Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
92
venv/Lib/site-packages/networkx/algorithms/dominating.py
Normal file
92
venv/Lib/site-packages/networkx/algorithms/dominating.py
Normal file
|
@ -0,0 +1,92 @@
|
|||
"""Functions for computing dominating sets in a graph."""
|
||||
from itertools import chain
|
||||
|
||||
import networkx as nx
|
||||
from networkx.utils import arbitrary_element
|
||||
|
||||
__all__ = ["dominating_set", "is_dominating_set"]
|
||||
|
||||
|
||||
def dominating_set(G, start_with=None):
|
||||
r"""Finds a dominating set for the graph G.
|
||||
|
||||
A *dominating set* for a graph with node set *V* is a subset *D* of
|
||||
*V* such that every node not in *D* is adjacent to at least one
|
||||
member of *D* [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
start_with : node (default=None)
|
||||
Node to use as a starting point for the algorithm.
|
||||
|
||||
Returns
|
||||
-------
|
||||
D : set
|
||||
A dominating set for G.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function is an implementation of algorithm 7 in [2]_ which
|
||||
finds some dominating set, not necessarily the smallest one.
|
||||
|
||||
See also
|
||||
--------
|
||||
is_dominating_set
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] https://en.wikipedia.org/wiki/Dominating_set
|
||||
|
||||
.. [2] Abdol-Hossein Esfahanian. Connectivity Algorithms.
|
||||
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
|
||||
|
||||
"""
|
||||
all_nodes = set(G)
|
||||
if start_with is None:
|
||||
start_with = arbitrary_element(all_nodes)
|
||||
if start_with not in G:
|
||||
raise nx.NetworkXError(f"node {start_with} is not in G")
|
||||
dominating_set = {start_with}
|
||||
dominated_nodes = set(G[start_with])
|
||||
remaining_nodes = all_nodes - dominated_nodes - dominating_set
|
||||
while remaining_nodes:
|
||||
# Choose an arbitrary node and determine its undominated neighbors.
|
||||
v = remaining_nodes.pop()
|
||||
undominated_neighbors = set(G[v]) - dominating_set
|
||||
# Add the node to the dominating set and the neighbors to the
|
||||
# dominated set. Finally, remove all of those nodes from the set
|
||||
# of remaining nodes.
|
||||
dominating_set.add(v)
|
||||
dominated_nodes |= undominated_neighbors
|
||||
remaining_nodes -= undominated_neighbors
|
||||
return dominating_set
|
||||
|
||||
|
||||
def is_dominating_set(G, nbunch):
|
||||
"""Checks if `nbunch` is a dominating set for `G`.
|
||||
|
||||
A *dominating set* for a graph with node set *V* is a subset *D* of
|
||||
*V* such that every node not in *D* is adjacent to at least one
|
||||
member of *D* [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
nbunch : iterable
|
||||
An iterable of nodes in the graph `G`.
|
||||
|
||||
See also
|
||||
--------
|
||||
dominating_set
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] https://en.wikipedia.org/wiki/Dominating_set
|
||||
|
||||
"""
|
||||
testset = {n for n in nbunch if n in G}
|
||||
nbrs = set(chain.from_iterable(G[n] for n in testset))
|
||||
return len(set(G) - testset - nbrs) == 0
|
Loading…
Add table
Add a link
Reference in a new issue