Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
76
venv/Lib/site-packages/networkx/__init__.py
Normal file
76
venv/Lib/site-packages/networkx/__init__.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
"""
|
||||
NetworkX
|
||||
========
|
||||
|
||||
NetworkX is a Python package for the creation, manipulation, and study of the
|
||||
structure, dynamics, and functions of complex networks.
|
||||
|
||||
See https://networkx.github.io for complete documentation.
|
||||
"""
|
||||
|
||||
import sys
|
||||
|
||||
if sys.version_info[:2] < (3, 6):
|
||||
m = "Python 3.6 or later is required for NetworkX (%d.%d detected)."
|
||||
raise ImportError(m % sys.version_info[:2])
|
||||
del sys
|
||||
|
||||
# Release data
|
||||
from networkx import release
|
||||
|
||||
|
||||
__author__ = (
|
||||
f"{release.authors['Hagberg'][0]} <{release.authors['Hagberg'][1]}>\n"
|
||||
f"{release.authors['Schult'][0]} <{release.authors['Schult'][1]}>\n"
|
||||
f"{release.authors['Swart'][0]} <{release.authors['Swart'][1]}>"
|
||||
)
|
||||
|
||||
__date__ = release.date
|
||||
__version__ = release.version
|
||||
|
||||
__bibtex__ = """@inproceedings{hagberg-2008-exploring,
|
||||
author = {Aric A. Hagberg and Daniel A. Schult and Pieter J. Swart},
|
||||
title = {Exploring network structure, dynamics, and function using {NetworkX}},
|
||||
year = {2008},
|
||||
month = Aug,
|
||||
urlpdf = {http://math.lanl.gov/~hagberg/Papers/hagberg-2008-exploring.pdf},
|
||||
booktitle = {Proceedings of the 7th Python in Science Conference (SciPy2008)},
|
||||
editors = {G\"{a}el Varoquaux, Travis Vaught, and Jarrod Millman},
|
||||
address = {Pasadena, CA USA},
|
||||
pages = {11--15}
|
||||
}"""
|
||||
|
||||
# These are import orderwise
|
||||
from networkx.exception import *
|
||||
import networkx.utils
|
||||
|
||||
import networkx.classes.filters
|
||||
import networkx.classes
|
||||
from networkx.classes import *
|
||||
|
||||
import networkx.convert
|
||||
from networkx.convert import *
|
||||
|
||||
import networkx.convert_matrix
|
||||
from networkx.convert_matrix import *
|
||||
|
||||
|
||||
import networkx.relabel
|
||||
from networkx.relabel import *
|
||||
|
||||
import networkx.generators
|
||||
from networkx.generators import *
|
||||
|
||||
import networkx.readwrite
|
||||
from networkx.readwrite import *
|
||||
|
||||
# Need to test with SciPy, when available
|
||||
import networkx.algorithms
|
||||
from networkx.algorithms import *
|
||||
import networkx.linalg
|
||||
|
||||
from networkx.linalg import *
|
||||
from networkx.testing.test import run as test
|
||||
|
||||
import networkx.drawing
|
||||
from networkx.drawing import *
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
125
venv/Lib/site-packages/networkx/algorithms/__init__.py
Normal file
125
venv/Lib/site-packages/networkx/algorithms/__init__.py
Normal file
|
@ -0,0 +1,125 @@
|
|||
from networkx.algorithms.assortativity import *
|
||||
from networkx.algorithms.asteroidal import *
|
||||
from networkx.algorithms.boundary import *
|
||||
from networkx.algorithms.bridges import *
|
||||
from networkx.algorithms.chains import *
|
||||
from networkx.algorithms.centrality import *
|
||||
from networkx.algorithms.chordal import *
|
||||
from networkx.algorithms.cluster import *
|
||||
from networkx.algorithms.clique import *
|
||||
from networkx.algorithms.communicability_alg import *
|
||||
from networkx.algorithms.components import *
|
||||
from networkx.algorithms.coloring import *
|
||||
from networkx.algorithms.core import *
|
||||
from networkx.algorithms.covering import *
|
||||
from networkx.algorithms.cycles import *
|
||||
from networkx.algorithms.cuts import *
|
||||
from networkx.algorithms.d_separation import *
|
||||
from networkx.algorithms.dag import *
|
||||
from networkx.algorithms.distance_measures import *
|
||||
from networkx.algorithms.distance_regular import *
|
||||
from networkx.algorithms.dominance import *
|
||||
from networkx.algorithms.dominating import *
|
||||
from networkx.algorithms.efficiency_measures import *
|
||||
from networkx.algorithms.euler import *
|
||||
from networkx.algorithms.graphical import *
|
||||
from networkx.algorithms.hierarchy import *
|
||||
from networkx.algorithms.hybrid import *
|
||||
from networkx.algorithms.link_analysis import *
|
||||
from networkx.algorithms.link_prediction import *
|
||||
from networkx.algorithms.lowest_common_ancestors import *
|
||||
from networkx.algorithms.isolate import *
|
||||
from networkx.algorithms.matching import *
|
||||
from networkx.algorithms.minors import *
|
||||
from networkx.algorithms.mis import *
|
||||
from networkx.algorithms.moral import *
|
||||
from networkx.algorithms.non_randomness import *
|
||||
from networkx.algorithms.operators import *
|
||||
from networkx.algorithms.planarity import *
|
||||
from networkx.algorithms.planar_drawing import *
|
||||
from networkx.algorithms.reciprocity import *
|
||||
from networkx.algorithms.regular import *
|
||||
from networkx.algorithms.richclub import *
|
||||
from networkx.algorithms.shortest_paths import *
|
||||
from networkx.algorithms.similarity import *
|
||||
from networkx.algorithms.graph_hashing import *
|
||||
from networkx.algorithms.simple_paths import *
|
||||
from networkx.algorithms.smallworld import *
|
||||
from networkx.algorithms.smetric import *
|
||||
from networkx.algorithms.structuralholes import *
|
||||
from networkx.algorithms.sparsifiers import *
|
||||
from networkx.algorithms.swap import *
|
||||
from networkx.algorithms.traversal import *
|
||||
from networkx.algorithms.triads import *
|
||||
from networkx.algorithms.vitality import *
|
||||
from networkx.algorithms.voronoi import *
|
||||
from networkx.algorithms.wiener import *
|
||||
|
||||
# Make certain subpackages available to the user as direct imports from
|
||||
# the `networkx` namespace.
|
||||
import networkx.algorithms.assortativity
|
||||
import networkx.algorithms.bipartite
|
||||
import networkx.algorithms.node_classification
|
||||
import networkx.algorithms.centrality
|
||||
import networkx.algorithms.chordal
|
||||
import networkx.algorithms.cluster
|
||||
import networkx.algorithms.clique
|
||||
import networkx.algorithms.components
|
||||
import networkx.algorithms.connectivity
|
||||
import networkx.algorithms.community
|
||||
import networkx.algorithms.coloring
|
||||
import networkx.algorithms.flow
|
||||
import networkx.algorithms.isomorphism
|
||||
import networkx.algorithms.link_analysis
|
||||
import networkx.algorithms.lowest_common_ancestors
|
||||
import networkx.algorithms.operators
|
||||
import networkx.algorithms.shortest_paths
|
||||
import networkx.algorithms.tournament
|
||||
import networkx.algorithms.traversal
|
||||
import networkx.algorithms.tree
|
||||
|
||||
# Make certain functions from some of the previous subpackages available
|
||||
# to the user as direct imports from the `networkx` namespace.
|
||||
from networkx.algorithms.bipartite import complete_bipartite_graph
|
||||
from networkx.algorithms.bipartite import is_bipartite
|
||||
from networkx.algorithms.bipartite import project
|
||||
from networkx.algorithms.bipartite import projected_graph
|
||||
from networkx.algorithms.connectivity import all_pairs_node_connectivity
|
||||
from networkx.algorithms.connectivity import all_node_cuts
|
||||
from networkx.algorithms.connectivity import average_node_connectivity
|
||||
from networkx.algorithms.connectivity import edge_connectivity
|
||||
from networkx.algorithms.connectivity import edge_disjoint_paths
|
||||
from networkx.algorithms.connectivity import k_components
|
||||
from networkx.algorithms.connectivity import k_edge_components
|
||||
from networkx.algorithms.connectivity import k_edge_subgraphs
|
||||
from networkx.algorithms.connectivity import k_edge_augmentation
|
||||
from networkx.algorithms.connectivity import is_k_edge_connected
|
||||
from networkx.algorithms.connectivity import minimum_edge_cut
|
||||
from networkx.algorithms.connectivity import minimum_node_cut
|
||||
from networkx.algorithms.connectivity import node_connectivity
|
||||
from networkx.algorithms.connectivity import node_disjoint_paths
|
||||
from networkx.algorithms.connectivity import stoer_wagner
|
||||
from networkx.algorithms.flow import capacity_scaling
|
||||
from networkx.algorithms.flow import cost_of_flow
|
||||
from networkx.algorithms.flow import gomory_hu_tree
|
||||
from networkx.algorithms.flow import max_flow_min_cost
|
||||
from networkx.algorithms.flow import maximum_flow
|
||||
from networkx.algorithms.flow import maximum_flow_value
|
||||
from networkx.algorithms.flow import min_cost_flow
|
||||
from networkx.algorithms.flow import min_cost_flow_cost
|
||||
from networkx.algorithms.flow import minimum_cut
|
||||
from networkx.algorithms.flow import minimum_cut_value
|
||||
from networkx.algorithms.flow import network_simplex
|
||||
from networkx.algorithms.isomorphism import could_be_isomorphic
|
||||
from networkx.algorithms.isomorphism import fast_could_be_isomorphic
|
||||
from networkx.algorithms.isomorphism import faster_could_be_isomorphic
|
||||
from networkx.algorithms.isomorphism import is_isomorphic
|
||||
from networkx.algorithms.tree.branchings import maximum_branching
|
||||
from networkx.algorithms.tree.branchings import maximum_spanning_arborescence
|
||||
from networkx.algorithms.tree.branchings import minimum_branching
|
||||
from networkx.algorithms.tree.branchings import minimum_spanning_arborescence
|
||||
from networkx.algorithms.tree.coding import *
|
||||
from networkx.algorithms.tree.decomposition import *
|
||||
from networkx.algorithms.tree.mst import *
|
||||
from networkx.algorithms.tree.operations import *
|
||||
from networkx.algorithms.tree.recognition import *
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,22 @@
|
|||
"""Approximations of graph properties and Heuristic functions for optimization
|
||||
problems.
|
||||
|
||||
.. warning:: The approximation submodule is not imported in the top-level
|
||||
``networkx``.
|
||||
|
||||
These functions can be imported with
|
||||
``from networkx.algorithms import approximation``.
|
||||
|
||||
"""
|
||||
|
||||
from networkx.algorithms.approximation.clustering_coefficient import *
|
||||
from networkx.algorithms.approximation.clique import *
|
||||
from networkx.algorithms.approximation.connectivity import *
|
||||
from networkx.algorithms.approximation.dominating_set import *
|
||||
from networkx.algorithms.approximation.kcomponents import *
|
||||
from networkx.algorithms.approximation.independent_set import *
|
||||
from networkx.algorithms.approximation.matching import *
|
||||
from networkx.algorithms.approximation.ramsey import *
|
||||
from networkx.algorithms.approximation.steinertree import *
|
||||
from networkx.algorithms.approximation.vertex_cover import *
|
||||
from networkx.algorithms.approximation.treewidth import *
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,159 @@
|
|||
"""Functions for computing large cliques."""
|
||||
import networkx as nx
|
||||
from networkx.utils import not_implemented_for
|
||||
from networkx.algorithms.approximation import ramsey
|
||||
|
||||
__all__ = ["clique_removal", "max_clique", "large_clique_size"]
|
||||
|
||||
|
||||
def max_clique(G):
|
||||
r"""Find the Maximum Clique
|
||||
|
||||
Finds the $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set
|
||||
in the worst case.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Undirected graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
clique : set
|
||||
The apx-maximum clique of the graph
|
||||
|
||||
Notes
|
||||
------
|
||||
A clique in an undirected graph G = (V, E) is a subset of the vertex set
|
||||
`C \subseteq V` such that for every two vertices in C there exists an edge
|
||||
connecting the two. This is equivalent to saying that the subgraph
|
||||
induced by C is complete (in some cases, the term clique may also refer
|
||||
to the subgraph).
|
||||
|
||||
A maximum clique is a clique of the largest possible size in a given graph.
|
||||
The clique number `\omega(G)` of a graph G is the number of
|
||||
vertices in a maximum clique in G. The intersection number of
|
||||
G is the smallest number of cliques that together cover all edges of G.
|
||||
|
||||
https://en.wikipedia.org/wiki/Maximum_clique
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Boppana, R., & Halldórsson, M. M. (1992).
|
||||
Approximating maximum independent sets by excluding subgraphs.
|
||||
BIT Numerical Mathematics, 32(2), 180–196. Springer.
|
||||
doi:10.1007/BF01994876
|
||||
"""
|
||||
if G is None:
|
||||
raise ValueError("Expected NetworkX graph!")
|
||||
|
||||
# finding the maximum clique in a graph is equivalent to finding
|
||||
# the independent set in the complementary graph
|
||||
cgraph = nx.complement(G)
|
||||
iset, _ = clique_removal(cgraph)
|
||||
return iset
|
||||
|
||||
|
||||
def clique_removal(G):
|
||||
r""" Repeatedly remove cliques from the graph.
|
||||
|
||||
Results in a $O(|V|/(\log |V|)^2)$ approximation of maximum clique
|
||||
and independent set. Returns the largest independent set found, along
|
||||
with found maximal cliques.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Undirected graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
max_ind_cliques : (set, list) tuple
|
||||
2-tuple of Maximal Independent Set and list of maximal cliques (sets).
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Boppana, R., & Halldórsson, M. M. (1992).
|
||||
Approximating maximum independent sets by excluding subgraphs.
|
||||
BIT Numerical Mathematics, 32(2), 180–196. Springer.
|
||||
"""
|
||||
graph = G.copy()
|
||||
c_i, i_i = ramsey.ramsey_R2(graph)
|
||||
cliques = [c_i]
|
||||
isets = [i_i]
|
||||
while graph:
|
||||
graph.remove_nodes_from(c_i)
|
||||
c_i, i_i = ramsey.ramsey_R2(graph)
|
||||
if c_i:
|
||||
cliques.append(c_i)
|
||||
if i_i:
|
||||
isets.append(i_i)
|
||||
# Determine the largest independent set as measured by cardinality.
|
||||
maxiset = max(isets, key=len)
|
||||
return maxiset, cliques
|
||||
|
||||
|
||||
@not_implemented_for("directed")
|
||||
@not_implemented_for("multigraph")
|
||||
def large_clique_size(G):
|
||||
"""Find the size of a large clique in a graph.
|
||||
|
||||
A *clique* is a subset of nodes in which each pair of nodes is
|
||||
adjacent. This function is a heuristic for finding the size of a
|
||||
large clique in the graph.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
The size of a large clique in the graph.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This implementation is from [1]_. Its worst case time complexity is
|
||||
:math:`O(n d^2)`, where *n* is the number of nodes in the graph and
|
||||
*d* is the maximum degree.
|
||||
|
||||
This function is a heuristic, which means it may work well in
|
||||
practice, but there is no rigorous mathematical guarantee on the
|
||||
ratio between the returned number and the actual largest clique size
|
||||
in the graph.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Pattabiraman, Bharath, et al.
|
||||
"Fast Algorithms for the Maximum Clique Problem on Massive Graphs
|
||||
with Applications to Overlapping Community Detection."
|
||||
*Internet Mathematics* 11.4-5 (2015): 421--448.
|
||||
<https://doi.org/10.1080/15427951.2014.986778>
|
||||
|
||||
See also
|
||||
--------
|
||||
|
||||
:func:`networkx.algorithms.approximation.clique.max_clique`
|
||||
A function that returns an approximate maximum clique with a
|
||||
guarantee on the approximation ratio.
|
||||
|
||||
:mod:`networkx.algorithms.clique`
|
||||
Functions for finding the exact maximum clique in a graph.
|
||||
|
||||
"""
|
||||
degrees = G.degree
|
||||
|
||||
def _clique_heuristic(G, U, size, best_size):
|
||||
if not U:
|
||||
return max(best_size, size)
|
||||
u = max(U, key=degrees)
|
||||
U.remove(u)
|
||||
N_prime = {v for v in G[u] if degrees[v] >= best_size}
|
||||
return _clique_heuristic(G, U & N_prime, size + 1, best_size)
|
||||
|
||||
best_size = 0
|
||||
nodes = (u for u in G if degrees[u] >= best_size)
|
||||
for u in nodes:
|
||||
neighbors = {v for v in G[u] if degrees[v] >= best_size}
|
||||
best_size = _clique_heuristic(G, neighbors, 1, best_size)
|
||||
return best_size
|
|
@ -0,0 +1,58 @@
|
|||
from networkx.utils import not_implemented_for
|
||||
from networkx.utils import py_random_state
|
||||
|
||||
__all__ = ["average_clustering"]
|
||||
|
||||
|
||||
@py_random_state(2)
|
||||
@not_implemented_for("directed")
|
||||
def average_clustering(G, trials=1000, seed=None):
|
||||
r"""Estimates the average clustering coefficient of G.
|
||||
|
||||
The local clustering of each node in `G` is the fraction of triangles
|
||||
that actually exist over all possible triangles in its neighborhood.
|
||||
The average clustering coefficient of a graph `G` is the mean of
|
||||
local clusterings.
|
||||
|
||||
This function finds an approximate average clustering coefficient
|
||||
for G by repeating `n` times (defined in `trials`) the following
|
||||
experiment: choose a node at random, choose two of its neighbors
|
||||
at random, and check if they are connected. The approximate
|
||||
coefficient is the fraction of triangles found over the number
|
||||
of trials [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
trials : integer
|
||||
Number of trials to perform (default 1000).
|
||||
|
||||
seed : integer, random_state, or None (default)
|
||||
Indicator of random number generation state.
|
||||
See :ref:`Randomness<randomness>`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
c : float
|
||||
Approximated average clustering coefficient.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Schank, Thomas, and Dorothea Wagner. Approximating clustering
|
||||
coefficient and transitivity. Universität Karlsruhe, Fakultät für
|
||||
Informatik, 2004.
|
||||
http://www.emis.ams.org/journals/JGAA/accepted/2005/SchankWagner2005.9.2.pdf
|
||||
|
||||
"""
|
||||
n = len(G)
|
||||
triangles = 0
|
||||
nodes = list(G)
|
||||
for i in [int(seed.random() * n) for i in range(trials)]:
|
||||
nbrs = list(G[nodes[i]])
|
||||
if len(nbrs) < 2:
|
||||
continue
|
||||
u, v = seed.sample(nbrs, 2)
|
||||
if u in G[v]:
|
||||
triangles += 1
|
||||
return triangles / float(trials)
|
|
@ -0,0 +1,403 @@
|
|||
""" Fast approximation for node connectivity
|
||||
"""
|
||||
import itertools
|
||||
from operator import itemgetter
|
||||
|
||||
import networkx as nx
|
||||
|
||||
__all__ = [
|
||||
"local_node_connectivity",
|
||||
"node_connectivity",
|
||||
"all_pairs_node_connectivity",
|
||||
]
|
||||
|
||||
INF = float("inf")
|
||||
|
||||
|
||||
def local_node_connectivity(G, source, target, cutoff=None):
|
||||
"""Compute node connectivity between source and target.
|
||||
|
||||
Pairwise or local node connectivity between two distinct and nonadjacent
|
||||
nodes is the minimum number of nodes that must be removed (minimum
|
||||
separating cutset) to disconnect them. By Menger's theorem, this is equal
|
||||
to the number of node independent paths (paths that share no nodes other
|
||||
than source and target). Which is what we compute in this function.
|
||||
|
||||
This algorithm is a fast approximation that gives an strict lower
|
||||
bound on the actual number of node independent paths between two nodes [1]_.
|
||||
It works for both directed and undirected graphs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
G : NetworkX graph
|
||||
|
||||
source : node
|
||||
Starting node for node connectivity
|
||||
|
||||
target : node
|
||||
Ending node for node connectivity
|
||||
|
||||
cutoff : integer
|
||||
Maximum node connectivity to consider. If None, the minimum degree
|
||||
of source or target is used as a cutoff. Default value None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
k: integer
|
||||
pairwise node connectivity
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> # Platonic octahedral graph has node connectivity 4
|
||||
>>> # for each non adjacent node pair
|
||||
>>> from networkx.algorithms import approximation as approx
|
||||
>>> G = nx.octahedral_graph()
|
||||
>>> approx.local_node_connectivity(G, 0, 5)
|
||||
4
|
||||
|
||||
Notes
|
||||
-----
|
||||
This algorithm [1]_ finds node independents paths between two nodes by
|
||||
computing their shortest path using BFS, marking the nodes of the path
|
||||
found as 'used' and then searching other shortest paths excluding the
|
||||
nodes marked as used until no more paths exist. It is not exact because
|
||||
a shortest path could use nodes that, if the path were longer, may belong
|
||||
to two different node independent paths. Thus it only guarantees an
|
||||
strict lower bound on node connectivity.
|
||||
|
||||
Note that the authors propose a further refinement, losing accuracy and
|
||||
gaining speed, which is not implemented yet.
|
||||
|
||||
See also
|
||||
--------
|
||||
all_pairs_node_connectivity
|
||||
node_connectivity
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
|
||||
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
|
||||
http://eclectic.ss.uci.edu/~drwhite/working.pdf
|
||||
|
||||
"""
|
||||
if target == source:
|
||||
raise nx.NetworkXError("source and target have to be different nodes.")
|
||||
|
||||
# Maximum possible node independent paths
|
||||
if G.is_directed():
|
||||
possible = min(G.out_degree(source), G.in_degree(target))
|
||||
else:
|
||||
possible = min(G.degree(source), G.degree(target))
|
||||
|
||||
K = 0
|
||||
if not possible:
|
||||
return K
|
||||
|
||||
if cutoff is None:
|
||||
cutoff = INF
|
||||
|
||||
exclude = set()
|
||||
for i in range(min(possible, cutoff)):
|
||||
try:
|
||||
path = _bidirectional_shortest_path(G, source, target, exclude)
|
||||
exclude.update(set(path))
|
||||
K += 1
|
||||
except nx.NetworkXNoPath:
|
||||
break
|
||||
|
||||
return K
|
||||
|
||||
|
||||
def node_connectivity(G, s=None, t=None):
|
||||
r"""Returns an approximation for node connectivity for a graph or digraph G.
|
||||
|
||||
Node connectivity is equal to the minimum number of nodes that
|
||||
must be removed to disconnect G or render it trivial. By Menger's theorem,
|
||||
this is equal to the number of node independent paths (paths that
|
||||
share no nodes other than source and target).
|
||||
|
||||
If source and target nodes are provided, this function returns the
|
||||
local node connectivity: the minimum number of nodes that must be
|
||||
removed to break all paths from source to target in G.
|
||||
|
||||
This algorithm is based on a fast approximation that gives an strict lower
|
||||
bound on the actual number of node independent paths between two nodes [1]_.
|
||||
It works for both directed and undirected graphs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Undirected graph
|
||||
|
||||
s : node
|
||||
Source node. Optional. Default value: None.
|
||||
|
||||
t : node
|
||||
Target node. Optional. Default value: None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
K : integer
|
||||
Node connectivity of G, or local node connectivity if source
|
||||
and target are provided.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> # Platonic octahedral graph is 4-node-connected
|
||||
>>> from networkx.algorithms import approximation as approx
|
||||
>>> G = nx.octahedral_graph()
|
||||
>>> approx.node_connectivity(G)
|
||||
4
|
||||
|
||||
Notes
|
||||
-----
|
||||
This algorithm [1]_ finds node independents paths between two nodes by
|
||||
computing their shortest path using BFS, marking the nodes of the path
|
||||
found as 'used' and then searching other shortest paths excluding the
|
||||
nodes marked as used until no more paths exist. It is not exact because
|
||||
a shortest path could use nodes that, if the path were longer, may belong
|
||||
to two different node independent paths. Thus it only guarantees an
|
||||
strict lower bound on node connectivity.
|
||||
|
||||
See also
|
||||
--------
|
||||
all_pairs_node_connectivity
|
||||
local_node_connectivity
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
|
||||
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
|
||||
http://eclectic.ss.uci.edu/~drwhite/working.pdf
|
||||
|
||||
"""
|
||||
if (s is not None and t is None) or (s is None and t is not None):
|
||||
raise nx.NetworkXError("Both source and target must be specified.")
|
||||
|
||||
# Local node connectivity
|
||||
if s is not None and t is not None:
|
||||
if s not in G:
|
||||
raise nx.NetworkXError(f"node {s} not in graph")
|
||||
if t not in G:
|
||||
raise nx.NetworkXError(f"node {t} not in graph")
|
||||
return local_node_connectivity(G, s, t)
|
||||
|
||||
# Global node connectivity
|
||||
if G.is_directed():
|
||||
connected_func = nx.is_weakly_connected
|
||||
iter_func = itertools.permutations
|
||||
|
||||
def neighbors(v):
|
||||
return itertools.chain(G.predecessors(v), G.successors(v))
|
||||
|
||||
else:
|
||||
connected_func = nx.is_connected
|
||||
iter_func = itertools.combinations
|
||||
neighbors = G.neighbors
|
||||
|
||||
if not connected_func(G):
|
||||
return 0
|
||||
|
||||
# Choose a node with minimum degree
|
||||
v, minimum_degree = min(G.degree(), key=itemgetter(1))
|
||||
# Node connectivity is bounded by minimum degree
|
||||
K = minimum_degree
|
||||
# compute local node connectivity with all non-neighbors nodes
|
||||
# and store the minimum
|
||||
for w in set(G) - set(neighbors(v)) - {v}:
|
||||
K = min(K, local_node_connectivity(G, v, w, cutoff=K))
|
||||
# Same for non adjacent pairs of neighbors of v
|
||||
for x, y in iter_func(neighbors(v), 2):
|
||||
if y not in G[x] and x != y:
|
||||
K = min(K, local_node_connectivity(G, x, y, cutoff=K))
|
||||
return K
|
||||
|
||||
|
||||
def all_pairs_node_connectivity(G, nbunch=None, cutoff=None):
|
||||
""" Compute node connectivity between all pairs of nodes.
|
||||
|
||||
Pairwise or local node connectivity between two distinct and nonadjacent
|
||||
nodes is the minimum number of nodes that must be removed (minimum
|
||||
separating cutset) to disconnect them. By Menger's theorem, this is equal
|
||||
to the number of node independent paths (paths that share no nodes other
|
||||
than source and target). Which is what we compute in this function.
|
||||
|
||||
This algorithm is a fast approximation that gives an strict lower
|
||||
bound on the actual number of node independent paths between two nodes [1]_.
|
||||
It works for both directed and undirected graphs.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
nbunch: container
|
||||
Container of nodes. If provided node connectivity will be computed
|
||||
only over pairs of nodes in nbunch.
|
||||
|
||||
cutoff : integer
|
||||
Maximum node connectivity to consider. If None, the minimum degree
|
||||
of source or target is used as a cutoff in each pair of nodes.
|
||||
Default value None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
K : dictionary
|
||||
Dictionary, keyed by source and target, of pairwise node connectivity
|
||||
|
||||
See Also
|
||||
--------
|
||||
local_node_connectivity
|
||||
node_connectivity
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
|
||||
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
|
||||
http://eclectic.ss.uci.edu/~drwhite/working.pdf
|
||||
"""
|
||||
if nbunch is None:
|
||||
nbunch = G
|
||||
else:
|
||||
nbunch = set(nbunch)
|
||||
|
||||
directed = G.is_directed()
|
||||
if directed:
|
||||
iter_func = itertools.permutations
|
||||
else:
|
||||
iter_func = itertools.combinations
|
||||
|
||||
all_pairs = {n: {} for n in nbunch}
|
||||
|
||||
for u, v in iter_func(nbunch, 2):
|
||||
k = local_node_connectivity(G, u, v, cutoff=cutoff)
|
||||
all_pairs[u][v] = k
|
||||
if not directed:
|
||||
all_pairs[v][u] = k
|
||||
|
||||
return all_pairs
|
||||
|
||||
|
||||
def _bidirectional_shortest_path(G, source, target, exclude):
|
||||
"""Returns shortest path between source and target ignoring nodes in the
|
||||
container 'exclude'.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
G : NetworkX graph
|
||||
|
||||
source : node
|
||||
Starting node for path
|
||||
|
||||
target : node
|
||||
Ending node for path
|
||||
|
||||
exclude: container
|
||||
Container for nodes to exclude from the search for shortest paths
|
||||
|
||||
Returns
|
||||
-------
|
||||
path: list
|
||||
Shortest path between source and target ignoring nodes in 'exclude'
|
||||
|
||||
Raises
|
||||
------
|
||||
NetworkXNoPath
|
||||
If there is no path or if nodes are adjacent and have only one path
|
||||
between them
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function and its helper are originally from
|
||||
networkx.algorithms.shortest_paths.unweighted and are modified to
|
||||
accept the extra parameter 'exclude', which is a container for nodes
|
||||
already used in other paths that should be ignored.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
|
||||
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
|
||||
http://eclectic.ss.uci.edu/~drwhite/working.pdf
|
||||
|
||||
"""
|
||||
# call helper to do the real work
|
||||
results = _bidirectional_pred_succ(G, source, target, exclude)
|
||||
pred, succ, w = results
|
||||
|
||||
# build path from pred+w+succ
|
||||
path = []
|
||||
# from source to w
|
||||
while w is not None:
|
||||
path.append(w)
|
||||
w = pred[w]
|
||||
path.reverse()
|
||||
# from w to target
|
||||
w = succ[path[-1]]
|
||||
while w is not None:
|
||||
path.append(w)
|
||||
w = succ[w]
|
||||
|
||||
return path
|
||||
|
||||
|
||||
def _bidirectional_pred_succ(G, source, target, exclude):
|
||||
# does BFS from both source and target and meets in the middle
|
||||
# excludes nodes in the container "exclude" from the search
|
||||
if source is None or target is None:
|
||||
raise nx.NetworkXException(
|
||||
"Bidirectional shortest path called without source or target"
|
||||
)
|
||||
if target == source:
|
||||
return ({target: None}, {source: None}, source)
|
||||
|
||||
# handle either directed or undirected
|
||||
if G.is_directed():
|
||||
Gpred = G.predecessors
|
||||
Gsucc = G.successors
|
||||
else:
|
||||
Gpred = G.neighbors
|
||||
Gsucc = G.neighbors
|
||||
|
||||
# predecesssor and successors in search
|
||||
pred = {source: None}
|
||||
succ = {target: None}
|
||||
|
||||
# initialize fringes, start with forward
|
||||
forward_fringe = [source]
|
||||
reverse_fringe = [target]
|
||||
|
||||
level = 0
|
||||
|
||||
while forward_fringe and reverse_fringe:
|
||||
# Make sure that we iterate one step forward and one step backwards
|
||||
# thus source and target will only trigger "found path" when they are
|
||||
# adjacent and then they can be safely included in the container 'exclude'
|
||||
level += 1
|
||||
if not level % 2 == 0:
|
||||
this_level = forward_fringe
|
||||
forward_fringe = []
|
||||
for v in this_level:
|
||||
for w in Gsucc(v):
|
||||
if w in exclude:
|
||||
continue
|
||||
if w not in pred:
|
||||
forward_fringe.append(w)
|
||||
pred[w] = v
|
||||
if w in succ:
|
||||
return pred, succ, w # found path
|
||||
else:
|
||||
this_level = reverse_fringe
|
||||
reverse_fringe = []
|
||||
for v in this_level:
|
||||
for w in Gpred(v):
|
||||
if w in exclude:
|
||||
continue
|
||||
if w not in succ:
|
||||
succ[w] = v
|
||||
reverse_fringe.append(w)
|
||||
if w in pred:
|
||||
return pred, succ, w # found path
|
||||
|
||||
raise nx.NetworkXNoPath(f"No path between {source} and {target}.")
|
|
@ -0,0 +1,123 @@
|
|||
"""Functions for finding node and edge dominating sets.
|
||||
|
||||
A `dominating set`_ for an undirected graph *G* with vertex set *V*
|
||||
and edge set *E* is a subset *D* of *V* such that every vertex not in
|
||||
*D* is adjacent to at least one member of *D*. An `edge dominating set`_
|
||||
is a subset *F* of *E* such that every edge not in *F* is
|
||||
incident to an endpoint of at least one edge in *F*.
|
||||
|
||||
.. _dominating set: https://en.wikipedia.org/wiki/Dominating_set
|
||||
.. _edge dominating set: https://en.wikipedia.org/wiki/Edge_dominating_set
|
||||
|
||||
"""
|
||||
|
||||
from ..matching import maximal_matching
|
||||
from ...utils import not_implemented_for
|
||||
|
||||
__all__ = ["min_weighted_dominating_set", "min_edge_dominating_set"]
|
||||
|
||||
|
||||
# TODO Why doesn't this algorithm work for directed graphs?
|
||||
@not_implemented_for("directed")
|
||||
def min_weighted_dominating_set(G, weight=None):
|
||||
r"""Returns a dominating set that approximates the minimum weight node
|
||||
dominating set.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Undirected graph.
|
||||
|
||||
weight : string
|
||||
The node attribute storing the weight of an node. If provided,
|
||||
the node attribute with this key must be a number for each
|
||||
node. If not provided, each node is assumed to have weight one.
|
||||
|
||||
Returns
|
||||
-------
|
||||
min_weight_dominating_set : set
|
||||
A set of nodes, the sum of whose weights is no more than `(\log
|
||||
w(V)) w(V^*)`, where `w(V)` denotes the sum of the weights of
|
||||
each node in the graph and `w(V^*)` denotes the sum of the
|
||||
weights of each node in the minimum weight dominating set.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This algorithm computes an approximate minimum weighted dominating
|
||||
set for the graph `G`. The returned solution has weight `(\log
|
||||
w(V)) w(V^*)`, where `w(V)` denotes the sum of the weights of each
|
||||
node in the graph and `w(V^*)` denotes the sum of the weights of
|
||||
each node in the minimum weight dominating set for the graph.
|
||||
|
||||
This implementation of the algorithm runs in $O(m)$ time, where $m$
|
||||
is the number of edges in the graph.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Vazirani, Vijay V.
|
||||
*Approximation Algorithms*.
|
||||
Springer Science & Business Media, 2001.
|
||||
|
||||
"""
|
||||
# The unique dominating set for the null graph is the empty set.
|
||||
if len(G) == 0:
|
||||
return set()
|
||||
|
||||
# This is the dominating set that will eventually be returned.
|
||||
dom_set = set()
|
||||
|
||||
def _cost(node_and_neighborhood):
|
||||
"""Returns the cost-effectiveness of greedily choosing the given
|
||||
node.
|
||||
|
||||
`node_and_neighborhood` is a two-tuple comprising a node and its
|
||||
closed neighborhood.
|
||||
|
||||
"""
|
||||
v, neighborhood = node_and_neighborhood
|
||||
return G.nodes[v].get(weight, 1) / len(neighborhood - dom_set)
|
||||
|
||||
# This is a set of all vertices not already covered by the
|
||||
# dominating set.
|
||||
vertices = set(G)
|
||||
# This is a dictionary mapping each node to the closed neighborhood
|
||||
# of that node.
|
||||
neighborhoods = {v: {v} | set(G[v]) for v in G}
|
||||
|
||||
# Continue until all vertices are adjacent to some node in the
|
||||
# dominating set.
|
||||
while vertices:
|
||||
# Find the most cost-effective node to add, along with its
|
||||
# closed neighborhood.
|
||||
dom_node, min_set = min(neighborhoods.items(), key=_cost)
|
||||
# Add the node to the dominating set and reduce the remaining
|
||||
# set of nodes to cover.
|
||||
dom_set.add(dom_node)
|
||||
del neighborhoods[dom_node]
|
||||
vertices -= min_set
|
||||
|
||||
return dom_set
|
||||
|
||||
|
||||
def min_edge_dominating_set(G):
|
||||
r"""Returns minimum cardinality edge dominating set.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Undirected graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
min_edge_dominating_set : set
|
||||
Returns a set of dominating edges whose size is no more than 2 * OPT.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The algorithm computes an approximate solution to the edge dominating set
|
||||
problem. The result is no more than 2 * OPT in terms of size of the set.
|
||||
Runtime of the algorithm is $O(|E|)$.
|
||||
"""
|
||||
if not G:
|
||||
raise ValueError("Expected non-empty NetworkX graph!")
|
||||
return maximal_matching(G)
|
|
@ -0,0 +1,58 @@
|
|||
r"""
|
||||
Independent Set
|
||||
|
||||
Independent set or stable set is a set of vertices in a graph, no two of
|
||||
which are adjacent. That is, it is a set I of vertices such that for every
|
||||
two vertices in I, there is no edge connecting the two. Equivalently, each
|
||||
edge in the graph has at most one endpoint in I. The size of an independent
|
||||
set is the number of vertices it contains.
|
||||
|
||||
A maximum independent set is a largest independent set for a given graph G
|
||||
and its size is denoted $\alpha(G)$. The problem of finding such a set is called
|
||||
the maximum independent set problem and is an NP-hard optimization problem.
|
||||
As such, it is unlikely that there exists an efficient algorithm for finding
|
||||
a maximum independent set of a graph.
|
||||
|
||||
`Wikipedia: Independent set <https://en.wikipedia.org/wiki/Independent_set_(graph_theory)>`_
|
||||
|
||||
Independent set algorithm is based on the following paper:
|
||||
|
||||
$O(|V|/(log|V|)^2)$ apx of maximum clique/independent set.
|
||||
|
||||
Boppana, R., & Halldórsson, M. M. (1992).
|
||||
Approximating maximum independent sets by excluding subgraphs.
|
||||
BIT Numerical Mathematics, 32(2), 180–196. Springer.
|
||||
doi:10.1007/BF01994876
|
||||
|
||||
"""
|
||||
from networkx.algorithms.approximation import clique_removal
|
||||
|
||||
__all__ = ["maximum_independent_set"]
|
||||
|
||||
|
||||
def maximum_independent_set(G):
|
||||
"""Returns an approximate maximum independent set.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Undirected graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
iset : Set
|
||||
The apx-maximum independent set
|
||||
|
||||
Notes
|
||||
-----
|
||||
Finds the $O(|V|/(log|V|)^2)$ apx of independent set in the worst case.
|
||||
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Boppana, R., & Halldórsson, M. M. (1992).
|
||||
Approximating maximum independent sets by excluding subgraphs.
|
||||
BIT Numerical Mathematics, 32(2), 180–196. Springer.
|
||||
"""
|
||||
iset, _ = clique_removal(G)
|
||||
return iset
|
|
@ -0,0 +1,368 @@
|
|||
""" Fast approximation for k-component structure
|
||||
"""
|
||||
import itertools
|
||||
from collections import defaultdict
|
||||
from collections.abc import Mapping
|
||||
|
||||
import networkx as nx
|
||||
from networkx.exception import NetworkXError
|
||||
from networkx.utils import not_implemented_for
|
||||
|
||||
from networkx.algorithms.approximation import local_node_connectivity
|
||||
|
||||
|
||||
__all__ = ["k_components"]
|
||||
|
||||
|
||||
not_implemented_for("directed")
|
||||
|
||||
|
||||
def k_components(G, min_density=0.95):
|
||||
r"""Returns the approximate k-component structure of a graph G.
|
||||
|
||||
A `k`-component is a maximal subgraph of a graph G that has, at least,
|
||||
node connectivity `k`: we need to remove at least `k` nodes to break it
|
||||
into more components. `k`-components have an inherent hierarchical
|
||||
structure because they are nested in terms of connectivity: a connected
|
||||
graph can contain several 2-components, each of which can contain
|
||||
one or more 3-components, and so forth.
|
||||
|
||||
This implementation is based on the fast heuristics to approximate
|
||||
the `k`-component structure of a graph [1]_. Which, in turn, it is based on
|
||||
a fast approximation algorithm for finding good lower bounds of the number
|
||||
of node independent paths between two nodes [2]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Undirected graph
|
||||
|
||||
min_density : Float
|
||||
Density relaxation threshold. Default value 0.95
|
||||
|
||||
Returns
|
||||
-------
|
||||
k_components : dict
|
||||
Dictionary with connectivity level `k` as key and a list of
|
||||
sets of nodes that form a k-component of level `k` as values.
|
||||
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> # Petersen graph has 10 nodes and it is triconnected, thus all
|
||||
>>> # nodes are in a single component on all three connectivity levels
|
||||
>>> from networkx.algorithms import approximation as apxa
|
||||
>>> G = nx.petersen_graph()
|
||||
>>> k_components = apxa.k_components(G)
|
||||
|
||||
Notes
|
||||
-----
|
||||
The logic of the approximation algorithm for computing the `k`-component
|
||||
structure [1]_ is based on repeatedly applying simple and fast algorithms
|
||||
for `k`-cores and biconnected components in order to narrow down the
|
||||
number of pairs of nodes over which we have to compute White and Newman's
|
||||
approximation algorithm for finding node independent paths [2]_. More
|
||||
formally, this algorithm is based on Whitney's theorem, which states
|
||||
an inclusion relation among node connectivity, edge connectivity, and
|
||||
minimum degree for any graph G. This theorem implies that every
|
||||
`k`-component is nested inside a `k`-edge-component, which in turn,
|
||||
is contained in a `k`-core. Thus, this algorithm computes node independent
|
||||
paths among pairs of nodes in each biconnected part of each `k`-core,
|
||||
and repeats this procedure for each `k` from 3 to the maximal core number
|
||||
of a node in the input graph.
|
||||
|
||||
Because, in practice, many nodes of the core of level `k` inside a
|
||||
bicomponent actually are part of a component of level k, the auxiliary
|
||||
graph needed for the algorithm is likely to be very dense. Thus, we use
|
||||
a complement graph data structure (see `AntiGraph`) to save memory.
|
||||
AntiGraph only stores information of the edges that are *not* present
|
||||
in the actual auxiliary graph. When applying algorithms to this
|
||||
complement graph data structure, it behaves as if it were the dense
|
||||
version.
|
||||
|
||||
See also
|
||||
--------
|
||||
k_components
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Torrents, J. and F. Ferraro (2015) Structural Cohesion:
|
||||
Visualization and Heuristics for Fast Computation.
|
||||
https://arxiv.org/pdf/1503.04476v1
|
||||
|
||||
.. [2] White, Douglas R., and Mark Newman (2001) A Fast Algorithm for
|
||||
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
|
||||
http://eclectic.ss.uci.edu/~drwhite/working.pdf
|
||||
|
||||
.. [3] Moody, J. and D. White (2003). Social cohesion and embeddedness:
|
||||
A hierarchical conception of social groups.
|
||||
American Sociological Review 68(1), 103--28.
|
||||
http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf
|
||||
|
||||
"""
|
||||
# Dictionary with connectivity level (k) as keys and a list of
|
||||
# sets of nodes that form a k-component as values
|
||||
k_components = defaultdict(list)
|
||||
# make a few functions local for speed
|
||||
node_connectivity = local_node_connectivity
|
||||
k_core = nx.k_core
|
||||
core_number = nx.core_number
|
||||
biconnected_components = nx.biconnected_components
|
||||
density = nx.density
|
||||
combinations = itertools.combinations
|
||||
# Exact solution for k = {1,2}
|
||||
# There is a linear time algorithm for triconnectivity, if we had an
|
||||
# implementation available we could start from k = 4.
|
||||
for component in nx.connected_components(G):
|
||||
# isolated nodes have connectivity 0
|
||||
comp = set(component)
|
||||
if len(comp) > 1:
|
||||
k_components[1].append(comp)
|
||||
for bicomponent in nx.biconnected_components(G):
|
||||
# avoid considering dyads as bicomponents
|
||||
bicomp = set(bicomponent)
|
||||
if len(bicomp) > 2:
|
||||
k_components[2].append(bicomp)
|
||||
# There is no k-component of k > maximum core number
|
||||
# \kappa(G) <= \lambda(G) <= \delta(G)
|
||||
g_cnumber = core_number(G)
|
||||
max_core = max(g_cnumber.values())
|
||||
for k in range(3, max_core + 1):
|
||||
C = k_core(G, k, core_number=g_cnumber)
|
||||
for nodes in biconnected_components(C):
|
||||
# Build a subgraph SG induced by the nodes that are part of
|
||||
# each biconnected component of the k-core subgraph C.
|
||||
if len(nodes) < k:
|
||||
continue
|
||||
SG = G.subgraph(nodes)
|
||||
# Build auxiliary graph
|
||||
H = _AntiGraph()
|
||||
H.add_nodes_from(SG.nodes())
|
||||
for u, v in combinations(SG, 2):
|
||||
K = node_connectivity(SG, u, v, cutoff=k)
|
||||
if k > K:
|
||||
H.add_edge(u, v)
|
||||
for h_nodes in biconnected_components(H):
|
||||
if len(h_nodes) <= k:
|
||||
continue
|
||||
SH = H.subgraph(h_nodes)
|
||||
for Gc in _cliques_heuristic(SG, SH, k, min_density):
|
||||
for k_nodes in biconnected_components(Gc):
|
||||
Gk = nx.k_core(SG.subgraph(k_nodes), k)
|
||||
if len(Gk) <= k:
|
||||
continue
|
||||
k_components[k].append(set(Gk))
|
||||
return k_components
|
||||
|
||||
|
||||
def _cliques_heuristic(G, H, k, min_density):
|
||||
h_cnumber = nx.core_number(H)
|
||||
for i, c_value in enumerate(sorted(set(h_cnumber.values()), reverse=True)):
|
||||
cands = {n for n, c in h_cnumber.items() if c == c_value}
|
||||
# Skip checking for overlap for the highest core value
|
||||
if i == 0:
|
||||
overlap = False
|
||||
else:
|
||||
overlap = set.intersection(
|
||||
*[{x for x in H[n] if x not in cands} for n in cands]
|
||||
)
|
||||
if overlap and len(overlap) < k:
|
||||
SH = H.subgraph(cands | overlap)
|
||||
else:
|
||||
SH = H.subgraph(cands)
|
||||
sh_cnumber = nx.core_number(SH)
|
||||
SG = nx.k_core(G.subgraph(SH), k)
|
||||
while not (_same(sh_cnumber) and nx.density(SH) >= min_density):
|
||||
# This subgraph must be writable => .copy()
|
||||
SH = H.subgraph(SG).copy()
|
||||
if len(SH) <= k:
|
||||
break
|
||||
sh_cnumber = nx.core_number(SH)
|
||||
sh_deg = dict(SH.degree())
|
||||
min_deg = min(sh_deg.values())
|
||||
SH.remove_nodes_from(n for n, d in sh_deg.items() if d == min_deg)
|
||||
SG = nx.k_core(G.subgraph(SH), k)
|
||||
else:
|
||||
yield SG
|
||||
|
||||
|
||||
def _same(measure, tol=0):
|
||||
vals = set(measure.values())
|
||||
if (max(vals) - min(vals)) <= tol:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class _AntiGraph(nx.Graph):
|
||||
"""
|
||||
Class for complement graphs.
|
||||
|
||||
The main goal is to be able to work with big and dense graphs with
|
||||
a low memory foodprint.
|
||||
|
||||
In this class you add the edges that *do not exist* in the dense graph,
|
||||
the report methods of the class return the neighbors, the edges and
|
||||
the degree as if it was the dense graph. Thus it's possible to use
|
||||
an instance of this class with some of NetworkX functions. In this
|
||||
case we only use k-core, connected_components, and biconnected_components.
|
||||
"""
|
||||
|
||||
all_edge_dict = {"weight": 1}
|
||||
|
||||
def single_edge_dict(self):
|
||||
return self.all_edge_dict
|
||||
|
||||
edge_attr_dict_factory = single_edge_dict
|
||||
|
||||
def __getitem__(self, n):
|
||||
"""Returns a dict of neighbors of node n in the dense graph.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : node
|
||||
A node in the graph.
|
||||
|
||||
Returns
|
||||
-------
|
||||
adj_dict : dictionary
|
||||
The adjacency dictionary for nodes connected to n.
|
||||
|
||||
"""
|
||||
all_edge_dict = self.all_edge_dict
|
||||
return {
|
||||
node: all_edge_dict for node in set(self._adj) - set(self._adj[n]) - {n}
|
||||
}
|
||||
|
||||
def neighbors(self, n):
|
||||
"""Returns an iterator over all neighbors of node n in the
|
||||
dense graph.
|
||||
"""
|
||||
try:
|
||||
return iter(set(self._adj) - set(self._adj[n]) - {n})
|
||||
except KeyError as e:
|
||||
raise NetworkXError(f"The node {n} is not in the graph.") from e
|
||||
|
||||
class AntiAtlasView(Mapping):
|
||||
"""An adjacency inner dict for AntiGraph"""
|
||||
|
||||
def __init__(self, graph, node):
|
||||
self._graph = graph
|
||||
self._atlas = graph._adj[node]
|
||||
self._node = node
|
||||
|
||||
def __len__(self):
|
||||
return len(self._graph) - len(self._atlas) - 1
|
||||
|
||||
def __iter__(self):
|
||||
return (n for n in self._graph if n not in self._atlas and n != self._node)
|
||||
|
||||
def __getitem__(self, nbr):
|
||||
nbrs = set(self._graph._adj) - set(self._atlas) - {self._node}
|
||||
if nbr in nbrs:
|
||||
return self._graph.all_edge_dict
|
||||
raise KeyError(nbr)
|
||||
|
||||
class AntiAdjacencyView(AntiAtlasView):
|
||||
"""An adjacency outer dict for AntiGraph"""
|
||||
|
||||
def __init__(self, graph):
|
||||
self._graph = graph
|
||||
self._atlas = graph._adj
|
||||
|
||||
def __len__(self):
|
||||
return len(self._atlas)
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self._graph)
|
||||
|
||||
def __getitem__(self, node):
|
||||
if node not in self._graph:
|
||||
raise KeyError(node)
|
||||
return self._graph.AntiAtlasView(self._graph, node)
|
||||
|
||||
@property
|
||||
def adj(self):
|
||||
return self.AntiAdjacencyView(self)
|
||||
|
||||
def subgraph(self, nodes):
|
||||
"""This subgraph method returns a full AntiGraph. Not a View"""
|
||||
nodes = set(nodes)
|
||||
G = _AntiGraph()
|
||||
G.add_nodes_from(nodes)
|
||||
for n in G:
|
||||
Gnbrs = G.adjlist_inner_dict_factory()
|
||||
G._adj[n] = Gnbrs
|
||||
for nbr, d in self._adj[n].items():
|
||||
if nbr in G._adj:
|
||||
Gnbrs[nbr] = d
|
||||
G._adj[nbr][n] = d
|
||||
G.graph = self.graph
|
||||
return G
|
||||
|
||||
class AntiDegreeView(nx.reportviews.DegreeView):
|
||||
def __iter__(self):
|
||||
all_nodes = set(self._succ)
|
||||
for n in self._nodes:
|
||||
nbrs = all_nodes - set(self._succ[n]) - {n}
|
||||
yield (n, len(nbrs))
|
||||
|
||||
def __getitem__(self, n):
|
||||
nbrs = set(self._succ) - set(self._succ[n]) - {n}
|
||||
# AntiGraph is a ThinGraph so all edges have weight 1
|
||||
return len(nbrs) + (n in nbrs)
|
||||
|
||||
@property
|
||||
def degree(self):
|
||||
"""Returns an iterator for (node, degree) and degree for single node.
|
||||
|
||||
The node degree is the number of edges adjacent to the node.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nbunch : iterable container, optional (default=all nodes)
|
||||
A container of nodes. The container will be iterated
|
||||
through once.
|
||||
|
||||
weight : string or None, optional (default=None)
|
||||
The edge attribute that holds the numerical value used
|
||||
as a weight. If None, then each edge has weight 1.
|
||||
The degree is the sum of the edge weights adjacent to the node.
|
||||
|
||||
Returns
|
||||
-------
|
||||
deg:
|
||||
Degree of the node, if a single node is passed as argument.
|
||||
nd_iter : an iterator
|
||||
The iterator returns two-tuples of (node, degree).
|
||||
|
||||
See Also
|
||||
--------
|
||||
degree
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> G = nx.path_graph(4)
|
||||
>>> G.degree(0) # node 0 with degree 1
|
||||
1
|
||||
>>> list(G.degree([0, 1]))
|
||||
[(0, 1), (1, 2)]
|
||||
|
||||
"""
|
||||
return self.AntiDegreeView(self)
|
||||
|
||||
def adjacency(self):
|
||||
"""Returns an iterator of (node, adjacency set) tuples for all nodes
|
||||
in the dense graph.
|
||||
|
||||
This is the fastest way to look at every edge.
|
||||
For directed graphs, only outgoing adjacencies are included.
|
||||
|
||||
Returns
|
||||
-------
|
||||
adj_iter : iterator
|
||||
An iterator of (node, adjacency set) for all nodes in
|
||||
the graph.
|
||||
|
||||
"""
|
||||
for n in self._adj:
|
||||
yield (n, set(self._adj) - set(self._adj[n]) - {n})
|
|
@ -0,0 +1,42 @@
|
|||
"""
|
||||
**************
|
||||
Graph Matching
|
||||
**************
|
||||
|
||||
Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent
|
||||
edges; that is, no two edges share a common vertex.
|
||||
|
||||
`Wikipedia: Matching <https://en.wikipedia.org/wiki/Matching_(graph_theory)>`_
|
||||
"""
|
||||
import networkx as nx
|
||||
|
||||
__all__ = ["min_maximal_matching"]
|
||||
|
||||
|
||||
def min_maximal_matching(G):
|
||||
r"""Returns the minimum maximal matching of G. That is, out of all maximal
|
||||
matchings of the graph G, the smallest is returned.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Undirected graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
min_maximal_matching : set
|
||||
Returns a set of edges such that no two edges share a common endpoint
|
||||
and every edge not in the set shares some common endpoint in the set.
|
||||
Cardinality will be 2*OPT in the worst case.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The algorithm computes an approximate solution fo the minimum maximal
|
||||
cardinality matching problem. The solution is no more than 2 * OPT in size.
|
||||
Runtime is $O(|E|)$.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Vazirani, Vijay Approximation Algorithms (2001)
|
||||
"""
|
||||
return nx.maximal_matching(G)
|
|
@ -0,0 +1,42 @@
|
|||
"""
|
||||
Ramsey numbers.
|
||||
"""
|
||||
import networkx as nx
|
||||
from ...utils import arbitrary_element
|
||||
|
||||
__all__ = ["ramsey_R2"]
|
||||
|
||||
|
||||
def ramsey_R2(G):
|
||||
r"""Compute the largest clique and largest independent set in `G`.
|
||||
|
||||
This can be used to estimate bounds for the 2-color
|
||||
Ramsey number `R(2;s,t)` for `G`.
|
||||
|
||||
This is a recursive implementation which could run into trouble
|
||||
for large recursions. Note that self-loop edges are ignored.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
Undirected graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
max_pair : (set, set) tuple
|
||||
Maximum clique, Maximum independent set.
|
||||
"""
|
||||
if not G:
|
||||
return set(), set()
|
||||
|
||||
node = arbitrary_element(G)
|
||||
nbrs = (nbr for nbr in nx.all_neighbors(G, node) if nbr != node)
|
||||
nnbrs = nx.non_neighbors(G, node)
|
||||
c_1, i_1 = ramsey_R2(G.subgraph(nbrs).copy())
|
||||
c_2, i_2 = ramsey_R2(G.subgraph(nnbrs).copy())
|
||||
|
||||
c_1.add(node)
|
||||
i_2.add(node)
|
||||
# Choose the larger of the two cliques and the larger of the two
|
||||
# independent sets, according to cardinality.
|
||||
return max(c_1, c_2, key=len), max(i_1, i_2, key=len)
|
|
@ -0,0 +1,104 @@
|
|||
from itertools import chain
|
||||
|
||||
from networkx.utils import pairwise, not_implemented_for
|
||||
import networkx as nx
|
||||
|
||||
__all__ = ["metric_closure", "steiner_tree"]
|
||||
|
||||
|
||||
@not_implemented_for("directed")
|
||||
def metric_closure(G, weight="weight"):
|
||||
""" Return the metric closure of a graph.
|
||||
|
||||
The metric closure of a graph *G* is the complete graph in which each edge
|
||||
is weighted by the shortest path distance between the nodes in *G* .
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
Returns
|
||||
-------
|
||||
NetworkX graph
|
||||
Metric closure of the graph `G`.
|
||||
|
||||
"""
|
||||
M = nx.Graph()
|
||||
|
||||
Gnodes = set(G)
|
||||
|
||||
# check for connected graph while processing first node
|
||||
all_paths_iter = nx.all_pairs_dijkstra(G, weight=weight)
|
||||
u, (distance, path) = next(all_paths_iter)
|
||||
if Gnodes - set(distance):
|
||||
msg = "G is not a connected graph. metric_closure is not defined."
|
||||
raise nx.NetworkXError(msg)
|
||||
Gnodes.remove(u)
|
||||
for v in Gnodes:
|
||||
M.add_edge(u, v, distance=distance[v], path=path[v])
|
||||
|
||||
# first node done -- now process the rest
|
||||
for u, (distance, path) in all_paths_iter:
|
||||
Gnodes.remove(u)
|
||||
for v in Gnodes:
|
||||
M.add_edge(u, v, distance=distance[v], path=path[v])
|
||||
|
||||
return M
|
||||
|
||||
|
||||
@not_implemented_for("directed")
|
||||
def steiner_tree(G, terminal_nodes, weight="weight"):
|
||||
""" Return an approximation to the minimum Steiner tree of a graph.
|
||||
|
||||
The minimum Steiner tree of `G` w.r.t a set of `terminal_nodes`
|
||||
is a tree within `G` that spans those nodes and has minimum size
|
||||
(sum of edge weights) among all such trees.
|
||||
|
||||
The minimum Steiner tree can be approximated by computing the minimum
|
||||
spanning tree of the subgraph of the metric closure of *G* induced by the
|
||||
terminal nodes, where the metric closure of *G* is the complete graph in
|
||||
which each edge is weighted by the shortest path distance between the
|
||||
nodes in *G* .
|
||||
This algorithm produces a tree whose weight is within a (2 - (2 / t))
|
||||
factor of the weight of the optimal Steiner tree where *t* is number of
|
||||
terminal nodes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : NetworkX graph
|
||||
|
||||
terminal_nodes : list
|
||||
A list of terminal nodes for which minimum steiner tree is
|
||||
to be found.
|
||||
|
||||
Returns
|
||||
-------
|
||||
NetworkX graph
|
||||
Approximation to the minimum steiner tree of `G` induced by
|
||||
`terminal_nodes` .
|
||||
|
||||
Notes
|
||||
-----
|
||||
For multigraphs, the edge between two nodes with minimum weight is the
|
||||
edge put into the Steiner tree.
|
||||
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Steiner_tree_problem on Wikipedia.
|
||||
https://en.wikipedia.org/wiki/Steiner_tree_problem
|
||||
"""
|
||||
# H is the subgraph induced by terminal_nodes in the metric closure M of G.
|
||||
M = metric_closure(G, weight=weight)
|
||||
H = M.subgraph(terminal_nodes)
|
||||
# Use the 'distance' attribute of each edge provided by M.
|
||||
mst_edges = nx.minimum_spanning_edges(H, weight="distance", data=True)
|
||||
# Create an iterator over each edge in each shortest path; repeats are okay
|
||||
edges = chain.from_iterable(pairwise(d["path"]) for u, v, d in mst_edges)
|
||||
# For multigraph we should add the minimal weight edge keys
|
||||
if G.is_multigraph():
|
||||
edges = (
|
||||
(u, v, min(G[u][v], key=lambda k: G[u][v][k][weight])) for u, v in edges
|
||||
)
|
||||
T = G.edge_subgraph(edges)
|
||||
return T
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,43 @@
|
|||
import networkx as nx
|
||||
from networkx.algorithms.approximation import average_clustering
|
||||
|
||||
# This approximation has to be be exact in regular graphs
|
||||
# with no triangles or with all possible triangles.
|
||||
|
||||
|
||||
def test_petersen():
|
||||
# Actual coefficient is 0
|
||||
G = nx.petersen_graph()
|
||||
assert average_clustering(G, trials=int(len(G) / 2)) == nx.average_clustering(G)
|
||||
|
||||
|
||||
def test_petersen_seed():
|
||||
# Actual coefficient is 0
|
||||
G = nx.petersen_graph()
|
||||
assert average_clustering(
|
||||
G, trials=int(len(G) / 2), seed=1
|
||||
) == nx.average_clustering(G)
|
||||
|
||||
|
||||
def test_tetrahedral():
|
||||
# Actual coefficient is 1
|
||||
G = nx.tetrahedral_graph()
|
||||
assert average_clustering(G, trials=int(len(G) / 2)) == nx.average_clustering(G)
|
||||
|
||||
|
||||
def test_dodecahedral():
|
||||
# Actual coefficient is 0
|
||||
G = nx.dodecahedral_graph()
|
||||
assert average_clustering(G, trials=int(len(G) / 2)) == nx.average_clustering(G)
|
||||
|
||||
|
||||
def test_empty():
|
||||
G = nx.empty_graph(5)
|
||||
assert average_clustering(G, trials=int(len(G) / 2)) == 0
|
||||
|
||||
|
||||
def test_complete():
|
||||
G = nx.complete_graph(5)
|
||||
assert average_clustering(G, trials=int(len(G) / 2)) == 1
|
||||
G = nx.complete_graph(7)
|
||||
assert average_clustering(G, trials=int(len(G) / 2)) == 1
|
|
@ -0,0 +1,107 @@
|
|||
"""Unit tests for the :mod:`networkx.algorithms.approximation.clique`
|
||||
module.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
import networkx as nx
|
||||
from networkx.algorithms.approximation import max_clique
|
||||
from networkx.algorithms.approximation import clique_removal
|
||||
from networkx.algorithms.approximation import large_clique_size
|
||||
|
||||
|
||||
def is_independent_set(G, nodes):
|
||||
"""Returns True if and only if `nodes` is a clique in `G`.
|
||||
|
||||
`G` is a NetworkX graph. `nodes` is an iterable of nodes in
|
||||
`G`.
|
||||
|
||||
"""
|
||||
return G.subgraph(nodes).number_of_edges() == 0
|
||||
|
||||
|
||||
def is_clique(G, nodes):
|
||||
"""Returns True if and only if `nodes` is an independent set
|
||||
in `G`.
|
||||
|
||||
`G` is an undirected simple graph. `nodes` is an iterable of
|
||||
nodes in `G`.
|
||||
|
||||
"""
|
||||
H = G.subgraph(nodes)
|
||||
n = len(H)
|
||||
return H.number_of_edges() == n * (n - 1) // 2
|
||||
|
||||
|
||||
class TestCliqueRemoval:
|
||||
"""Unit tests for the
|
||||
:func:`~networkx.algorithms.approximation.clique_removal` function.
|
||||
|
||||
"""
|
||||
|
||||
def test_trivial_graph(self):
|
||||
G = nx.trivial_graph()
|
||||
independent_set, cliques = clique_removal(G)
|
||||
assert is_independent_set(G, independent_set)
|
||||
assert all(is_clique(G, clique) for clique in cliques)
|
||||
# In fact, we should only have 1-cliques, that is, singleton nodes.
|
||||
assert all(len(clique) == 1 for clique in cliques)
|
||||
|
||||
def test_complete_graph(self):
|
||||
G = nx.complete_graph(10)
|
||||
independent_set, cliques = clique_removal(G)
|
||||
assert is_independent_set(G, independent_set)
|
||||
assert all(is_clique(G, clique) for clique in cliques)
|
||||
|
||||
def test_barbell_graph(self):
|
||||
G = nx.barbell_graph(10, 5)
|
||||
independent_set, cliques = clique_removal(G)
|
||||
assert is_independent_set(G, independent_set)
|
||||
assert all(is_clique(G, clique) for clique in cliques)
|
||||
|
||||
|
||||
class TestMaxClique:
|
||||
"""Unit tests for the :func:`networkx.algorithms.approximation.max_clique`
|
||||
function.
|
||||
|
||||
"""
|
||||
|
||||
def test_null_graph(self):
|
||||
G = nx.null_graph()
|
||||
assert len(max_clique(G)) == 0
|
||||
|
||||
def test_complete_graph(self):
|
||||
graph = nx.complete_graph(30)
|
||||
# this should return the entire graph
|
||||
mc = max_clique(graph)
|
||||
assert 30 == len(mc)
|
||||
|
||||
def test_maximal_by_cardinality(self):
|
||||
"""Tests that the maximal clique is computed according to maximum
|
||||
cardinality of the sets.
|
||||
|
||||
For more information, see pull request #1531.
|
||||
|
||||
"""
|
||||
G = nx.complete_graph(5)
|
||||
G.add_edge(4, 5)
|
||||
clique = max_clique(G)
|
||||
assert len(clique) > 1
|
||||
|
||||
G = nx.lollipop_graph(30, 2)
|
||||
clique = max_clique(G)
|
||||
assert len(clique) > 2
|
||||
|
||||
|
||||
def test_large_clique_size():
|
||||
G = nx.complete_graph(9)
|
||||
nx.add_cycle(G, [9, 10, 11])
|
||||
G.add_edge(8, 9)
|
||||
G.add_edge(1, 12)
|
||||
G.add_node(13)
|
||||
|
||||
assert large_clique_size(G) == 9
|
||||
G.remove_node(5)
|
||||
assert large_clique_size(G) == 8
|
||||
G.remove_edge(2, 3)
|
||||
assert large_clique_size(G) == 7
|
|
@ -0,0 +1,199 @@
|
|||
import pytest
|
||||
|
||||
import networkx as nx
|
||||
from networkx.algorithms import approximation as approx
|
||||
|
||||
|
||||
def test_global_node_connectivity():
|
||||
# Figure 1 chapter on Connectivity
|
||||
G = nx.Graph()
|
||||
G.add_edges_from(
|
||||
[
|
||||
(1, 2),
|
||||
(1, 3),
|
||||
(1, 4),
|
||||
(1, 5),
|
||||
(2, 3),
|
||||
(2, 6),
|
||||
(3, 4),
|
||||
(3, 6),
|
||||
(4, 6),
|
||||
(4, 7),
|
||||
(5, 7),
|
||||
(6, 8),
|
||||
(6, 9),
|
||||
(7, 8),
|
||||
(7, 10),
|
||||
(8, 11),
|
||||
(9, 10),
|
||||
(9, 11),
|
||||
(10, 11),
|
||||
]
|
||||
)
|
||||
assert 2 == approx.local_node_connectivity(G, 1, 11)
|
||||
assert 2 == approx.node_connectivity(G)
|
||||
assert 2 == approx.node_connectivity(G, 1, 11)
|
||||
|
||||
|
||||
def test_white_harary1():
|
||||
# Figure 1b white and harary (2001)
|
||||
# A graph with high adhesion (edge connectivity) and low cohesion
|
||||
# (node connectivity)
|
||||
G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4))
|
||||
G.remove_node(7)
|
||||
for i in range(4, 7):
|
||||
G.add_edge(0, i)
|
||||
G = nx.disjoint_union(G, nx.complete_graph(4))
|
||||
G.remove_node(G.order() - 1)
|
||||
for i in range(7, 10):
|
||||
G.add_edge(0, i)
|
||||
assert 1 == approx.node_connectivity(G)
|
||||
|
||||
|
||||
def test_complete_graphs():
|
||||
for n in range(5, 25, 5):
|
||||
G = nx.complete_graph(n)
|
||||
assert n - 1 == approx.node_connectivity(G)
|
||||
assert n - 1 == approx.node_connectivity(G, 0, 3)
|
||||
|
||||
|
||||
def test_empty_graphs():
|
||||
for k in range(5, 25, 5):
|
||||
G = nx.empty_graph(k)
|
||||
assert 0 == approx.node_connectivity(G)
|
||||
assert 0 == approx.node_connectivity(G, 0, 3)
|
||||
|
||||
|
||||
def test_petersen():
|
||||
G = nx.petersen_graph()
|
||||
assert 3 == approx.node_connectivity(G)
|
||||
assert 3 == approx.node_connectivity(G, 0, 5)
|
||||
|
||||
|
||||
# Approximation fails with tutte graph
|
||||
# def test_tutte():
|
||||
# G = nx.tutte_graph()
|
||||
# assert_equal(3, approx.node_connectivity(G))
|
||||
|
||||
|
||||
def test_dodecahedral():
|
||||
G = nx.dodecahedral_graph()
|
||||
assert 3 == approx.node_connectivity(G)
|
||||
assert 3 == approx.node_connectivity(G, 0, 5)
|
||||
|
||||
|
||||
def test_octahedral():
|
||||
G = nx.octahedral_graph()
|
||||
assert 4 == approx.node_connectivity(G)
|
||||
assert 4 == approx.node_connectivity(G, 0, 5)
|
||||
|
||||
|
||||
# Approximation can fail with icosahedral graph depending
|
||||
# on iteration order.
|
||||
# def test_icosahedral():
|
||||
# G=nx.icosahedral_graph()
|
||||
# assert_equal(5, approx.node_connectivity(G))
|
||||
# assert_equal(5, approx.node_connectivity(G, 0, 5))
|
||||
|
||||
|
||||
def test_only_source():
|
||||
G = nx.complete_graph(5)
|
||||
pytest.raises(nx.NetworkXError, approx.node_connectivity, G, s=0)
|
||||
|
||||
|
||||
def test_only_target():
|
||||
G = nx.complete_graph(5)
|
||||
pytest.raises(nx.NetworkXError, approx.node_connectivity, G, t=0)
|
||||
|
||||
|
||||
def test_missing_source():
|
||||
G = nx.path_graph(4)
|
||||
pytest.raises(nx.NetworkXError, approx.node_connectivity, G, 10, 1)
|
||||
|
||||
|
||||
def test_missing_target():
|
||||
G = nx.path_graph(4)
|
||||
pytest.raises(nx.NetworkXError, approx.node_connectivity, G, 1, 10)
|
||||
|
||||
|
||||
def test_source_equals_target():
|
||||
G = nx.complete_graph(5)
|
||||
pytest.raises(nx.NetworkXError, approx.local_node_connectivity, G, 0, 0)
|
||||
|
||||
|
||||
def test_directed_node_connectivity():
|
||||
G = nx.cycle_graph(10, create_using=nx.DiGraph()) # only one direction
|
||||
D = nx.cycle_graph(10).to_directed() # 2 reciprocal edges
|
||||
assert 1 == approx.node_connectivity(G)
|
||||
assert 1 == approx.node_connectivity(G, 1, 4)
|
||||
assert 2 == approx.node_connectivity(D)
|
||||
assert 2 == approx.node_connectivity(D, 1, 4)
|
||||
|
||||
|
||||
class TestAllPairsNodeConnectivityApprox:
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
cls.path = nx.path_graph(7)
|
||||
cls.directed_path = nx.path_graph(7, create_using=nx.DiGraph())
|
||||
cls.cycle = nx.cycle_graph(7)
|
||||
cls.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph())
|
||||
cls.gnp = nx.gnp_random_graph(30, 0.1)
|
||||
cls.directed_gnp = nx.gnp_random_graph(30, 0.1, directed=True)
|
||||
cls.K20 = nx.complete_graph(20)
|
||||
cls.K10 = nx.complete_graph(10)
|
||||
cls.K5 = nx.complete_graph(5)
|
||||
cls.G_list = [
|
||||
cls.path,
|
||||
cls.directed_path,
|
||||
cls.cycle,
|
||||
cls.directed_cycle,
|
||||
cls.gnp,
|
||||
cls.directed_gnp,
|
||||
cls.K10,
|
||||
cls.K5,
|
||||
cls.K20,
|
||||
]
|
||||
|
||||
def test_cycles(self):
|
||||
K_undir = approx.all_pairs_node_connectivity(self.cycle)
|
||||
for source in K_undir:
|
||||
for target, k in K_undir[source].items():
|
||||
assert k == 2
|
||||
K_dir = approx.all_pairs_node_connectivity(self.directed_cycle)
|
||||
for source in K_dir:
|
||||
for target, k in K_dir[source].items():
|
||||
assert k == 1
|
||||
|
||||
def test_complete(self):
|
||||
for G in [self.K10, self.K5, self.K20]:
|
||||
K = approx.all_pairs_node_connectivity(G)
|
||||
for source in K:
|
||||
for target, k in K[source].items():
|
||||
assert k == len(G) - 1
|
||||
|
||||
def test_paths(self):
|
||||
K_undir = approx.all_pairs_node_connectivity(self.path)
|
||||
for source in K_undir:
|
||||
for target, k in K_undir[source].items():
|
||||
assert k == 1
|
||||
K_dir = approx.all_pairs_node_connectivity(self.directed_path)
|
||||
for source in K_dir:
|
||||
for target, k in K_dir[source].items():
|
||||
if source < target:
|
||||
assert k == 1
|
||||
else:
|
||||
assert k == 0
|
||||
|
||||
def test_cutoff(self):
|
||||
for G in [self.K10, self.K5, self.K20]:
|
||||
for mp in [2, 3, 4]:
|
||||
paths = approx.all_pairs_node_connectivity(G, cutoff=mp)
|
||||
for source in paths:
|
||||
for target, K in paths[source].items():
|
||||
assert K == mp
|
||||
|
||||
def test_all_pairs_connectivity_nbunch(self):
|
||||
G = nx.complete_graph(5)
|
||||
nbunch = [0, 2, 3]
|
||||
C = approx.all_pairs_node_connectivity(G, nbunch=nbunch)
|
||||
assert len(C) == len(nbunch)
|
|
@ -0,0 +1,65 @@
|
|||
import networkx as nx
|
||||
from networkx.algorithms.approximation import min_weighted_dominating_set
|
||||
from networkx.algorithms.approximation import min_edge_dominating_set
|
||||
|
||||
|
||||
class TestMinWeightDominatingSet:
|
||||
def test_min_weighted_dominating_set(self):
|
||||
graph = nx.Graph()
|
||||
graph.add_edge(1, 2)
|
||||
graph.add_edge(1, 5)
|
||||
graph.add_edge(2, 3)
|
||||
graph.add_edge(2, 5)
|
||||
graph.add_edge(3, 4)
|
||||
graph.add_edge(3, 6)
|
||||
graph.add_edge(5, 6)
|
||||
|
||||
vertices = {1, 2, 3, 4, 5, 6}
|
||||
# due to ties, this might be hard to test tight bounds
|
||||
dom_set = min_weighted_dominating_set(graph)
|
||||
for vertex in vertices - dom_set:
|
||||
neighbors = set(graph.neighbors(vertex))
|
||||
assert len(neighbors & dom_set) > 0, "Non dominating set found!"
|
||||
|
||||
def test_star_graph(self):
|
||||
"""Tests that an approximate dominating set for the star graph,
|
||||
even when the center node does not have the smallest integer
|
||||
label, gives just the center node.
|
||||
|
||||
For more information, see #1527.
|
||||
|
||||
"""
|
||||
# Create a star graph in which the center node has the highest
|
||||
# label instead of the lowest.
|
||||
G = nx.star_graph(10)
|
||||
G = nx.relabel_nodes(G, {0: 9, 9: 0})
|
||||
assert min_weighted_dominating_set(G) == {9}
|
||||
|
||||
def test_min_edge_dominating_set(self):
|
||||
graph = nx.path_graph(5)
|
||||
dom_set = min_edge_dominating_set(graph)
|
||||
|
||||
# this is a crappy way to test, but good enough for now.
|
||||
for edge in graph.edges():
|
||||
if edge in dom_set:
|
||||
continue
|
||||
else:
|
||||
u, v = edge
|
||||
found = False
|
||||
for dom_edge in dom_set:
|
||||
found |= u == dom_edge[0] or u == dom_edge[1]
|
||||
assert found, "Non adjacent edge found!"
|
||||
|
||||
graph = nx.complete_graph(10)
|
||||
dom_set = min_edge_dominating_set(graph)
|
||||
|
||||
# this is a crappy way to test, but good enough for now.
|
||||
for edge in graph.edges():
|
||||
if edge in dom_set:
|
||||
continue
|
||||
else:
|
||||
u, v = edge
|
||||
found = False
|
||||
for dom_edge in dom_set:
|
||||
found |= u == dom_edge[0] or u == dom_edge[1]
|
||||
assert found, "Non adjacent edge found!"
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue