Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
|
@ -0,0 +1,63 @@
|
|||
"""Functions for computing the harmonic centrality of a graph."""
|
||||
from functools import partial
|
||||
|
||||
import networkx as nx
|
||||
|
||||
__all__ = ["harmonic_centrality"]
|
||||
|
||||
|
||||
def harmonic_centrality(G, nbunch=None, distance=None):
|
||||
r"""Compute harmonic centrality for nodes.
|
||||
|
||||
Harmonic centrality [1]_ of a node `u` is the sum of the reciprocal
|
||||
of the shortest path distances from all other nodes to `u`
|
||||
|
||||
.. math::
|
||||
|
||||
C(u) = \sum_{v \neq u} \frac{1}{d(v, u)}
|
||||
|
||||
where `d(v, u)` is the shortest-path distance between `v` and `u`.
|
||||
|
||||
Notice that higher values indicate higher centrality.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : graph
|
||||
A NetworkX graph
|
||||
|
||||
nbunch : container
|
||||
Container of nodes. If provided harmonic centrality will be computed
|
||||
only over the nodes in nbunch.
|
||||
|
||||
distance : edge attribute key, optional (default=None)
|
||||
Use the specified edge attribute as the edge distance in shortest
|
||||
path calculations. If `None`, then each edge will have distance equal to 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
nodes : dictionary
|
||||
Dictionary of nodes with harmonic centrality as the value.
|
||||
|
||||
See Also
|
||||
--------
|
||||
betweenness_centrality, load_centrality, eigenvector_centrality,
|
||||
degree_centrality, closeness_centrality
|
||||
|
||||
Notes
|
||||
-----
|
||||
If the 'distance' keyword is set to an edge attribute key then the
|
||||
shortest-path length will be computed using Dijkstra's algorithm with
|
||||
that edge attribute as the edge weight.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Boldi, Paolo, and Sebastiano Vigna. "Axioms for centrality."
|
||||
Internet Mathematics 10.3-4 (2014): 222-262.
|
||||
"""
|
||||
if G.is_directed():
|
||||
G = G.reverse()
|
||||
spl = partial(nx.shortest_path_length, G, weight=distance)
|
||||
return {
|
||||
u: sum(1 / d if d > 0 else 0 for v, d in spl(source=u).items())
|
||||
for u in G.nbunch_iter(nbunch)
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue