Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
906
venv/Lib/site-packages/networkx/algorithms/dag.py
Normal file
906
venv/Lib/site-packages/networkx/algorithms/dag.py
Normal file
|
@ -0,0 +1,906 @@
|
|||
"""Algorithms for directed acyclic graphs (DAGs).
|
||||
|
||||
Note that most of these functions are only guaranteed to work for DAGs.
|
||||
In general, these functions do not check for acyclic-ness, so it is up
|
||||
to the user to check for that.
|
||||
"""
|
||||
|
||||
from collections import deque
|
||||
from math import gcd
|
||||
from functools import partial
|
||||
from itertools import chain
|
||||
from itertools import product
|
||||
from itertools import starmap
|
||||
import heapq
|
||||
|
||||
import networkx as nx
|
||||
from networkx.algorithms.traversal.breadth_first_search import descendants_at_distance
|
||||
from networkx.generators.trees import NIL
|
||||
from networkx.utils import arbitrary_element
|
||||
from networkx.utils import consume
|
||||
from networkx.utils import pairwise
|
||||
from networkx.utils import not_implemented_for
|
||||
|
||||
__all__ = [
|
||||
"descendants",
|
||||
"ancestors",
|
||||
"topological_sort",
|
||||
"lexicographical_topological_sort",
|
||||
"all_topological_sorts",
|
||||
"is_directed_acyclic_graph",
|
||||
"is_aperiodic",
|
||||
"transitive_closure",
|
||||
"transitive_closure_dag",
|
||||
"transitive_reduction",
|
||||
"antichains",
|
||||
"dag_longest_path",
|
||||
"dag_longest_path_length",
|
||||
"dag_to_branching",
|
||||
]
|
||||
|
||||
chaini = chain.from_iterable
|
||||
|
||||
|
||||
def descendants(G, source):
|
||||
"""Returns all nodes reachable from `source` in `G`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX DiGraph
|
||||
A directed acyclic graph (DAG)
|
||||
source : node in `G`
|
||||
|
||||
Returns
|
||||
-------
|
||||
set()
|
||||
The descendants of `source` in `G`
|
||||
"""
|
||||
if not G.has_node(source):
|
||||
raise nx.NetworkXError(f"The node {source} is not in the graph.")
|
||||
des = {n for n, d in nx.shortest_path_length(G, source=source).items()}
|
||||
return des - {source}
|
||||
|
||||
|
||||
def ancestors(G, source):
|
||||
"""Returns all nodes having a path to `source` in `G`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX DiGraph
|
||||
A directed acyclic graph (DAG)
|
||||
source : node in `G`
|
||||
|
||||
Returns
|
||||
-------
|
||||
set()
|
||||
The ancestors of source in G
|
||||
"""
|
||||
if not G.has_node(source):
|
||||
raise nx.NetworkXError(f"The node {source} is not in the graph.")
|
||||
anc = {n for n, d in nx.shortest_path_length(G, target=source).items()}
|
||||
return anc - {source}
|
||||
|
||||
|
||||
def has_cycle(G):
|
||||
"""Decides whether the directed graph has a cycle."""
|
||||
try:
|
||||
consume(topological_sort(G))
|
||||
except nx.NetworkXUnfeasible:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def is_directed_acyclic_graph(G):
|
||||
"""Returns True if the graph `G` is a directed acyclic graph (DAG) or
|
||||
False if not.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if `G` is a DAG, False otherwise
|
||||
"""
|
||||
return G.is_directed() and not has_cycle(G)
|
||||
|
||||
|
||||
def topological_sort(G):
|
||||
"""Returns a generator of nodes in topologically sorted order.
|
||||
|
||||
A topological sort is a nonunique permutation of the nodes such that an
|
||||
edge from u to v implies that u appears before v in the topological sort
|
||||
order.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX digraph
|
||||
A directed acyclic graph (DAG)
|
||||
|
||||
Returns
|
||||
-------
|
||||
iterable
|
||||
An iterable of node names in topological sorted order.
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXError
|
||||
Topological sort is defined for directed graphs only. If the graph `G`
|
||||
is undirected, a :exc:`NetworkXError` is raised.
|
||||
|
||||
NetworkXUnfeasible
|
||||
If `G` is not a directed acyclic graph (DAG) no topological sort exists
|
||||
and a :exc:`NetworkXUnfeasible` exception is raised. This can also be
|
||||
raised if `G` is changed while the returned iterator is being processed
|
||||
|
||||
RuntimeError
|
||||
If `G` is changed while the returned iterator is being processed.
|
||||
|
||||
Examples
|
||||
--------
|
||||
To get the reverse order of the topological sort:
|
||||
|
||||
>>> DG = nx.DiGraph([(1, 2), (2, 3)])
|
||||
>>> list(reversed(list(nx.topological_sort(DG))))
|
||||
[3, 2, 1]
|
||||
|
||||
If your DiGraph naturally has the edges representing tasks/inputs
|
||||
and nodes representing people/processes that initiate tasks, then
|
||||
topological_sort is not quite what you need. You will have to change
|
||||
the tasks to nodes with dependence reflected by edges. The result is
|
||||
a kind of topological sort of the edges. This can be done
|
||||
with :func:`networkx.line_graph` as follows:
|
||||
|
||||
>>> list(nx.topological_sort(nx.line_graph(DG)))
|
||||
[(1, 2), (2, 3)]
|
||||
|
||||
Notes
|
||||
-----
|
||||
This algorithm is based on a description and proof in
|
||||
"Introduction to Algorithms: A Creative Approach" [1]_ .
|
||||
|
||||
See also
|
||||
--------
|
||||
is_directed_acyclic_graph, lexicographical_topological_sort
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Manber, U. (1989).
|
||||
*Introduction to Algorithms - A Creative Approach.* Addison-Wesley.
|
||||
"""
|
||||
if not G.is_directed():
|
||||
raise nx.NetworkXError("Topological sort not defined on undirected graphs.")
|
||||
|
||||
indegree_map = {v: d for v, d in G.in_degree() if d > 0}
|
||||
# These nodes have zero indegree and ready to be returned.
|
||||
zero_indegree = [v for v, d in G.in_degree() if d == 0]
|
||||
|
||||
while zero_indegree:
|
||||
node = zero_indegree.pop()
|
||||
if node not in G:
|
||||
raise RuntimeError("Graph changed during iteration")
|
||||
for _, child in G.edges(node):
|
||||
try:
|
||||
indegree_map[child] -= 1
|
||||
except KeyError as e:
|
||||
raise RuntimeError("Graph changed during iteration") from e
|
||||
if indegree_map[child] == 0:
|
||||
zero_indegree.append(child)
|
||||
del indegree_map[child]
|
||||
|
||||
yield node
|
||||
|
||||
if indegree_map:
|
||||
raise nx.NetworkXUnfeasible(
|
||||
"Graph contains a cycle or graph changed " "during iteration"
|
||||
)
|
||||
|
||||
|
||||
def lexicographical_topological_sort(G, key=None):
|
||||
"""Returns a generator of nodes in lexicographically topologically sorted
|
||||
order.
|
||||
|
||||
A topological sort is a nonunique permutation of the nodes such that an
|
||||
edge from u to v implies that u appears before v in the topological sort
|
||||
order.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX digraph
|
||||
A directed acyclic graph (DAG)
|
||||
|
||||
key : function, optional
|
||||
This function maps nodes to keys with which to resolve ambiguities in
|
||||
the sort order. Defaults to the identity function.
|
||||
|
||||
Returns
|
||||
-------
|
||||
iterable
|
||||
An iterable of node names in lexicographical topological sort order.
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXError
|
||||
Topological sort is defined for directed graphs only. If the graph `G`
|
||||
is undirected, a :exc:`NetworkXError` is raised.
|
||||
|
||||
NetworkXUnfeasible
|
||||
If `G` is not a directed acyclic graph (DAG) no topological sort exists
|
||||
and a :exc:`NetworkXUnfeasible` exception is raised. This can also be
|
||||
raised if `G` is changed while the returned iterator is being processed
|
||||
|
||||
RuntimeError
|
||||
If `G` is changed while the returned iterator is being processed.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This algorithm is based on a description and proof in
|
||||
"Introduction to Algorithms: A Creative Approach" [1]_ .
|
||||
|
||||
See also
|
||||
--------
|
||||
topological_sort
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Manber, U. (1989).
|
||||
*Introduction to Algorithms - A Creative Approach.* Addison-Wesley.
|
||||
"""
|
||||
if not G.is_directed():
|
||||
msg = "Topological sort not defined on undirected graphs."
|
||||
raise nx.NetworkXError(msg)
|
||||
|
||||
if key is None:
|
||||
|
||||
def key(node):
|
||||
return node
|
||||
|
||||
nodeid_map = {n: i for i, n in enumerate(G)}
|
||||
|
||||
def create_tuple(node):
|
||||
return key(node), nodeid_map[node], node
|
||||
|
||||
indegree_map = {v: d for v, d in G.in_degree() if d > 0}
|
||||
# These nodes have zero indegree and ready to be returned.
|
||||
zero_indegree = [create_tuple(v) for v, d in G.in_degree() if d == 0]
|
||||
heapq.heapify(zero_indegree)
|
||||
|
||||
while zero_indegree:
|
||||
_, _, node = heapq.heappop(zero_indegree)
|
||||
|
||||
if node not in G:
|
||||
raise RuntimeError("Graph changed during iteration")
|
||||
for _, child in G.edges(node):
|
||||
try:
|
||||
indegree_map[child] -= 1
|
||||
except KeyError as e:
|
||||
raise RuntimeError("Graph changed during iteration") from e
|
||||
if indegree_map[child] == 0:
|
||||
heapq.heappush(zero_indegree, create_tuple(child))
|
||||
del indegree_map[child]
|
||||
|
||||
yield node
|
||||
|
||||
if indegree_map:
|
||||
msg = "Graph contains a cycle or graph changed during iteration"
|
||||
raise nx.NetworkXUnfeasible(msg)
|
||||
|
||||
|
||||
@not_implemented_for("undirected")
|
||||
def all_topological_sorts(G):
|
||||
"""Returns a generator of _all_ topological sorts of the directed graph G.
|
||||
|
||||
A topological sort is a nonunique permutation of the nodes such that an
|
||||
edge from u to v implies that u appears before v in the topological sort
|
||||
order.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX DiGraph
|
||||
A directed graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
generator
|
||||
All topological sorts of the digraph G
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXNotImplemented
|
||||
If `G` is not directed
|
||||
NetworkXUnfeasible
|
||||
If `G` is not acyclic
|
||||
|
||||
Examples
|
||||
--------
|
||||
To enumerate all topological sorts of directed graph:
|
||||
|
||||
>>> DG = nx.DiGraph([(1, 2), (2, 3), (2, 4)])
|
||||
>>> list(nx.all_topological_sorts(DG))
|
||||
[[1, 2, 4, 3], [1, 2, 3, 4]]
|
||||
|
||||
Notes
|
||||
-----
|
||||
Implements an iterative version of the algorithm given in [1].
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Knuth, Donald E., Szwarcfiter, Jayme L. (1974).
|
||||
"A Structured Program to Generate All Topological Sorting Arrangements"
|
||||
Information Processing Letters, Volume 2, Issue 6, 1974, Pages 153-157,
|
||||
ISSN 0020-0190,
|
||||
https://doi.org/10.1016/0020-0190(74)90001-5.
|
||||
Elsevier (North-Holland), Amsterdam
|
||||
"""
|
||||
if not G.is_directed():
|
||||
raise nx.NetworkXError("Topological sort not defined on undirected graphs.")
|
||||
|
||||
# the names of count and D are chosen to match the global variables in [1]
|
||||
# number of edges originating in a vertex v
|
||||
count = dict(G.in_degree())
|
||||
# vertices with indegree 0
|
||||
D = deque([v for v, d in G.in_degree() if d == 0])
|
||||
# stack of first value chosen at a position k in the topological sort
|
||||
bases = []
|
||||
current_sort = []
|
||||
|
||||
# do-while construct
|
||||
while True:
|
||||
assert all([count[v] == 0 for v in D])
|
||||
|
||||
if len(current_sort) == len(G):
|
||||
yield list(current_sort)
|
||||
|
||||
# clean-up stack
|
||||
while len(current_sort) > 0:
|
||||
assert len(bases) == len(current_sort)
|
||||
q = current_sort.pop()
|
||||
|
||||
# "restores" all edges (q, x)
|
||||
# NOTE: it is important to iterate over edges instead
|
||||
# of successors, so count is updated correctly in multigraphs
|
||||
for _, j in G.out_edges(q):
|
||||
count[j] += 1
|
||||
assert count[j] >= 0
|
||||
# remove entries from D
|
||||
while len(D) > 0 and count[D[-1]] > 0:
|
||||
D.pop()
|
||||
|
||||
# corresponds to a circular shift of the values in D
|
||||
# if the first value chosen (the base) is in the first
|
||||
# position of D again, we are done and need to consider the
|
||||
# previous condition
|
||||
D.appendleft(q)
|
||||
if D[-1] == bases[-1]:
|
||||
# all possible values have been chosen at current position
|
||||
# remove corresponding marker
|
||||
bases.pop()
|
||||
else:
|
||||
# there are still elements that have not been fixed
|
||||
# at the current position in the topological sort
|
||||
# stop removing elements, escape inner loop
|
||||
break
|
||||
|
||||
else:
|
||||
if len(D) == 0:
|
||||
raise nx.NetworkXUnfeasible("Graph contains a cycle.")
|
||||
|
||||
# choose next node
|
||||
q = D.pop()
|
||||
# "erase" all edges (q, x)
|
||||
# NOTE: it is important to iterate over edges instead
|
||||
# of successors, so count is updated correctly in multigraphs
|
||||
for _, j in G.out_edges(q):
|
||||
count[j] -= 1
|
||||
assert count[j] >= 0
|
||||
if count[j] == 0:
|
||||
D.append(j)
|
||||
current_sort.append(q)
|
||||
|
||||
# base for current position might _not_ be fixed yet
|
||||
if len(bases) < len(current_sort):
|
||||
bases.append(q)
|
||||
|
||||
if len(bases) == 0:
|
||||
break
|
||||
|
||||
|
||||
def is_aperiodic(G):
|
||||
"""Returns True if `G` is aperiodic.
|
||||
|
||||
A directed graph is aperiodic if there is no integer k > 1 that
|
||||
divides the length of every cycle in the graph.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX DiGraph
|
||||
A directed graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if the graph is aperiodic False otherwise
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXError
|
||||
If `G` is not directed
|
||||
|
||||
Notes
|
||||
-----
|
||||
This uses the method outlined in [1]_, which runs in $O(m)$ time
|
||||
given $m$ edges in `G`. Note that a graph is not aperiodic if it is
|
||||
acyclic as every integer trivial divides length 0 cycles.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Jarvis, J. P.; Shier, D. R. (1996),
|
||||
"Graph-theoretic analysis of finite Markov chains,"
|
||||
in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling:
|
||||
A Multidisciplinary Approach, CRC Press.
|
||||
"""
|
||||
if not G.is_directed():
|
||||
raise nx.NetworkXError("is_aperiodic not defined for undirected graphs")
|
||||
|
||||
s = arbitrary_element(G)
|
||||
levels = {s: 0}
|
||||
this_level = [s]
|
||||
g = 0
|
||||
lev = 1
|
||||
while this_level:
|
||||
next_level = []
|
||||
for u in this_level:
|
||||
for v in G[u]:
|
||||
if v in levels: # Non-Tree Edge
|
||||
g = gcd(g, levels[u] - levels[v] + 1)
|
||||
else: # Tree Edge
|
||||
next_level.append(v)
|
||||
levels[v] = lev
|
||||
this_level = next_level
|
||||
lev += 1
|
||||
if len(levels) == len(G): # All nodes in tree
|
||||
return g == 1
|
||||
else:
|
||||
return g == 1 and nx.is_aperiodic(G.subgraph(set(G) - set(levels)))
|
||||
|
||||
|
||||
@not_implemented_for("undirected")
|
||||
def transitive_closure(G, reflexive=False):
|
||||
""" Returns transitive closure of a directed graph
|
||||
|
||||
The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
|
||||
for all v, w in V there is an edge (v, w) in E+ if and only if there
|
||||
is a path from v to w in G.
|
||||
|
||||
Handling of paths from v to v has some flexibility within this definition.
|
||||
A reflexive transitive closure creates a self-loop for the path
|
||||
from v to v of length 0. The usual transitive closure creates a
|
||||
self-loop only if a cycle exists (a path from v to v with length > 0).
|
||||
We also allow an option for no self-loops.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX DiGraph
|
||||
A directed graph
|
||||
reflexive : Bool or None, optional (default: False)
|
||||
Determines when cycles create self-loops in the Transitive Closure.
|
||||
If True, trivial cycles (length 0) create self-loops. The result
|
||||
is a reflexive tranistive closure of G.
|
||||
If False (the default) non-trivial cycles create self-loops.
|
||||
If None, self-loops are not created.
|
||||
|
||||
Returns
|
||||
-------
|
||||
NetworkX DiGraph
|
||||
The transitive closure of `G`
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXNotImplemented
|
||||
If `G` is not directed
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] http://www.ics.uci.edu/~eppstein/PADS/PartialOrder.py
|
||||
|
||||
TODO this function applies to all directed graphs and is probably misplaced
|
||||
here in dag.py
|
||||
"""
|
||||
if reflexive is None:
|
||||
TC = G.copy()
|
||||
for v in G:
|
||||
edges = ((v, u) for u in nx.dfs_preorder_nodes(G, v) if v != u)
|
||||
TC.add_edges_from(edges)
|
||||
return TC
|
||||
if reflexive is True:
|
||||
TC = G.copy()
|
||||
for v in G:
|
||||
edges = ((v, u) for u in nx.dfs_preorder_nodes(G, v))
|
||||
TC.add_edges_from(edges)
|
||||
return TC
|
||||
# reflexive is False
|
||||
TC = G.copy()
|
||||
for v in G:
|
||||
edges = ((v, w) for u, w in nx.edge_dfs(G, v))
|
||||
TC.add_edges_from(edges)
|
||||
return TC
|
||||
|
||||
|
||||
@not_implemented_for("undirected")
|
||||
def transitive_closure_dag(G, topo_order=None):
|
||||
""" Returns the transitive closure of a directed acyclic graph.
|
||||
|
||||
This function is faster than the function `transitive_closure`, but fails
|
||||
if the graph has a cycle.
|
||||
|
||||
The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
|
||||
for all v, w in V there is an edge (v, w) in E+ if and only if there
|
||||
is a non-null path from v to w in G.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX DiGraph
|
||||
A directed acyclic graph (DAG)
|
||||
|
||||
topo_order: list or tuple, optional
|
||||
A topological order for G (if None, the function will compute one)
|
||||
|
||||
Returns
|
||||
-------
|
||||
NetworkX DiGraph
|
||||
The transitive closure of `G`
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXNotImplemented
|
||||
If `G` is not directed
|
||||
NetworkXUnfeasible
|
||||
If `G` has a cycle
|
||||
|
||||
Notes
|
||||
-----
|
||||
This algorithm is probably simple enough to be well-known but I didn't find
|
||||
a mention in the literature.
|
||||
"""
|
||||
if topo_order is None:
|
||||
topo_order = list(topological_sort(G))
|
||||
|
||||
TC = G.copy()
|
||||
|
||||
# idea: traverse vertices following a reverse topological order, connecting
|
||||
# each vertex to its descendants at distance 2 as we go
|
||||
for v in reversed(topo_order):
|
||||
TC.add_edges_from((v, u) for u in descendants_at_distance(TC, v, 2))
|
||||
|
||||
return TC
|
||||
|
||||
|
||||
@not_implemented_for("undirected")
|
||||
def transitive_reduction(G):
|
||||
""" Returns transitive reduction of a directed graph
|
||||
|
||||
The transitive reduction of G = (V,E) is a graph G- = (V,E-) such that
|
||||
for all v,w in V there is an edge (v,w) in E- if and only if (v,w) is
|
||||
in E and there is no path from v to w in G with length greater than 1.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX DiGraph
|
||||
A directed acyclic graph (DAG)
|
||||
|
||||
Returns
|
||||
-------
|
||||
NetworkX DiGraph
|
||||
The transitive reduction of `G`
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXError
|
||||
If `G` is not a directed acyclic graph (DAG) transitive reduction is
|
||||
not uniquely defined and a :exc:`NetworkXError` exception is raised.
|
||||
|
||||
References
|
||||
----------
|
||||
https://en.wikipedia.org/wiki/Transitive_reduction
|
||||
|
||||
"""
|
||||
if not is_directed_acyclic_graph(G):
|
||||
msg = "Directed Acyclic Graph required for transitive_reduction"
|
||||
raise nx.NetworkXError(msg)
|
||||
TR = nx.DiGraph()
|
||||
TR.add_nodes_from(G.nodes())
|
||||
descendants = {}
|
||||
# count before removing set stored in descendants
|
||||
check_count = dict(G.in_degree)
|
||||
for u in G:
|
||||
u_nbrs = set(G[u])
|
||||
for v in G[u]:
|
||||
if v in u_nbrs:
|
||||
if v not in descendants:
|
||||
descendants[v] = {y for x, y in nx.dfs_edges(G, v)}
|
||||
u_nbrs -= descendants[v]
|
||||
check_count[v] -= 1
|
||||
if check_count[v] == 0:
|
||||
del descendants[v]
|
||||
TR.add_edges_from((u, v) for v in u_nbrs)
|
||||
return TR
|
||||
|
||||
|
||||
@not_implemented_for("undirected")
|
||||
def antichains(G, topo_order=None):
|
||||
"""Generates antichains from a directed acyclic graph (DAG).
|
||||
|
||||
An antichain is a subset of a partially ordered set such that any
|
||||
two elements in the subset are incomparable.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX DiGraph
|
||||
A directed acyclic graph (DAG)
|
||||
|
||||
topo_order: list or tuple, optional
|
||||
A topological order for G (if None, the function will compute one)
|
||||
|
||||
Returns
|
||||
-------
|
||||
generator object
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXNotImplemented
|
||||
If `G` is not directed
|
||||
|
||||
NetworkXUnfeasible
|
||||
If `G` contains a cycle
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function was originally developed by Peter Jipsen and Franco Saliola
|
||||
for the SAGE project. It's included in NetworkX with permission from the
|
||||
authors. Original SAGE code at:
|
||||
|
||||
https://github.com/sagemath/sage/blob/master/src/sage/combinat/posets/hasse_diagram.py
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Free Lattices, by R. Freese, J. Jezek and J. B. Nation,
|
||||
AMS, Vol 42, 1995, p. 226.
|
||||
"""
|
||||
if topo_order is None:
|
||||
topo_order = list(nx.topological_sort(G))
|
||||
|
||||
TC = nx.transitive_closure_dag(G, topo_order)
|
||||
antichains_stacks = [([], list(reversed(topo_order)))]
|
||||
|
||||
while antichains_stacks:
|
||||
(antichain, stack) = antichains_stacks.pop()
|
||||
# Invariant:
|
||||
# - the elements of antichain are independent
|
||||
# - the elements of stack are independent from those of antichain
|
||||
yield antichain
|
||||
while stack:
|
||||
x = stack.pop()
|
||||
new_antichain = antichain + [x]
|
||||
new_stack = [t for t in stack if not ((t in TC[x]) or (x in TC[t]))]
|
||||
antichains_stacks.append((new_antichain, new_stack))
|
||||
|
||||
|
||||
@not_implemented_for("undirected")
|
||||
def dag_longest_path(G, weight="weight", default_weight=1, topo_order=None):
|
||||
"""Returns the longest path in a directed acyclic graph (DAG).
|
||||
|
||||
If `G` has edges with `weight` attribute the edge data are used as
|
||||
weight values.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX DiGraph
|
||||
A directed acyclic graph (DAG)
|
||||
|
||||
weight : str, optional
|
||||
Edge data key to use for weight
|
||||
|
||||
default_weight : int, optional
|
||||
The weight of edges that do not have a weight attribute
|
||||
|
||||
topo_order: list or tuple, optional
|
||||
A topological order for G (if None, the function will compute one)
|
||||
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
Longest path
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXNotImplemented
|
||||
If `G` is not directed
|
||||
|
||||
See also
|
||||
--------
|
||||
dag_longest_path_length
|
||||
|
||||
"""
|
||||
if not G:
|
||||
return []
|
||||
|
||||
if topo_order is None:
|
||||
topo_order = nx.topological_sort(G)
|
||||
|
||||
dist = {} # stores {v : (length, u)}
|
||||
for v in topo_order:
|
||||
us = [
|
||||
(dist[u][0] + data.get(weight, default_weight), u)
|
||||
for u, data in G.pred[v].items()
|
||||
]
|
||||
|
||||
# Use the best predecessor if there is one and its distance is
|
||||
# non-negative, otherwise terminate.
|
||||
maxu = max(us, key=lambda x: x[0]) if us else (0, v)
|
||||
dist[v] = maxu if maxu[0] >= 0 else (0, v)
|
||||
|
||||
u = None
|
||||
v = max(dist, key=lambda x: dist[x][0])
|
||||
path = []
|
||||
while u != v:
|
||||
path.append(v)
|
||||
u = v
|
||||
v = dist[v][1]
|
||||
|
||||
path.reverse()
|
||||
return path
|
||||
|
||||
|
||||
@not_implemented_for("undirected")
|
||||
def dag_longest_path_length(G, weight="weight", default_weight=1):
|
||||
"""Returns the longest path length in a DAG
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX DiGraph
|
||||
A directed acyclic graph (DAG)
|
||||
|
||||
weight : string, optional
|
||||
Edge data key to use for weight
|
||||
|
||||
default_weight : int, optional
|
||||
The weight of edges that do not have a weight attribute
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
Longest path length
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXNotImplemented
|
||||
If `G` is not directed
|
||||
|
||||
See also
|
||||
--------
|
||||
dag_longest_path
|
||||
"""
|
||||
path = nx.dag_longest_path(G, weight, default_weight)
|
||||
path_length = 0
|
||||
for (u, v) in pairwise(path):
|
||||
path_length += G[u][v].get(weight, default_weight)
|
||||
|
||||
return path_length
|
||||
|
||||
|
||||
def root_to_leaf_paths(G):
|
||||
"""Yields root-to-leaf paths in a directed acyclic graph.
|
||||
|
||||
`G` must be a directed acyclic graph. If not, the behavior of this
|
||||
function is undefined. A "root" in this graph is a node of in-degree
|
||||
zero and a "leaf" a node of out-degree zero.
|
||||
|
||||
When invoked, this function iterates over each path from any root to
|
||||
any leaf. A path is a list of nodes.
|
||||
|
||||
"""
|
||||
roots = (v for v, d in G.in_degree() if d == 0)
|
||||
leaves = (v for v, d in G.out_degree() if d == 0)
|
||||
all_paths = partial(nx.all_simple_paths, G)
|
||||
# TODO In Python 3, this would be better as `yield from ...`.
|
||||
return chaini(starmap(all_paths, product(roots, leaves)))
|
||||
|
||||
|
||||
@not_implemented_for("multigraph")
|
||||
@not_implemented_for("undirected")
|
||||
def dag_to_branching(G):
|
||||
"""Returns a branching representing all (overlapping) paths from
|
||||
root nodes to leaf nodes in the given directed acyclic graph.
|
||||
|
||||
As described in :mod:`networkx.algorithms.tree.recognition`, a
|
||||
*branching* is a directed forest in which each node has at most one
|
||||
parent. In other words, a branching is a disjoint union of
|
||||
*arborescences*. For this function, each node of in-degree zero in
|
||||
`G` becomes a root of one of the arborescences, and there will be
|
||||
one leaf node for each distinct path from that root to a leaf node
|
||||
in `G`.
|
||||
|
||||
Each node `v` in `G` with *k* parents becomes *k* distinct nodes in
|
||||
the returned branching, one for each parent, and the sub-DAG rooted
|
||||
at `v` is duplicated for each copy. The algorithm then recurses on
|
||||
the children of each copy of `v`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
A directed acyclic graph.
|
||||
|
||||
Returns
|
||||
-------
|
||||
DiGraph
|
||||
The branching in which there is a bijection between root-to-leaf
|
||||
paths in `G` (in which multiple paths may share the same leaf)
|
||||
and root-to-leaf paths in the branching (in which there is a
|
||||
unique path from a root to a leaf).
|
||||
|
||||
Each node has an attribute 'source' whose value is the original
|
||||
node to which this node corresponds. No other graph, node, or
|
||||
edge attributes are copied into this new graph.
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXNotImplemented
|
||||
If `G` is not directed, or if `G` is a multigraph.
|
||||
|
||||
HasACycle
|
||||
If `G` is not acyclic.
|
||||
|
||||
Examples
|
||||
--------
|
||||
To examine which nodes in the returned branching were produced by
|
||||
which original node in the directed acyclic graph, we can collect
|
||||
the mapping from source node to new nodes into a dictionary. For
|
||||
example, consider the directed diamond graph::
|
||||
|
||||
>>> from collections import defaultdict
|
||||
>>> from operator import itemgetter
|
||||
>>>
|
||||
>>> G = nx.DiGraph(nx.utils.pairwise("abd"))
|
||||
>>> G.add_edges_from(nx.utils.pairwise("acd"))
|
||||
>>> B = nx.dag_to_branching(G)
|
||||
>>>
|
||||
>>> sources = defaultdict(set)
|
||||
>>> for v, source in B.nodes(data="source"):
|
||||
... sources[source].add(v)
|
||||
>>> len(sources["a"])
|
||||
1
|
||||
>>> len(sources["d"])
|
||||
2
|
||||
|
||||
To copy node attributes from the original graph to the new graph,
|
||||
you can use a dictionary like the one constructed in the above
|
||||
example::
|
||||
|
||||
>>> for source, nodes in sources.items():
|
||||
... for v in nodes:
|
||||
... B.nodes[v].update(G.nodes[source])
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function is not idempotent in the sense that the node labels in
|
||||
the returned branching may be uniquely generated each time the
|
||||
function is invoked. In fact, the node labels may not be integers;
|
||||
in order to relabel the nodes to be more readable, you can use the
|
||||
:func:`networkx.convert_node_labels_to_integers` function.
|
||||
|
||||
The current implementation of this function uses
|
||||
:func:`networkx.prefix_tree`, so it is subject to the limitations of
|
||||
that function.
|
||||
|
||||
"""
|
||||
if has_cycle(G):
|
||||
msg = "dag_to_branching is only defined for acyclic graphs"
|
||||
raise nx.HasACycle(msg)
|
||||
paths = root_to_leaf_paths(G)
|
||||
B, root = nx.prefix_tree(paths)
|
||||
# Remove the synthetic `root` and `NIL` nodes in the prefix tree.
|
||||
B.remove_node(root)
|
||||
B.remove_node(NIL)
|
||||
return B
|
Loading…
Add table
Add a link
Reference in a new issue