Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
|
@ -0,0 +1,25 @@
|
|||
"""Functions for computing and measuring community structure.
|
||||
|
||||
The functions in this class are not imported into the top-level
|
||||
:mod:`networkx` namespace. You can access these functions by importing
|
||||
the :mod:`networkx.algorithms.community` module, then accessing the
|
||||
functions as attributes of ``community``. For example::
|
||||
|
||||
>>> from networkx.algorithms import community
|
||||
>>> G = nx.barbell_graph(5, 1)
|
||||
>>> communities_generator = community.girvan_newman(G)
|
||||
>>> top_level_communities = next(communities_generator)
|
||||
>>> next_level_communities = next(communities_generator)
|
||||
>>> sorted(map(sorted, next_level_communities))
|
||||
[[0, 1, 2, 3, 4], [5], [6, 7, 8, 9, 10]]
|
||||
|
||||
"""
|
||||
from networkx.algorithms.community.asyn_fluid import *
|
||||
from networkx.algorithms.community.centrality import *
|
||||
from networkx.algorithms.community.kclique import *
|
||||
from networkx.algorithms.community.kernighan_lin import *
|
||||
from networkx.algorithms.community.label_propagation import *
|
||||
from networkx.algorithms.community.lukes import *
|
||||
from networkx.algorithms.community.modularity_max import *
|
||||
from networkx.algorithms.community.quality import *
|
||||
from networkx.algorithms.community.community_utils import *
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,148 @@
|
|||
"""Asynchronous Fluid Communities algorithm for community detection."""
|
||||
|
||||
from collections import Counter
|
||||
from networkx.exception import NetworkXError
|
||||
from networkx.algorithms.components import is_connected
|
||||
from networkx.utils import groups
|
||||
from networkx.utils import not_implemented_for
|
||||
from networkx.utils import py_random_state
|
||||
|
||||
__all__ = ["asyn_fluidc"]
|
||||
|
||||
|
||||
@py_random_state(3)
|
||||
@not_implemented_for("directed", "multigraph")
|
||||
def asyn_fluidc(G, k, max_iter=100, seed=None):
|
||||
"""Returns communities in `G` as detected by Fluid Communities algorithm.
|
||||
|
||||
The asynchronous fluid communities algorithm is described in
|
||||
[1]_. The algorithm is based on the simple idea of fluids interacting
|
||||
in an environment, expanding and pushing each other. Its initialization is
|
||||
random, so found communities may vary on different executions.
|
||||
|
||||
The algorithm proceeds as follows. First each of the initial k communities
|
||||
is initialized in a random vertex in the graph. Then the algorithm iterates
|
||||
over all vertices in a random order, updating the community of each vertex
|
||||
based on its own community and the communities of its neighbours. This
|
||||
process is performed several times until convergence.
|
||||
At all times, each community has a total density of 1, which is equally
|
||||
distributed among the vertices it contains. If a vertex changes of
|
||||
community, vertex densities of affected communities are adjusted
|
||||
immediately. When a complete iteration over all vertices is done, such that
|
||||
no vertex changes the community it belongs to, the algorithm has converged
|
||||
and returns.
|
||||
|
||||
This is the original version of the algorithm described in [1]_.
|
||||
Unfortunately, it does not support weighted graphs yet.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : Graph
|
||||
|
||||
k : integer
|
||||
The number of communities to be found.
|
||||
|
||||
max_iter : integer
|
||||
The number of maximum iterations allowed. By default 100.
|
||||
|
||||
seed : integer, random_state, or None (default)
|
||||
Indicator of random number generation state.
|
||||
See :ref:`Randomness<randomness>`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
communities : iterable
|
||||
Iterable of communities given as sets of nodes.
|
||||
|
||||
Notes
|
||||
-----
|
||||
k variable is not an optional argument.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Parés F., Garcia-Gasulla D. et al. "Fluid Communities: A
|
||||
Competitive and Highly Scalable Community Detection Algorithm".
|
||||
[https://arxiv.org/pdf/1703.09307.pdf].
|
||||
"""
|
||||
# Initial checks
|
||||
if not isinstance(k, int):
|
||||
raise NetworkXError("k must be an integer.")
|
||||
if not k > 0:
|
||||
raise NetworkXError("k must be greater than 0.")
|
||||
if not is_connected(G):
|
||||
raise NetworkXError("Fluid Communities require connected Graphs.")
|
||||
if len(G) < k:
|
||||
raise NetworkXError("k cannot be bigger than the number of nodes.")
|
||||
# Initialization
|
||||
max_density = 1.0
|
||||
vertices = list(G)
|
||||
seed.shuffle(vertices)
|
||||
communities = {n: i for i, n in enumerate(vertices[:k])}
|
||||
density = {}
|
||||
com_to_numvertices = {}
|
||||
for vertex in communities.keys():
|
||||
com_to_numvertices[communities[vertex]] = 1
|
||||
density[communities[vertex]] = max_density
|
||||
# Set up control variables and start iterating
|
||||
iter_count = 0
|
||||
cont = True
|
||||
while cont:
|
||||
cont = False
|
||||
iter_count += 1
|
||||
# Loop over all vertices in graph in a random order
|
||||
vertices = list(G)
|
||||
seed.shuffle(vertices)
|
||||
for vertex in vertices:
|
||||
# Updating rule
|
||||
com_counter = Counter()
|
||||
# Take into account self vertex community
|
||||
try:
|
||||
com_counter.update({communities[vertex]: density[communities[vertex]]})
|
||||
except KeyError:
|
||||
pass
|
||||
# Gather neighbour vertex communities
|
||||
for v in G[vertex]:
|
||||
try:
|
||||
com_counter.update({communities[v]: density[communities[v]]})
|
||||
except KeyError:
|
||||
continue
|
||||
# Check which is the community with highest density
|
||||
new_com = -1
|
||||
if len(com_counter.keys()) > 0:
|
||||
max_freq = max(com_counter.values())
|
||||
best_communities = [
|
||||
com
|
||||
for com, freq in com_counter.items()
|
||||
if (max_freq - freq) < 0.0001
|
||||
]
|
||||
# If actual vertex com in best communities, it is preserved
|
||||
try:
|
||||
if communities[vertex] in best_communities:
|
||||
new_com = communities[vertex]
|
||||
except KeyError:
|
||||
pass
|
||||
# If vertex community changes...
|
||||
if new_com == -1:
|
||||
# Set flag of non-convergence
|
||||
cont = True
|
||||
# Randomly chose a new community from candidates
|
||||
new_com = seed.choice(best_communities)
|
||||
# Update previous community status
|
||||
try:
|
||||
com_to_numvertices[communities[vertex]] -= 1
|
||||
density[communities[vertex]] = (
|
||||
max_density / com_to_numvertices[communities[vertex]]
|
||||
)
|
||||
except KeyError:
|
||||
pass
|
||||
# Update new community status
|
||||
communities[vertex] = new_com
|
||||
com_to_numvertices[communities[vertex]] += 1
|
||||
density[communities[vertex]] = (
|
||||
max_density / com_to_numvertices[communities[vertex]]
|
||||
)
|
||||
# If maximum iterations reached --> output actual results
|
||||
if iter_count > max_iter:
|
||||
break
|
||||
# Return results by grouping communities as list of vertices
|
||||
return iter(groups(communities).values())
|
|
@ -0,0 +1,170 @@
|
|||
"""Functions for computing communities based on centrality notions."""
|
||||
|
||||
import networkx as nx
|
||||
|
||||
__all__ = ["girvan_newman"]
|
||||
|
||||
|
||||
def girvan_newman(G, most_valuable_edge=None):
|
||||
"""Finds communities in a graph using the Girvan–Newman method.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
most_valuable_edge : function
|
||||
Function that takes a graph as input and outputs an edge. The
|
||||
edge returned by this function will be recomputed and removed at
|
||||
each iteration of the algorithm.
|
||||
|
||||
If not specified, the edge with the highest
|
||||
:func:`networkx.edge_betweenness_centrality` will be used.
|
||||
|
||||
Returns
|
||||
-------
|
||||
iterator
|
||||
Iterator over tuples of sets of nodes in `G`. Each set of node
|
||||
is a community, each tuple is a sequence of communities at a
|
||||
particular level of the algorithm.
|
||||
|
||||
Examples
|
||||
--------
|
||||
To get the first pair of communities::
|
||||
|
||||
>>> G = nx.path_graph(10)
|
||||
>>> comp = girvan_newman(G)
|
||||
>>> tuple(sorted(c) for c in next(comp))
|
||||
([0, 1, 2, 3, 4], [5, 6, 7, 8, 9])
|
||||
|
||||
To get only the first *k* tuples of communities, use
|
||||
:func:`itertools.islice`::
|
||||
|
||||
>>> import itertools
|
||||
>>> G = nx.path_graph(8)
|
||||
>>> k = 2
|
||||
>>> comp = girvan_newman(G)
|
||||
>>> for communities in itertools.islice(comp, k):
|
||||
... print(tuple(sorted(c) for c in communities)) # doctest: +SKIP
|
||||
...
|
||||
([0, 1, 2, 3], [4, 5, 6, 7])
|
||||
([0, 1], [2, 3], [4, 5, 6, 7])
|
||||
|
||||
To stop getting tuples of communities once the number of communities
|
||||
is greater than *k*, use :func:`itertools.takewhile`::
|
||||
|
||||
>>> import itertools
|
||||
>>> G = nx.path_graph(8)
|
||||
>>> k = 4
|
||||
>>> comp = girvan_newman(G)
|
||||
>>> limited = itertools.takewhile(lambda c: len(c) <= k, comp)
|
||||
>>> for communities in limited:
|
||||
... print(tuple(sorted(c) for c in communities)) # doctest: +SKIP
|
||||
...
|
||||
([0, 1, 2, 3], [4, 5, 6, 7])
|
||||
([0, 1], [2, 3], [4, 5, 6, 7])
|
||||
([0, 1], [2, 3], [4, 5], [6, 7])
|
||||
|
||||
To just choose an edge to remove based on the weight::
|
||||
|
||||
>>> from operator import itemgetter
|
||||
>>> G = nx.path_graph(10)
|
||||
>>> edges = G.edges()
|
||||
>>> nx.set_edge_attributes(G, {(u, v): v for u, v in edges}, "weight")
|
||||
>>> def heaviest(G):
|
||||
... u, v, w = max(G.edges(data="weight"), key=itemgetter(2))
|
||||
... return (u, v)
|
||||
...
|
||||
>>> comp = girvan_newman(G, most_valuable_edge=heaviest)
|
||||
>>> tuple(sorted(c) for c in next(comp))
|
||||
([0, 1, 2, 3, 4, 5, 6, 7, 8], [9])
|
||||
|
||||
To utilize edge weights when choosing an edge with, for example, the
|
||||
highest betweenness centrality::
|
||||
|
||||
>>> from networkx import edge_betweenness_centrality as betweenness
|
||||
>>> def most_central_edge(G):
|
||||
... centrality = betweenness(G, weight="weight")
|
||||
... return max(centrality, key=centrality.get)
|
||||
...
|
||||
>>> G = nx.path_graph(10)
|
||||
>>> comp = girvan_newman(G, most_valuable_edge=most_central_edge)
|
||||
>>> tuple(sorted(c) for c in next(comp))
|
||||
([0, 1, 2, 3, 4], [5, 6, 7, 8, 9])
|
||||
|
||||
To specify a different ranking algorithm for edges, use the
|
||||
`most_valuable_edge` keyword argument::
|
||||
|
||||
>>> from networkx import edge_betweenness_centrality
|
||||
>>> from random import random
|
||||
>>> def most_central_edge(G):
|
||||
... centrality = edge_betweenness_centrality(G)
|
||||
... max_cent = max(centrality.values())
|
||||
... # Scale the centrality values so they are between 0 and 1,
|
||||
... # and add some random noise.
|
||||
... centrality = {e: c / max_cent for e, c in centrality.items()}
|
||||
... # Add some random noise.
|
||||
... centrality = {e: c + random() for e, c in centrality.items()}
|
||||
... return max(centrality, key=centrality.get)
|
||||
...
|
||||
>>> G = nx.path_graph(10)
|
||||
>>> comp = girvan_newman(G, most_valuable_edge=most_central_edge)
|
||||
|
||||
Notes
|
||||
-----
|
||||
The Girvan–Newman algorithm detects communities by progressively
|
||||
removing edges from the original graph. The algorithm removes the
|
||||
"most valuable" edge, traditionally the edge with the highest
|
||||
betweenness centrality, at each step. As the graph breaks down into
|
||||
pieces, the tightly knit community structure is exposed and the
|
||||
result can be depicted as a dendrogram.
|
||||
|
||||
"""
|
||||
# If the graph is already empty, simply return its connected
|
||||
# components.
|
||||
if G.number_of_edges() == 0:
|
||||
yield tuple(nx.connected_components(G))
|
||||
return
|
||||
# If no function is provided for computing the most valuable edge,
|
||||
# use the edge betweenness centrality.
|
||||
if most_valuable_edge is None:
|
||||
|
||||
def most_valuable_edge(G):
|
||||
"""Returns the edge with the highest betweenness centrality
|
||||
in the graph `G`.
|
||||
|
||||
"""
|
||||
# We have guaranteed that the graph is non-empty, so this
|
||||
# dictionary will never be empty.
|
||||
betweenness = nx.edge_betweenness_centrality(G)
|
||||
return max(betweenness, key=betweenness.get)
|
||||
|
||||
# The copy of G here must include the edge weight data.
|
||||
g = G.copy().to_undirected()
|
||||
# Self-loops must be removed because their removal has no effect on
|
||||
# the connected components of the graph.
|
||||
g.remove_edges_from(nx.selfloop_edges(g))
|
||||
while g.number_of_edges() > 0:
|
||||
yield _without_most_central_edges(g, most_valuable_edge)
|
||||
|
||||
|
||||
def _without_most_central_edges(G, most_valuable_edge):
|
||||
"""Returns the connected components of the graph that results from
|
||||
repeatedly removing the most "valuable" edge in the graph.
|
||||
|
||||
`G` must be a non-empty graph. This function modifies the graph `G`
|
||||
in-place; that is, it removes edges on the graph `G`.
|
||||
|
||||
`most_valuable_edge` is a function that takes the graph `G` as input
|
||||
(or a subgraph with one or more edges of `G` removed) and returns an
|
||||
edge. That edge will be removed and this process will be repeated
|
||||
until the number of connected components in the graph increases.
|
||||
|
||||
"""
|
||||
original_num_components = nx.number_connected_components(G)
|
||||
num_new_components = original_num_components
|
||||
while num_new_components <= original_num_components:
|
||||
edge = most_valuable_edge(G)
|
||||
G.remove_edge(*edge)
|
||||
new_components = tuple(nx.connected_components(G))
|
||||
num_new_components = len(new_components)
|
||||
return new_components
|
|
@ -0,0 +1,27 @@
|
|||
"""Helper functions for community-finding algorithms."""
|
||||
|
||||
__all__ = ["is_partition"]
|
||||
|
||||
|
||||
def is_partition(G, communities):
|
||||
"""Returns *True* if `communities` is a partition of the nodes of `G`.
|
||||
|
||||
A partition of a universe set is a family of pairwise disjoint sets
|
||||
whose union is the entire universe set.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph.
|
||||
|
||||
communities : list or iterable of sets of nodes
|
||||
If not a list, the iterable is converted internally to a list.
|
||||
If it is an iterator it is exhausted.
|
||||
|
||||
"""
|
||||
# Alternate implementation:
|
||||
# return all(sum(1 if v in c else 0 for c in communities) == 1 for v in G)
|
||||
if not isinstance(communities, list):
|
||||
communities = list(communities)
|
||||
nodes = {n for c in communities for n in c if n in G}
|
||||
|
||||
return len(G) == len(nodes) == sum(len(c) for c in communities)
|
|
@ -0,0 +1,78 @@
|
|||
from collections import defaultdict
|
||||
import networkx as nx
|
||||
|
||||
__all__ = ["k_clique_communities"]
|
||||
|
||||
|
||||
def k_clique_communities(G, k, cliques=None):
|
||||
"""Find k-clique communities in graph using the percolation method.
|
||||
|
||||
A k-clique community is the union of all cliques of size k that
|
||||
can be reached through adjacent (sharing k-1 nodes) k-cliques.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
k : int
|
||||
Size of smallest clique
|
||||
|
||||
cliques: list or generator
|
||||
Precomputed cliques (use networkx.find_cliques(G))
|
||||
|
||||
Returns
|
||||
-------
|
||||
Yields sets of nodes, one for each k-clique community.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from networkx.algorithms.community import k_clique_communities
|
||||
>>> G = nx.complete_graph(5)
|
||||
>>> K5 = nx.convert_node_labels_to_integers(G, first_label=2)
|
||||
>>> G.add_edges_from(K5.edges())
|
||||
>>> c = list(k_clique_communities(G, 4))
|
||||
>>> sorted(list(c[0]))
|
||||
[0, 1, 2, 3, 4, 5, 6]
|
||||
>>> list(k_clique_communities(G, 6))
|
||||
[]
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Gergely Palla, Imre Derényi, Illés Farkas1, and Tamás Vicsek,
|
||||
Uncovering the overlapping community structure of complex networks
|
||||
in nature and society Nature 435, 814-818, 2005,
|
||||
doi:10.1038/nature03607
|
||||
"""
|
||||
if k < 2:
|
||||
raise nx.NetworkXError(f"k={k}, k must be greater than 1.")
|
||||
if cliques is None:
|
||||
cliques = nx.find_cliques(G)
|
||||
cliques = [frozenset(c) for c in cliques if len(c) >= k]
|
||||
|
||||
# First index which nodes are in which cliques
|
||||
membership_dict = defaultdict(list)
|
||||
for clique in cliques:
|
||||
for node in clique:
|
||||
membership_dict[node].append(clique)
|
||||
|
||||
# For each clique, see which adjacent cliques percolate
|
||||
perc_graph = nx.Graph()
|
||||
perc_graph.add_nodes_from(cliques)
|
||||
for clique in cliques:
|
||||
for adj_clique in _get_adjacent_cliques(clique, membership_dict):
|
||||
if len(clique.intersection(adj_clique)) >= (k - 1):
|
||||
perc_graph.add_edge(clique, adj_clique)
|
||||
|
||||
# Connected components of clique graph with perc edges
|
||||
# are the percolated cliques
|
||||
for component in nx.connected_components(perc_graph):
|
||||
yield (frozenset.union(*component))
|
||||
|
||||
|
||||
def _get_adjacent_cliques(clique, membership_dict):
|
||||
adjacent_cliques = set()
|
||||
for n in clique:
|
||||
for adj_clique in membership_dict[n]:
|
||||
if clique != adj_clique:
|
||||
adjacent_cliques.add(adj_clique)
|
||||
return adjacent_cliques
|
|
@ -0,0 +1,134 @@
|
|||
"""Functions for computing the Kernighan–Lin bipartition algorithm."""
|
||||
|
||||
import networkx as nx
|
||||
from itertools import count
|
||||
from networkx.utils import not_implemented_for, py_random_state, BinaryHeap
|
||||
from networkx.algorithms.community.community_utils import is_partition
|
||||
|
||||
__all__ = ["kernighan_lin_bisection"]
|
||||
|
||||
|
||||
def _kernighan_lin_sweep(edges, side):
|
||||
"""
|
||||
This is a modified form of Kernighan-Lin, which moves single nodes at a
|
||||
time, alternating between sides to keep the bisection balanced. We keep
|
||||
two min-heaps of swap costs to make optimal-next-move selection fast.
|
||||
"""
|
||||
costs0, costs1 = costs = BinaryHeap(), BinaryHeap()
|
||||
for u, side_u, edges_u in zip(count(), side, edges):
|
||||
cost_u = sum(w if side[v] else -w for v, w in edges_u)
|
||||
costs[side_u].insert(u, cost_u if side_u else -cost_u)
|
||||
|
||||
def _update_costs(costs_x, x):
|
||||
for y, w in edges[x]:
|
||||
costs_y = costs[side[y]]
|
||||
cost_y = costs_y.get(y)
|
||||
if cost_y is not None:
|
||||
cost_y += 2 * (-w if costs_x is costs_y else w)
|
||||
costs_y.insert(y, cost_y, True)
|
||||
|
||||
i = totcost = 0
|
||||
while costs0 and costs1:
|
||||
u, cost_u = costs0.pop()
|
||||
_update_costs(costs0, u)
|
||||
v, cost_v = costs1.pop()
|
||||
_update_costs(costs1, v)
|
||||
totcost += cost_u + cost_v
|
||||
yield totcost, i, (u, v)
|
||||
|
||||
|
||||
@py_random_state(4)
|
||||
@not_implemented_for("directed")
|
||||
def kernighan_lin_bisection(G, partition=None, max_iter=10, weight="weight", seed=None):
|
||||
"""Partition a graph into two blocks using the Kernighan–Lin
|
||||
algorithm.
|
||||
|
||||
This algorithm partitions a network into two sets by iteratively
|
||||
swapping pairs of nodes to reduce the edge cut between the two sets. The
|
||||
pairs are chosen according to a modified form of Kernighan-Lin, which
|
||||
moves node individually, alternating between sides to keep the bisection
|
||||
balanced.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : graph
|
||||
|
||||
partition : tuple
|
||||
Pair of iterables containing an initial partition. If not
|
||||
specified, a random balanced partition is used.
|
||||
|
||||
max_iter : int
|
||||
Maximum number of times to attempt swaps to find an
|
||||
improvemement before giving up.
|
||||
|
||||
weight : key
|
||||
Edge data key to use as weight. If None, the weights are all
|
||||
set to one.
|
||||
|
||||
seed : integer, random_state, or None (default)
|
||||
Indicator of random number generation state.
|
||||
See :ref:`Randomness<randomness>`.
|
||||
Only used if partition is None
|
||||
|
||||
Returns
|
||||
-------
|
||||
partition : tuple
|
||||
A pair of sets of nodes representing the bipartition.
|
||||
|
||||
Raises
|
||||
-------
|
||||
NetworkXError
|
||||
If partition is not a valid partition of the nodes of the graph.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Kernighan, B. W.; Lin, Shen (1970).
|
||||
"An efficient heuristic procedure for partitioning graphs."
|
||||
*Bell Systems Technical Journal* 49: 291--307.
|
||||
Oxford University Press 2011.
|
||||
|
||||
"""
|
||||
n = len(G)
|
||||
labels = list(G)
|
||||
seed.shuffle(labels)
|
||||
index = {v: i for i, v in enumerate(labels)}
|
||||
|
||||
if partition is None:
|
||||
side = [0] * (n // 2) + [1] * ((n + 1) // 2)
|
||||
else:
|
||||
try:
|
||||
A, B = partition
|
||||
except (TypeError, ValueError) as e:
|
||||
raise nx.NetworkXError("partition must be two sets") from e
|
||||
if not is_partition(G, (A, B)):
|
||||
raise nx.NetworkXError("partition invalid")
|
||||
side = [0] * n
|
||||
for a in A:
|
||||
side[a] = 1
|
||||
|
||||
if G.is_multigraph():
|
||||
edges = [
|
||||
[
|
||||
(index[u], sum(e.get(weight, 1) for e in d.values()))
|
||||
for u, d in G[v].items()
|
||||
]
|
||||
for v in labels
|
||||
]
|
||||
else:
|
||||
edges = [
|
||||
[(index[u], e.get(weight, 1)) for u, e in G[v].items()] for v in labels
|
||||
]
|
||||
|
||||
for i in range(max_iter):
|
||||
costs = list(_kernighan_lin_sweep(edges, side))
|
||||
min_cost, min_i, _ = min(costs)
|
||||
if min_cost >= 0:
|
||||
break
|
||||
|
||||
for _, _, (u, v) in costs[: min_i + 1]:
|
||||
side[u] = 1
|
||||
side[v] = 0
|
||||
|
||||
A = {u for u, s in zip(labels, side) if s == 0}
|
||||
B = {u for u, s in zip(labels, side) if s == 1}
|
||||
return A, B
|
|
@ -0,0 +1,198 @@
|
|||
"""
|
||||
Label propagation community detection algorithms.
|
||||
"""
|
||||
from collections import Counter
|
||||
|
||||
import networkx as nx
|
||||
from networkx.utils import groups
|
||||
from networkx.utils import not_implemented_for
|
||||
from networkx.utils import py_random_state
|
||||
|
||||
__all__ = ["label_propagation_communities", "asyn_lpa_communities"]
|
||||
|
||||
|
||||
@py_random_state(2)
|
||||
def asyn_lpa_communities(G, weight=None, seed=None):
|
||||
"""Returns communities in `G` as detected by asynchronous label
|
||||
propagation.
|
||||
|
||||
The asynchronous label propagation algorithm is described in
|
||||
[1]_. The algorithm is probabilistic and the found communities may
|
||||
vary on different executions.
|
||||
|
||||
The algorithm proceeds as follows. After initializing each node with
|
||||
a unique label, the algorithm repeatedly sets the label of a node to
|
||||
be the label that appears most frequently among that nodes
|
||||
neighbors. The algorithm halts when each node has the label that
|
||||
appears most frequently among its neighbors. The algorithm is
|
||||
asynchronous because each node is updated without waiting for
|
||||
updates on the remaining nodes.
|
||||
|
||||
This generalized version of the algorithm in [1]_ accepts edge
|
||||
weights.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : Graph
|
||||
|
||||
weight : string
|
||||
The edge attribute representing the weight of an edge.
|
||||
If None, each edge is assumed to have weight one. In this
|
||||
algorithm, the weight of an edge is used in determining the
|
||||
frequency with which a label appears among the neighbors of a
|
||||
node: a higher weight means the label appears more often.
|
||||
|
||||
seed : integer, random_state, or None (default)
|
||||
Indicator of random number generation state.
|
||||
See :ref:`Randomness<randomness>`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
communities : iterable
|
||||
Iterable of communities given as sets of nodes.
|
||||
|
||||
Notes
|
||||
------
|
||||
Edge weight attributes must be numerical.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Raghavan, Usha Nandini, Réka Albert, and Soundar Kumara. "Near
|
||||
linear time algorithm to detect community structures in large-scale
|
||||
networks." Physical Review E 76.3 (2007): 036106.
|
||||
"""
|
||||
|
||||
labels = {n: i for i, n in enumerate(G)}
|
||||
cont = True
|
||||
while cont:
|
||||
cont = False
|
||||
nodes = list(G)
|
||||
seed.shuffle(nodes)
|
||||
# Calculate the label for each node
|
||||
for node in nodes:
|
||||
if len(G[node]) < 1:
|
||||
continue
|
||||
|
||||
# Get label frequencies. Depending on the order they are processed
|
||||
# in some nodes with be in t and others in t-1, making the
|
||||
# algorithm asynchronous.
|
||||
label_freq = Counter()
|
||||
for v in G[node]:
|
||||
label_freq.update(
|
||||
{labels[v]: G.edges[node, v][weight] if weight else 1}
|
||||
)
|
||||
# Choose the label with the highest frecuency. If more than 1 label
|
||||
# has the highest frecuency choose one randomly.
|
||||
max_freq = max(label_freq.values())
|
||||
best_labels = [
|
||||
label for label, freq in label_freq.items() if freq == max_freq
|
||||
]
|
||||
|
||||
# Continue until all nodes have a majority label
|
||||
if labels[node] not in best_labels:
|
||||
labels[node] = seed.choice(best_labels)
|
||||
cont = True
|
||||
|
||||
yield from groups(labels).values()
|
||||
|
||||
|
||||
@not_implemented_for("directed")
|
||||
def label_propagation_communities(G):
|
||||
"""Generates community sets determined by label propagation
|
||||
|
||||
Finds communities in `G` using a semi-synchronous label propagation
|
||||
method[1]_. This method combines the advantages of both the synchronous
|
||||
and asynchronous models. Not implemented for directed graphs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : graph
|
||||
An undirected NetworkX graph.
|
||||
|
||||
Yields
|
||||
------
|
||||
communities : generator
|
||||
Yields sets of the nodes in each community.
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXNotImplemented
|
||||
If the graph is directed
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Cordasco, G., & Gargano, L. (2010, December). Community detection
|
||||
via semi-synchronous label propagation algorithms. In Business
|
||||
Applications of Social Network Analysis (BASNA), 2010 IEEE International
|
||||
Workshop on (pp. 1-8). IEEE.
|
||||
"""
|
||||
coloring = _color_network(G)
|
||||
# Create a unique label for each node in the graph
|
||||
labeling = {v: k for k, v in enumerate(G)}
|
||||
while not _labeling_complete(labeling, G):
|
||||
# Update the labels of every node with the same color.
|
||||
for color, nodes in coloring.items():
|
||||
for n in nodes:
|
||||
_update_label(n, labeling, G)
|
||||
|
||||
for label in set(labeling.values()):
|
||||
yield {x for x in labeling if labeling[x] == label}
|
||||
|
||||
|
||||
def _color_network(G):
|
||||
"""Colors the network so that neighboring nodes all have distinct colors.
|
||||
|
||||
Returns a dict keyed by color to a set of nodes with that color.
|
||||
"""
|
||||
coloring = dict() # color => set(node)
|
||||
colors = nx.coloring.greedy_color(G)
|
||||
for node, color in colors.items():
|
||||
if color in coloring:
|
||||
coloring[color].add(node)
|
||||
else:
|
||||
coloring[color] = {node}
|
||||
return coloring
|
||||
|
||||
|
||||
def _labeling_complete(labeling, G):
|
||||
"""Determines whether or not LPA is done.
|
||||
|
||||
Label propagation is complete when all nodes have a label that is
|
||||
in the set of highest frequency labels amongst its neighbors.
|
||||
|
||||
Nodes with no neighbors are considered complete.
|
||||
"""
|
||||
return all(
|
||||
labeling[v] in _most_frequent_labels(v, labeling, G) for v in G if len(G[v]) > 0
|
||||
)
|
||||
|
||||
|
||||
def _most_frequent_labels(node, labeling, G):
|
||||
"""Returns a set of all labels with maximum frequency in `labeling`.
|
||||
|
||||
Input `labeling` should be a dict keyed by node to labels.
|
||||
"""
|
||||
if not G[node]:
|
||||
# Nodes with no neighbors are themselves a community and are labeled
|
||||
# accordingly, hence the immediate if statement.
|
||||
return {labeling[node]}
|
||||
|
||||
# Compute the frequencies of all neighbours of node
|
||||
freqs = Counter(labeling[q] for q in G[node])
|
||||
max_freq = max(freqs.values())
|
||||
return {label for label, freq in freqs.items() if freq == max_freq}
|
||||
|
||||
|
||||
def _update_label(node, labeling, G):
|
||||
"""Updates the label of a node using the Prec-Max tie breaking algorithm
|
||||
|
||||
The algorithm is explained in: 'Community Detection via Semi-Synchronous
|
||||
Label Propagation Algorithms' Cordasco and Gargano, 2011
|
||||
"""
|
||||
high_labels = _most_frequent_labels(node, labeling, G)
|
||||
if len(high_labels) == 1:
|
||||
labeling[node] = high_labels.pop()
|
||||
elif len(high_labels) > 1:
|
||||
# Prec-Max
|
||||
if labeling[node] not in high_labels:
|
||||
labeling[node] = max(high_labels)
|
227
venv/Lib/site-packages/networkx/algorithms/community/lukes.py
Normal file
227
venv/Lib/site-packages/networkx/algorithms/community/lukes.py
Normal file
|
@ -0,0 +1,227 @@
|
|||
"""Lukes Algorithm for exact optimal weighted tree partitioning."""
|
||||
|
||||
from copy import deepcopy
|
||||
from functools import lru_cache
|
||||
from random import choice
|
||||
|
||||
import networkx as nx
|
||||
from networkx.utils import not_implemented_for
|
||||
|
||||
__all__ = ["lukes_partitioning"]
|
||||
|
||||
D_EDGE_W = "weight"
|
||||
D_EDGE_VALUE = 1.0
|
||||
D_NODE_W = "weight"
|
||||
D_NODE_VALUE = 1
|
||||
PKEY = "partitions"
|
||||
CLUSTER_EVAL_CACHE_SIZE = 2048
|
||||
|
||||
|
||||
def _split_n_from(n: int, min_size_of_first_part: int):
|
||||
# splits j in two parts of which the first is at least
|
||||
# the second argument
|
||||
assert n >= min_size_of_first_part
|
||||
for p1 in range(min_size_of_first_part, n + 1):
|
||||
yield p1, n - p1
|
||||
|
||||
|
||||
def lukes_partitioning(G, max_size: int, node_weight=None, edge_weight=None) -> list:
|
||||
|
||||
"""Optimal partitioning of a weighted tree using the Lukes algorithm.
|
||||
|
||||
This algorithm partitions a connected, acyclic graph featuring integer
|
||||
node weights and float edge weights. The resulting clusters are such
|
||||
that the total weight of the nodes in each cluster does not exceed
|
||||
max_size and that the weight of the edges that are cut by the partition
|
||||
is minimum. The algorithm is based on LUKES[1].
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : graph
|
||||
|
||||
max_size : int
|
||||
Maximum weight a partition can have in terms of sum of
|
||||
node_weight for all nodes in the partition
|
||||
|
||||
edge_weight : key
|
||||
Edge data key to use as weight. If None, the weights are all
|
||||
set to one.
|
||||
|
||||
node_weight : key
|
||||
Node data key to use as weight. If None, the weights are all
|
||||
set to one. The data must be int.
|
||||
|
||||
Returns
|
||||
-------
|
||||
partition : list
|
||||
A list of sets of nodes representing the clusters of the
|
||||
partition.
|
||||
|
||||
Raises
|
||||
-------
|
||||
NotATree
|
||||
If G is not a tree.
|
||||
TypeError
|
||||
If any of the values of node_weight is not int.
|
||||
|
||||
References
|
||||
----------
|
||||
.. Lukes, J. A. (1974).
|
||||
"Efficient Algorithm for the Partitioning of Trees."
|
||||
IBM Journal of Research and Development, 18(3), 217–224.
|
||||
|
||||
"""
|
||||
# First sanity check and tree preparation
|
||||
if not nx.is_tree(G):
|
||||
raise nx.NotATree("lukes_partitioning works only on trees")
|
||||
else:
|
||||
if nx.is_directed(G):
|
||||
root = [n for n, d in G.in_degree() if d == 0]
|
||||
assert len(root) == 1
|
||||
root = root[0]
|
||||
t_G = deepcopy(G)
|
||||
else:
|
||||
root = choice(list(G.nodes))
|
||||
# this has the desirable side effect of not inheriting attributes
|
||||
t_G = nx.dfs_tree(G, root)
|
||||
|
||||
# Since we do not want to screw up the original graph,
|
||||
# if we have a blank attribute, we make a deepcopy
|
||||
if edge_weight is None or node_weight is None:
|
||||
safe_G = deepcopy(G)
|
||||
if edge_weight is None:
|
||||
nx.set_edge_attributes(safe_G, D_EDGE_VALUE, D_EDGE_W)
|
||||
edge_weight = D_EDGE_W
|
||||
if node_weight is None:
|
||||
nx.set_node_attributes(safe_G, D_NODE_VALUE, D_NODE_W)
|
||||
node_weight = D_NODE_W
|
||||
else:
|
||||
safe_G = G
|
||||
|
||||
# Second sanity check
|
||||
# The values of node_weight MUST BE int.
|
||||
# I cannot see any room for duck typing without incurring serious
|
||||
# danger of subtle bugs.
|
||||
all_n_attr = nx.get_node_attributes(safe_G, node_weight).values()
|
||||
for x in all_n_attr:
|
||||
if not isinstance(x, int):
|
||||
raise TypeError(
|
||||
"lukes_partitioning needs integer "
|
||||
f"values for node_weight ({node_weight})"
|
||||
)
|
||||
|
||||
# SUBROUTINES -----------------------
|
||||
# these functions are defined here for two reasons:
|
||||
# - brevity: we can leverage global "safe_G"
|
||||
# - caching: signatures are hashable
|
||||
|
||||
@not_implemented_for("undirected")
|
||||
# this is intended to be called only on t_G
|
||||
def _leaves(gr):
|
||||
for x in gr.nodes:
|
||||
if not nx.descendants(gr, x):
|
||||
yield x
|
||||
|
||||
@not_implemented_for("undirected")
|
||||
def _a_parent_of_leaves_only(gr):
|
||||
tleaves = set(_leaves(gr))
|
||||
for n in set(gr.nodes) - tleaves:
|
||||
if all([x in tleaves for x in nx.descendants(gr, n)]):
|
||||
return n
|
||||
|
||||
@lru_cache(CLUSTER_EVAL_CACHE_SIZE)
|
||||
def _value_of_cluster(cluster: frozenset):
|
||||
valid_edges = [e for e in safe_G.edges if e[0] in cluster and e[1] in cluster]
|
||||
return sum([safe_G.edges[e][edge_weight] for e in valid_edges])
|
||||
|
||||
def _value_of_partition(partition: list):
|
||||
return sum([_value_of_cluster(frozenset(c)) for c in partition])
|
||||
|
||||
@lru_cache(CLUSTER_EVAL_CACHE_SIZE)
|
||||
def _weight_of_cluster(cluster: frozenset):
|
||||
return sum([safe_G.nodes[n][node_weight] for n in cluster])
|
||||
|
||||
def _pivot(partition: list, node):
|
||||
ccx = [c for c in partition if node in c]
|
||||
assert len(ccx) == 1
|
||||
return ccx[0]
|
||||
|
||||
def _concatenate_or_merge(partition_1: list, partition_2: list, x, i, ref_weigth):
|
||||
|
||||
ccx = _pivot(partition_1, x)
|
||||
cci = _pivot(partition_2, i)
|
||||
merged_xi = ccx.union(cci)
|
||||
|
||||
# We first check if we can do the merge.
|
||||
# If so, we do the actual calculations, otherwise we concatenate
|
||||
if _weight_of_cluster(frozenset(merged_xi)) <= ref_weigth:
|
||||
cp1 = list(filter(lambda x: x != ccx, partition_1))
|
||||
cp2 = list(filter(lambda x: x != cci, partition_2))
|
||||
|
||||
option_2 = [merged_xi] + cp1 + cp2
|
||||
return option_2, _value_of_partition(option_2)
|
||||
else:
|
||||
option_1 = partition_1 + partition_2
|
||||
return option_1, _value_of_partition(option_1)
|
||||
|
||||
# INITIALIZATION -----------------------
|
||||
leaves = set(_leaves(t_G))
|
||||
for lv in leaves:
|
||||
t_G.nodes[lv][PKEY] = dict()
|
||||
slot = safe_G.nodes[lv][node_weight]
|
||||
t_G.nodes[lv][PKEY][slot] = [{lv}]
|
||||
t_G.nodes[lv][PKEY][0] = [{lv}]
|
||||
|
||||
for inner in [x for x in t_G.nodes if x not in leaves]:
|
||||
t_G.nodes[inner][PKEY] = dict()
|
||||
slot = safe_G.nodes[inner][node_weight]
|
||||
t_G.nodes[inner][PKEY][slot] = [{inner}]
|
||||
|
||||
# CORE ALGORITHM -----------------------
|
||||
while True:
|
||||
x_node = _a_parent_of_leaves_only(t_G)
|
||||
weight_of_x = safe_G.nodes[x_node][node_weight]
|
||||
best_value = 0
|
||||
best_partition = None
|
||||
bp_buffer = dict()
|
||||
x_descendants = nx.descendants(t_G, x_node)
|
||||
for i_node in x_descendants:
|
||||
for j in range(weight_of_x, max_size + 1):
|
||||
for a, b in _split_n_from(j, weight_of_x):
|
||||
if (
|
||||
a not in t_G.nodes[x_node][PKEY].keys()
|
||||
or b not in t_G.nodes[i_node][PKEY].keys()
|
||||
):
|
||||
# it's not possible to form this particular weight sum
|
||||
continue
|
||||
|
||||
part1 = t_G.nodes[x_node][PKEY][a]
|
||||
part2 = t_G.nodes[i_node][PKEY][b]
|
||||
part, value = _concatenate_or_merge(part1, part2, x_node, i_node, j)
|
||||
|
||||
if j not in bp_buffer.keys() or bp_buffer[j][1] < value:
|
||||
# we annotate in the buffer the best partition for j
|
||||
bp_buffer[j] = part, value
|
||||
|
||||
# we also keep track of the overall best partition
|
||||
if best_value <= value:
|
||||
best_value = value
|
||||
best_partition = part
|
||||
|
||||
# as illustrated in Lukes, once we finished a child, we can
|
||||
# discharge the partitions we found into the graph
|
||||
# (the key phrase is make all x == x')
|
||||
# so that they are used by the subsequent children
|
||||
for w, (best_part_for_vl, vl) in bp_buffer.items():
|
||||
t_G.nodes[x_node][PKEY][w] = best_part_for_vl
|
||||
bp_buffer.clear()
|
||||
|
||||
# the absolute best partition for this node
|
||||
# across all weights has to be stored at 0
|
||||
t_G.nodes[x_node][PKEY][0] = best_partition
|
||||
t_G.remove_nodes_from(x_descendants)
|
||||
|
||||
if x_node == root:
|
||||
# the 0-labeled partition of root
|
||||
# is the optimal one for the whole tree
|
||||
return t_G.nodes[root][PKEY][0]
|
|
@ -0,0 +1,265 @@
|
|||
# TODO:
|
||||
# - Alter equations for weighted case
|
||||
# - Write tests for weighted case
|
||||
"""Functions for detecting communities based on modularity.
|
||||
"""
|
||||
|
||||
from networkx.algorithms.community.quality import modularity
|
||||
|
||||
from networkx.utils.mapped_queue import MappedQueue
|
||||
|
||||
__all__ = [
|
||||
"greedy_modularity_communities",
|
||||
"naive_greedy_modularity_communities",
|
||||
"_naive_greedy_modularity_communities",
|
||||
]
|
||||
|
||||
|
||||
def greedy_modularity_communities(G, weight=None):
|
||||
"""Find communities in graph using Clauset-Newman-Moore greedy modularity
|
||||
maximization. This method currently supports the Graph class and does not
|
||||
consider edge weights.
|
||||
|
||||
Greedy modularity maximization begins with each node in its own community
|
||||
and joins the pair of communities that most increases modularity until no
|
||||
such pair exists.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
Yields sets of nodes, one for each community.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from networkx.algorithms.community import greedy_modularity_communities
|
||||
>>> G = nx.karate_club_graph()
|
||||
>>> c = list(greedy_modularity_communities(G))
|
||||
>>> sorted(c[0])
|
||||
[8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] M. E. J Newman 'Networks: An Introduction', page 224
|
||||
Oxford University Press 2011.
|
||||
.. [2] Clauset, A., Newman, M. E., & Moore, C.
|
||||
"Finding community structure in very large networks."
|
||||
Physical Review E 70(6), 2004.
|
||||
"""
|
||||
|
||||
# Count nodes and edges
|
||||
N = len(G.nodes())
|
||||
m = sum([d.get("weight", 1) for u, v, d in G.edges(data=True)])
|
||||
q0 = 1.0 / (2.0 * m)
|
||||
|
||||
# Map node labels to contiguous integers
|
||||
label_for_node = {i: v for i, v in enumerate(G.nodes())}
|
||||
node_for_label = {label_for_node[i]: i for i in range(N)}
|
||||
|
||||
# Calculate degrees
|
||||
k_for_label = G.degree(G.nodes(), weight=weight)
|
||||
k = [k_for_label[label_for_node[i]] for i in range(N)]
|
||||
|
||||
# Initialize community and merge lists
|
||||
communities = {i: frozenset([i]) for i in range(N)}
|
||||
merges = []
|
||||
|
||||
# Initial modularity
|
||||
partition = [[label_for_node[x] for x in c] for c in communities.values()]
|
||||
q_cnm = modularity(G, partition)
|
||||
|
||||
# Initialize data structures
|
||||
# CNM Eq 8-9 (Eq 8 was missing a factor of 2 (from A_ij + A_ji)
|
||||
# a[i]: fraction of edges within community i
|
||||
# dq_dict[i][j]: dQ for merging community i, j
|
||||
# dq_heap[i][n] : (-dq, i, j) for communitiy i nth largest dQ
|
||||
# H[n]: (-dq, i, j) for community with nth largest max_j(dQ_ij)
|
||||
a = [k[i] * q0 for i in range(N)]
|
||||
dq_dict = {
|
||||
i: {
|
||||
j: 2 * q0 - 2 * k[i] * k[j] * q0 * q0
|
||||
for j in [node_for_label[u] for u in G.neighbors(label_for_node[i])]
|
||||
if j != i
|
||||
}
|
||||
for i in range(N)
|
||||
}
|
||||
dq_heap = [
|
||||
MappedQueue([(-dq, i, j) for j, dq in dq_dict[i].items()]) for i in range(N)
|
||||
]
|
||||
H = MappedQueue([dq_heap[i].h[0] for i in range(N) if len(dq_heap[i]) > 0])
|
||||
|
||||
# Merge communities until we can't improve modularity
|
||||
while len(H) > 1:
|
||||
# Find best merge
|
||||
# Remove from heap of row maxes
|
||||
# Ties will be broken by choosing the pair with lowest min community id
|
||||
try:
|
||||
dq, i, j = H.pop()
|
||||
except IndexError:
|
||||
break
|
||||
dq = -dq
|
||||
# Remove best merge from row i heap
|
||||
dq_heap[i].pop()
|
||||
# Push new row max onto H
|
||||
if len(dq_heap[i]) > 0:
|
||||
H.push(dq_heap[i].h[0])
|
||||
# If this element was also at the root of row j, we need to remove the
|
||||
# duplicate entry from H
|
||||
if dq_heap[j].h[0] == (-dq, j, i):
|
||||
H.remove((-dq, j, i))
|
||||
# Remove best merge from row j heap
|
||||
dq_heap[j].remove((-dq, j, i))
|
||||
# Push new row max onto H
|
||||
if len(dq_heap[j]) > 0:
|
||||
H.push(dq_heap[j].h[0])
|
||||
else:
|
||||
# Duplicate wasn't in H, just remove from row j heap
|
||||
dq_heap[j].remove((-dq, j, i))
|
||||
# Stop when change is non-positive
|
||||
if dq <= 0:
|
||||
break
|
||||
|
||||
# Perform merge
|
||||
communities[j] = frozenset(communities[i] | communities[j])
|
||||
del communities[i]
|
||||
merges.append((i, j, dq))
|
||||
# New modularity
|
||||
q_cnm += dq
|
||||
# Get list of communities connected to merged communities
|
||||
i_set = set(dq_dict[i].keys())
|
||||
j_set = set(dq_dict[j].keys())
|
||||
all_set = (i_set | j_set) - {i, j}
|
||||
both_set = i_set & j_set
|
||||
# Merge i into j and update dQ
|
||||
for k in all_set:
|
||||
# Calculate new dq value
|
||||
if k in both_set:
|
||||
dq_jk = dq_dict[j][k] + dq_dict[i][k]
|
||||
elif k in j_set:
|
||||
dq_jk = dq_dict[j][k] - 2.0 * a[i] * a[k]
|
||||
else:
|
||||
# k in i_set
|
||||
dq_jk = dq_dict[i][k] - 2.0 * a[j] * a[k]
|
||||
# Update rows j and k
|
||||
for row, col in [(j, k), (k, j)]:
|
||||
# Save old value for finding heap index
|
||||
if k in j_set:
|
||||
d_old = (-dq_dict[row][col], row, col)
|
||||
else:
|
||||
d_old = None
|
||||
# Update dict for j,k only (i is removed below)
|
||||
dq_dict[row][col] = dq_jk
|
||||
# Save old max of per-row heap
|
||||
if len(dq_heap[row]) > 0:
|
||||
d_oldmax = dq_heap[row].h[0]
|
||||
else:
|
||||
d_oldmax = None
|
||||
# Add/update heaps
|
||||
d = (-dq_jk, row, col)
|
||||
if d_old is None:
|
||||
# We're creating a new nonzero element, add to heap
|
||||
dq_heap[row].push(d)
|
||||
else:
|
||||
# Update existing element in per-row heap
|
||||
dq_heap[row].update(d_old, d)
|
||||
# Update heap of row maxes if necessary
|
||||
if d_oldmax is None:
|
||||
# No entries previously in this row, push new max
|
||||
H.push(d)
|
||||
else:
|
||||
# We've updated an entry in this row, has the max changed?
|
||||
if dq_heap[row].h[0] != d_oldmax:
|
||||
H.update(d_oldmax, dq_heap[row].h[0])
|
||||
|
||||
# Remove row/col i from matrix
|
||||
i_neighbors = dq_dict[i].keys()
|
||||
for k in i_neighbors:
|
||||
# Remove from dict
|
||||
dq_old = dq_dict[k][i]
|
||||
del dq_dict[k][i]
|
||||
# Remove from heaps if we haven't already
|
||||
if k != j:
|
||||
# Remove both row and column
|
||||
for row, col in [(k, i), (i, k)]:
|
||||
# Check if replaced dq is row max
|
||||
d_old = (-dq_old, row, col)
|
||||
if dq_heap[row].h[0] == d_old:
|
||||
# Update per-row heap and heap of row maxes
|
||||
dq_heap[row].remove(d_old)
|
||||
H.remove(d_old)
|
||||
# Update row max
|
||||
if len(dq_heap[row]) > 0:
|
||||
H.push(dq_heap[row].h[0])
|
||||
else:
|
||||
# Only update per-row heap
|
||||
dq_heap[row].remove(d_old)
|
||||
|
||||
del dq_dict[i]
|
||||
# Mark row i as deleted, but keep placeholder
|
||||
dq_heap[i] = MappedQueue()
|
||||
# Merge i into j and update a
|
||||
a[j] += a[i]
|
||||
a[i] = 0
|
||||
|
||||
communities = [
|
||||
frozenset([label_for_node[i] for i in c]) for c in communities.values()
|
||||
]
|
||||
return sorted(communities, key=len, reverse=True)
|
||||
|
||||
|
||||
def naive_greedy_modularity_communities(G):
|
||||
"""Find communities in graph using the greedy modularity maximization.
|
||||
This implementation is O(n^4), much slower than alternatives, but it is
|
||||
provided as an easy-to-understand reference implementation.
|
||||
"""
|
||||
# First create one community for each node
|
||||
communities = list([frozenset([u]) for u in G.nodes()])
|
||||
# Track merges
|
||||
merges = []
|
||||
# Greedily merge communities until no improvement is possible
|
||||
old_modularity = None
|
||||
new_modularity = modularity(G, communities)
|
||||
while old_modularity is None or new_modularity > old_modularity:
|
||||
# Save modularity for comparison
|
||||
old_modularity = new_modularity
|
||||
# Find best pair to merge
|
||||
trial_communities = list(communities)
|
||||
to_merge = None
|
||||
for i, u in enumerate(communities):
|
||||
for j, v in enumerate(communities):
|
||||
# Skip i=j and empty communities
|
||||
if j <= i or len(u) == 0 or len(v) == 0:
|
||||
continue
|
||||
# Merge communities u and v
|
||||
trial_communities[j] = u | v
|
||||
trial_communities[i] = frozenset([])
|
||||
trial_modularity = modularity(G, trial_communities)
|
||||
if trial_modularity >= new_modularity:
|
||||
# Check if strictly better or tie
|
||||
if trial_modularity > new_modularity:
|
||||
# Found new best, save modularity and group indexes
|
||||
new_modularity = trial_modularity
|
||||
to_merge = (i, j, new_modularity - old_modularity)
|
||||
elif to_merge and min(i, j) < min(to_merge[0], to_merge[1]):
|
||||
# Break ties by choosing pair with lowest min id
|
||||
new_modularity = trial_modularity
|
||||
to_merge = (i, j, new_modularity - old_modularity)
|
||||
# Un-merge
|
||||
trial_communities[i] = u
|
||||
trial_communities[j] = v
|
||||
if to_merge is not None:
|
||||
# If the best merge improves modularity, use it
|
||||
merges.append(to_merge)
|
||||
i, j, dq = to_merge
|
||||
u, v = communities[i], communities[j]
|
||||
communities[j] = u | v
|
||||
communities[i] = frozenset([])
|
||||
# Remove empty communities and sort
|
||||
communities = [c for c in communities if len(c) > 0]
|
||||
yield from sorted(communities, key=lambda x: len(x), reverse=True)
|
||||
|
||||
|
||||
# old name
|
||||
_naive_greedy_modularity_communities = naive_greedy_modularity_communities
|
334
venv/Lib/site-packages/networkx/algorithms/community/quality.py
Normal file
334
venv/Lib/site-packages/networkx/algorithms/community/quality.py
Normal file
|
@ -0,0 +1,334 @@
|
|||
"""Functions for measuring the quality of a partition (into
|
||||
communities).
|
||||
|
||||
"""
|
||||
|
||||
from functools import wraps
|
||||
from itertools import product
|
||||
|
||||
import networkx as nx
|
||||
from networkx import NetworkXError
|
||||
from networkx.utils import not_implemented_for
|
||||
from networkx.algorithms.community.community_utils import is_partition
|
||||
|
||||
__all__ = ["coverage", "modularity", "performance"]
|
||||
|
||||
|
||||
class NotAPartition(NetworkXError):
|
||||
"""Raised if a given collection is not a partition.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, G, collection):
|
||||
msg = f"{G} is not a valid partition of the graph {collection}"
|
||||
super().__init__(msg)
|
||||
|
||||
|
||||
def require_partition(func):
|
||||
"""Decorator to check that a valid partition is input to a function
|
||||
|
||||
Raises :exc:`networkx.NetworkXError` if the partition is not valid.
|
||||
|
||||
This decorator should be used on functions whose first two arguments
|
||||
are a graph and a partition of the nodes of that graph (in that
|
||||
order)::
|
||||
|
||||
>>> @require_partition
|
||||
... def foo(G, partition):
|
||||
... print("partition is valid!")
|
||||
...
|
||||
>>> G = nx.complete_graph(5)
|
||||
>>> partition = [{0, 1}, {2, 3}, {4}]
|
||||
>>> foo(G, partition)
|
||||
partition is valid!
|
||||
>>> partition = [{0}, {2, 3}, {4}]
|
||||
>>> foo(G, partition)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
networkx.exception.NetworkXError: `partition` is not a valid partition of the nodes of G
|
||||
>>> partition = [{0, 1}, {1, 2, 3}, {4}]
|
||||
>>> foo(G, partition)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
networkx.exception.NetworkXError: `partition` is not a valid partition of the nodes of G
|
||||
|
||||
"""
|
||||
|
||||
@wraps(func)
|
||||
def new_func(*args, **kw):
|
||||
# Here we assume that the first two arguments are (G, partition).
|
||||
if not is_partition(*args[:2]):
|
||||
raise nx.NetworkXError(
|
||||
"`partition` is not a valid partition of" " the nodes of G"
|
||||
)
|
||||
return func(*args, **kw)
|
||||
|
||||
return new_func
|
||||
|
||||
|
||||
def intra_community_edges(G, partition):
|
||||
"""Returns the number of intra-community edges for a partition of `G`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph.
|
||||
|
||||
partition : iterable of sets of nodes
|
||||
This must be a partition of the nodes of `G`.
|
||||
|
||||
The "intra-community edges" are those edges joining a pair of nodes
|
||||
in the same block of the partition.
|
||||
|
||||
"""
|
||||
return sum(G.subgraph(block).size() for block in partition)
|
||||
|
||||
|
||||
def inter_community_edges(G, partition):
|
||||
"""Returns the number of inter-community edges for a prtition of `G`.
|
||||
according to the given
|
||||
partition of the nodes of `G`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph.
|
||||
|
||||
partition : iterable of sets of nodes
|
||||
This must be a partition of the nodes of `G`.
|
||||
|
||||
The *inter-community edges* are those edges joining a pair of nodes
|
||||
in different blocks of the partition.
|
||||
|
||||
Implementation note: this function creates an intermediate graph
|
||||
that may require the same amount of memory as that of `G`.
|
||||
|
||||
"""
|
||||
# Alternate implementation that does not require constructing a new
|
||||
# graph object (but does require constructing an affiliation
|
||||
# dictionary):
|
||||
#
|
||||
# aff = dict(chain.from_iterable(((v, block) for v in block)
|
||||
# for block in partition))
|
||||
# return sum(1 for u, v in G.edges() if aff[u] != aff[v])
|
||||
#
|
||||
MG = nx.MultiDiGraph if G.is_directed() else nx.MultiGraph
|
||||
return nx.quotient_graph(G, partition, create_using=MG).size()
|
||||
|
||||
|
||||
def inter_community_non_edges(G, partition):
|
||||
"""Returns the number of inter-community non-edges according to the
|
||||
given partition of the nodes of `G`.
|
||||
|
||||
`G` must be a NetworkX graph.
|
||||
|
||||
`partition` must be a partition of the nodes of `G`.
|
||||
|
||||
A *non-edge* is a pair of nodes (undirected if `G` is undirected)
|
||||
that are not adjacent in `G`. The *inter-community non-edges* are
|
||||
those non-edges on a pair of nodes in different blocks of the
|
||||
partition.
|
||||
|
||||
Implementation note: this function creates two intermediate graphs,
|
||||
which may require up to twice the amount of memory as required to
|
||||
store `G`.
|
||||
|
||||
"""
|
||||
# Alternate implementation that does not require constructing two
|
||||
# new graph objects (but does require constructing an affiliation
|
||||
# dictionary):
|
||||
#
|
||||
# aff = dict(chain.from_iterable(((v, block) for v in block)
|
||||
# for block in partition))
|
||||
# return sum(1 for u, v in nx.non_edges(G) if aff[u] != aff[v])
|
||||
#
|
||||
return inter_community_edges(nx.complement(G), partition)
|
||||
|
||||
|
||||
@not_implemented_for("multigraph")
|
||||
@require_partition
|
||||
def performance(G, partition):
|
||||
"""Returns the performance of a partition.
|
||||
|
||||
The *performance* of a partition is the ratio of the number of
|
||||
intra-community edges plus inter-community non-edges with the total
|
||||
number of potential edges.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
A simple graph (directed or undirected).
|
||||
|
||||
partition : sequence
|
||||
Partition of the nodes of `G`, represented as a sequence of
|
||||
sets of nodes. Each block of the partition represents a
|
||||
community.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
The performance of the partition, as defined above.
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXError
|
||||
If `partition` is not a valid partition of the nodes of `G`.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Santo Fortunato.
|
||||
"Community Detection in Graphs".
|
||||
*Physical Reports*, Volume 486, Issue 3--5 pp. 75--174
|
||||
<https://arxiv.org/abs/0906.0612>
|
||||
|
||||
"""
|
||||
# Compute the number of intra-community edges and inter-community
|
||||
# edges.
|
||||
intra_edges = intra_community_edges(G, partition)
|
||||
inter_edges = inter_community_non_edges(G, partition)
|
||||
# Compute the number of edges in the complete graph (directed or
|
||||
# undirected, as it depends on `G`) on `n` nodes.
|
||||
#
|
||||
# (If `G` is an undirected graph, we divide by two since we have
|
||||
# double-counted each potential edge. We use integer division since
|
||||
# `total_pairs` is guaranteed to be even.)
|
||||
n = len(G)
|
||||
total_pairs = n * (n - 1)
|
||||
if not G.is_directed():
|
||||
total_pairs //= 2
|
||||
return (intra_edges + inter_edges) / total_pairs
|
||||
|
||||
|
||||
@require_partition
|
||||
def coverage(G, partition):
|
||||
"""Returns the coverage of a partition.
|
||||
|
||||
The *coverage* of a partition is the ratio of the number of
|
||||
intra-community edges to the total number of edges in the graph.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
partition : sequence
|
||||
Partition of the nodes of `G`, represented as a sequence of
|
||||
sets of nodes. Each block of the partition represents a
|
||||
community.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
The coverage of the partition, as defined above.
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXError
|
||||
If `partition` is not a valid partition of the nodes of `G`.
|
||||
|
||||
Notes
|
||||
-----
|
||||
If `G` is a multigraph, the multiplicity of edges is counted.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Santo Fortunato.
|
||||
"Community Detection in Graphs".
|
||||
*Physical Reports*, Volume 486, Issue 3--5 pp. 75--174
|
||||
<https://arxiv.org/abs/0906.0612>
|
||||
|
||||
"""
|
||||
intra_edges = intra_community_edges(G, partition)
|
||||
total_edges = G.number_of_edges()
|
||||
return intra_edges / total_edges
|
||||
|
||||
|
||||
def modularity(G, communities, weight="weight"):
|
||||
r"""Returns the modularity of the given partition of the graph.
|
||||
|
||||
Modularity is defined in [1]_ as
|
||||
|
||||
.. math::
|
||||
|
||||
Q = \frac{1}{2m} \sum_{ij} \left( A_{ij} - \frac{k_ik_j}{2m}\right)
|
||||
\delta(c_i,c_j)
|
||||
|
||||
where $m$ is the number of edges, $A$ is the adjacency matrix of
|
||||
`G`, $k_i$ is the degree of $i$ and $\delta(c_i, c_j)$
|
||||
is 1 if $i$ and $j$ are in the same community and 0 otherwise.
|
||||
|
||||
According to [2]_ (and verified by some algebra) this can be reduced to
|
||||
|
||||
.. math::
|
||||
Q = \sum_{c=1}^{n}
|
||||
\left[ \frac{L_c}{m} - \left( \frac{k_c}{2m} \right) ^2 \right]
|
||||
|
||||
where the sum iterates over all communities $c$, $m$ is the number of edges,
|
||||
$L_c$ is the number of intra-community links for community $c$,
|
||||
$k_c$ is the sum of degrees of the nodes in community $c$.
|
||||
|
||||
The second formula is the one actually used in calculation of the modularity.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX Graph
|
||||
|
||||
communities : list or iterable of set of nodes
|
||||
These node sets must represent a partition of G's nodes.
|
||||
|
||||
weight : string or None, optional (default="weight")
|
||||
The edge attribute that holds the numerical value used
|
||||
as a weight. If None or an edge does not have that attribute,
|
||||
then that edge has weight 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Q : float
|
||||
The modularity of the paritition.
|
||||
|
||||
Raises
|
||||
------
|
||||
NotAPartition
|
||||
If `communities` is not a partition of the nodes of `G`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import networkx.algorithms.community as nx_comm
|
||||
>>> G = nx.barbell_graph(3, 0)
|
||||
>>> nx_comm.modularity(G, [{0, 1, 2}, {3, 4, 5}])
|
||||
0.35714285714285715
|
||||
>>> nx_comm.modularity(G, nx_comm.label_propagation_communities(G))
|
||||
0.35714285714285715
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] M. E. J. Newman *Networks: An Introduction*, page 224.
|
||||
Oxford University Press, 2011.
|
||||
.. [2] Clauset, Aaron, Mark EJ Newman, and Cristopher Moore.
|
||||
"Finding community structure in very large networks."
|
||||
Physical review E 70.6 (2004). <https://arxiv.org/abs/cond-mat/0408187>
|
||||
"""
|
||||
if not isinstance(communities, list):
|
||||
communities = list(communities)
|
||||
if not is_partition(G, communities):
|
||||
raise NotAPartition(G, communities)
|
||||
|
||||
directed = G.is_directed()
|
||||
if directed:
|
||||
out_degree = dict(G.out_degree(weight=weight))
|
||||
in_degree = dict(G.in_degree(weight=weight))
|
||||
m = sum(out_degree.values())
|
||||
norm = 1 / m ** 2
|
||||
else:
|
||||
out_degree = in_degree = dict(G.degree(weight=weight))
|
||||
deg_sum = sum(out_degree.values())
|
||||
m = deg_sum / 2
|
||||
norm = 1 / deg_sum ** 2
|
||||
|
||||
def community_contribution(community):
|
||||
comm = set(community)
|
||||
L_c = sum(wt for u, v, wt in G.edges(comm, data=weight, default=1) if v in comm)
|
||||
|
||||
out_degree_sum = sum(out_degree[u] for u in comm)
|
||||
in_degree_sum = sum(in_degree[u] for u in comm) if directed else out_degree_sum
|
||||
|
||||
return L_c / m - out_degree_sum * in_degree_sum * norm
|
||||
|
||||
return sum(map(community_contribution, communities))
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,127 @@
|
|||
import pytest
|
||||
from networkx import Graph, NetworkXError
|
||||
from networkx.algorithms.community.asyn_fluid import asyn_fluidc
|
||||
|
||||
|
||||
def test_exceptions():
|
||||
test = Graph()
|
||||
test.add_node("a")
|
||||
pytest.raises(NetworkXError, asyn_fluidc, test, "hi")
|
||||
pytest.raises(NetworkXError, asyn_fluidc, test, -1)
|
||||
pytest.raises(NetworkXError, asyn_fluidc, test, 3)
|
||||
test.add_node("b")
|
||||
pytest.raises(NetworkXError, asyn_fluidc, test, 1)
|
||||
|
||||
|
||||
def test_single_node():
|
||||
test = Graph()
|
||||
|
||||
test.add_node("a")
|
||||
|
||||
# ground truth
|
||||
ground_truth = {frozenset(["a"])}
|
||||
|
||||
communities = asyn_fluidc(test, 1)
|
||||
result = {frozenset(c) for c in communities}
|
||||
assert result == ground_truth
|
||||
|
||||
|
||||
def test_two_nodes():
|
||||
test = Graph()
|
||||
|
||||
test.add_edge("a", "b")
|
||||
|
||||
# ground truth
|
||||
ground_truth = {frozenset(["a"]), frozenset(["b"])}
|
||||
|
||||
communities = asyn_fluidc(test, 2)
|
||||
result = {frozenset(c) for c in communities}
|
||||
assert result == ground_truth
|
||||
|
||||
|
||||
def test_two_clique_communities():
|
||||
test = Graph()
|
||||
|
||||
# c1
|
||||
test.add_edge("a", "b")
|
||||
test.add_edge("a", "c")
|
||||
test.add_edge("b", "c")
|
||||
|
||||
# connection
|
||||
test.add_edge("c", "d")
|
||||
|
||||
# c2
|
||||
test.add_edge("d", "e")
|
||||
test.add_edge("d", "f")
|
||||
test.add_edge("f", "e")
|
||||
|
||||
# ground truth
|
||||
ground_truth = {frozenset(["a", "c", "b"]), frozenset(["e", "d", "f"])}
|
||||
|
||||
communities = asyn_fluidc(test, 2, seed=7)
|
||||
result = {frozenset(c) for c in communities}
|
||||
assert result == ground_truth
|
||||
|
||||
|
||||
def test_five_clique_ring():
|
||||
test = Graph()
|
||||
|
||||
# c1
|
||||
test.add_edge("1a", "1b")
|
||||
test.add_edge("1a", "1c")
|
||||
test.add_edge("1a", "1d")
|
||||
test.add_edge("1b", "1c")
|
||||
test.add_edge("1b", "1d")
|
||||
test.add_edge("1c", "1d")
|
||||
|
||||
# c2
|
||||
test.add_edge("2a", "2b")
|
||||
test.add_edge("2a", "2c")
|
||||
test.add_edge("2a", "2d")
|
||||
test.add_edge("2b", "2c")
|
||||
test.add_edge("2b", "2d")
|
||||
test.add_edge("2c", "2d")
|
||||
|
||||
# c3
|
||||
test.add_edge("3a", "3b")
|
||||
test.add_edge("3a", "3c")
|
||||
test.add_edge("3a", "3d")
|
||||
test.add_edge("3b", "3c")
|
||||
test.add_edge("3b", "3d")
|
||||
test.add_edge("3c", "3d")
|
||||
|
||||
# c4
|
||||
test.add_edge("4a", "4b")
|
||||
test.add_edge("4a", "4c")
|
||||
test.add_edge("4a", "4d")
|
||||
test.add_edge("4b", "4c")
|
||||
test.add_edge("4b", "4d")
|
||||
test.add_edge("4c", "4d")
|
||||
|
||||
# c5
|
||||
test.add_edge("5a", "5b")
|
||||
test.add_edge("5a", "5c")
|
||||
test.add_edge("5a", "5d")
|
||||
test.add_edge("5b", "5c")
|
||||
test.add_edge("5b", "5d")
|
||||
test.add_edge("5c", "5d")
|
||||
|
||||
# connections
|
||||
test.add_edge("1a", "2c")
|
||||
test.add_edge("2a", "3c")
|
||||
test.add_edge("3a", "4c")
|
||||
test.add_edge("4a", "5c")
|
||||
test.add_edge("5a", "1c")
|
||||
|
||||
# ground truth
|
||||
ground_truth = {
|
||||
frozenset(["1a", "1b", "1c", "1d"]),
|
||||
frozenset(["2a", "2b", "2c", "2d"]),
|
||||
frozenset(["3a", "3b", "3c", "3d"]),
|
||||
frozenset(["4a", "4b", "4c", "4d"]),
|
||||
frozenset(["5a", "5b", "5c", "5d"]),
|
||||
}
|
||||
|
||||
communities = asyn_fluidc(test, 5, seed=9)
|
||||
result = {frozenset(c) for c in communities}
|
||||
assert result == ground_truth
|
|
@ -0,0 +1,86 @@
|
|||
"""Unit tests for the :mod:`networkx.algorithms.community.centrality`
|
||||
module.
|
||||
|
||||
"""
|
||||
from operator import itemgetter
|
||||
|
||||
|
||||
import networkx as nx
|
||||
from networkx.algorithms.community import girvan_newman
|
||||
|
||||
|
||||
def set_of_sets(iterable):
|
||||
return set(map(frozenset, iterable))
|
||||
|
||||
|
||||
def validate_communities(result, expected):
|
||||
assert set_of_sets(result) == set_of_sets(expected)
|
||||
|
||||
|
||||
def validate_possible_communities(result, *expected):
|
||||
assert any(set_of_sets(result) == set_of_sets(p) for p in expected)
|
||||
|
||||
|
||||
class TestGirvanNewman:
|
||||
"""Unit tests for the
|
||||
:func:`networkx.algorithms.community.centrality.girvan_newman`
|
||||
function.
|
||||
|
||||
"""
|
||||
|
||||
def test_no_edges(self):
|
||||
G = nx.empty_graph(3)
|
||||
communities = list(girvan_newman(G))
|
||||
assert len(communities) == 1
|
||||
validate_communities(communities[0], [{0}, {1}, {2}])
|
||||
|
||||
def test_undirected(self):
|
||||
# Start with the graph .-.-.-.
|
||||
G = nx.path_graph(4)
|
||||
communities = list(girvan_newman(G))
|
||||
assert len(communities) == 3
|
||||
# After one removal, we get the graph .-. .-.
|
||||
validate_communities(communities[0], [{0, 1}, {2, 3}])
|
||||
# After the next, we get the graph .-. . ., but there are two
|
||||
# symmetric possible versions.
|
||||
validate_possible_communities(
|
||||
communities[1], [{0}, {1}, {2, 3}], [{0, 1}, {2}, {3}]
|
||||
)
|
||||
# After the last removal, we always get the empty graph.
|
||||
validate_communities(communities[2], [{0}, {1}, {2}, {3}])
|
||||
|
||||
def test_directed(self):
|
||||
G = nx.DiGraph(nx.path_graph(4))
|
||||
communities = list(girvan_newman(G))
|
||||
assert len(communities) == 3
|
||||
validate_communities(communities[0], [{0, 1}, {2, 3}])
|
||||
validate_possible_communities(
|
||||
communities[1], [{0}, {1}, {2, 3}], [{0, 1}, {2}, {3}]
|
||||
)
|
||||
validate_communities(communities[2], [{0}, {1}, {2}, {3}])
|
||||
|
||||
def test_selfloops(self):
|
||||
G = nx.path_graph(4)
|
||||
G.add_edge(0, 0)
|
||||
G.add_edge(2, 2)
|
||||
communities = list(girvan_newman(G))
|
||||
assert len(communities) == 3
|
||||
validate_communities(communities[0], [{0, 1}, {2, 3}])
|
||||
validate_possible_communities(
|
||||
communities[1], [{0}, {1}, {2, 3}], [{0, 1}, {2}, {3}]
|
||||
)
|
||||
validate_communities(communities[2], [{0}, {1}, {2}, {3}])
|
||||
|
||||
def test_most_valuable_edge(self):
|
||||
G = nx.Graph()
|
||||
G.add_weighted_edges_from([(0, 1, 3), (1, 2, 2), (2, 3, 1)])
|
||||
# Let the most valuable edge be the one with the highest weight.
|
||||
|
||||
def heaviest(G):
|
||||
return max(G.edges(data="weight"), key=itemgetter(2))[:2]
|
||||
|
||||
communities = list(girvan_newman(G, heaviest))
|
||||
assert len(communities) == 3
|
||||
validate_communities(communities[0], [{0}, {1, 2, 3}])
|
||||
validate_communities(communities[1], [{0}, {1}, {2, 3}])
|
||||
validate_communities(communities[2], [{0}, {1}, {2}, {3}])
|
|
@ -0,0 +1,92 @@
|
|||
from itertools import combinations
|
||||
|
||||
import pytest
|
||||
|
||||
import networkx as nx
|
||||
from networkx.algorithms.community import k_clique_communities
|
||||
|
||||
|
||||
def test_overlapping_K5():
|
||||
G = nx.Graph()
|
||||
G.add_edges_from(combinations(range(5), 2)) # Add a five clique
|
||||
G.add_edges_from(combinations(range(2, 7), 2)) # Add another five clique
|
||||
c = list(k_clique_communities(G, 4))
|
||||
assert c == [frozenset(range(7))]
|
||||
c = set(k_clique_communities(G, 5))
|
||||
assert c == {frozenset(range(5)), frozenset(range(2, 7))}
|
||||
|
||||
|
||||
def test_isolated_K5():
|
||||
G = nx.Graph()
|
||||
G.add_edges_from(combinations(range(0, 5), 2)) # Add a five clique
|
||||
G.add_edges_from(combinations(range(5, 10), 2)) # Add another five clique
|
||||
c = set(k_clique_communities(G, 5))
|
||||
assert c == {frozenset(range(5)), frozenset(range(5, 10))}
|
||||
|
||||
|
||||
class TestZacharyKarateClub:
|
||||
def setup(self):
|
||||
self.G = nx.karate_club_graph()
|
||||
|
||||
def _check_communities(self, k, expected):
|
||||
communities = set(k_clique_communities(self.G, k))
|
||||
assert communities == expected
|
||||
|
||||
def test_k2(self):
|
||||
# clique percolation with k=2 is just connected components
|
||||
expected = {frozenset(self.G)}
|
||||
self._check_communities(2, expected)
|
||||
|
||||
def test_k3(self):
|
||||
comm1 = [
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
7,
|
||||
8,
|
||||
12,
|
||||
13,
|
||||
14,
|
||||
15,
|
||||
17,
|
||||
18,
|
||||
19,
|
||||
20,
|
||||
21,
|
||||
22,
|
||||
23,
|
||||
26,
|
||||
27,
|
||||
28,
|
||||
29,
|
||||
30,
|
||||
31,
|
||||
32,
|
||||
33,
|
||||
]
|
||||
comm2 = [0, 4, 5, 6, 10, 16]
|
||||
comm3 = [24, 25, 31]
|
||||
expected = {frozenset(comm1), frozenset(comm2), frozenset(comm3)}
|
||||
self._check_communities(3, expected)
|
||||
|
||||
def test_k4(self):
|
||||
expected = {
|
||||
frozenset([0, 1, 2, 3, 7, 13]),
|
||||
frozenset([8, 32, 30, 33]),
|
||||
frozenset([32, 33, 29, 23]),
|
||||
}
|
||||
self._check_communities(4, expected)
|
||||
|
||||
def test_k5(self):
|
||||
expected = {frozenset([0, 1, 2, 3, 7, 13])}
|
||||
self._check_communities(5, expected)
|
||||
|
||||
def test_k6(self):
|
||||
expected = set()
|
||||
self._check_communities(6, expected)
|
||||
|
||||
|
||||
def test_bad_k():
|
||||
with pytest.raises(nx.NetworkXError):
|
||||
list(k_clique_communities(nx.Graph(), 1))
|
|
@ -0,0 +1,59 @@
|
|||
"""Unit tests for the :mod:`networkx.algorithms.community.kernighan_lin`
|
||||
module.
|
||||
|
||||
"""
|
||||
import pytest
|
||||
|
||||
import networkx as nx
|
||||
from networkx.algorithms.community import kernighan_lin_bisection
|
||||
from itertools import permutations
|
||||
|
||||
|
||||
def assert_partition_equal(x, y):
|
||||
assert set(map(frozenset, x)) == set(map(frozenset, y))
|
||||
|
||||
|
||||
def test_partition():
|
||||
G = nx.barbell_graph(3, 0)
|
||||
C = kernighan_lin_bisection(G)
|
||||
assert_partition_equal(C, [{0, 1, 2}, {3, 4, 5}])
|
||||
|
||||
|
||||
def test_partition_argument():
|
||||
G = nx.barbell_graph(3, 0)
|
||||
partition = [{0, 1, 2}, {3, 4, 5}]
|
||||
C = kernighan_lin_bisection(G, partition)
|
||||
assert_partition_equal(C, partition)
|
||||
|
||||
|
||||
def test_seed_argument():
|
||||
G = nx.barbell_graph(3, 0)
|
||||
C = kernighan_lin_bisection(G, seed=1)
|
||||
assert_partition_equal(C, [{0, 1, 2}, {3, 4, 5}])
|
||||
|
||||
|
||||
def test_non_disjoint_partition():
|
||||
with pytest.raises(nx.NetworkXError):
|
||||
G = nx.barbell_graph(3, 0)
|
||||
partition = ({0, 1, 2}, {2, 3, 4, 5})
|
||||
kernighan_lin_bisection(G, partition)
|
||||
|
||||
|
||||
def test_too_many_blocks():
|
||||
with pytest.raises(nx.NetworkXError):
|
||||
G = nx.barbell_graph(3, 0)
|
||||
partition = ({0, 1}, {2}, {3, 4, 5})
|
||||
kernighan_lin_bisection(G, partition)
|
||||
|
||||
|
||||
def test_multigraph():
|
||||
G = nx.cycle_graph(4)
|
||||
M = nx.MultiGraph(G.edges())
|
||||
M.add_edges_from(G.edges())
|
||||
M.remove_edge(1, 2)
|
||||
for labels in permutations(range(4)):
|
||||
mapping = dict(zip(M, labels))
|
||||
A, B = kernighan_lin_bisection(nx.relabel_nodes(M, mapping), seed=0)
|
||||
assert_partition_equal(
|
||||
[A, B], [{mapping[0], mapping[1]}, {mapping[2], mapping[3]}]
|
||||
)
|
|
@ -0,0 +1,154 @@
|
|||
from itertools import chain
|
||||
from itertools import combinations
|
||||
|
||||
import pytest
|
||||
|
||||
import networkx as nx
|
||||
from networkx.algorithms.community import label_propagation_communities
|
||||
from networkx.algorithms.community import asyn_lpa_communities
|
||||
|
||||
|
||||
def test_directed_not_supported():
|
||||
with pytest.raises(nx.NetworkXNotImplemented):
|
||||
# not supported for directed graphs
|
||||
test = nx.DiGraph()
|
||||
test.add_edge("a", "b")
|
||||
test.add_edge("a", "c")
|
||||
test.add_edge("b", "d")
|
||||
result = label_propagation_communities(test)
|
||||
|
||||
|
||||
def test_one_node():
|
||||
test = nx.Graph()
|
||||
test.add_node("a")
|
||||
|
||||
# The expected communities are:
|
||||
ground_truth = {frozenset(["a"])}
|
||||
|
||||
communities = label_propagation_communities(test)
|
||||
result = {frozenset(c) for c in communities}
|
||||
assert result == ground_truth
|
||||
|
||||
|
||||
def test_unconnected_communities():
|
||||
test = nx.Graph()
|
||||
# community 1
|
||||
test.add_edge("a", "c")
|
||||
test.add_edge("a", "d")
|
||||
test.add_edge("d", "c")
|
||||
# community 2
|
||||
test.add_edge("b", "e")
|
||||
test.add_edge("e", "f")
|
||||
test.add_edge("f", "b")
|
||||
|
||||
# The expected communities are:
|
||||
ground_truth = {frozenset(["a", "c", "d"]), frozenset(["b", "e", "f"])}
|
||||
|
||||
communities = label_propagation_communities(test)
|
||||
result = {frozenset(c) for c in communities}
|
||||
assert result == ground_truth
|
||||
|
||||
|
||||
def test_connected_communities():
|
||||
test = nx.Graph()
|
||||
# community 1
|
||||
test.add_edge("a", "b")
|
||||
test.add_edge("c", "a")
|
||||
test.add_edge("c", "b")
|
||||
test.add_edge("d", "a")
|
||||
test.add_edge("d", "b")
|
||||
test.add_edge("d", "c")
|
||||
test.add_edge("e", "a")
|
||||
test.add_edge("e", "b")
|
||||
test.add_edge("e", "c")
|
||||
test.add_edge("e", "d")
|
||||
# community 2
|
||||
test.add_edge("1", "2")
|
||||
test.add_edge("3", "1")
|
||||
test.add_edge("3", "2")
|
||||
test.add_edge("4", "1")
|
||||
test.add_edge("4", "2")
|
||||
test.add_edge("4", "3")
|
||||
test.add_edge("5", "1")
|
||||
test.add_edge("5", "2")
|
||||
test.add_edge("5", "3")
|
||||
test.add_edge("5", "4")
|
||||
# edge between community 1 and 2
|
||||
test.add_edge("a", "1")
|
||||
# community 3
|
||||
test.add_edge("x", "y")
|
||||
# community 4 with only a single node
|
||||
test.add_node("z")
|
||||
|
||||
# The expected communities are:
|
||||
ground_truth1 = {
|
||||
frozenset(["a", "b", "c", "d", "e"]),
|
||||
frozenset(["1", "2", "3", "4", "5"]),
|
||||
frozenset(["x", "y"]),
|
||||
frozenset(["z"]),
|
||||
}
|
||||
ground_truth2 = {
|
||||
frozenset(["a", "b", "c", "d", "e", "1", "2", "3", "4", "5"]),
|
||||
frozenset(["x", "y"]),
|
||||
frozenset(["z"]),
|
||||
}
|
||||
ground_truth = (ground_truth1, ground_truth2)
|
||||
|
||||
communities = label_propagation_communities(test)
|
||||
result = {frozenset(c) for c in communities}
|
||||
assert result in ground_truth
|
||||
|
||||
|
||||
def test_termination():
|
||||
# ensure termination of asyn_lpa_communities in two cases
|
||||
# that led to an endless loop in a previous version
|
||||
test1 = nx.karate_club_graph()
|
||||
test2 = nx.caveman_graph(2, 10)
|
||||
test2.add_edges_from([(0, 20), (20, 10)])
|
||||
asyn_lpa_communities(test1)
|
||||
asyn_lpa_communities(test2)
|
||||
|
||||
|
||||
class TestAsynLpaCommunities:
|
||||
def _check_communities(self, G, expected):
|
||||
"""Checks that the communities computed from the given graph ``G``
|
||||
using the :func:`~networkx.asyn_lpa_communities` function match
|
||||
the set of nodes given in ``expected``.
|
||||
|
||||
``expected`` must be a :class:`set` of :class:`frozenset`
|
||||
instances, each element of which is a node in the graph.
|
||||
|
||||
"""
|
||||
communities = asyn_lpa_communities(G)
|
||||
result = {frozenset(c) for c in communities}
|
||||
assert result == expected
|
||||
|
||||
def test_null_graph(self):
|
||||
G = nx.null_graph()
|
||||
ground_truth = set()
|
||||
self._check_communities(G, ground_truth)
|
||||
|
||||
def test_single_node(self):
|
||||
G = nx.empty_graph(1)
|
||||
ground_truth = {frozenset([0])}
|
||||
self._check_communities(G, ground_truth)
|
||||
|
||||
def test_simple_communities(self):
|
||||
# This graph is the disjoint union of two triangles.
|
||||
G = nx.Graph(["ab", "ac", "bc", "de", "df", "fe"])
|
||||
ground_truth = {frozenset("abc"), frozenset("def")}
|
||||
self._check_communities(G, ground_truth)
|
||||
|
||||
def test_seed_argument(self):
|
||||
G = nx.Graph(["ab", "ac", "bc", "de", "df", "fe"])
|
||||
ground_truth = {frozenset("abc"), frozenset("def")}
|
||||
communities = asyn_lpa_communities(G, seed=1)
|
||||
result = {frozenset(c) for c in communities}
|
||||
assert result == ground_truth
|
||||
|
||||
def test_several_communities(self):
|
||||
# This graph is the disjoint union of five triangles.
|
||||
ground_truth = {frozenset(range(3 * i, 3 * (i + 1))) for i in range(5)}
|
||||
edges = chain.from_iterable(combinations(c, 2) for c in ground_truth)
|
||||
G = nx.Graph(edges)
|
||||
self._check_communities(G, ground_truth)
|
|
@ -0,0 +1,154 @@
|
|||
from itertools import product
|
||||
|
||||
import pytest
|
||||
|
||||
import networkx as nx
|
||||
from networkx.algorithms.community import lukes_partitioning
|
||||
|
||||
EWL = "e_weight"
|
||||
NWL = "n_weight"
|
||||
|
||||
|
||||
# first test from the Lukes original paper
|
||||
def paper_1_case(float_edge_wt=False, explicit_node_wt=True, directed=False):
|
||||
|
||||
# problem-specific constants
|
||||
limit = 3
|
||||
|
||||
# configuration
|
||||
if float_edge_wt:
|
||||
shift = 0.001
|
||||
else:
|
||||
shift = 0
|
||||
|
||||
if directed:
|
||||
example_1 = nx.DiGraph()
|
||||
else:
|
||||
example_1 = nx.Graph()
|
||||
|
||||
# graph creation
|
||||
example_1.add_edge(1, 2, **{EWL: 3 + shift})
|
||||
example_1.add_edge(1, 4, **{EWL: 2 + shift})
|
||||
example_1.add_edge(2, 3, **{EWL: 4 + shift})
|
||||
example_1.add_edge(2, 5, **{EWL: 6 + shift})
|
||||
|
||||
# node weights
|
||||
if explicit_node_wt:
|
||||
nx.set_node_attributes(example_1, 1, NWL)
|
||||
wtu = NWL
|
||||
else:
|
||||
wtu = None
|
||||
|
||||
# partitioning
|
||||
clusters_1 = {
|
||||
frozenset(x)
|
||||
for x in lukes_partitioning(example_1, limit, node_weight=wtu, edge_weight=EWL)
|
||||
}
|
||||
|
||||
return clusters_1
|
||||
|
||||
|
||||
# second test from the Lukes original paper
|
||||
def paper_2_case(explicit_edge_wt=True, directed=False):
|
||||
|
||||
# problem specific constants
|
||||
byte_block_size = 32
|
||||
|
||||
# configuration
|
||||
if directed:
|
||||
example_2 = nx.DiGraph()
|
||||
else:
|
||||
example_2 = nx.Graph()
|
||||
|
||||
if explicit_edge_wt:
|
||||
edic = {EWL: 1}
|
||||
wtu = EWL
|
||||
else:
|
||||
edic = {}
|
||||
wtu = None
|
||||
|
||||
# graph creation
|
||||
example_2.add_edge("name", "home_address", **edic)
|
||||
example_2.add_edge("name", "education", **edic)
|
||||
example_2.add_edge("education", "bs", **edic)
|
||||
example_2.add_edge("education", "ms", **edic)
|
||||
example_2.add_edge("education", "phd", **edic)
|
||||
example_2.add_edge("name", "telephone", **edic)
|
||||
example_2.add_edge("telephone", "home", **edic)
|
||||
example_2.add_edge("telephone", "office", **edic)
|
||||
example_2.add_edge("office", "no1", **edic)
|
||||
example_2.add_edge("office", "no2", **edic)
|
||||
|
||||
example_2.nodes["name"][NWL] = 20
|
||||
example_2.nodes["education"][NWL] = 10
|
||||
example_2.nodes["bs"][NWL] = 1
|
||||
example_2.nodes["ms"][NWL] = 1
|
||||
example_2.nodes["phd"][NWL] = 1
|
||||
example_2.nodes["home_address"][NWL] = 8
|
||||
example_2.nodes["telephone"][NWL] = 8
|
||||
example_2.nodes["home"][NWL] = 8
|
||||
example_2.nodes["office"][NWL] = 4
|
||||
example_2.nodes["no1"][NWL] = 1
|
||||
example_2.nodes["no2"][NWL] = 1
|
||||
|
||||
# partitioning
|
||||
clusters_2 = {
|
||||
frozenset(x)
|
||||
for x in lukes_partitioning(
|
||||
example_2, byte_block_size, node_weight=NWL, edge_weight=wtu
|
||||
)
|
||||
}
|
||||
|
||||
return clusters_2
|
||||
|
||||
|
||||
def test_paper_1_case():
|
||||
ground_truth = {frozenset([1, 4]), frozenset([2, 3, 5])}
|
||||
|
||||
tf = (True, False)
|
||||
for flt, nwt, drc in product(tf, tf, tf):
|
||||
part = paper_1_case(flt, nwt, drc)
|
||||
assert part == ground_truth
|
||||
|
||||
|
||||
def test_paper_2_case():
|
||||
ground_truth = {
|
||||
frozenset(["education", "bs", "ms", "phd"]),
|
||||
frozenset(["name", "home_address"]),
|
||||
frozenset(["telephone", "home", "office", "no1", "no2"]),
|
||||
}
|
||||
|
||||
tf = (True, False)
|
||||
for ewt, drc in product(tf, tf):
|
||||
part = paper_2_case(ewt, drc)
|
||||
assert part == ground_truth
|
||||
|
||||
|
||||
def test_mandatory_tree():
|
||||
not_a_tree = nx.complete_graph(4)
|
||||
|
||||
with pytest.raises(nx.NotATree):
|
||||
lukes_partitioning(not_a_tree, 5)
|
||||
|
||||
|
||||
def test_mandatory_integrality():
|
||||
|
||||
byte_block_size = 32
|
||||
|
||||
ex_1_broken = nx.DiGraph()
|
||||
|
||||
ex_1_broken.add_edge(1, 2, **{EWL: 3.2})
|
||||
ex_1_broken.add_edge(1, 4, **{EWL: 2.4})
|
||||
ex_1_broken.add_edge(2, 3, **{EWL: 4.0})
|
||||
ex_1_broken.add_edge(2, 5, **{EWL: 6.3})
|
||||
|
||||
ex_1_broken.nodes[1][NWL] = 1.2 # !
|
||||
ex_1_broken.nodes[2][NWL] = 1
|
||||
ex_1_broken.nodes[3][NWL] = 1
|
||||
ex_1_broken.nodes[4][NWL] = 1
|
||||
ex_1_broken.nodes[5][NWL] = 2
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
lukes_partitioning(
|
||||
ex_1_broken, byte_block_size, node_weight=NWL, edge_weight=EWL
|
||||
)
|
|
@ -0,0 +1,39 @@
|
|||
import networkx as nx
|
||||
from networkx.algorithms.community import (
|
||||
greedy_modularity_communities,
|
||||
naive_greedy_modularity_communities,
|
||||
)
|
||||
|
||||
|
||||
class TestCNM:
|
||||
def setup(self):
|
||||
self.G = nx.karate_club_graph()
|
||||
|
||||
def _check_communities(self, expected):
|
||||
communities = set(greedy_modularity_communities(self.G))
|
||||
assert communities == expected
|
||||
|
||||
def test_karate_club(self):
|
||||
john_a = frozenset(
|
||||
[8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]
|
||||
)
|
||||
mr_hi = frozenset([0, 4, 5, 6, 10, 11, 16, 19])
|
||||
overlap = frozenset([1, 2, 3, 7, 9, 12, 13, 17, 21])
|
||||
self._check_communities({john_a, overlap, mr_hi})
|
||||
|
||||
|
||||
class TestNaive:
|
||||
def setup(self):
|
||||
self.G = nx.karate_club_graph()
|
||||
|
||||
def _check_communities(self, expected):
|
||||
communities = set(naive_greedy_modularity_communities(self.G))
|
||||
assert communities == expected
|
||||
|
||||
def test_karate_club(self):
|
||||
john_a = frozenset(
|
||||
[8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]
|
||||
)
|
||||
mr_hi = frozenset([0, 4, 5, 6, 10, 11, 16, 19])
|
||||
overlap = frozenset([1, 2, 3, 7, 9, 12, 13, 17, 21])
|
||||
self._check_communities({john_a, overlap, mr_hi})
|
|
@ -0,0 +1,84 @@
|
|||
"""Unit tests for the :mod:`networkx.algorithms.community.quality`
|
||||
module.
|
||||
|
||||
"""
|
||||
|
||||
import networkx as nx
|
||||
from networkx import barbell_graph
|
||||
from networkx.algorithms.community import coverage
|
||||
from networkx.algorithms.community import modularity
|
||||
from networkx.algorithms.community import performance
|
||||
from networkx.algorithms.community.quality import inter_community_edges
|
||||
from networkx.testing import almost_equal
|
||||
|
||||
|
||||
class TestPerformance:
|
||||
"""Unit tests for the :func:`performance` function."""
|
||||
|
||||
def test_bad_partition(self):
|
||||
"""Tests that a poor partition has a low performance measure."""
|
||||
G = barbell_graph(3, 0)
|
||||
partition = [{0, 1, 4}, {2, 3, 5}]
|
||||
assert almost_equal(8 / 15, performance(G, partition))
|
||||
|
||||
def test_good_partition(self):
|
||||
"""Tests that a good partition has a high performance measure.
|
||||
|
||||
"""
|
||||
G = barbell_graph(3, 0)
|
||||
partition = [{0, 1, 2}, {3, 4, 5}]
|
||||
assert almost_equal(14 / 15, performance(G, partition))
|
||||
|
||||
|
||||
class TestCoverage:
|
||||
"""Unit tests for the :func:`coverage` function."""
|
||||
|
||||
def test_bad_partition(self):
|
||||
"""Tests that a poor partition has a low coverage measure."""
|
||||
G = barbell_graph(3, 0)
|
||||
partition = [{0, 1, 4}, {2, 3, 5}]
|
||||
assert almost_equal(3 / 7, coverage(G, partition))
|
||||
|
||||
def test_good_partition(self):
|
||||
"""Tests that a good partition has a high coverage measure."""
|
||||
G = barbell_graph(3, 0)
|
||||
partition = [{0, 1, 2}, {3, 4, 5}]
|
||||
assert almost_equal(6 / 7, coverage(G, partition))
|
||||
|
||||
|
||||
def test_modularity():
|
||||
G = nx.barbell_graph(3, 0)
|
||||
C = [{0, 1, 4}, {2, 3, 5}]
|
||||
assert almost_equal(-16 / (14 ** 2), modularity(G, C))
|
||||
C = [{0, 1, 2}, {3, 4, 5}]
|
||||
assert almost_equal((35 * 2) / (14 ** 2), modularity(G, C))
|
||||
|
||||
n = 1000
|
||||
G = nx.erdos_renyi_graph(n, 0.09, seed=42, directed=True)
|
||||
C = [set(range(n // 2)), set(range(n // 2, n))]
|
||||
assert almost_equal(0.00017154251389292754, modularity(G, C))
|
||||
|
||||
G = nx.margulis_gabber_galil_graph(10)
|
||||
mid_value = G.number_of_nodes() // 2
|
||||
nodes = list(G.nodes)
|
||||
C = [set(nodes[:mid_value]), set(nodes[mid_value:])]
|
||||
assert almost_equal(0.13, modularity(G, C))
|
||||
|
||||
G = nx.DiGraph()
|
||||
G.add_edges_from([(2, 1), (2, 3), (3, 4)])
|
||||
C = [{1, 2}, {3, 4}]
|
||||
assert almost_equal(2 / 9, modularity(G, C))
|
||||
|
||||
|
||||
def test_inter_community_edges_with_digraphs():
|
||||
G = nx.complete_graph(2, create_using=nx.DiGraph())
|
||||
partition = [{0}, {1}]
|
||||
assert inter_community_edges(G, partition) == 2
|
||||
|
||||
G = nx.complete_graph(10, create_using=nx.DiGraph())
|
||||
partition = [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}]
|
||||
assert inter_community_edges(G, partition) == 70
|
||||
|
||||
G = nx.cycle_graph(4, create_using=nx.DiGraph())
|
||||
partition = [{0, 1}, {2, 3}]
|
||||
assert inter_community_edges(G, partition) == 2
|
|
@ -0,0 +1,29 @@
|
|||
"""Unit tests for the :mod:`networkx.algorithms.community.utils` module.
|
||||
|
||||
"""
|
||||
|
||||
import networkx as nx
|
||||
from networkx.algorithms.community import is_partition
|
||||
|
||||
|
||||
def test_is_partition():
|
||||
G = nx.empty_graph(3)
|
||||
assert is_partition(G, [{0, 1}, {2}])
|
||||
assert is_partition(G, ({0, 1}, {2}))
|
||||
assert is_partition(G, ([0, 1], [2]))
|
||||
assert is_partition(G, [[0, 1], [2]])
|
||||
|
||||
|
||||
def test_not_covering():
|
||||
G = nx.empty_graph(3)
|
||||
assert not is_partition(G, [{0}, {1}])
|
||||
|
||||
|
||||
def test_not_disjoint():
|
||||
G = nx.empty_graph(3)
|
||||
assert not is_partition(G, [{0, 1}, {1, 2}])
|
||||
|
||||
|
||||
def test_not_node():
|
||||
G = nx.empty_graph(3)
|
||||
assert not is_partition(G, [{0, 1}, {3}])
|
Loading…
Add table
Add a link
Reference in a new issue