Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
256
venv/Lib/site-packages/sklearn/utils/optimize.py
Normal file
256
venv/Lib/site-packages/sklearn/utils/optimize.py
Normal file
|
@ -0,0 +1,256 @@
|
|||
"""
|
||||
Our own implementation of the Newton algorithm
|
||||
|
||||
Unlike the scipy.optimize version, this version of the Newton conjugate
|
||||
gradient solver uses only one function call to retrieve the
|
||||
func value, the gradient value and a callable for the Hessian matvec
|
||||
product. If the function call is very expensive (e.g. for logistic
|
||||
regression with large design matrix), this approach gives very
|
||||
significant speedups.
|
||||
"""
|
||||
# This is a modified file from scipy.optimize
|
||||
# Original authors: Travis Oliphant, Eric Jones
|
||||
# Modifications by Gael Varoquaux, Mathieu Blondel and Tom Dupre la Tour
|
||||
# License: BSD
|
||||
|
||||
import numpy as np
|
||||
import warnings
|
||||
from scipy.optimize.linesearch import line_search_wolfe2, line_search_wolfe1
|
||||
|
||||
from ..exceptions import ConvergenceWarning
|
||||
from . import deprecated
|
||||
|
||||
|
||||
class _LineSearchError(RuntimeError):
|
||||
pass
|
||||
|
||||
|
||||
def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval,
|
||||
**kwargs):
|
||||
"""
|
||||
Same as line_search_wolfe1, but fall back to line_search_wolfe2 if
|
||||
suitable step length is not found, and raise an exception if a
|
||||
suitable step length is not found.
|
||||
|
||||
Raises
|
||||
------
|
||||
_LineSearchError
|
||||
If no suitable step size is found
|
||||
|
||||
"""
|
||||
ret = line_search_wolfe1(f, fprime, xk, pk, gfk,
|
||||
old_fval, old_old_fval,
|
||||
**kwargs)
|
||||
|
||||
if ret[0] is None:
|
||||
# line search failed: try different one.
|
||||
ret = line_search_wolfe2(f, fprime, xk, pk, gfk,
|
||||
old_fval, old_old_fval, **kwargs)
|
||||
|
||||
if ret[0] is None:
|
||||
raise _LineSearchError()
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def _cg(fhess_p, fgrad, maxiter, tol):
|
||||
"""
|
||||
Solve iteratively the linear system 'fhess_p . xsupi = fgrad'
|
||||
with a conjugate gradient descent.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fhess_p : callable
|
||||
Function that takes the gradient as a parameter and returns the
|
||||
matrix product of the Hessian and gradient
|
||||
|
||||
fgrad : ndarray, shape (n_features,) or (n_features + 1,)
|
||||
Gradient vector
|
||||
|
||||
maxiter : int
|
||||
Number of CG iterations.
|
||||
|
||||
tol : float
|
||||
Stopping criterion.
|
||||
|
||||
Returns
|
||||
-------
|
||||
xsupi : ndarray, shape (n_features,) or (n_features + 1,)
|
||||
Estimated solution
|
||||
"""
|
||||
xsupi = np.zeros(len(fgrad), dtype=fgrad.dtype)
|
||||
ri = fgrad
|
||||
psupi = -ri
|
||||
i = 0
|
||||
dri0 = np.dot(ri, ri)
|
||||
|
||||
while i <= maxiter:
|
||||
if np.sum(np.abs(ri)) <= tol:
|
||||
break
|
||||
|
||||
Ap = fhess_p(psupi)
|
||||
# check curvature
|
||||
curv = np.dot(psupi, Ap)
|
||||
if 0 <= curv <= 3 * np.finfo(np.float64).eps:
|
||||
break
|
||||
elif curv < 0:
|
||||
if i > 0:
|
||||
break
|
||||
else:
|
||||
# fall back to steepest descent direction
|
||||
xsupi += dri0 / curv * psupi
|
||||
break
|
||||
alphai = dri0 / curv
|
||||
xsupi += alphai * psupi
|
||||
ri = ri + alphai * Ap
|
||||
dri1 = np.dot(ri, ri)
|
||||
betai = dri1 / dri0
|
||||
psupi = -ri + betai * psupi
|
||||
i = i + 1
|
||||
dri0 = dri1 # update np.dot(ri,ri) for next time.
|
||||
|
||||
return xsupi
|
||||
|
||||
|
||||
@deprecated("newton_cg is deprecated in version "
|
||||
"0.22 and will be removed in version 0.24.")
|
||||
def newton_cg(grad_hess, func, grad, x0, args=(), tol=1e-4,
|
||||
maxiter=100, maxinner=200, line_search=True, warn=True):
|
||||
return _newton_cg(grad_hess, func, grad, x0, args, tol, maxiter,
|
||||
maxinner, line_search, warn)
|
||||
|
||||
|
||||
def _newton_cg(grad_hess, func, grad, x0, args=(), tol=1e-4,
|
||||
maxiter=100, maxinner=200, line_search=True, warn=True):
|
||||
"""
|
||||
Minimization of scalar function of one or more variables using the
|
||||
Newton-CG algorithm.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
grad_hess : callable
|
||||
Should return the gradient and a callable returning the matvec product
|
||||
of the Hessian.
|
||||
|
||||
func : callable
|
||||
Should return the value of the function.
|
||||
|
||||
grad : callable
|
||||
Should return the function value and the gradient. This is used
|
||||
by the linesearch functions.
|
||||
|
||||
x0 : array of float
|
||||
Initial guess.
|
||||
|
||||
args : tuple, optional
|
||||
Arguments passed to func_grad_hess, func and grad.
|
||||
|
||||
tol : float
|
||||
Stopping criterion. The iteration will stop when
|
||||
``max{|g_i | i = 1, ..., n} <= tol``
|
||||
where ``g_i`` is the i-th component of the gradient.
|
||||
|
||||
maxiter : int
|
||||
Number of Newton iterations.
|
||||
|
||||
maxinner : int
|
||||
Number of CG iterations.
|
||||
|
||||
line_search : boolean
|
||||
Whether to use a line search or not.
|
||||
|
||||
warn : boolean
|
||||
Whether to warn when didn't converge.
|
||||
|
||||
Returns
|
||||
-------
|
||||
xk : ndarray of float
|
||||
Estimated minimum.
|
||||
"""
|
||||
x0 = np.asarray(x0).flatten()
|
||||
xk = x0
|
||||
k = 0
|
||||
|
||||
if line_search:
|
||||
old_fval = func(x0, *args)
|
||||
old_old_fval = None
|
||||
|
||||
# Outer loop: our Newton iteration
|
||||
while k < maxiter:
|
||||
# Compute a search direction pk by applying the CG method to
|
||||
# del2 f(xk) p = - fgrad f(xk) starting from 0.
|
||||
fgrad, fhess_p = grad_hess(xk, *args)
|
||||
|
||||
absgrad = np.abs(fgrad)
|
||||
if np.max(absgrad) <= tol:
|
||||
break
|
||||
|
||||
maggrad = np.sum(absgrad)
|
||||
eta = min([0.5, np.sqrt(maggrad)])
|
||||
termcond = eta * maggrad
|
||||
|
||||
# Inner loop: solve the Newton update by conjugate gradient, to
|
||||
# avoid inverting the Hessian
|
||||
xsupi = _cg(fhess_p, fgrad, maxiter=maxinner, tol=termcond)
|
||||
|
||||
alphak = 1.0
|
||||
|
||||
if line_search:
|
||||
try:
|
||||
alphak, fc, gc, old_fval, old_old_fval, gfkp1 = \
|
||||
_line_search_wolfe12(func, grad, xk, xsupi, fgrad,
|
||||
old_fval, old_old_fval, args=args)
|
||||
except _LineSearchError:
|
||||
warnings.warn('Line Search failed')
|
||||
break
|
||||
|
||||
xk = xk + alphak * xsupi # upcast if necessary
|
||||
k += 1
|
||||
|
||||
if warn and k >= maxiter:
|
||||
warnings.warn("newton-cg failed to converge. Increase the "
|
||||
"number of iterations.", ConvergenceWarning)
|
||||
return xk, k
|
||||
|
||||
|
||||
def _check_optimize_result(solver, result, max_iter=None,
|
||||
extra_warning_msg=None):
|
||||
"""Check the OptimizeResult for successful convergence
|
||||
|
||||
Parameters
|
||||
----------
|
||||
solver: str
|
||||
solver name. Currently only `lbfgs` is supported.
|
||||
result: OptimizeResult
|
||||
result of the scipy.optimize.minimize function
|
||||
max_iter: {int, None}
|
||||
expected maximum number of iterations
|
||||
|
||||
Returns
|
||||
-------
|
||||
n_iter: int
|
||||
number of iterations
|
||||
"""
|
||||
# handle both scipy and scikit-learn solver names
|
||||
if solver == "lbfgs":
|
||||
if result.status != 0:
|
||||
warning_msg = (
|
||||
"{} failed to converge (status={}):\n{}.\n\n"
|
||||
"Increase the number of iterations (max_iter) "
|
||||
"or scale the data as shown in:\n"
|
||||
" https://scikit-learn.org/stable/modules/"
|
||||
"preprocessing.html"
|
||||
).format(solver, result.status, result.message.decode("latin1"))
|
||||
if extra_warning_msg is not None:
|
||||
warning_msg += "\n" + extra_warning_msg
|
||||
warnings.warn(warning_msg, ConvergenceWarning, stacklevel=2)
|
||||
if max_iter is not None:
|
||||
# In scipy <= 1.0.0, nit may exceed maxiter for lbfgs.
|
||||
# See https://github.com/scipy/scipy/issues/7854
|
||||
n_iter_i = min(result.nit, max_iter)
|
||||
else:
|
||||
n_iter_i = result.nit
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return n_iter_i
|
Loading…
Add table
Add a link
Reference in a new issue