Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
|
@ -0,0 +1,249 @@
|
|||
"""Functions for computing treewidth decomposition.
|
||||
|
||||
Treewidth of an undirected graph is a number associated with the graph.
|
||||
It can be defined as the size of the largest vertex set (bag) in a tree
|
||||
decomposition of the graph minus one.
|
||||
|
||||
`Wikipedia: Treewidth <https://en.wikipedia.org/wiki/Treewidth>`_
|
||||
|
||||
The notions of treewidth and tree decomposition have gained their
|
||||
attractiveness partly because many graph and network problems that are
|
||||
intractable (e.g., NP-hard) on arbitrary graphs become efficiently
|
||||
solvable (e.g., with a linear time algorithm) when the treewidth of the
|
||||
input graphs is bounded by a constant [1]_ [2]_.
|
||||
|
||||
There are two different functions for computing a tree decomposition:
|
||||
:func:`treewidth_min_degree` and :func:`treewidth_min_fill_in`.
|
||||
|
||||
.. [1] Hans L. Bodlaender and Arie M. C. A. Koster. 2010. "Treewidth
|
||||
computations I.Upper bounds". Inf. Comput. 208, 3 (March 2010),259-275.
|
||||
http://dx.doi.org/10.1016/j.ic.2009.03.008
|
||||
|
||||
.. [2] Hans L. Bodlaender. "Discovering Treewidth". Institute of Information
|
||||
and Computing Sciences, Utrecht University.
|
||||
Technical Report UU-CS-2005-018.
|
||||
http://www.cs.uu.nl
|
||||
|
||||
.. [3] K. Wang, Z. Lu, and J. Hicks *Treewidth*.
|
||||
http://web.eecs.utk.edu/~cphillip/cs594_spring2015_projects/treewidth.pdf
|
||||
|
||||
"""
|
||||
|
||||
import sys
|
||||
|
||||
import networkx as nx
|
||||
from networkx.utils import not_implemented_for
|
||||
from heapq import heappush, heappop, heapify
|
||||
import itertools
|
||||
|
||||
__all__ = ["treewidth_min_degree", "treewidth_min_fill_in"]
|
||||
|
||||
|
||||
@not_implemented_for("directed")
|
||||
@not_implemented_for("multigraph")
|
||||
def treewidth_min_degree(G):
|
||||
""" Returns a treewidth decomposition using the Minimum Degree heuristic.
|
||||
|
||||
The heuristic chooses the nodes according to their degree, i.e., first
|
||||
the node with the lowest degree is chosen, then the graph is updated
|
||||
and the corresponding node is removed. Next, a new node with the lowest
|
||||
degree is chosen, and so on.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
Treewidth decomposition : (int, Graph) tuple
|
||||
2-tuple with treewidth and the corresponding decomposed tree.
|
||||
"""
|
||||
deg_heuristic = MinDegreeHeuristic(G)
|
||||
return treewidth_decomp(G, lambda graph: deg_heuristic.best_node(graph))
|
||||
|
||||
|
||||
@not_implemented_for("directed")
|
||||
@not_implemented_for("multigraph")
|
||||
def treewidth_min_fill_in(G):
|
||||
""" Returns a treewidth decomposition using the Minimum Fill-in heuristic.
|
||||
|
||||
The heuristic chooses a node from the graph, where the number of edges
|
||||
added turning the neighbourhood of the chosen node into clique is as
|
||||
small as possible.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
Treewidth decomposition : (int, Graph) tuple
|
||||
2-tuple with treewidth and the corresponding decomposed tree.
|
||||
"""
|
||||
return treewidth_decomp(G, min_fill_in_heuristic)
|
||||
|
||||
|
||||
class MinDegreeHeuristic:
|
||||
""" Implements the Minimum Degree heuristic.
|
||||
|
||||
The heuristic chooses the nodes according to their degree
|
||||
(number of neighbours), i.e., first the node with the lowest degree is
|
||||
chosen, then the graph is updated and the corresponding node is
|
||||
removed. Next, a new node with the lowest degree is chosen, and so on.
|
||||
"""
|
||||
|
||||
def __init__(self, graph):
|
||||
self._graph = graph
|
||||
|
||||
# nodes that have to be updated in the heap before each iteration
|
||||
self._update_nodes = []
|
||||
|
||||
self._degreeq = [] # a heapq with 2-tuples (degree,node)
|
||||
|
||||
# build heap with initial degrees
|
||||
for n in graph:
|
||||
self._degreeq.append((len(graph[n]), n))
|
||||
heapify(self._degreeq)
|
||||
|
||||
def best_node(self, graph):
|
||||
# update nodes in self._update_nodes
|
||||
for n in self._update_nodes:
|
||||
# insert changed degrees into degreeq
|
||||
heappush(self._degreeq, (len(graph[n]), n))
|
||||
|
||||
# get the next valid (minimum degree) node
|
||||
while self._degreeq:
|
||||
(min_degree, elim_node) = heappop(self._degreeq)
|
||||
if elim_node not in graph or len(graph[elim_node]) != min_degree:
|
||||
# outdated entry in degreeq
|
||||
continue
|
||||
elif min_degree == len(graph) - 1:
|
||||
# fully connected: abort condition
|
||||
return None
|
||||
|
||||
# remember to update nodes in the heap before getting the next node
|
||||
self._update_nodes = graph[elim_node]
|
||||
return elim_node
|
||||
|
||||
# the heap is empty: abort
|
||||
return None
|
||||
|
||||
|
||||
def min_fill_in_heuristic(graph):
|
||||
""" Implements the Minimum Degree heuristic.
|
||||
|
||||
Returns the node from the graph, where the number of edges added when
|
||||
turning the neighbourhood of the chosen node into clique is as small as
|
||||
possible. This algorithm chooses the nodes using the Minimum Fill-In
|
||||
heuristic. The running time of the algorithm is :math:`O(V^3)` and it uses
|
||||
additional constant memory."""
|
||||
|
||||
if len(graph) == 0:
|
||||
return None
|
||||
|
||||
min_fill_in_node = None
|
||||
|
||||
min_fill_in = sys.maxsize
|
||||
|
||||
# create sorted list of (degree, node)
|
||||
degree_list = [(len(graph[node]), node) for node in graph]
|
||||
degree_list.sort()
|
||||
|
||||
# abort condition
|
||||
min_degree = degree_list[0][0]
|
||||
if min_degree == len(graph) - 1:
|
||||
return None
|
||||
|
||||
for (_, node) in degree_list:
|
||||
num_fill_in = 0
|
||||
nbrs = graph[node]
|
||||
for nbr in nbrs:
|
||||
# count how many nodes in nbrs current nbr is not connected to
|
||||
# subtract 1 for the node itself
|
||||
num_fill_in += len(nbrs - graph[nbr]) - 1
|
||||
if num_fill_in >= 2 * min_fill_in:
|
||||
break
|
||||
|
||||
num_fill_in /= 2 # divide by 2 because of double counting
|
||||
|
||||
if num_fill_in < min_fill_in: # update min-fill-in node
|
||||
if num_fill_in == 0:
|
||||
return node
|
||||
min_fill_in = num_fill_in
|
||||
min_fill_in_node = node
|
||||
|
||||
return min_fill_in_node
|
||||
|
||||
|
||||
def treewidth_decomp(G, heuristic=min_fill_in_heuristic):
|
||||
""" Returns a treewidth decomposition using the passed heuristic.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
heuristic : heuristic function
|
||||
|
||||
Returns
|
||||
-------
|
||||
Treewidth decomposition : (int, Graph) tuple
|
||||
2-tuple with treewidth and the corresponding decomposed tree.
|
||||
"""
|
||||
|
||||
# make dict-of-sets structure
|
||||
graph = {n: set(G[n]) - {n} for n in G}
|
||||
|
||||
# stack containing nodes and neighbors in the order from the heuristic
|
||||
node_stack = []
|
||||
|
||||
# get first node from heuristic
|
||||
elim_node = heuristic(graph)
|
||||
while elim_node is not None:
|
||||
# connect all neighbours with each other
|
||||
nbrs = graph[elim_node]
|
||||
for u, v in itertools.permutations(nbrs, 2):
|
||||
if v not in graph[u]:
|
||||
graph[u].add(v)
|
||||
|
||||
# push node and its current neighbors on stack
|
||||
node_stack.append((elim_node, nbrs))
|
||||
|
||||
# remove node from graph
|
||||
for u in graph[elim_node]:
|
||||
graph[u].remove(elim_node)
|
||||
|
||||
del graph[elim_node]
|
||||
elim_node = heuristic(graph)
|
||||
|
||||
# the abort condition is met; put all remaining nodes into one bag
|
||||
decomp = nx.Graph()
|
||||
first_bag = frozenset(graph.keys())
|
||||
decomp.add_node(first_bag)
|
||||
|
||||
treewidth = len(first_bag) - 1
|
||||
|
||||
while node_stack:
|
||||
# get node and its neighbors from the stack
|
||||
(curr_node, nbrs) = node_stack.pop()
|
||||
|
||||
# find a bag all neighbors are in
|
||||
old_bag = None
|
||||
for bag in decomp.nodes:
|
||||
if nbrs <= bag:
|
||||
old_bag = bag
|
||||
break
|
||||
|
||||
if old_bag is None:
|
||||
# no old_bag was found: just connect to the first_bag
|
||||
old_bag = first_bag
|
||||
|
||||
# create new node for decomposition
|
||||
nbrs.add(curr_node)
|
||||
new_bag = frozenset(nbrs)
|
||||
|
||||
# update treewidth
|
||||
treewidth = max(treewidth, len(new_bag) - 1)
|
||||
|
||||
# add edge to decomposition (implicitly also adds the new node)
|
||||
decomp.add_edge(old_bag, new_bag)
|
||||
|
||||
return treewidth, decomp
|
Loading…
Add table
Add a link
Reference in a new issue