Fixed database typo and removed unnecessary class identifier.

This commit is contained in:
Batuhan Berk Başoğlu 2020-10-14 10:10:37 -04:00
parent 00ad49a143
commit 45fb349a7d
5098 changed files with 952558 additions and 85 deletions

View file

@ -0,0 +1,10 @@
from pathlib import Path
# Check that the test directories exist
if not (Path(__file__).parent / "baseline_images").exists():
raise IOError(
'The baseline image directory does not exist. '
'This is most likely because the test data is not installed. '
'You may need to install matplotlib from source to get the '
'test data.')

View file

@ -0,0 +1,3 @@
from matplotlib.testing.conftest import (mpl_test_settings,
mpl_image_comparison_parameters,
pytest_configure, pytest_unconfigure)

View file

@ -0,0 +1,63 @@
from contextlib import ExitStack
import numpy as np
import pytest
import matplotlib as mpl
from matplotlib.testing.decorators import image_comparison
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
# The original version of this test relied on mpl_toolkits's slightly different
# colorbar implementation; moving to matplotlib's own colorbar implementation
# caused the small image comparison error.
@pytest.mark.parametrize("legacy_colorbar", [False, True])
@image_comparison(['imagegrid_cbar_mode.png'],
remove_text=True, style='mpl20', tol=0.3)
def test_imagegrid_cbar_mode_edge(legacy_colorbar):
mpl.rcParams["mpl_toolkits.legacy_colorbar"] = legacy_colorbar
X, Y = np.meshgrid(np.linspace(0, 6, 30), np.linspace(0, 6, 30))
arr = np.sin(X) * np.cos(Y) + 1j*(np.sin(3*Y) * np.cos(Y/2.))
fig = plt.figure(figsize=(18, 9))
positions = (241, 242, 243, 244, 245, 246, 247, 248)
directions = ['row']*4 + ['column']*4
cbar_locations = ['left', 'right', 'top', 'bottom']*2
for position, direction, location in zip(
positions, directions, cbar_locations):
grid = ImageGrid(fig, position,
nrows_ncols=(2, 2),
direction=direction,
cbar_location=location,
cbar_size='20%',
cbar_mode='edge')
ax1, ax2, ax3, ax4, = grid
ax1.imshow(arr.real, cmap='nipy_spectral')
ax2.imshow(arr.imag, cmap='hot')
ax3.imshow(np.abs(arr), cmap='jet')
ax4.imshow(np.arctan2(arr.imag, arr.real), cmap='hsv')
with (pytest.warns(mpl.MatplotlibDeprecationWarning) if legacy_colorbar
else ExitStack()):
# In each row/column, the "first" colorbars must be overwritten by
# the "second" ones. To achieve this, clear out the axes first.
for ax in grid:
ax.cax.cla()
cb = ax.cax.colorbar(
ax.images[0],
ticks=mpl.ticker.MaxNLocator(5)) # old default locator.
def test_imagegrid():
mpl.rcParams["mpl_toolkits.legacy_colorbar"] = False
fig = plt.figure()
grid = ImageGrid(fig, 111, nrows_ncols=(1, 1))
ax = grid[0]
im = ax.imshow([[1, 2]], norm=mpl.colors.LogNorm())
cb = ax.cax.colorbar(im)
assert isinstance(cb.locator, mpl.colorbar._ColorbarLogLocator)

View file

@ -0,0 +1,480 @@
from itertools import product
import platform
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import cbook
from matplotlib.cbook import MatplotlibDeprecationWarning
from matplotlib.backend_bases import MouseEvent
from matplotlib.colors import LogNorm
from matplotlib.transforms import Bbox, TransformedBbox
from matplotlib.testing.decorators import (
image_comparison, remove_ticks_and_titles)
from mpl_toolkits.axes_grid1 import (
axes_size as Size, host_subplot, make_axes_locatable, AxesGrid, ImageGrid)
from mpl_toolkits.axes_grid1.anchored_artists import (
AnchoredSizeBar, AnchoredDirectionArrows)
from mpl_toolkits.axes_grid1.axes_divider import HBoxDivider
from mpl_toolkits.axes_grid1.inset_locator import (
zoomed_inset_axes, mark_inset, inset_axes, BboxConnectorPatch)
import mpl_toolkits.axes_grid1.mpl_axes
import pytest
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
def test_divider_append_axes():
fig, ax = plt.subplots()
divider = make_axes_locatable(ax)
axs = {
"main": ax,
"top": divider.append_axes("top", 1.2, pad=0.1, sharex=ax),
"bottom": divider.append_axes("bottom", 1.2, pad=0.1, sharex=ax),
"left": divider.append_axes("left", 1.2, pad=0.1, sharey=ax),
"right": divider.append_axes("right", 1.2, pad=0.1, sharey=ax),
}
fig.canvas.draw()
renderer = fig.canvas.get_renderer()
bboxes = {k: axs[k].get_window_extent() for k in axs}
dpi = fig.dpi
assert bboxes["top"].height == pytest.approx(1.2 * dpi)
assert bboxes["bottom"].height == pytest.approx(1.2 * dpi)
assert bboxes["left"].width == pytest.approx(1.2 * dpi)
assert bboxes["right"].width == pytest.approx(1.2 * dpi)
assert bboxes["top"].y0 - bboxes["main"].y1 == pytest.approx(0.1 * dpi)
assert bboxes["main"].y0 - bboxes["bottom"].y1 == pytest.approx(0.1 * dpi)
assert bboxes["main"].x0 - bboxes["left"].x1 == pytest.approx(0.1 * dpi)
assert bboxes["right"].x0 - bboxes["main"].x1 == pytest.approx(0.1 * dpi)
assert bboxes["left"].y0 == bboxes["main"].y0 == bboxes["right"].y0
assert bboxes["left"].y1 == bboxes["main"].y1 == bboxes["right"].y1
assert bboxes["top"].x0 == bboxes["main"].x0 == bboxes["bottom"].x0
assert bboxes["top"].x1 == bboxes["main"].x1 == bboxes["bottom"].x1
@image_comparison(['twin_axes_empty_and_removed'], extensions=["png"], tol=1)
def test_twin_axes_empty_and_removed():
# Purely cosmetic font changes (avoid overlap)
matplotlib.rcParams.update({"font.size": 8})
matplotlib.rcParams.update({"xtick.labelsize": 8})
matplotlib.rcParams.update({"ytick.labelsize": 8})
generators = ["twinx", "twiny", "twin"]
modifiers = ["", "host invisible", "twin removed", "twin invisible",
"twin removed\nhost invisible"]
# Unmodified host subplot at the beginning for reference
h = host_subplot(len(modifiers)+1, len(generators), 2)
h.text(0.5, 0.5, "host_subplot",
horizontalalignment="center", verticalalignment="center")
# Host subplots with various modifications (twin*, visibility) applied
for i, (mod, gen) in enumerate(product(modifiers, generators),
len(generators) + 1):
h = host_subplot(len(modifiers)+1, len(generators), i)
t = getattr(h, gen)()
if "twin invisible" in mod:
t.axis[:].set_visible(False)
if "twin removed" in mod:
t.remove()
if "host invisible" in mod:
h.axis[:].set_visible(False)
h.text(0.5, 0.5, gen + ("\n" + mod if mod else ""),
horizontalalignment="center", verticalalignment="center")
plt.subplots_adjust(wspace=0.5, hspace=1)
@pytest.mark.parametrize("legacy_colorbar", [False, True])
def test_axesgrid_colorbar_log_smoketest(legacy_colorbar):
matplotlib.rcParams["mpl_toolkits.legacy_colorbar"] = legacy_colorbar
fig = plt.figure()
grid = AxesGrid(fig, 111, # modified to be only subplot
nrows_ncols=(1, 1),
ngrids=1,
label_mode="L",
cbar_location="top",
cbar_mode="single",
)
Z = 10000 * np.random.rand(10, 10)
im = grid[0].imshow(Z, interpolation="nearest", norm=LogNorm())
if legacy_colorbar:
with pytest.warns(MatplotlibDeprecationWarning):
grid.cbar_axes[0].colorbar(im)
else:
grid.cbar_axes[0].colorbar(im)
@image_comparison(['inset_locator.png'], style='default', remove_text=True)
def test_inset_locator():
fig, ax = plt.subplots(figsize=[5, 4])
# prepare the demo image
# Z is a 15x15 array
Z = cbook.get_sample_data("axes_grid/bivariate_normal.npy", np_load=True)
extent = (-3, 4, -4, 3)
Z2 = np.zeros((150, 150))
ny, nx = Z.shape
Z2[30:30+ny, 30:30+nx] = Z
# extent = [-3, 4, -4, 3]
ax.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
axins = zoomed_inset_axes(ax, zoom=6, loc='upper right')
axins.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
axins.yaxis.get_major_locator().set_params(nbins=7)
axins.xaxis.get_major_locator().set_params(nbins=7)
# sub region of the original image
x1, x2, y1, y2 = -1.5, -0.9, -2.5, -1.9
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
plt.xticks(visible=False)
plt.yticks(visible=False)
# draw a bbox of the region of the inset axes in the parent axes and
# connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
asb = AnchoredSizeBar(ax.transData,
0.5,
'0.5',
loc='lower center',
pad=0.1, borderpad=0.5, sep=5,
frameon=False)
ax.add_artist(asb)
@image_comparison(['inset_axes.png'], style='default', remove_text=True)
def test_inset_axes():
fig, ax = plt.subplots(figsize=[5, 4])
# prepare the demo image
# Z is a 15x15 array
Z = cbook.get_sample_data("axes_grid/bivariate_normal.npy", np_load=True)
extent = (-3, 4, -4, 3)
Z2 = np.zeros((150, 150))
ny, nx = Z.shape
Z2[30:30+ny, 30:30+nx] = Z
# extent = [-3, 4, -4, 3]
ax.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
# creating our inset axes with a bbox_transform parameter
axins = inset_axes(ax, width=1., height=1., bbox_to_anchor=(1, 1),
bbox_transform=ax.transAxes)
axins.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
axins.yaxis.get_major_locator().set_params(nbins=7)
axins.xaxis.get_major_locator().set_params(nbins=7)
# sub region of the original image
x1, x2, y1, y2 = -1.5, -0.9, -2.5, -1.9
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
plt.xticks(visible=False)
plt.yticks(visible=False)
# draw a bbox of the region of the inset axes in the parent axes and
# connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
asb = AnchoredSizeBar(ax.transData,
0.5,
'0.5',
loc='lower center',
pad=0.1, borderpad=0.5, sep=5,
frameon=False)
ax.add_artist(asb)
def test_inset_axes_complete():
dpi = 100
figsize = (6, 5)
fig, ax = plt.subplots(figsize=figsize, dpi=dpi)
fig.subplots_adjust(.1, .1, .9, .9)
ins = inset_axes(ax, width=2., height=2., borderpad=0)
fig.canvas.draw()
assert_array_almost_equal(
ins.get_position().extents,
np.array(((0.9*figsize[0]-2.)/figsize[0],
(0.9*figsize[1]-2.)/figsize[1], 0.9, 0.9)))
ins = inset_axes(ax, width="40%", height="30%", borderpad=0)
fig.canvas.draw()
assert_array_almost_equal(
ins.get_position().extents,
np.array((.9-.8*.4, .9-.8*.3, 0.9, 0.9)))
ins = inset_axes(ax, width=1., height=1.2, bbox_to_anchor=(200, 100),
loc=3, borderpad=0)
fig.canvas.draw()
assert_array_almost_equal(
ins.get_position().extents,
np.array((200./dpi/figsize[0], 100./dpi/figsize[1],
(200./dpi+1)/figsize[0], (100./dpi+1.2)/figsize[1])))
ins1 = inset_axes(ax, width="35%", height="60%", loc=3, borderpad=1)
ins2 = inset_axes(ax, width="100%", height="100%",
bbox_to_anchor=(0, 0, .35, .60),
bbox_transform=ax.transAxes, loc=3, borderpad=1)
fig.canvas.draw()
assert_array_equal(ins1.get_position().extents,
ins2.get_position().extents)
with pytest.raises(ValueError):
ins = inset_axes(ax, width="40%", height="30%",
bbox_to_anchor=(0.4, 0.5))
with pytest.warns(UserWarning):
ins = inset_axes(ax, width="40%", height="30%",
bbox_transform=ax.transAxes)
@image_comparison(['fill_facecolor.png'], remove_text=True, style='mpl20')
def test_fill_facecolor():
fig, ax = plt.subplots(1, 5)
fig.set_size_inches(5, 5)
for i in range(1, 4):
ax[i].yaxis.set_visible(False)
ax[4].yaxis.tick_right()
bbox = Bbox.from_extents(0, 0.4, 1, 0.6)
# fill with blue by setting 'fc' field
bbox1 = TransformedBbox(bbox, ax[0].transData)
bbox2 = TransformedBbox(bbox, ax[1].transData)
# set color to BboxConnectorPatch
p = BboxConnectorPatch(
bbox1, bbox2, loc1a=1, loc2a=2, loc1b=4, loc2b=3,
ec="r", fc="b")
p.set_clip_on(False)
ax[0].add_patch(p)
# set color to marked area
axins = zoomed_inset_axes(ax[0], 1, loc='upper right')
axins.set_xlim(0, 0.2)
axins.set_ylim(0, 0.2)
plt.gca().axes.get_xaxis().set_ticks([])
plt.gca().axes.get_yaxis().set_ticks([])
mark_inset(ax[0], axins, loc1=2, loc2=4, fc="b", ec="0.5")
# fill with yellow by setting 'facecolor' field
bbox3 = TransformedBbox(bbox, ax[1].transData)
bbox4 = TransformedBbox(bbox, ax[2].transData)
# set color to BboxConnectorPatch
p = BboxConnectorPatch(
bbox3, bbox4, loc1a=1, loc2a=2, loc1b=4, loc2b=3,
ec="r", facecolor="y")
p.set_clip_on(False)
ax[1].add_patch(p)
# set color to marked area
axins = zoomed_inset_axes(ax[1], 1, loc='upper right')
axins.set_xlim(0, 0.2)
axins.set_ylim(0, 0.2)
plt.gca().axes.get_xaxis().set_ticks([])
plt.gca().axes.get_yaxis().set_ticks([])
mark_inset(ax[1], axins, loc1=2, loc2=4, facecolor="y", ec="0.5")
# fill with green by setting 'color' field
bbox5 = TransformedBbox(bbox, ax[2].transData)
bbox6 = TransformedBbox(bbox, ax[3].transData)
# set color to BboxConnectorPatch
p = BboxConnectorPatch(
bbox5, bbox6, loc1a=1, loc2a=2, loc1b=4, loc2b=3,
ec="r", color="g")
p.set_clip_on(False)
ax[2].add_patch(p)
# set color to marked area
axins = zoomed_inset_axes(ax[2], 1, loc='upper right')
axins.set_xlim(0, 0.2)
axins.set_ylim(0, 0.2)
plt.gca().axes.get_xaxis().set_ticks([])
plt.gca().axes.get_yaxis().set_ticks([])
mark_inset(ax[2], axins, loc1=2, loc2=4, color="g", ec="0.5")
# fill with green but color won't show if set fill to False
bbox7 = TransformedBbox(bbox, ax[3].transData)
bbox8 = TransformedBbox(bbox, ax[4].transData)
# BboxConnectorPatch won't show green
p = BboxConnectorPatch(
bbox7, bbox8, loc1a=1, loc2a=2, loc1b=4, loc2b=3,
ec="r", fc="g", fill=False)
p.set_clip_on(False)
ax[3].add_patch(p)
# marked area won't show green
axins = zoomed_inset_axes(ax[3], 1, loc='upper right')
axins.set_xlim(0, 0.2)
axins.set_ylim(0, 0.2)
axins.get_xaxis().set_ticks([])
axins.get_yaxis().set_ticks([])
mark_inset(ax[3], axins, loc1=2, loc2=4, fc="g", ec="0.5", fill=False)
@image_comparison(['zoomed_axes.png', 'inverted_zoomed_axes.png'])
def test_zooming_with_inverted_axes():
fig, ax = plt.subplots()
ax.plot([1, 2, 3], [1, 2, 3])
ax.axis([1, 3, 1, 3])
inset_ax = zoomed_inset_axes(ax, zoom=2.5, loc='lower right')
inset_ax.axis([1.1, 1.4, 1.1, 1.4])
fig, ax = plt.subplots()
ax.plot([1, 2, 3], [1, 2, 3])
ax.axis([3, 1, 3, 1])
inset_ax = zoomed_inset_axes(ax, zoom=2.5, loc='lower right')
inset_ax.axis([1.4, 1.1, 1.4, 1.1])
@image_comparison(['anchored_direction_arrows.png'],
tol=0 if platform.machine() == 'x86_64' else 0.01)
def test_anchored_direction_arrows():
fig, ax = plt.subplots()
ax.imshow(np.zeros((10, 10)), interpolation='nearest')
simple_arrow = AnchoredDirectionArrows(ax.transAxes, 'X', 'Y')
ax.add_artist(simple_arrow)
@image_comparison(['anchored_direction_arrows_many_args.png'])
def test_anchored_direction_arrows_many_args():
fig, ax = plt.subplots()
ax.imshow(np.ones((10, 10)))
direction_arrows = AnchoredDirectionArrows(
ax.transAxes, 'A', 'B', loc='upper right', color='red',
aspect_ratio=-0.5, pad=0.6, borderpad=2, frameon=True, alpha=0.7,
sep_x=-0.06, sep_y=-0.08, back_length=0.1, head_width=9,
head_length=10, tail_width=5)
ax.add_artist(direction_arrows)
def test_axes_locatable_position():
fig, ax = plt.subplots()
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad='2%')
fig.canvas.draw()
assert np.isclose(cax.get_position(original=False).width,
0.03621495327102808)
@image_comparison(['image_grid.png'],
remove_text=True, style='mpl20',
savefig_kwarg={'bbox_inches': 'tight'})
def test_image_grid():
# test that image grid works with bbox_inches=tight.
im = np.arange(100).reshape((10, 10))
fig = plt.figure(1, (4, 4))
grid = ImageGrid(fig, 111, nrows_ncols=(2, 2), axes_pad=0.1)
for i in range(4):
grid[i].imshow(im, interpolation='nearest')
grid[i].set_title('test {0}{0}'.format(i))
def test_gettightbbox():
fig, ax = plt.subplots(figsize=(8, 6))
l, = ax.plot([1, 2, 3], [0, 1, 0])
ax_zoom = zoomed_inset_axes(ax, 4)
ax_zoom.plot([1, 2, 3], [0, 1, 0])
mark_inset(ax, ax_zoom, loc1=1, loc2=3, fc="none", ec='0.3')
remove_ticks_and_titles(fig)
bbox = fig.get_tightbbox(fig.canvas.get_renderer())
np.testing.assert_array_almost_equal(bbox.extents,
[-17.7, -13.9, 7.2, 5.4])
@pytest.mark.parametrize("click_on", ["big", "small"])
@pytest.mark.parametrize("big_on_axes,small_on_axes", [
("gca", "gca"),
("host", "host"),
("host", "parasite"),
("parasite", "host"),
("parasite", "parasite")
])
def test_picking_callbacks_overlap(big_on_axes, small_on_axes, click_on):
"""Test pick events on normal, host or parasite axes."""
# Two rectangles are drawn and "clicked on", a small one and a big one
# enclosing the small one. The axis on which they are drawn as well as the
# rectangle that is clicked on are varied.
# In each case we expect that both rectangles are picked if we click on the
# small one and only the big one is picked if we click on the big one.
# Also tests picking on normal axes ("gca") as a control.
big = plt.Rectangle((0.25, 0.25), 0.5, 0.5, picker=5)
small = plt.Rectangle((0.4, 0.4), 0.2, 0.2, facecolor="r", picker=5)
# Machinery for "receiving" events
received_events = []
def on_pick(event):
received_events.append(event)
plt.gcf().canvas.mpl_connect('pick_event', on_pick)
# Shortcut
rectangles_on_axes = (big_on_axes, small_on_axes)
# Axes setup
axes = {"gca": None, "host": None, "parasite": None}
if "gca" in rectangles_on_axes:
axes["gca"] = plt.gca()
if "host" in rectangles_on_axes or "parasite" in rectangles_on_axes:
axes["host"] = host_subplot(111)
axes["parasite"] = axes["host"].twin()
# Add rectangles to axes
axes[big_on_axes].add_patch(big)
axes[small_on_axes].add_patch(small)
# Simulate picking with click mouse event
if click_on == "big":
click_axes = axes[big_on_axes]
axes_coords = (0.3, 0.3)
else:
click_axes = axes[small_on_axes]
axes_coords = (0.5, 0.5)
# In reality mouse events never happen on parasite axes, only host axes
if click_axes is axes["parasite"]:
click_axes = axes["host"]
(x, y) = click_axes.transAxes.transform(axes_coords)
m = MouseEvent("button_press_event", click_axes.figure.canvas, x, y,
button=1)
click_axes.pick(m)
# Checks
expected_n_events = 2 if click_on == "small" else 1
assert len(received_events) == expected_n_events
event_rects = [event.artist for event in received_events]
assert big in event_rects
if click_on == "small":
assert small in event_rects
def test_hbox_divider():
arr1 = np.arange(20).reshape((4, 5))
arr2 = np.arange(20).reshape((5, 4))
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.imshow(arr1)
ax2.imshow(arr2)
pad = 0.5 # inches.
divider = HBoxDivider(
fig, 111, # Position of combined axes.
horizontal=[Size.AxesX(ax1), Size.Fixed(pad), Size.AxesX(ax2)],
vertical=[Size.AxesY(ax1), Size.Scaled(1), Size.AxesY(ax2)])
ax1.set_axes_locator(divider.new_locator(0))
ax2.set_axes_locator(divider.new_locator(2))
fig.canvas.draw()
p1 = ax1.get_position()
p2 = ax2.get_position()
assert p1.height == p2.height
assert p2.width / p1.width == pytest.approx((4 / 5) ** 2)
def test_axes_class_tuple():
fig = plt.figure()
axes_class = (mpl_toolkits.axes_grid1.mpl_axes.Axes, {})
gr = AxesGrid(fig, 111, nrows_ncols=(1, 1), axes_class=axes_class)

View file

@ -0,0 +1,141 @@
import re
import numpy as np
import pytest
from mpl_toolkits.axisartist.angle_helper import (
FormatterDMS, FormatterHMS, select_step, select_step24, select_step360)
_MS_RE = (
r'''\$ # Mathtext
(
# The sign sometimes appears on a 0 when a fraction is shown.
# Check later that there's only one.
(?P<degree_sign>-)?
(?P<degree>[0-9.]+) # Degrees value
{degree} # Degree symbol (to be replaced by format.)
)?
(
(?(degree)\\,) # Separator if degrees are also visible.
(?P<minute_sign>-)?
(?P<minute>[0-9.]+) # Minutes value
{minute} # Minute symbol (to be replaced by format.)
)?
(
(?(minute)\\,) # Separator if minutes are also visible.
(?P<second_sign>-)?
(?P<second>[0-9.]+) # Seconds value
{second} # Second symbol (to be replaced by format.)
)?
\$ # Mathtext
'''
)
DMS_RE = re.compile(_MS_RE.format(degree=re.escape(FormatterDMS.deg_mark),
minute=re.escape(FormatterDMS.min_mark),
second=re.escape(FormatterDMS.sec_mark)),
re.VERBOSE)
HMS_RE = re.compile(_MS_RE.format(degree=re.escape(FormatterHMS.deg_mark),
minute=re.escape(FormatterHMS.min_mark),
second=re.escape(FormatterHMS.sec_mark)),
re.VERBOSE)
def dms2float(degrees, minutes=0, seconds=0):
return degrees + minutes / 60.0 + seconds / 3600.0
@pytest.mark.parametrize('args, kwargs, expected_levels, expected_factor', [
((-180, 180, 10), {'hour': False}, np.arange(-180, 181, 30), 1.0),
((-12, 12, 10), {'hour': True}, np.arange(-12, 13, 2), 1.0)
])
def test_select_step(args, kwargs, expected_levels, expected_factor):
levels, n, factor = select_step(*args, **kwargs)
assert n == len(levels)
np.testing.assert_array_equal(levels, expected_levels)
assert factor == expected_factor
@pytest.mark.parametrize('args, kwargs, expected_levels, expected_factor', [
((-180, 180, 10), {}, np.arange(-180, 181, 30), 1.0),
((-12, 12, 10), {}, np.arange(-750, 751, 150), 60.0)
])
def test_select_step24(args, kwargs, expected_levels, expected_factor):
levels, n, factor = select_step24(*args, **kwargs)
assert n == len(levels)
np.testing.assert_array_equal(levels, expected_levels)
assert factor == expected_factor
@pytest.mark.parametrize('args, kwargs, expected_levels, expected_factor', [
((dms2float(20, 21.2), dms2float(21, 33.3), 5), {},
np.arange(1215, 1306, 15), 60.0),
((dms2float(20.5, seconds=21.2), dms2float(20.5, seconds=33.3), 5), {},
np.arange(73820, 73835, 2), 3600.0),
((dms2float(20, 21.2), dms2float(20, 53.3), 5), {},
np.arange(1220, 1256, 5), 60.0),
((21.2, 33.3, 5), {},
np.arange(20, 35, 2), 1.0),
((dms2float(20, 21.2), dms2float(21, 33.3), 5), {},
np.arange(1215, 1306, 15), 60.0),
((dms2float(20.5, seconds=21.2), dms2float(20.5, seconds=33.3), 5), {},
np.arange(73820, 73835, 2), 3600.0),
((dms2float(20.5, seconds=21.2), dms2float(20.5, seconds=21.4), 5), {},
np.arange(7382120, 7382141, 5), 360000.0),
# test threshold factor
((dms2float(20.5, seconds=11.2), dms2float(20.5, seconds=53.3), 5),
{'threshold_factor': 60}, np.arange(12301, 12310), 600.0),
((dms2float(20.5, seconds=11.2), dms2float(20.5, seconds=53.3), 5),
{'threshold_factor': 1}, np.arange(20502, 20517, 2), 1000.0),
])
def test_select_step360(args, kwargs, expected_levels, expected_factor):
levels, n, factor = select_step360(*args, **kwargs)
assert n == len(levels)
np.testing.assert_array_equal(levels, expected_levels)
assert factor == expected_factor
@pytest.mark.parametrize('Formatter, regex',
[(FormatterDMS, DMS_RE),
(FormatterHMS, HMS_RE)],
ids=['Degree/Minute/Second', 'Hour/Minute/Second'])
@pytest.mark.parametrize('direction, factor, values', [
("left", 60, [0, -30, -60]),
("left", 600, [12301, 12302, 12303]),
("left", 3600, [0, -30, -60]),
("left", 36000, [738210, 738215, 738220]),
("left", 360000, [7382120, 7382125, 7382130]),
("left", 1., [45, 46, 47]),
("left", 10., [452, 453, 454]),
])
def test_formatters(Formatter, regex, direction, factor, values):
fmt = Formatter()
result = fmt(direction, factor, values)
prev_degree = prev_minute = prev_second = None
for tick, value in zip(result, values):
m = regex.match(tick)
assert m is not None, f'{tick!r} is not an expected tick format.'
sign = sum(m.group(sign + '_sign') is not None
for sign in ('degree', 'minute', 'second'))
assert sign <= 1, f'Only one element of tick {tick!r} may have a sign.'
sign = 1 if sign == 0 else -1
degree = float(m.group('degree') or prev_degree or 0)
minute = float(m.group('minute') or prev_minute or 0)
second = float(m.group('second') or prev_second or 0)
if Formatter == FormatterHMS:
# 360 degrees as plot range -> 24 hours as labelled range
expected_value = pytest.approx((value // 15) / factor)
else:
expected_value = pytest.approx(value / factor)
assert sign * dms2float(degree, minute, second) == expected_value, \
f'{tick!r} does not match expected tick value.'
prev_degree = degree
prev_minute = minute
prev_second = second

View file

@ -0,0 +1,99 @@
import matplotlib.pyplot as plt
from matplotlib.testing.decorators import image_comparison
from mpl_toolkits.axisartist import AxisArtistHelperRectlinear
from mpl_toolkits.axisartist.axis_artist import (AxisArtist, AxisLabel,
LabelBase, Ticks, TickLabels)
@image_comparison(['axis_artist_ticks.png'], style='default')
def test_ticks():
fig, ax = plt.subplots()
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
locs_angles = [((i / 10, 0.0), i * 30) for i in range(-1, 12)]
ticks_in = Ticks(ticksize=10, axis=ax.xaxis)
ticks_in.set_locs_angles(locs_angles)
ax.add_artist(ticks_in)
ticks_out = Ticks(ticksize=10, tick_out=True, color='C3', axis=ax.xaxis)
ticks_out.set_locs_angles(locs_angles)
ax.add_artist(ticks_out)
@image_comparison(['axis_artist_labelbase.png'], style='default')
def test_labelbase():
# Remove this line when this test image is regenerated.
plt.rcParams['text.kerning_factor'] = 6
fig, ax = plt.subplots()
ax.plot([0.5], [0.5], "o")
label = LabelBase(0.5, 0.5, "Test")
label._set_ref_angle(-90)
label._set_offset_radius(offset_radius=50)
label.set_rotation(-90)
label.set(ha="center", va="top")
ax.add_artist(label)
@image_comparison(['axis_artist_ticklabels.png'], style='default')
def test_ticklabels():
# Remove this line when this test image is regenerated.
plt.rcParams['text.kerning_factor'] = 6
fig, ax = plt.subplots()
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
ax.plot([0.2, 0.4], [0.5, 0.5], "o")
ticks = Ticks(ticksize=10, axis=ax.xaxis)
ax.add_artist(ticks)
locs_angles_labels = [((0.2, 0.5), -90, "0.2"),
((0.4, 0.5), -120, "0.4")]
tick_locs_angles = [(xy, a + 180) for xy, a, l in locs_angles_labels]
ticks.set_locs_angles(tick_locs_angles)
ticklabels = TickLabels(axis_direction="left")
ticklabels._locs_angles_labels = locs_angles_labels
ticklabels.set_pad(10)
ax.add_artist(ticklabels)
ax.plot([0.5], [0.5], "s")
axislabel = AxisLabel(0.5, 0.5, "Test")
axislabel._set_offset_radius(20)
axislabel._set_ref_angle(0)
axislabel.set_axis_direction("bottom")
ax.add_artist(axislabel)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
@image_comparison(['axis_artist.png'], style='default')
def test_axis_artist():
# Remove this line when this test image is regenerated.
plt.rcParams['text.kerning_factor'] = 6
fig, ax = plt.subplots()
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
for loc in ('left', 'right', 'bottom'):
_helper = AxisArtistHelperRectlinear.Fixed(ax, loc=loc)
axisline = AxisArtist(ax, _helper, offset=None, axis_direction=loc)
ax.add_artist(axisline)
# Settings for bottom AxisArtist.
axisline.set_label("TTT")
axisline.major_ticks.set_tick_out(False)
axisline.label.set_pad(5)
ax.set_ylabel("Test")

View file

@ -0,0 +1,93 @@
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.testing.decorators import image_comparison
from matplotlib.transforms import IdentityTransform
from mpl_toolkits.axisartist.axislines import SubplotZero, Subplot
from mpl_toolkits.axisartist import SubplotHost, ParasiteAxesAuxTrans
from mpl_toolkits.axisartist import Axes
@image_comparison(['SubplotZero.png'], style='default')
def test_SubplotZero():
# Remove this line when this test image is regenerated.
plt.rcParams['text.kerning_factor'] = 6
fig = plt.figure()
ax = SubplotZero(fig, 1, 1, 1)
fig.add_subplot(ax)
ax.axis["xzero"].set_visible(True)
ax.axis["xzero"].label.set_text("Axis Zero")
for n in ["top", "right"]:
ax.axis[n].set_visible(False)
xx = np.arange(0, 2 * np.pi, 0.01)
ax.plot(xx, np.sin(xx))
ax.set_ylabel("Test")
@image_comparison(['Subplot.png'], style='default')
def test_Subplot():
# Remove this line when this test image is regenerated.
plt.rcParams['text.kerning_factor'] = 6
fig = plt.figure()
ax = Subplot(fig, 1, 1, 1)
fig.add_subplot(ax)
xx = np.arange(0, 2 * np.pi, 0.01)
ax.plot(xx, np.sin(xx))
ax.set_ylabel("Test")
ax.axis["top"].major_ticks.set_tick_out(True)
ax.axis["bottom"].major_ticks.set_tick_out(True)
ax.axis["bottom"].set_label("Tk0")
def test_Axes():
fig = plt.figure()
ax = Axes(fig, [0.15, 0.1, 0.65, 0.8])
fig.add_axes(ax)
ax.plot([1, 2, 3], [0, 1, 2])
ax.set_xscale('log')
fig.canvas.draw()
@image_comparison(['ParasiteAxesAuxTrans_meshplot.png'],
remove_text=True, style='default', tol=0.075)
def test_ParasiteAxesAuxTrans():
data = np.ones((6, 6))
data[2, 2] = 2
data[0, :] = 0
data[-2, :] = 0
data[:, 0] = 0
data[:, -2] = 0
x = np.arange(6)
y = np.arange(6)
xx, yy = np.meshgrid(x, y)
funcnames = ['pcolor', 'pcolormesh', 'contourf']
fig = plt.figure()
for i, name in enumerate(funcnames):
ax1 = SubplotHost(fig, 1, 3, i+1)
fig.add_subplot(ax1)
ax2 = ParasiteAxesAuxTrans(ax1, IdentityTransform())
ax1.parasites.append(ax2)
if name.startswith('pcolor'):
getattr(ax2, name)(xx, yy, data[:-1, :-1])
else:
getattr(ax2, name)(xx, yy, data)
ax1.set_xlim((0, 5))
ax1.set_ylim((0, 5))
ax2.contour(xx, yy, data, colors='k')

View file

@ -0,0 +1,32 @@
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.testing.decorators import image_comparison
from matplotlib.transforms import Bbox
from mpl_toolkits.axisartist.clip_path import clip_line_to_rect
@image_comparison(['clip_path.png'], style='default')
def test_clip_path():
x = np.array([-3, -2, -1, 0., 1, 2, 3, 2, 1, 0, -1, -2, -3, 5])
y = np.arange(len(x))
fig, ax = plt.subplots()
ax.plot(x, y, lw=1)
bbox = Bbox.from_extents(-2, 3, 2, 12.5)
rect = plt.Rectangle(bbox.p0, bbox.width, bbox.height,
facecolor='none', edgecolor='k', ls='--')
ax.add_patch(rect)
clipped_lines, ticks = clip_line_to_rect(x, y, bbox)
for lx, ly in clipped_lines:
ax.plot(lx, ly, lw=1, color='C1')
for px, py in zip(lx, ly):
assert bbox.contains(px, py)
ccc = iter(['C3o', 'C2x', 'C3o', 'C2x'])
for ttt in ticks:
cc = next(ccc)
for (xx, yy), aa in ttt:
ax.plot([xx], [yy], cc)

View file

@ -0,0 +1,120 @@
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.projections as mprojections
import matplotlib.transforms as mtransforms
from matplotlib.testing.decorators import image_comparison
from mpl_toolkits.axisartist.axislines import Subplot
from mpl_toolkits.axisartist.floating_axes import (
FloatingSubplot,
GridHelperCurveLinear)
from mpl_toolkits.axisartist.grid_finder import FixedLocator
from mpl_toolkits.axisartist import angle_helper
def test_subplot():
fig = plt.figure(figsize=(5, 5))
ax = Subplot(fig, 111)
fig.add_subplot(ax)
@image_comparison(['curvelinear3.png'], style='default', tol=0.01)
def test_curvelinear3():
fig = plt.figure(figsize=(5, 5))
tr = (mtransforms.Affine2D().scale(np.pi / 180, 1) +
mprojections.PolarAxes.PolarTransform())
grid_locator1 = angle_helper.LocatorDMS(15)
tick_formatter1 = angle_helper.FormatterDMS()
grid_locator2 = FixedLocator([2, 4, 6, 8, 10])
grid_helper = GridHelperCurveLinear(tr,
extremes=(0, 360, 10, 3),
grid_locator1=grid_locator1,
grid_locator2=grid_locator2,
tick_formatter1=tick_formatter1,
tick_formatter2=None)
ax1 = FloatingSubplot(fig, 111, grid_helper=grid_helper)
fig.add_subplot(ax1)
r_scale = 10
tr2 = mtransforms.Affine2D().scale(1, 1 / r_scale) + tr
grid_locator2 = FixedLocator([30, 60, 90])
grid_helper2 = GridHelperCurveLinear(tr2,
extremes=(0, 360,
10 * r_scale, 3 * r_scale),
grid_locator2=grid_locator2)
ax1.axis["right"] = axis = grid_helper2.new_fixed_axis("right", axes=ax1)
ax1.axis["left"].label.set_text("Test 1")
ax1.axis["right"].label.set_text("Test 2")
for an in ["left", "right"]:
ax1.axis[an].set_visible(False)
axis = grid_helper.new_floating_axis(1, 7, axes=ax1,
axis_direction="bottom")
ax1.axis["z"] = axis
axis.toggle(all=True, label=True)
axis.label.set_text("z = ?")
axis.label.set_visible(True)
axis.line.set_color("0.5")
ax2 = ax1.get_aux_axes(tr)
xx, yy = [67, 90, 75, 30], [2, 5, 8, 4]
ax2.scatter(xx, yy)
l, = ax2.plot(xx, yy, "k-")
l.set_clip_path(ax1.patch)
@image_comparison(['curvelinear4.png'], style='default', tol=0.015)
def test_curvelinear4():
# Remove this line when this test image is regenerated.
plt.rcParams['text.kerning_factor'] = 6
fig = plt.figure(figsize=(5, 5))
tr = (mtransforms.Affine2D().scale(np.pi / 180, 1) +
mprojections.PolarAxes.PolarTransform())
grid_locator1 = angle_helper.LocatorDMS(5)
tick_formatter1 = angle_helper.FormatterDMS()
grid_locator2 = FixedLocator([2, 4, 6, 8, 10])
grid_helper = GridHelperCurveLinear(tr,
extremes=(120, 30, 10, 0),
grid_locator1=grid_locator1,
grid_locator2=grid_locator2,
tick_formatter1=tick_formatter1,
tick_formatter2=None)
ax1 = FloatingSubplot(fig, 111, grid_helper=grid_helper)
fig.add_subplot(ax1)
ax1.axis["left"].label.set_text("Test 1")
ax1.axis["right"].label.set_text("Test 2")
for an in ["top"]:
ax1.axis[an].set_visible(False)
axis = grid_helper.new_floating_axis(1, 70, axes=ax1,
axis_direction="bottom")
ax1.axis["z"] = axis
axis.toggle(all=True, label=True)
axis.label.set_axis_direction("top")
axis.label.set_text("z = ?")
axis.label.set_visible(True)
axis.line.set_color("0.5")
ax2 = ax1.get_aux_axes(tr)
xx, yy = [67, 90, 75, 30], [2, 5, 8, 4]
ax2.scatter(xx, yy)
l, = ax2.plot(xx, yy, "k-")
l.set_clip_path(ax1.patch)

View file

@ -0,0 +1,13 @@
from mpl_toolkits.axisartist.grid_finder import (
FormatterPrettyPrint,
MaxNLocator)
def test_pretty_print_format():
locator = MaxNLocator()
locs, nloc, factor = locator(0, 100)
fmt = FormatterPrettyPrint()
assert fmt("left", None, locs) == \
[r'$\mathdefault{%d}$' % (l, ) for l in locs]

View file

@ -0,0 +1,213 @@
import numpy as np
import platform
import matplotlib.pyplot as plt
from matplotlib.path import Path
from matplotlib.projections import PolarAxes
from matplotlib.transforms import Affine2D, Transform
from matplotlib.testing.decorators import image_comparison
from mpl_toolkits.axes_grid1.parasite_axes import ParasiteAxesAuxTrans
from mpl_toolkits.axisartist import SubplotHost
from mpl_toolkits.axes_grid1.parasite_axes import host_subplot_class_factory
from mpl_toolkits.axisartist import angle_helper
from mpl_toolkits.axisartist.axislines import Axes
from mpl_toolkits.axisartist.grid_helper_curvelinear import \
GridHelperCurveLinear
@image_comparison(['custom_transform.png'], style='default',
tol=0.03 if platform.machine() == 'x86_64' else 0.034)
def test_custom_transform():
class MyTransform(Transform):
input_dims = output_dims = 2
def __init__(self, resolution):
"""
Resolution is the number of steps to interpolate between each input
line segment to approximate its path in transformed space.
"""
Transform.__init__(self)
self._resolution = resolution
def transform(self, ll):
x, y = ll.T
return np.column_stack([x, y - x])
transform_non_affine = transform
def transform_path(self, path):
ipath = path.interpolated(self._resolution)
return Path(self.transform(ipath.vertices), ipath.codes)
transform_path_non_affine = transform_path
def inverted(self):
return MyTransformInv(self._resolution)
class MyTransformInv(Transform):
input_dims = output_dims = 2
def __init__(self, resolution):
Transform.__init__(self)
self._resolution = resolution
def transform(self, ll):
x, y = ll.T
return np.column_stack([x, y + x])
def inverted(self):
return MyTransform(self._resolution)
fig = plt.figure()
SubplotHost = host_subplot_class_factory(Axes)
tr = MyTransform(1)
grid_helper = GridHelperCurveLinear(tr)
ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)
fig.add_subplot(ax1)
ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
ax1.parasites.append(ax2)
ax2.plot([3, 6], [5.0, 10.])
ax1.set_aspect(1.)
ax1.set_xlim(0, 10)
ax1.set_ylim(0, 10)
ax1.grid(True)
@image_comparison(['polar_box.png'], style='default',
tol={'aarch64': 0.04}.get(platform.machine(), 0.03))
def test_polar_box():
# Remove this line when this test image is regenerated.
plt.rcParams['text.kerning_factor'] = 6
fig = plt.figure(figsize=(5, 5))
# PolarAxes.PolarTransform takes radian. However, we want our coordinate
# system in degree
tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()
# polar projection, which involves cycle, and also has limits in
# its coordinates, needs a special method to find the extremes
# (min, max of the coordinate within the view).
extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
lon_cycle=360,
lat_cycle=None,
lon_minmax=None,
lat_minmax=(0, np.inf))
grid_locator1 = angle_helper.LocatorDMS(12)
tick_formatter1 = angle_helper.FormatterDMS()
grid_helper = GridHelperCurveLinear(tr,
extreme_finder=extreme_finder,
grid_locator1=grid_locator1,
tick_formatter1=tick_formatter1)
ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)
ax1.axis["right"].major_ticklabels.set_visible(True)
ax1.axis["top"].major_ticklabels.set_visible(True)
# let right axis shows ticklabels for 1st coordinate (angle)
ax1.axis["right"].get_helper().nth_coord_ticks = 0
# let bottom axis shows ticklabels for 2nd coordinate (radius)
ax1.axis["bottom"].get_helper().nth_coord_ticks = 1
fig.add_subplot(ax1)
ax1.axis["lat"] = axis = grid_helper.new_floating_axis(0, 45, axes=ax1)
axis.label.set_text("Test")
axis.label.set_visible(True)
axis.get_helper()._extremes = 2, 12
ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 6, axes=ax1)
axis.label.set_text("Test 2")
axis.get_helper()._extremes = -180, 90
# A parasite axes with given transform
ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
assert ax2.transData == tr + ax1.transData
# Anything you draw in ax2 will match the ticks and grids of ax1.
ax1.parasites.append(ax2)
ax2.plot(np.linspace(0, 30, 50), np.linspace(10, 10, 50))
ax1.set_aspect(1.)
ax1.set_xlim(-5, 12)
ax1.set_ylim(-5, 10)
ax1.grid(True)
@image_comparison(['axis_direction.png'], style='default', tol=0.03)
def test_axis_direction():
# Remove this line when this test image is regenerated.
plt.rcParams['text.kerning_factor'] = 6
fig = plt.figure(figsize=(5, 5))
# PolarAxes.PolarTransform takes radian. However, we want our coordinate
# system in degree
tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()
# polar projection, which involves cycle, and also has limits in
# its coordinates, needs a special method to find the extremes
# (min, max of the coordinate within the view).
# 20, 20 : number of sampling points along x, y direction
extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
lon_cycle=360,
lat_cycle=None,
lon_minmax=None,
lat_minmax=(0, np.inf),
)
grid_locator1 = angle_helper.LocatorDMS(12)
tick_formatter1 = angle_helper.FormatterDMS()
grid_helper = GridHelperCurveLinear(tr,
extreme_finder=extreme_finder,
grid_locator1=grid_locator1,
tick_formatter1=tick_formatter1)
ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)
for axis in ax1.axis.values():
axis.set_visible(False)
fig.add_subplot(ax1)
ax1.axis["lat1"] = axis = grid_helper.new_floating_axis(
0, 130,
axes=ax1, axis_direction="left")
axis.label.set_text("Test")
axis.label.set_visible(True)
axis.get_helper()._extremes = 0.001, 10
ax1.axis["lat2"] = axis = grid_helper.new_floating_axis(
0, 50,
axes=ax1, axis_direction="right")
axis.label.set_text("Test")
axis.label.set_visible(True)
axis.get_helper()._extremes = 0.001, 10
ax1.axis["lon"] = axis = grid_helper.new_floating_axis(
1, 10,
axes=ax1, axis_direction="bottom")
axis.label.set_text("Test 2")
axis.get_helper()._extremes = 50, 130
axis.major_ticklabels.set_axis_direction("top")
axis.label.set_axis_direction("top")
grid_helper.grid_finder.grid_locator1.set_params(nbins=5)
grid_helper.grid_finder.grid_locator2.set_params(nbins=5)
ax1.set_aspect(1.)
ax1.set_xlim(-8, 8)
ax1.set_ylim(-4, 12)
ax1.grid(True)

File diff suppressed because it is too large Load diff