Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
|
@ -0,0 +1,516 @@
|
|||
"""One-mode (unipartite) projections of bipartite graphs."""
|
||||
import networkx as nx
|
||||
from networkx.utils import not_implemented_for
|
||||
|
||||
__all__ = [
|
||||
"project",
|
||||
"projected_graph",
|
||||
"weighted_projected_graph",
|
||||
"collaboration_weighted_projected_graph",
|
||||
"overlap_weighted_projected_graph",
|
||||
"generic_weighted_projected_graph",
|
||||
]
|
||||
|
||||
|
||||
def projected_graph(B, nodes, multigraph=False):
|
||||
r"""Returns the projection of B onto one of its node sets.
|
||||
|
||||
Returns the graph G that is the projection of the bipartite graph B
|
||||
onto the specified nodes. They retain their attributes and are connected
|
||||
in G if they have a common neighbor in B.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
B : NetworkX graph
|
||||
The input graph should be bipartite.
|
||||
|
||||
nodes : list or iterable
|
||||
Nodes to project onto (the "bottom" nodes).
|
||||
|
||||
multigraph: bool (default=False)
|
||||
If True return a multigraph where the multiple edges represent multiple
|
||||
shared neighbors. They edge key in the multigraph is assigned to the
|
||||
label of the neighbor.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Graph : NetworkX graph or multigraph
|
||||
A graph that is the projection onto the given nodes.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from networkx.algorithms import bipartite
|
||||
>>> B = nx.path_graph(4)
|
||||
>>> G = bipartite.projected_graph(B, [1, 3])
|
||||
>>> list(G)
|
||||
[1, 3]
|
||||
>>> list(G.edges())
|
||||
[(1, 3)]
|
||||
|
||||
If nodes `a`, and `b` are connected through both nodes 1 and 2 then
|
||||
building a multigraph results in two edges in the projection onto
|
||||
[`a`, `b`]:
|
||||
|
||||
>>> B = nx.Graph()
|
||||
>>> B.add_edges_from([("a", 1), ("b", 1), ("a", 2), ("b", 2)])
|
||||
>>> G = bipartite.projected_graph(B, ["a", "b"], multigraph=True)
|
||||
>>> print([sorted((u, v)) for u, v in G.edges()])
|
||||
[['a', 'b'], ['a', 'b']]
|
||||
|
||||
Notes
|
||||
-----
|
||||
No attempt is made to verify that the input graph B is bipartite.
|
||||
Returns a simple graph that is the projection of the bipartite graph B
|
||||
onto the set of nodes given in list nodes. If multigraph=True then
|
||||
a multigraph is returned with an edge for every shared neighbor.
|
||||
|
||||
Directed graphs are allowed as input. The output will also then
|
||||
be a directed graph with edges if there is a directed path between
|
||||
the nodes.
|
||||
|
||||
The graph and node properties are (shallow) copied to the projected graph.
|
||||
|
||||
See :mod:`bipartite documentation <networkx.algorithms.bipartite>`
|
||||
for further details on how bipartite graphs are handled in NetworkX.
|
||||
|
||||
See Also
|
||||
--------
|
||||
is_bipartite,
|
||||
is_bipartite_node_set,
|
||||
sets,
|
||||
weighted_projected_graph,
|
||||
collaboration_weighted_projected_graph,
|
||||
overlap_weighted_projected_graph,
|
||||
generic_weighted_projected_graph
|
||||
"""
|
||||
if B.is_multigraph():
|
||||
raise nx.NetworkXError("not defined for multigraphs")
|
||||
if B.is_directed():
|
||||
directed = True
|
||||
if multigraph:
|
||||
G = nx.MultiDiGraph()
|
||||
else:
|
||||
G = nx.DiGraph()
|
||||
else:
|
||||
directed = False
|
||||
if multigraph:
|
||||
G = nx.MultiGraph()
|
||||
else:
|
||||
G = nx.Graph()
|
||||
G.graph.update(B.graph)
|
||||
G.add_nodes_from((n, B.nodes[n]) for n in nodes)
|
||||
for u in nodes:
|
||||
nbrs2 = {v for nbr in B[u] for v in B[nbr] if v != u}
|
||||
if multigraph:
|
||||
for n in nbrs2:
|
||||
if directed:
|
||||
links = set(B[u]) & set(B.pred[n])
|
||||
else:
|
||||
links = set(B[u]) & set(B[n])
|
||||
for l in links:
|
||||
if not G.has_edge(u, n, l):
|
||||
G.add_edge(u, n, key=l)
|
||||
else:
|
||||
G.add_edges_from((u, n) for n in nbrs2)
|
||||
return G
|
||||
|
||||
|
||||
@not_implemented_for("multigraph")
|
||||
def weighted_projected_graph(B, nodes, ratio=False):
|
||||
r"""Returns a weighted projection of B onto one of its node sets.
|
||||
|
||||
The weighted projected graph is the projection of the bipartite
|
||||
network B onto the specified nodes with weights representing the
|
||||
number of shared neighbors or the ratio between actual shared
|
||||
neighbors and possible shared neighbors if ``ratio is True`` [1]_.
|
||||
The nodes retain their attributes and are connected in the resulting
|
||||
graph if they have an edge to a common node in the original graph.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
B : NetworkX graph
|
||||
The input graph should be bipartite.
|
||||
|
||||
nodes : list or iterable
|
||||
Nodes to project onto (the "bottom" nodes).
|
||||
|
||||
ratio: Bool (default=False)
|
||||
If True, edge weight is the ratio between actual shared neighbors
|
||||
and maximum possible shared neighbors (i.e., the size of the other
|
||||
node set). If False, edges weight is the number of shared neighbors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Graph : NetworkX graph
|
||||
A graph that is the projection onto the given nodes.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from networkx.algorithms import bipartite
|
||||
>>> B = nx.path_graph(4)
|
||||
>>> G = bipartite.weighted_projected_graph(B, [1, 3])
|
||||
>>> list(G)
|
||||
[1, 3]
|
||||
>>> list(G.edges(data=True))
|
||||
[(1, 3, {'weight': 1})]
|
||||
>>> G = bipartite.weighted_projected_graph(B, [1, 3], ratio=True)
|
||||
>>> list(G.edges(data=True))
|
||||
[(1, 3, {'weight': 0.5})]
|
||||
|
||||
Notes
|
||||
-----
|
||||
No attempt is made to verify that the input graph B is bipartite.
|
||||
The graph and node properties are (shallow) copied to the projected graph.
|
||||
|
||||
See :mod:`bipartite documentation <networkx.algorithms.bipartite>`
|
||||
for further details on how bipartite graphs are handled in NetworkX.
|
||||
|
||||
See Also
|
||||
--------
|
||||
is_bipartite,
|
||||
is_bipartite_node_set,
|
||||
sets,
|
||||
collaboration_weighted_projected_graph,
|
||||
overlap_weighted_projected_graph,
|
||||
generic_weighted_projected_graph
|
||||
projected_graph
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation
|
||||
Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook
|
||||
of Social Network Analysis. Sage Publications.
|
||||
"""
|
||||
if B.is_directed():
|
||||
pred = B.pred
|
||||
G = nx.DiGraph()
|
||||
else:
|
||||
pred = B.adj
|
||||
G = nx.Graph()
|
||||
G.graph.update(B.graph)
|
||||
G.add_nodes_from((n, B.nodes[n]) for n in nodes)
|
||||
n_top = float(len(B) - len(nodes))
|
||||
for u in nodes:
|
||||
unbrs = set(B[u])
|
||||
nbrs2 = {n for nbr in unbrs for n in B[nbr]} - {u}
|
||||
for v in nbrs2:
|
||||
vnbrs = set(pred[v])
|
||||
common = unbrs & vnbrs
|
||||
if not ratio:
|
||||
weight = len(common)
|
||||
else:
|
||||
weight = len(common) / n_top
|
||||
G.add_edge(u, v, weight=weight)
|
||||
return G
|
||||
|
||||
|
||||
@not_implemented_for("multigraph")
|
||||
def collaboration_weighted_projected_graph(B, nodes):
|
||||
r"""Newman's weighted projection of B onto one of its node sets.
|
||||
|
||||
The collaboration weighted projection is the projection of the
|
||||
bipartite network B onto the specified nodes with weights assigned
|
||||
using Newman's collaboration model [1]_:
|
||||
|
||||
.. math::
|
||||
|
||||
w_{u, v} = \sum_k \frac{\delta_{u}^{k} \delta_{v}^{k}}{d_k - 1}
|
||||
|
||||
where `u` and `v` are nodes from the bottom bipartite node set,
|
||||
and `k` is a node of the top node set.
|
||||
The value `d_k` is the degree of node `k` in the bipartite
|
||||
network and `\delta_{u}^{k}` is 1 if node `u` is
|
||||
linked to node `k` in the original bipartite graph or 0 otherwise.
|
||||
|
||||
The nodes retain their attributes and are connected in the resulting
|
||||
graph if have an edge to a common node in the original bipartite
|
||||
graph.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
B : NetworkX graph
|
||||
The input graph should be bipartite.
|
||||
|
||||
nodes : list or iterable
|
||||
Nodes to project onto (the "bottom" nodes).
|
||||
|
||||
Returns
|
||||
-------
|
||||
Graph : NetworkX graph
|
||||
A graph that is the projection onto the given nodes.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from networkx.algorithms import bipartite
|
||||
>>> B = nx.path_graph(5)
|
||||
>>> B.add_edge(1, 5)
|
||||
>>> G = bipartite.collaboration_weighted_projected_graph(B, [0, 2, 4, 5])
|
||||
>>> list(G)
|
||||
[0, 2, 4, 5]
|
||||
>>> for edge in sorted(G.edges(data=True)):
|
||||
... print(edge)
|
||||
...
|
||||
(0, 2, {'weight': 0.5})
|
||||
(0, 5, {'weight': 0.5})
|
||||
(2, 4, {'weight': 1.0})
|
||||
(2, 5, {'weight': 0.5})
|
||||
|
||||
Notes
|
||||
-----
|
||||
No attempt is made to verify that the input graph B is bipartite.
|
||||
The graph and node properties are (shallow) copied to the projected graph.
|
||||
|
||||
See :mod:`bipartite documentation <networkx.algorithms.bipartite>`
|
||||
for further details on how bipartite graphs are handled in NetworkX.
|
||||
|
||||
See Also
|
||||
--------
|
||||
is_bipartite,
|
||||
is_bipartite_node_set,
|
||||
sets,
|
||||
weighted_projected_graph,
|
||||
overlap_weighted_projected_graph,
|
||||
generic_weighted_projected_graph,
|
||||
projected_graph
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Scientific collaboration networks: II.
|
||||
Shortest paths, weighted networks, and centrality,
|
||||
M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
|
||||
"""
|
||||
if B.is_directed():
|
||||
pred = B.pred
|
||||
G = nx.DiGraph()
|
||||
else:
|
||||
pred = B.adj
|
||||
G = nx.Graph()
|
||||
G.graph.update(B.graph)
|
||||
G.add_nodes_from((n, B.nodes[n]) for n in nodes)
|
||||
for u in nodes:
|
||||
unbrs = set(B[u])
|
||||
nbrs2 = {n for nbr in unbrs for n in B[nbr] if n != u}
|
||||
for v in nbrs2:
|
||||
vnbrs = set(pred[v])
|
||||
common_degree = (len(B[n]) for n in unbrs & vnbrs)
|
||||
weight = sum(1.0 / (deg - 1) for deg in common_degree if deg > 1)
|
||||
G.add_edge(u, v, weight=weight)
|
||||
return G
|
||||
|
||||
|
||||
@not_implemented_for("multigraph")
|
||||
def overlap_weighted_projected_graph(B, nodes, jaccard=True):
|
||||
r"""Overlap weighted projection of B onto one of its node sets.
|
||||
|
||||
The overlap weighted projection is the projection of the bipartite
|
||||
network B onto the specified nodes with weights representing
|
||||
the Jaccard index between the neighborhoods of the two nodes in the
|
||||
original bipartite network [1]_:
|
||||
|
||||
.. math::
|
||||
|
||||
w_{v, u} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}
|
||||
|
||||
or if the parameter 'jaccard' is False, the fraction of common
|
||||
neighbors by minimum of both nodes degree in the original
|
||||
bipartite graph [1]_:
|
||||
|
||||
.. math::
|
||||
|
||||
w_{v, u} = \frac{|N(u) \cap N(v)|}{min(|N(u)|, |N(v)|)}
|
||||
|
||||
The nodes retain their attributes and are connected in the resulting
|
||||
graph if have an edge to a common node in the original bipartite graph.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
B : NetworkX graph
|
||||
The input graph should be bipartite.
|
||||
|
||||
nodes : list or iterable
|
||||
Nodes to project onto (the "bottom" nodes).
|
||||
|
||||
jaccard: Bool (default=True)
|
||||
|
||||
Returns
|
||||
-------
|
||||
Graph : NetworkX graph
|
||||
A graph that is the projection onto the given nodes.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from networkx.algorithms import bipartite
|
||||
>>> B = nx.path_graph(5)
|
||||
>>> nodes = [0, 2, 4]
|
||||
>>> G = bipartite.overlap_weighted_projected_graph(B, nodes)
|
||||
>>> list(G)
|
||||
[0, 2, 4]
|
||||
>>> list(G.edges(data=True))
|
||||
[(0, 2, {'weight': 0.5}), (2, 4, {'weight': 0.5})]
|
||||
>>> G = bipartite.overlap_weighted_projected_graph(B, nodes, jaccard=False)
|
||||
>>> list(G.edges(data=True))
|
||||
[(0, 2, {'weight': 1.0}), (2, 4, {'weight': 1.0})]
|
||||
|
||||
Notes
|
||||
-----
|
||||
No attempt is made to verify that the input graph B is bipartite.
|
||||
The graph and node properties are (shallow) copied to the projected graph.
|
||||
|
||||
See :mod:`bipartite documentation <networkx.algorithms.bipartite>`
|
||||
for further details on how bipartite graphs are handled in NetworkX.
|
||||
|
||||
See Also
|
||||
--------
|
||||
is_bipartite,
|
||||
is_bipartite_node_set,
|
||||
sets,
|
||||
weighted_projected_graph,
|
||||
collaboration_weighted_projected_graph,
|
||||
generic_weighted_projected_graph,
|
||||
projected_graph
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Borgatti, S.P. and Halgin, D. In press. Analyzing Affiliation
|
||||
Networks. In Carrington, P. and Scott, J. (eds) The Sage Handbook
|
||||
of Social Network Analysis. Sage Publications.
|
||||
|
||||
"""
|
||||
if B.is_directed():
|
||||
pred = B.pred
|
||||
G = nx.DiGraph()
|
||||
else:
|
||||
pred = B.adj
|
||||
G = nx.Graph()
|
||||
G.graph.update(B.graph)
|
||||
G.add_nodes_from((n, B.nodes[n]) for n in nodes)
|
||||
for u in nodes:
|
||||
unbrs = set(B[u])
|
||||
nbrs2 = {n for nbr in unbrs for n in B[nbr]} - {u}
|
||||
for v in nbrs2:
|
||||
vnbrs = set(pred[v])
|
||||
if jaccard:
|
||||
wt = float(len(unbrs & vnbrs)) / len(unbrs | vnbrs)
|
||||
else:
|
||||
wt = float(len(unbrs & vnbrs)) / min(len(unbrs), len(vnbrs))
|
||||
G.add_edge(u, v, weight=wt)
|
||||
return G
|
||||
|
||||
|
||||
@not_implemented_for("multigraph")
|
||||
def generic_weighted_projected_graph(B, nodes, weight_function=None):
|
||||
r"""Weighted projection of B with a user-specified weight function.
|
||||
|
||||
The bipartite network B is projected on to the specified nodes
|
||||
with weights computed by a user-specified function. This function
|
||||
must accept as a parameter the neighborhood sets of two nodes and
|
||||
return an integer or a float.
|
||||
|
||||
The nodes retain their attributes and are connected in the resulting graph
|
||||
if they have an edge to a common node in the original graph.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
B : NetworkX graph
|
||||
The input graph should be bipartite.
|
||||
|
||||
nodes : list or iterable
|
||||
Nodes to project onto (the "bottom" nodes).
|
||||
|
||||
weight_function : function
|
||||
This function must accept as parameters the same input graph
|
||||
that this function, and two nodes; and return an integer or a float.
|
||||
The default function computes the number of shared neighbors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Graph : NetworkX graph
|
||||
A graph that is the projection onto the given nodes.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from networkx.algorithms import bipartite
|
||||
>>> # Define some custom weight functions
|
||||
>>> def jaccard(G, u, v):
|
||||
... unbrs = set(G[u])
|
||||
... vnbrs = set(G[v])
|
||||
... return float(len(unbrs & vnbrs)) / len(unbrs | vnbrs)
|
||||
...
|
||||
>>> def my_weight(G, u, v, weight="weight"):
|
||||
... w = 0
|
||||
... for nbr in set(G[u]) & set(G[v]):
|
||||
... w += G[u][nbr].get(weight, 1) + G[v][nbr].get(weight, 1)
|
||||
... return w
|
||||
...
|
||||
>>> # A complete bipartite graph with 4 nodes and 4 edges
|
||||
>>> B = nx.complete_bipartite_graph(2, 2)
|
||||
>>> # Add some arbitrary weight to the edges
|
||||
>>> for i, (u, v) in enumerate(B.edges()):
|
||||
... B.edges[u, v]["weight"] = i + 1
|
||||
...
|
||||
>>> for edge in B.edges(data=True):
|
||||
... print(edge)
|
||||
...
|
||||
(0, 2, {'weight': 1})
|
||||
(0, 3, {'weight': 2})
|
||||
(1, 2, {'weight': 3})
|
||||
(1, 3, {'weight': 4})
|
||||
>>> # By default, the weight is the number of shared neighbors
|
||||
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1])
|
||||
>>> print(list(G.edges(data=True)))
|
||||
[(0, 1, {'weight': 2})]
|
||||
>>> # To specify a custom weight function use the weight_function parameter
|
||||
>>> G = bipartite.generic_weighted_projected_graph(
|
||||
... B, [0, 1], weight_function=jaccard
|
||||
... )
|
||||
>>> print(list(G.edges(data=True)))
|
||||
[(0, 1, {'weight': 1.0})]
|
||||
>>> G = bipartite.generic_weighted_projected_graph(
|
||||
... B, [0, 1], weight_function=my_weight
|
||||
... )
|
||||
>>> print(list(G.edges(data=True)))
|
||||
[(0, 1, {'weight': 10})]
|
||||
|
||||
Notes
|
||||
-----
|
||||
No attempt is made to verify that the input graph B is bipartite.
|
||||
The graph and node properties are (shallow) copied to the projected graph.
|
||||
|
||||
See :mod:`bipartite documentation <networkx.algorithms.bipartite>`
|
||||
for further details on how bipartite graphs are handled in NetworkX.
|
||||
|
||||
See Also
|
||||
--------
|
||||
is_bipartite,
|
||||
is_bipartite_node_set,
|
||||
sets,
|
||||
weighted_projected_graph,
|
||||
collaboration_weighted_projected_graph,
|
||||
overlap_weighted_projected_graph,
|
||||
projected_graph
|
||||
|
||||
"""
|
||||
if B.is_directed():
|
||||
pred = B.pred
|
||||
G = nx.DiGraph()
|
||||
else:
|
||||
pred = B.adj
|
||||
G = nx.Graph()
|
||||
if weight_function is None:
|
||||
|
||||
def weight_function(G, u, v):
|
||||
# Notice that we use set(pred[v]) for handling the directed case.
|
||||
return len(set(G[u]) & set(pred[v]))
|
||||
|
||||
G.graph.update(B.graph)
|
||||
G.add_nodes_from((n, B.nodes[n]) for n in nodes)
|
||||
for u in nodes:
|
||||
nbrs2 = {n for nbr in set(B[u]) for n in B[nbr]} - {u}
|
||||
for v in nbrs2:
|
||||
weight = weight_function(B, u, v)
|
||||
G.add_edge(u, v, weight=weight)
|
||||
return G
|
||||
|
||||
|
||||
def project(B, nodes, create_using=None):
|
||||
return projected_graph(B, nodes)
|
Loading…
Add table
Add a link
Reference in a new issue