Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
383
venv/Lib/site-packages/sklearn/neural_network/_rbm.py
Normal file
383
venv/Lib/site-packages/sklearn/neural_network/_rbm.py
Normal file
|
@ -0,0 +1,383 @@
|
|||
"""Restricted Boltzmann Machine
|
||||
"""
|
||||
|
||||
# Authors: Yann N. Dauphin <dauphiya@iro.umontreal.ca>
|
||||
# Vlad Niculae
|
||||
# Gabriel Synnaeve
|
||||
# Lars Buitinck
|
||||
# License: BSD 3 clause
|
||||
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
from scipy.special import expit # logistic function
|
||||
|
||||
from ..base import BaseEstimator
|
||||
from ..base import TransformerMixin
|
||||
from ..utils import check_array
|
||||
from ..utils import check_random_state
|
||||
from ..utils import gen_even_slices
|
||||
from ..utils.extmath import safe_sparse_dot
|
||||
from ..utils.extmath import log_logistic
|
||||
from ..utils.validation import check_is_fitted, _deprecate_positional_args
|
||||
|
||||
|
||||
class BernoulliRBM(TransformerMixin, BaseEstimator):
|
||||
"""Bernoulli Restricted Boltzmann Machine (RBM).
|
||||
|
||||
A Restricted Boltzmann Machine with binary visible units and
|
||||
binary hidden units. Parameters are estimated using Stochastic Maximum
|
||||
Likelihood (SML), also known as Persistent Contrastive Divergence (PCD)
|
||||
[2].
|
||||
|
||||
The time complexity of this implementation is ``O(d ** 2)`` assuming
|
||||
d ~ n_features ~ n_components.
|
||||
|
||||
Read more in the :ref:`User Guide <rbm>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int, default=256
|
||||
Number of binary hidden units.
|
||||
|
||||
learning_rate : float, default=0.1
|
||||
The learning rate for weight updates. It is *highly* recommended
|
||||
to tune this hyper-parameter. Reasonable values are in the
|
||||
10**[0., -3.] range.
|
||||
|
||||
batch_size : int, default=10
|
||||
Number of examples per minibatch.
|
||||
|
||||
n_iter : int, default=10
|
||||
Number of iterations/sweeps over the training dataset to perform
|
||||
during training.
|
||||
|
||||
verbose : int, default=0
|
||||
The verbosity level. The default, zero, means silent mode.
|
||||
|
||||
random_state : integer or RandomState, default=None
|
||||
Determines random number generation for:
|
||||
|
||||
- Gibbs sampling from visible and hidden layers.
|
||||
|
||||
- Initializing components, sampling from layers during fit.
|
||||
|
||||
- Corrupting the data when scoring samples.
|
||||
|
||||
Pass an int for reproducible results across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
intercept_hidden_ : array-like, shape (n_components,)
|
||||
Biases of the hidden units.
|
||||
|
||||
intercept_visible_ : array-like, shape (n_features,)
|
||||
Biases of the visible units.
|
||||
|
||||
components_ : array-like, shape (n_components, n_features)
|
||||
Weight matrix, where n_features in the number of
|
||||
visible units and n_components is the number of hidden units.
|
||||
|
||||
h_samples_ : array-like, shape (batch_size, n_components)
|
||||
Hidden Activation sampled from the model distribution,
|
||||
where batch_size in the number of examples per minibatch and
|
||||
n_components is the number of hidden units.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> import numpy as np
|
||||
>>> from sklearn.neural_network import BernoulliRBM
|
||||
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
|
||||
>>> model = BernoulliRBM(n_components=2)
|
||||
>>> model.fit(X)
|
||||
BernoulliRBM(n_components=2)
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
[1] Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for
|
||||
deep belief nets. Neural Computation 18, pp 1527-1554.
|
||||
https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
|
||||
|
||||
[2] Tieleman, T. Training Restricted Boltzmann Machines using
|
||||
Approximations to the Likelihood Gradient. International Conference
|
||||
on Machine Learning (ICML) 2008
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=256, *, learning_rate=0.1, batch_size=10,
|
||||
n_iter=10, verbose=0, random_state=None):
|
||||
self.n_components = n_components
|
||||
self.learning_rate = learning_rate
|
||||
self.batch_size = batch_size
|
||||
self.n_iter = n_iter
|
||||
self.verbose = verbose
|
||||
self.random_state = random_state
|
||||
|
||||
def transform(self, X):
|
||||
"""Compute the hidden layer activation probabilities, P(h=1|v=X).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
The data to be transformed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
h : ndarray of shape (n_samples, n_components)
|
||||
Latent representations of the data.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = check_array(X, accept_sparse='csr', dtype=np.float64)
|
||||
return self._mean_hiddens(X)
|
||||
|
||||
def _mean_hiddens(self, v):
|
||||
"""Computes the probabilities P(h=1|v).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
v : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer.
|
||||
|
||||
Returns
|
||||
-------
|
||||
h : ndarray of shape (n_samples, n_components)
|
||||
Corresponding mean field values for the hidden layer.
|
||||
"""
|
||||
p = safe_sparse_dot(v, self.components_.T)
|
||||
p += self.intercept_hidden_
|
||||
return expit(p, out=p)
|
||||
|
||||
def _sample_hiddens(self, v, rng):
|
||||
"""Sample from the distribution P(h|v).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
v : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer to sample from.
|
||||
|
||||
rng : RandomState
|
||||
Random number generator to use.
|
||||
|
||||
Returns
|
||||
-------
|
||||
h : ndarray of shape (n_samples, n_components)
|
||||
Values of the hidden layer.
|
||||
"""
|
||||
p = self._mean_hiddens(v)
|
||||
return (rng.random_sample(size=p.shape) < p)
|
||||
|
||||
def _sample_visibles(self, h, rng):
|
||||
"""Sample from the distribution P(v|h).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
h : ndarray of shape (n_samples, n_components)
|
||||
Values of the hidden layer to sample from.
|
||||
|
||||
rng : RandomState
|
||||
Random number generator to use.
|
||||
|
||||
Returns
|
||||
-------
|
||||
v : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer.
|
||||
"""
|
||||
p = np.dot(h, self.components_)
|
||||
p += self.intercept_visible_
|
||||
expit(p, out=p)
|
||||
return (rng.random_sample(size=p.shape) < p)
|
||||
|
||||
def _free_energy(self, v):
|
||||
"""Computes the free energy F(v) = - log sum_h exp(-E(v,h)).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
v : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer.
|
||||
|
||||
Returns
|
||||
-------
|
||||
free_energy : ndarray of shape (n_samples,)
|
||||
The value of the free energy.
|
||||
"""
|
||||
return (- safe_sparse_dot(v, self.intercept_visible_)
|
||||
- np.logaddexp(0, safe_sparse_dot(v, self.components_.T)
|
||||
+ self.intercept_hidden_).sum(axis=1))
|
||||
|
||||
def gibbs(self, v):
|
||||
"""Perform one Gibbs sampling step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
v : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer to start from.
|
||||
|
||||
Returns
|
||||
-------
|
||||
v_new : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer after one Gibbs step.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
if not hasattr(self, "random_state_"):
|
||||
self.random_state_ = check_random_state(self.random_state)
|
||||
h_ = self._sample_hiddens(v, self.random_state_)
|
||||
v_ = self._sample_visibles(h_, self.random_state_)
|
||||
|
||||
return v_
|
||||
|
||||
def partial_fit(self, X, y=None):
|
||||
"""Fit the model to the data X which should contain a partial
|
||||
segment of the data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : ndarray of shape (n_samples, n_features)
|
||||
Training data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : BernoulliRBM
|
||||
The fitted model.
|
||||
"""
|
||||
X = check_array(X, accept_sparse='csr', dtype=np.float64)
|
||||
if not hasattr(self, 'random_state_'):
|
||||
self.random_state_ = check_random_state(self.random_state)
|
||||
if not hasattr(self, 'components_'):
|
||||
self.components_ = np.asarray(
|
||||
self.random_state_.normal(
|
||||
0,
|
||||
0.01,
|
||||
(self.n_components, X.shape[1])
|
||||
),
|
||||
order='F')
|
||||
if not hasattr(self, 'intercept_hidden_'):
|
||||
self.intercept_hidden_ = np.zeros(self.n_components, )
|
||||
if not hasattr(self, 'intercept_visible_'):
|
||||
self.intercept_visible_ = np.zeros(X.shape[1], )
|
||||
if not hasattr(self, 'h_samples_'):
|
||||
self.h_samples_ = np.zeros((self.batch_size, self.n_components))
|
||||
|
||||
self._fit(X, self.random_state_)
|
||||
|
||||
def _fit(self, v_pos, rng):
|
||||
"""Inner fit for one mini-batch.
|
||||
|
||||
Adjust the parameters to maximize the likelihood of v using
|
||||
Stochastic Maximum Likelihood (SML).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
v_pos : ndarray of shape (n_samples, n_features)
|
||||
The data to use for training.
|
||||
|
||||
rng : RandomState
|
||||
Random number generator to use for sampling.
|
||||
"""
|
||||
h_pos = self._mean_hiddens(v_pos)
|
||||
v_neg = self._sample_visibles(self.h_samples_, rng)
|
||||
h_neg = self._mean_hiddens(v_neg)
|
||||
|
||||
lr = float(self.learning_rate) / v_pos.shape[0]
|
||||
update = safe_sparse_dot(v_pos.T, h_pos, dense_output=True).T
|
||||
update -= np.dot(h_neg.T, v_neg)
|
||||
self.components_ += lr * update
|
||||
self.intercept_hidden_ += lr * (h_pos.sum(axis=0) - h_neg.sum(axis=0))
|
||||
self.intercept_visible_ += lr * (np.asarray(
|
||||
v_pos.sum(axis=0)).squeeze() -
|
||||
v_neg.sum(axis=0))
|
||||
|
||||
h_neg[rng.uniform(size=h_neg.shape) < h_neg] = 1.0 # sample binomial
|
||||
self.h_samples_ = np.floor(h_neg, h_neg)
|
||||
|
||||
def score_samples(self, X):
|
||||
"""Compute the pseudo-likelihood of X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Values of the visible layer. Must be all-boolean (not checked).
|
||||
|
||||
Returns
|
||||
-------
|
||||
pseudo_likelihood : ndarray of shape (n_samples,)
|
||||
Value of the pseudo-likelihood (proxy for likelihood).
|
||||
|
||||
Notes
|
||||
-----
|
||||
This method is not deterministic: it computes a quantity called the
|
||||
free energy on X, then on a randomly corrupted version of X, and
|
||||
returns the log of the logistic function of the difference.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
v = check_array(X, accept_sparse='csr')
|
||||
rng = check_random_state(self.random_state)
|
||||
|
||||
# Randomly corrupt one feature in each sample in v.
|
||||
ind = (np.arange(v.shape[0]),
|
||||
rng.randint(0, v.shape[1], v.shape[0]))
|
||||
if sp.issparse(v):
|
||||
data = -2 * v[ind] + 1
|
||||
v_ = v + sp.csr_matrix((data.A.ravel(), ind), shape=v.shape)
|
||||
else:
|
||||
v_ = v.copy()
|
||||
v_[ind] = 1 - v_[ind]
|
||||
|
||||
fe = self._free_energy(v)
|
||||
fe_ = self._free_energy(v_)
|
||||
return v.shape[1] * log_logistic(fe_ - fe)
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the model to the data X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Training data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : BernoulliRBM
|
||||
The fitted model.
|
||||
"""
|
||||
X = self._validate_data(X, accept_sparse='csr', dtype=np.float64)
|
||||
n_samples = X.shape[0]
|
||||
rng = check_random_state(self.random_state)
|
||||
|
||||
self.components_ = np.asarray(
|
||||
rng.normal(0, 0.01, (self.n_components, X.shape[1])),
|
||||
order='F')
|
||||
self.intercept_hidden_ = np.zeros(self.n_components, )
|
||||
self.intercept_visible_ = np.zeros(X.shape[1], )
|
||||
self.h_samples_ = np.zeros((self.batch_size, self.n_components))
|
||||
|
||||
n_batches = int(np.ceil(float(n_samples) / self.batch_size))
|
||||
batch_slices = list(gen_even_slices(n_batches * self.batch_size,
|
||||
n_batches, n_samples=n_samples))
|
||||
verbose = self.verbose
|
||||
begin = time.time()
|
||||
for iteration in range(1, self.n_iter + 1):
|
||||
for batch_slice in batch_slices:
|
||||
self._fit(X[batch_slice], rng)
|
||||
|
||||
if verbose:
|
||||
end = time.time()
|
||||
print("[%s] Iteration %d, pseudo-likelihood = %.2f,"
|
||||
" time = %.2fs"
|
||||
% (type(self).__name__, iteration,
|
||||
self.score_samples(X).mean(), end - begin))
|
||||
begin = end
|
||||
|
||||
return self
|
||||
|
||||
def _more_tags(self):
|
||||
return {
|
||||
'_xfail_checks': {
|
||||
'check_methods_subset_invariance':
|
||||
'fails for the decision_function method'
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue