freq else float("inf")
|
||||
self._work = 0
|
||||
|
||||
def add_work(self, work):
|
||||
self._work += work
|
||||
|
||||
def is_reached(self):
|
||||
return self._work >= self._threshold
|
||||
|
||||
def clear_work(self):
|
||||
self._work = 0
|
||||
|
||||
|
||||
def build_residual_network(G, capacity):
|
||||
"""Build a residual network and initialize a zero flow.
|
||||
|
||||
The residual network :samp:`R` from an input graph :samp:`G` has the
|
||||
same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
|
||||
of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
|
||||
self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
|
||||
in :samp:`G`.
|
||||
|
||||
For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
|
||||
is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
|
||||
in :samp:`G` or zero otherwise. If the capacity is infinite,
|
||||
:samp:`R[u][v]['capacity']` will have a high arbitrary finite value
|
||||
that does not affect the solution of the problem. This value is stored in
|
||||
:samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
|
||||
:samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
|
||||
satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.
|
||||
|
||||
The flow value, defined as the total flow into :samp:`t`, the sink, is
|
||||
stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not
|
||||
specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such
|
||||
that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
|
||||
:samp:`s`-:samp:`t` cut.
|
||||
|
||||
"""
|
||||
if G.is_multigraph():
|
||||
raise nx.NetworkXError("MultiGraph and MultiDiGraph not supported (yet).")
|
||||
|
||||
R = nx.DiGraph()
|
||||
R.add_nodes_from(G)
|
||||
|
||||
inf = float("inf")
|
||||
# Extract edges with positive capacities. Self loops excluded.
|
||||
edge_list = [
|
||||
(u, v, attr)
|
||||
for u, v, attr in G.edges(data=True)
|
||||
if u != v and attr.get(capacity, inf) > 0
|
||||
]
|
||||
# Simulate infinity with three times the sum of the finite edge capacities
|
||||
# or any positive value if the sum is zero. This allows the
|
||||
# infinite-capacity edges to be distinguished for unboundedness detection
|
||||
# and directly participate in residual capacity calculation. If the maximum
|
||||
# flow is finite, these edges cannot appear in the minimum cut and thus
|
||||
# guarantee correctness. Since the residual capacity of an
|
||||
# infinite-capacity edge is always at least 2/3 of inf, while that of an
|
||||
# finite-capacity edge is at most 1/3 of inf, if an operation moves more
|
||||
# than 1/3 of inf units of flow to t, there must be an infinite-capacity
|
||||
# s-t path in G.
|
||||
inf = (
|
||||
3
|
||||
* sum(
|
||||
attr[capacity]
|
||||
for u, v, attr in edge_list
|
||||
if capacity in attr and attr[capacity] != inf
|
||||
)
|
||||
or 1
|
||||
)
|
||||
if G.is_directed():
|
||||
for u, v, attr in edge_list:
|
||||
r = min(attr.get(capacity, inf), inf)
|
||||
if not R.has_edge(u, v):
|
||||
# Both (u, v) and (v, u) must be present in the residual
|
||||
# network.
|
||||
R.add_edge(u, v, capacity=r)
|
||||
R.add_edge(v, u, capacity=0)
|
||||
else:
|
||||
# The edge (u, v) was added when (v, u) was visited.
|
||||
R[u][v]["capacity"] = r
|
||||
else:
|
||||
for u, v, attr in edge_list:
|
||||
# Add a pair of edges with equal residual capacities.
|
||||
r = min(attr.get(capacity, inf), inf)
|
||||
R.add_edge(u, v, capacity=r)
|
||||
R.add_edge(v, u, capacity=r)
|
||||
|
||||
# Record the value simulating infinity.
|
||||
R.graph["inf"] = inf
|
||||
|
||||
return R
|
||||
|
||||
|
||||
def detect_unboundedness(R, s, t):
|
||||
"""Detect an infinite-capacity s-t path in R.
|
||||
"""
|
||||
q = deque([s])
|
||||
seen = {s}
|
||||
inf = R.graph["inf"]
|
||||
while q:
|
||||
u = q.popleft()
|
||||
for v, attr in R[u].items():
|
||||
if attr["capacity"] == inf and v not in seen:
|
||||
if v == t:
|
||||
raise nx.NetworkXUnbounded(
|
||||
"Infinite capacity path, flow unbounded above."
|
||||
)
|
||||
seen.add(v)
|
||||
q.append(v)
|
||||
|
||||
|
||||
def build_flow_dict(G, R):
|
||||
"""Build a flow dictionary from a residual network.
|
||||
"""
|
||||
flow_dict = {}
|
||||
for u in G:
|
||||
flow_dict[u] = {v: 0 for v in G[u]}
|
||||
flow_dict[u].update(
|
||||
(v, attr["flow"]) for v, attr in R[u].items() if attr["flow"] > 0
|
||||
)
|
||||
return flow_dict
|
Loading…
Add table
Add a link
Reference in a new issue