Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
|
@ -0,0 +1,159 @@
|
|||
"""Functions for computing large cliques."""
|
||||
import networkx as nx
|
||||
from networkx.utils import not_implemented_for
|
||||
from networkx.algorithms.approximation import ramsey
|
||||
|
||||
__all__ = ["clique_removal", "max_clique", "large_clique_size"]
|
||||
|
||||
|
||||
def max_clique(G):
|
||||
r"""Find the Maximum Clique
|
||||
|
||||
Finds the $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set
|
||||
in the worst case.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Undirected graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
clique : set
|
||||
The apx-maximum clique of the graph
|
||||
|
||||
Notes
|
||||
------
|
||||
A clique in an undirected graph G = (V, E) is a subset of the vertex set
|
||||
`C \subseteq V` such that for every two vertices in C there exists an edge
|
||||
connecting the two. This is equivalent to saying that the subgraph
|
||||
induced by C is complete (in some cases, the term clique may also refer
|
||||
to the subgraph).
|
||||
|
||||
A maximum clique is a clique of the largest possible size in a given graph.
|
||||
The clique number `\omega(G)` of a graph G is the number of
|
||||
vertices in a maximum clique in G. The intersection number of
|
||||
G is the smallest number of cliques that together cover all edges of G.
|
||||
|
||||
https://en.wikipedia.org/wiki/Maximum_clique
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Boppana, R., & Halldórsson, M. M. (1992).
|
||||
Approximating maximum independent sets by excluding subgraphs.
|
||||
BIT Numerical Mathematics, 32(2), 180–196. Springer.
|
||||
doi:10.1007/BF01994876
|
||||
"""
|
||||
if G is None:
|
||||
raise ValueError("Expected NetworkX graph!")
|
||||
|
||||
# finding the maximum clique in a graph is equivalent to finding
|
||||
# the independent set in the complementary graph
|
||||
cgraph = nx.complement(G)
|
||||
iset, _ = clique_removal(cgraph)
|
||||
return iset
|
||||
|
||||
|
||||
def clique_removal(G):
|
||||
r""" Repeatedly remove cliques from the graph.
|
||||
|
||||
Results in a $O(|V|/(\log |V|)^2)$ approximation of maximum clique
|
||||
and independent set. Returns the largest independent set found, along
|
||||
with found maximal cliques.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Undirected graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
max_ind_cliques : (set, list) tuple
|
||||
2-tuple of Maximal Independent Set and list of maximal cliques (sets).
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Boppana, R., & Halldórsson, M. M. (1992).
|
||||
Approximating maximum independent sets by excluding subgraphs.
|
||||
BIT Numerical Mathematics, 32(2), 180–196. Springer.
|
||||
"""
|
||||
graph = G.copy()
|
||||
c_i, i_i = ramsey.ramsey_R2(graph)
|
||||
cliques = [c_i]
|
||||
isets = [i_i]
|
||||
while graph:
|
||||
graph.remove_nodes_from(c_i)
|
||||
c_i, i_i = ramsey.ramsey_R2(graph)
|
||||
if c_i:
|
||||
cliques.append(c_i)
|
||||
if i_i:
|
||||
isets.append(i_i)
|
||||
# Determine the largest independent set as measured by cardinality.
|
||||
maxiset = max(isets, key=len)
|
||||
return maxiset, cliques
|
||||
|
||||
|
||||
@not_implemented_for("directed")
|
||||
@not_implemented_for("multigraph")
|
||||
def large_clique_size(G):
|
||||
"""Find the size of a large clique in a graph.
|
||||
|
||||
A *clique* is a subset of nodes in which each pair of nodes is
|
||||
adjacent. This function is a heuristic for finding the size of a
|
||||
large clique in the graph.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
The size of a large clique in the graph.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This implementation is from [1]_. Its worst case time complexity is
|
||||
:math:`O(n d^2)`, where *n* is the number of nodes in the graph and
|
||||
*d* is the maximum degree.
|
||||
|
||||
This function is a heuristic, which means it may work well in
|
||||
practice, but there is no rigorous mathematical guarantee on the
|
||||
ratio between the returned number and the actual largest clique size
|
||||
in the graph.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Pattabiraman, Bharath, et al.
|
||||
"Fast Algorithms for the Maximum Clique Problem on Massive Graphs
|
||||
with Applications to Overlapping Community Detection."
|
||||
*Internet Mathematics* 11.4-5 (2015): 421--448.
|
||||
<https://doi.org/10.1080/15427951.2014.986778>
|
||||
|
||||
See also
|
||||
--------
|
||||
|
||||
:func:`networkx.algorithms.approximation.clique.max_clique`
|
||||
A function that returns an approximate maximum clique with a
|
||||
guarantee on the approximation ratio.
|
||||
|
||||
:mod:`networkx.algorithms.clique`
|
||||
Functions for finding the exact maximum clique in a graph.
|
||||
|
||||
"""
|
||||
degrees = G.degree
|
||||
|
||||
def _clique_heuristic(G, U, size, best_size):
|
||||
if not U:
|
||||
return max(best_size, size)
|
||||
u = max(U, key=degrees)
|
||||
U.remove(u)
|
||||
N_prime = {v for v in G[u] if degrees[v] >= best_size}
|
||||
return _clique_heuristic(G, U & N_prime, size + 1, best_size)
|
||||
|
||||
best_size = 0
|
||||
nodes = (u for u in G if degrees[u] >= best_size)
|
||||
for u in nodes:
|
||||
neighbors = {v for v in G[u] if degrees[v] >= best_size}
|
||||
best_size = _clique_heuristic(G, neighbors, 1, best_size)
|
||||
return best_size
|
Loading…
Add table
Add a link
Reference in a new issue