Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
|
@ -0,0 +1,392 @@
|
|||
"""Betweenness centrality measures."""
|
||||
from heapq import heappush, heappop
|
||||
from itertools import count
|
||||
import warnings
|
||||
|
||||
from networkx.utils import py_random_state
|
||||
from networkx.utils.decorators import not_implemented_for
|
||||
|
||||
__all__ = ["betweenness_centrality", "edge_betweenness_centrality", "edge_betweenness"]
|
||||
|
||||
|
||||
@py_random_state(5)
|
||||
@not_implemented_for("multigraph")
|
||||
def betweenness_centrality(
|
||||
G, k=None, normalized=True, weight=None, endpoints=False, seed=None
|
||||
):
|
||||
r"""Compute the shortest-path betweenness centrality for nodes.
|
||||
|
||||
Betweenness centrality of a node $v$ is the sum of the
|
||||
fraction of all-pairs shortest paths that pass through $v$
|
||||
|
||||
.. math::
|
||||
|
||||
c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}
|
||||
|
||||
where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
|
||||
shortest $(s, t)$-paths, and $\sigma(s, t|v)$ is the number of
|
||||
those paths passing through some node $v$ other than $s, t$.
|
||||
If $s = t$, $\sigma(s, t) = 1$, and if $v \in {s, t}$,
|
||||
$\sigma(s, t|v) = 0$ [2]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : graph
|
||||
A NetworkX graph.
|
||||
|
||||
k : int, optional (default=None)
|
||||
If k is not None use k node samples to estimate betweenness.
|
||||
The value of k <= n where n is the number of nodes in the graph.
|
||||
Higher values give better approximation.
|
||||
|
||||
normalized : bool, optional
|
||||
If True the betweenness values are normalized by `2/((n-1)(n-2))`
|
||||
for graphs, and `1/((n-1)(n-2))` for directed graphs where `n`
|
||||
is the number of nodes in G.
|
||||
|
||||
weight : None or string, optional (default=None)
|
||||
If None, all edge weights are considered equal.
|
||||
Otherwise holds the name of the edge attribute used as weight.
|
||||
|
||||
endpoints : bool, optional
|
||||
If True include the endpoints in the shortest path counts.
|
||||
|
||||
seed : integer, random_state, or None (default)
|
||||
Indicator of random number generation state.
|
||||
See :ref:`Randomness<randomness>`.
|
||||
Note that this is only used if k is not None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
nodes : dictionary
|
||||
Dictionary of nodes with betweenness centrality as the value.
|
||||
|
||||
See Also
|
||||
--------
|
||||
edge_betweenness_centrality
|
||||
load_centrality
|
||||
|
||||
Notes
|
||||
-----
|
||||
The algorithm is from Ulrik Brandes [1]_.
|
||||
See [4]_ for the original first published version and [2]_ for details on
|
||||
algorithms for variations and related metrics.
|
||||
|
||||
For approximate betweenness calculations set k=#samples to use
|
||||
k nodes ("pivots") to estimate the betweenness values. For an estimate
|
||||
of the number of pivots needed see [3]_.
|
||||
|
||||
For weighted graphs the edge weights must be greater than zero.
|
||||
Zero edge weights can produce an infinite number of equal length
|
||||
paths between pairs of nodes.
|
||||
|
||||
The total number of paths between source and target is counted
|
||||
differently for directed and undirected graphs. Directed paths
|
||||
are easy to count. Undirected paths are tricky: should a path
|
||||
from "u" to "v" count as 1 undirected path or as 2 directed paths?
|
||||
|
||||
For betweenness_centrality we report the number of undirected
|
||||
paths when G is undirected.
|
||||
|
||||
For betweenness_centrality_subset the reporting is different.
|
||||
If the source and target subsets are the same, then we want
|
||||
to count undirected paths. But if the source and target subsets
|
||||
differ -- for example, if sources is {0} and targets is {1},
|
||||
then we are only counting the paths in one direction. They are
|
||||
undirected paths but we are counting them in a directed way.
|
||||
To count them as undirected paths, each should count as half a path.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Ulrik Brandes:
|
||||
A Faster Algorithm for Betweenness Centrality.
|
||||
Journal of Mathematical Sociology 25(2):163-177, 2001.
|
||||
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
|
||||
.. [2] Ulrik Brandes:
|
||||
On Variants of Shortest-Path Betweenness
|
||||
Centrality and their Generic Computation.
|
||||
Social Networks 30(2):136-145, 2008.
|
||||
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf
|
||||
.. [3] Ulrik Brandes and Christian Pich:
|
||||
Centrality Estimation in Large Networks.
|
||||
International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007.
|
||||
http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf
|
||||
.. [4] Linton C. Freeman:
|
||||
A set of measures of centrality based on betweenness.
|
||||
Sociometry 40: 35–41, 1977
|
||||
http://moreno.ss.uci.edu/23.pdf
|
||||
"""
|
||||
betweenness = dict.fromkeys(G, 0.0) # b[v]=0 for v in G
|
||||
if k is None:
|
||||
nodes = G
|
||||
else:
|
||||
nodes = seed.sample(G.nodes(), k)
|
||||
for s in nodes:
|
||||
# single source shortest paths
|
||||
if weight is None: # use BFS
|
||||
S, P, sigma = _single_source_shortest_path_basic(G, s)
|
||||
else: # use Dijkstra's algorithm
|
||||
S, P, sigma = _single_source_dijkstra_path_basic(G, s, weight)
|
||||
# accumulation
|
||||
if endpoints:
|
||||
betweenness = _accumulate_endpoints(betweenness, S, P, sigma, s)
|
||||
else:
|
||||
betweenness = _accumulate_basic(betweenness, S, P, sigma, s)
|
||||
# rescaling
|
||||
betweenness = _rescale(
|
||||
betweenness,
|
||||
len(G),
|
||||
normalized=normalized,
|
||||
directed=G.is_directed(),
|
||||
k=k,
|
||||
endpoints=endpoints,
|
||||
)
|
||||
return betweenness
|
||||
|
||||
|
||||
@py_random_state(4)
|
||||
def edge_betweenness_centrality(G, k=None, normalized=True, weight=None, seed=None):
|
||||
r"""Compute betweenness centrality for edges.
|
||||
|
||||
Betweenness centrality of an edge $e$ is the sum of the
|
||||
fraction of all-pairs shortest paths that pass through $e$
|
||||
|
||||
.. math::
|
||||
|
||||
c_B(e) =\sum_{s,t \in V} \frac{\sigma(s, t|e)}{\sigma(s, t)}
|
||||
|
||||
where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
|
||||
shortest $(s, t)$-paths, and $\sigma(s, t|e)$ is the number of
|
||||
those paths passing through edge $e$ [2]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : graph
|
||||
A NetworkX graph.
|
||||
|
||||
k : int, optional (default=None)
|
||||
If k is not None use k node samples to estimate betweenness.
|
||||
The value of k <= n where n is the number of nodes in the graph.
|
||||
Higher values give better approximation.
|
||||
|
||||
normalized : bool, optional
|
||||
If True the betweenness values are normalized by $2/(n(n-1))$
|
||||
for graphs, and $1/(n(n-1))$ for directed graphs where $n$
|
||||
is the number of nodes in G.
|
||||
|
||||
weight : None or string, optional (default=None)
|
||||
If None, all edge weights are considered equal.
|
||||
Otherwise holds the name of the edge attribute used as weight.
|
||||
|
||||
seed : integer, random_state, or None (default)
|
||||
Indicator of random number generation state.
|
||||
See :ref:`Randomness<randomness>`.
|
||||
Note that this is only used if k is not None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
edges : dictionary
|
||||
Dictionary of edges with betweenness centrality as the value.
|
||||
|
||||
See Also
|
||||
--------
|
||||
betweenness_centrality
|
||||
edge_load
|
||||
|
||||
Notes
|
||||
-----
|
||||
The algorithm is from Ulrik Brandes [1]_.
|
||||
|
||||
For weighted graphs the edge weights must be greater than zero.
|
||||
Zero edge weights can produce an infinite number of equal length
|
||||
paths between pairs of nodes.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] A Faster Algorithm for Betweenness Centrality. Ulrik Brandes,
|
||||
Journal of Mathematical Sociology 25(2):163-177, 2001.
|
||||
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
|
||||
.. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness
|
||||
Centrality and their Generic Computation.
|
||||
Social Networks 30(2):136-145, 2008.
|
||||
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf
|
||||
"""
|
||||
betweenness = dict.fromkeys(G, 0.0) # b[v]=0 for v in G
|
||||
# b[e]=0 for e in G.edges()
|
||||
betweenness.update(dict.fromkeys(G.edges(), 0.0))
|
||||
if k is None:
|
||||
nodes = G
|
||||
else:
|
||||
nodes = seed.sample(G.nodes(), k)
|
||||
for s in nodes:
|
||||
# single source shortest paths
|
||||
if weight is None: # use BFS
|
||||
S, P, sigma = _single_source_shortest_path_basic(G, s)
|
||||
else: # use Dijkstra's algorithm
|
||||
S, P, sigma = _single_source_dijkstra_path_basic(G, s, weight)
|
||||
# accumulation
|
||||
betweenness = _accumulate_edges(betweenness, S, P, sigma, s)
|
||||
# rescaling
|
||||
for n in G: # remove nodes to only return edges
|
||||
del betweenness[n]
|
||||
betweenness = _rescale_e(
|
||||
betweenness, len(G), normalized=normalized, directed=G.is_directed()
|
||||
)
|
||||
return betweenness
|
||||
|
||||
|
||||
# obsolete name
|
||||
def edge_betweenness(G, k=None, normalized=True, weight=None, seed=None):
|
||||
warnings.warn(
|
||||
"edge_betweeness is replaced by edge_betweenness_centrality", DeprecationWarning
|
||||
)
|
||||
return edge_betweenness_centrality(G, k, normalized, weight, seed)
|
||||
|
||||
|
||||
# helpers for betweenness centrality
|
||||
|
||||
|
||||
def _single_source_shortest_path_basic(G, s):
|
||||
S = []
|
||||
P = {}
|
||||
for v in G:
|
||||
P[v] = []
|
||||
sigma = dict.fromkeys(G, 0.0) # sigma[v]=0 for v in G
|
||||
D = {}
|
||||
sigma[s] = 1.0
|
||||
D[s] = 0
|
||||
Q = [s]
|
||||
while Q: # use BFS to find shortest paths
|
||||
v = Q.pop(0)
|
||||
S.append(v)
|
||||
Dv = D[v]
|
||||
sigmav = sigma[v]
|
||||
for w in G[v]:
|
||||
if w not in D:
|
||||
Q.append(w)
|
||||
D[w] = Dv + 1
|
||||
if D[w] == Dv + 1: # this is a shortest path, count paths
|
||||
sigma[w] += sigmav
|
||||
P[w].append(v) # predecessors
|
||||
return S, P, sigma
|
||||
|
||||
|
||||
def _single_source_dijkstra_path_basic(G, s, weight):
|
||||
# modified from Eppstein
|
||||
S = []
|
||||
P = {}
|
||||
for v in G:
|
||||
P[v] = []
|
||||
sigma = dict.fromkeys(G, 0.0) # sigma[v]=0 for v in G
|
||||
D = {}
|
||||
sigma[s] = 1.0
|
||||
push = heappush
|
||||
pop = heappop
|
||||
seen = {s: 0}
|
||||
c = count()
|
||||
Q = [] # use Q as heap with (distance,node id) tuples
|
||||
push(Q, (0, next(c), s, s))
|
||||
while Q:
|
||||
(dist, _, pred, v) = pop(Q)
|
||||
if v in D:
|
||||
continue # already searched this node.
|
||||
sigma[v] += sigma[pred] # count paths
|
||||
S.append(v)
|
||||
D[v] = dist
|
||||
for w, edgedata in G[v].items():
|
||||
vw_dist = dist + edgedata.get(weight, 1)
|
||||
if w not in D and (w not in seen or vw_dist < seen[w]):
|
||||
seen[w] = vw_dist
|
||||
push(Q, (vw_dist, next(c), v, w))
|
||||
sigma[w] = 0.0
|
||||
P[w] = [v]
|
||||
elif vw_dist == seen[w]: # handle equal paths
|
||||
sigma[w] += sigma[v]
|
||||
P[w].append(v)
|
||||
return S, P, sigma
|
||||
|
||||
|
||||
def _accumulate_basic(betweenness, S, P, sigma, s):
|
||||
delta = dict.fromkeys(S, 0)
|
||||
while S:
|
||||
w = S.pop()
|
||||
coeff = (1 + delta[w]) / sigma[w]
|
||||
for v in P[w]:
|
||||
delta[v] += sigma[v] * coeff
|
||||
if w != s:
|
||||
betweenness[w] += delta[w]
|
||||
return betweenness
|
||||
|
||||
|
||||
def _accumulate_endpoints(betweenness, S, P, sigma, s):
|
||||
betweenness[s] += len(S) - 1
|
||||
delta = dict.fromkeys(S, 0)
|
||||
while S:
|
||||
w = S.pop()
|
||||
coeff = (1 + delta[w]) / sigma[w]
|
||||
for v in P[w]:
|
||||
delta[v] += sigma[v] * coeff
|
||||
if w != s:
|
||||
betweenness[w] += delta[w] + 1
|
||||
return betweenness
|
||||
|
||||
|
||||
def _accumulate_edges(betweenness, S, P, sigma, s):
|
||||
delta = dict.fromkeys(S, 0)
|
||||
while S:
|
||||
w = S.pop()
|
||||
coeff = (1 + delta[w]) / sigma[w]
|
||||
for v in P[w]:
|
||||
c = sigma[v] * coeff
|
||||
if (v, w) not in betweenness:
|
||||
betweenness[(w, v)] += c
|
||||
else:
|
||||
betweenness[(v, w)] += c
|
||||
delta[v] += c
|
||||
if w != s:
|
||||
betweenness[w] += delta[w]
|
||||
return betweenness
|
||||
|
||||
|
||||
def _rescale(betweenness, n, normalized, directed=False, k=None, endpoints=False):
|
||||
if normalized:
|
||||
if endpoints:
|
||||
if n < 2:
|
||||
scale = None # no normalization
|
||||
else:
|
||||
# Scale factor should include endpoint nodes
|
||||
scale = 1 / (n * (n - 1))
|
||||
elif n <= 2:
|
||||
scale = None # no normalization b=0 for all nodes
|
||||
else:
|
||||
scale = 1 / ((n - 1) * (n - 2))
|
||||
else: # rescale by 2 for undirected graphs
|
||||
if not directed:
|
||||
scale = 0.5
|
||||
else:
|
||||
scale = None
|
||||
if scale is not None:
|
||||
if k is not None:
|
||||
scale = scale * n / k
|
||||
for v in betweenness:
|
||||
betweenness[v] *= scale
|
||||
return betweenness
|
||||
|
||||
|
||||
def _rescale_e(betweenness, n, normalized, directed=False, k=None):
|
||||
if normalized:
|
||||
if n <= 1:
|
||||
scale = None # no normalization b=0 for all nodes
|
||||
else:
|
||||
scale = 1 / (n * (n - 1))
|
||||
else: # rescale by 2 for undirected graphs
|
||||
if not directed:
|
||||
scale = 0.5
|
||||
else:
|
||||
scale = None
|
||||
if scale is not None:
|
||||
if k is not None:
|
||||
scale = scale * n / k
|
||||
for v in betweenness:
|
||||
betweenness[v] *= scale
|
||||
return betweenness
|
Loading…
Add table
Add a link
Reference in a new issue