Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
|
@ -0,0 +1,224 @@
|
|||
"""
|
||||
Moody and White algorithm for k-components
|
||||
"""
|
||||
from collections import defaultdict
|
||||
from itertools import combinations
|
||||
from operator import itemgetter
|
||||
|
||||
import networkx as nx
|
||||
from networkx.utils import not_implemented_for
|
||||
|
||||
# Define the default maximum flow function.
|
||||
from networkx.algorithms.flow import edmonds_karp
|
||||
|
||||
default_flow_func = edmonds_karp
|
||||
|
||||
__all__ = ["k_components"]
|
||||
|
||||
|
||||
@not_implemented_for("directed")
|
||||
def k_components(G, flow_func=None):
|
||||
r"""Returns the k-component structure of a graph G.
|
||||
|
||||
A `k`-component is a maximal subgraph of a graph G that has, at least,
|
||||
node connectivity `k`: we need to remove at least `k` nodes to break it
|
||||
into more components. `k`-components have an inherent hierarchical
|
||||
structure because they are nested in terms of connectivity: a connected
|
||||
graph can contain several 2-components, each of which can contain
|
||||
one or more 3-components, and so forth.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
flow_func : function
|
||||
Function to perform the underlying flow computations. Default value
|
||||
:meth:`edmonds_karp`. This function performs better in sparse graphs with
|
||||
right tailed degree distributions. :meth:`shortest_augmenting_path` will
|
||||
perform better in denser graphs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
k_components : dict
|
||||
Dictionary with all connectivity levels `k` in the input Graph as keys
|
||||
and a list of sets of nodes that form a k-component of level `k` as
|
||||
values.
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXNotImplemented
|
||||
If the input graph is directed.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> # Petersen graph has 10 nodes and it is triconnected, thus all
|
||||
>>> # nodes are in a single component on all three connectivity levels
|
||||
>>> G = nx.petersen_graph()
|
||||
>>> k_components = nx.k_components(G)
|
||||
|
||||
Notes
|
||||
-----
|
||||
Moody and White [1]_ (appendix A) provide an algorithm for identifying
|
||||
k-components in a graph, which is based on Kanevsky's algorithm [2]_
|
||||
for finding all minimum-size node cut-sets of a graph (implemented in
|
||||
:meth:`all_node_cuts` function):
|
||||
|
||||
1. Compute node connectivity, k, of the input graph G.
|
||||
|
||||
2. Identify all k-cutsets at the current level of connectivity using
|
||||
Kanevsky's algorithm.
|
||||
|
||||
3. Generate new graph components based on the removal of
|
||||
these cutsets. Nodes in a cutset belong to both sides
|
||||
of the induced cut.
|
||||
|
||||
4. If the graph is neither complete nor trivial, return to 1;
|
||||
else end.
|
||||
|
||||
This implementation also uses some heuristics (see [3]_ for details)
|
||||
to speed up the computation.
|
||||
|
||||
See also
|
||||
--------
|
||||
node_connectivity
|
||||
all_node_cuts
|
||||
biconnected_components : special case of this function when k=2
|
||||
k_edge_components : similar to this function, but uses edge-connectivity
|
||||
instead of node-connectivity
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Moody, J. and D. White (2003). Social cohesion and embeddedness:
|
||||
A hierarchical conception of social groups.
|
||||
American Sociological Review 68(1), 103--28.
|
||||
http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf
|
||||
|
||||
.. [2] Kanevsky, A. (1993). Finding all minimum-size separating vertex
|
||||
sets in a graph. Networks 23(6), 533--541.
|
||||
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
|
||||
|
||||
.. [3] Torrents, J. and F. Ferraro (2015). Structural Cohesion:
|
||||
Visualization and Heuristics for Fast Computation.
|
||||
https://arxiv.org/pdf/1503.04476v1
|
||||
|
||||
"""
|
||||
# Dictionary with connectivity level (k) as keys and a list of
|
||||
# sets of nodes that form a k-component as values. Note that
|
||||
# k-compoents can overlap (but only k - 1 nodes).
|
||||
k_components = defaultdict(list)
|
||||
# Define default flow function
|
||||
if flow_func is None:
|
||||
flow_func = default_flow_func
|
||||
# Bicomponents as a base to check for higher order k-components
|
||||
for component in nx.connected_components(G):
|
||||
# isolated nodes have connectivity 0
|
||||
comp = set(component)
|
||||
if len(comp) > 1:
|
||||
k_components[1].append(comp)
|
||||
bicomponents = [G.subgraph(c) for c in nx.biconnected_components(G)]
|
||||
for bicomponent in bicomponents:
|
||||
bicomp = set(bicomponent)
|
||||
# avoid considering dyads as bicomponents
|
||||
if len(bicomp) > 2:
|
||||
k_components[2].append(bicomp)
|
||||
for B in bicomponents:
|
||||
if len(B) <= 2:
|
||||
continue
|
||||
k = nx.node_connectivity(B, flow_func=flow_func)
|
||||
if k > 2:
|
||||
k_components[k].append(set(B))
|
||||
# Perform cuts in a DFS like order.
|
||||
cuts = list(nx.all_node_cuts(B, k=k, flow_func=flow_func))
|
||||
stack = [(k, _generate_partition(B, cuts, k))]
|
||||
while stack:
|
||||
(parent_k, partition) = stack[-1]
|
||||
try:
|
||||
nodes = next(partition)
|
||||
C = B.subgraph(nodes)
|
||||
this_k = nx.node_connectivity(C, flow_func=flow_func)
|
||||
if this_k > parent_k and this_k > 2:
|
||||
k_components[this_k].append(set(C))
|
||||
cuts = list(nx.all_node_cuts(C, k=this_k, flow_func=flow_func))
|
||||
if cuts:
|
||||
stack.append((this_k, _generate_partition(C, cuts, this_k)))
|
||||
except StopIteration:
|
||||
stack.pop()
|
||||
|
||||
# This is necessary because k-components may only be reported at their
|
||||
# maximum k level. But we want to return a dictionary in which keys are
|
||||
# connectivity levels and values list of sets of components, without
|
||||
# skipping any connectivity level. Also, it's possible that subsets of
|
||||
# an already detected k-component appear at a level k. Checking for this
|
||||
# in the while loop above penalizes the common case. Thus we also have to
|
||||
# _consolidate all connectivity levels in _reconstruct_k_components.
|
||||
return _reconstruct_k_components(k_components)
|
||||
|
||||
|
||||
def _consolidate(sets, k):
|
||||
"""Merge sets that share k or more elements.
|
||||
|
||||
See: http://rosettacode.org/wiki/Set_consolidation
|
||||
|
||||
The iterative python implementation posted there is
|
||||
faster than this because of the overhead of building a
|
||||
Graph and calling nx.connected_components, but it's not
|
||||
clear for us if we can use it in NetworkX because there
|
||||
is no licence for the code.
|
||||
|
||||
"""
|
||||
G = nx.Graph()
|
||||
nodes = {i: s for i, s in enumerate(sets)}
|
||||
G.add_nodes_from(nodes)
|
||||
G.add_edges_from(
|
||||
(u, v) for u, v in combinations(nodes, 2) if len(nodes[u] & nodes[v]) >= k
|
||||
)
|
||||
for component in nx.connected_components(G):
|
||||
yield set.union(*[nodes[n] for n in component])
|
||||
|
||||
|
||||
def _generate_partition(G, cuts, k):
|
||||
def has_nbrs_in_partition(G, node, partition):
|
||||
for n in G[node]:
|
||||
if n in partition:
|
||||
return True
|
||||
return False
|
||||
|
||||
components = []
|
||||
nodes = {n for n, d in G.degree() if d > k} - {n for cut in cuts for n in cut}
|
||||
H = G.subgraph(nodes)
|
||||
for cc in nx.connected_components(H):
|
||||
component = set(cc)
|
||||
for cut in cuts:
|
||||
for node in cut:
|
||||
if has_nbrs_in_partition(G, node, cc):
|
||||
component.add(node)
|
||||
if len(component) < G.order():
|
||||
components.append(component)
|
||||
yield from _consolidate(components, k + 1)
|
||||
|
||||
|
||||
def _reconstruct_k_components(k_comps):
|
||||
result = dict()
|
||||
max_k = max(k_comps)
|
||||
for k in reversed(range(1, max_k + 1)):
|
||||
if k == max_k:
|
||||
result[k] = list(_consolidate(k_comps[k], k))
|
||||
elif k not in k_comps:
|
||||
result[k] = list(_consolidate(result[k + 1], k))
|
||||
else:
|
||||
nodes_at_k = set.union(*k_comps[k])
|
||||
to_add = [c for c in result[k + 1] if any(n not in nodes_at_k for n in c)]
|
||||
if to_add:
|
||||
result[k] = list(_consolidate(k_comps[k] + to_add, k))
|
||||
else:
|
||||
result[k] = list(_consolidate(k_comps[k], k))
|
||||
return result
|
||||
|
||||
|
||||
def build_k_number_dict(kcomps):
|
||||
result = {}
|
||||
for k, comps in sorted(kcomps.items(), key=itemgetter(0)):
|
||||
for comp in comps:
|
||||
for node in comp:
|
||||
result[node] = k
|
||||
return result
|
Loading…
Add table
Add a link
Reference in a new issue