Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
15
venv/Lib/site-packages/sklearn/neural_network/__init__.py
Normal file
15
venv/Lib/site-packages/sklearn/neural_network/__init__.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
"""
|
||||
The :mod:`sklearn.neural_network` module includes models based on neural
|
||||
networks.
|
||||
"""
|
||||
|
||||
# License: BSD 3 clause
|
||||
|
||||
from ._rbm import BernoulliRBM
|
||||
|
||||
from ._multilayer_perceptron import MLPClassifier
|
||||
from ._multilayer_perceptron import MLPRegressor
|
||||
|
||||
__all__ = ["BernoulliRBM",
|
||||
"MLPClassifier",
|
||||
"MLPRegressor"]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
253
venv/Lib/site-packages/sklearn/neural_network/_base.py
Normal file
253
venv/Lib/site-packages/sklearn/neural_network/_base.py
Normal file
|
@ -0,0 +1,253 @@
|
|||
"""Utilities for the neural network modules
|
||||
"""
|
||||
|
||||
# Author: Issam H. Laradji <issam.laradji@gmail.com>
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
|
||||
from scipy.special import expit as logistic_sigmoid
|
||||
from scipy.special import xlogy
|
||||
|
||||
|
||||
def identity(X):
|
||||
"""Simply return the input array.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
Data, where n_samples is the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
Same as the input data.
|
||||
"""
|
||||
return X
|
||||
|
||||
|
||||
def logistic(X):
|
||||
"""Compute the logistic function inplace.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The input data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The transformed data.
|
||||
"""
|
||||
return logistic_sigmoid(X, out=X)
|
||||
|
||||
|
||||
def tanh(X):
|
||||
"""Compute the hyperbolic tan function inplace.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The input data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The transformed data.
|
||||
"""
|
||||
return np.tanh(X, out=X)
|
||||
|
||||
|
||||
def relu(X):
|
||||
"""Compute the rectified linear unit function inplace.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The input data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The transformed data.
|
||||
"""
|
||||
np.clip(X, 0, np.finfo(X.dtype).max, out=X)
|
||||
return X
|
||||
|
||||
|
||||
def softmax(X):
|
||||
"""Compute the K-way softmax function inplace.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The input data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The transformed data.
|
||||
"""
|
||||
tmp = X - X.max(axis=1)[:, np.newaxis]
|
||||
np.exp(tmp, out=X)
|
||||
X /= X.sum(axis=1)[:, np.newaxis]
|
||||
|
||||
return X
|
||||
|
||||
|
||||
ACTIVATIONS = {'identity': identity, 'tanh': tanh, 'logistic': logistic,
|
||||
'relu': relu, 'softmax': softmax}
|
||||
|
||||
|
||||
def inplace_identity_derivative(Z, delta):
|
||||
"""Apply the derivative of the identity function: do nothing.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Z : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The data which was output from the identity activation function during
|
||||
the forward pass.
|
||||
|
||||
delta : {array-like}, shape (n_samples, n_features)
|
||||
The backpropagated error signal to be modified inplace.
|
||||
"""
|
||||
# Nothing to do
|
||||
|
||||
|
||||
def inplace_logistic_derivative(Z, delta):
|
||||
"""Apply the derivative of the logistic sigmoid function.
|
||||
|
||||
It exploits the fact that the derivative is a simple function of the output
|
||||
value from logistic function.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Z : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The data which was output from the logistic activation function during
|
||||
the forward pass.
|
||||
|
||||
delta : {array-like}, shape (n_samples, n_features)
|
||||
The backpropagated error signal to be modified inplace.
|
||||
"""
|
||||
delta *= Z
|
||||
delta *= (1 - Z)
|
||||
|
||||
|
||||
def inplace_tanh_derivative(Z, delta):
|
||||
"""Apply the derivative of the hyperbolic tanh function.
|
||||
|
||||
It exploits the fact that the derivative is a simple function of the output
|
||||
value from hyperbolic tangent.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Z : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The data which was output from the hyperbolic tangent activation
|
||||
function during the forward pass.
|
||||
|
||||
delta : {array-like}, shape (n_samples, n_features)
|
||||
The backpropagated error signal to be modified inplace.
|
||||
"""
|
||||
delta *= (1 - Z ** 2)
|
||||
|
||||
|
||||
def inplace_relu_derivative(Z, delta):
|
||||
"""Apply the derivative of the relu function.
|
||||
|
||||
It exploits the fact that the derivative is a simple function of the output
|
||||
value from rectified linear units activation function.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Z : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
The data which was output from the rectified linear units activation
|
||||
function during the forward pass.
|
||||
|
||||
delta : {array-like}, shape (n_samples, n_features)
|
||||
The backpropagated error signal to be modified inplace.
|
||||
"""
|
||||
delta[Z == 0] = 0
|
||||
|
||||
|
||||
DERIVATIVES = {'identity': inplace_identity_derivative,
|
||||
'tanh': inplace_tanh_derivative,
|
||||
'logistic': inplace_logistic_derivative,
|
||||
'relu': inplace_relu_derivative}
|
||||
|
||||
|
||||
def squared_loss(y_true, y_pred):
|
||||
"""Compute the squared loss for regression.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y_true : array-like or label indicator matrix
|
||||
Ground truth (correct) values.
|
||||
|
||||
y_pred : array-like or label indicator matrix
|
||||
Predicted values, as returned by a regression estimator.
|
||||
|
||||
Returns
|
||||
-------
|
||||
loss : float
|
||||
The degree to which the samples are correctly predicted.
|
||||
"""
|
||||
return ((y_true - y_pred) ** 2).mean() / 2
|
||||
|
||||
|
||||
def log_loss(y_true, y_prob):
|
||||
"""Compute Logistic loss for classification.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y_true : array-like or label indicator matrix
|
||||
Ground truth (correct) labels.
|
||||
|
||||
y_prob : array-like of float, shape = (n_samples, n_classes)
|
||||
Predicted probabilities, as returned by a classifier's
|
||||
predict_proba method.
|
||||
|
||||
Returns
|
||||
-------
|
||||
loss : float
|
||||
The degree to which the samples are correctly predicted.
|
||||
"""
|
||||
eps = np.finfo(y_prob.dtype).eps
|
||||
y_prob = np.clip(y_prob, eps, 1 - eps)
|
||||
if y_prob.shape[1] == 1:
|
||||
y_prob = np.append(1 - y_prob, y_prob, axis=1)
|
||||
|
||||
if y_true.shape[1] == 1:
|
||||
y_true = np.append(1 - y_true, y_true, axis=1)
|
||||
|
||||
return - xlogy(y_true, y_prob).sum() / y_prob.shape[0]
|
||||
|
||||
|
||||
def binary_log_loss(y_true, y_prob):
|
||||
"""Compute binary logistic loss for classification.
|
||||
|
||||
This is identical to log_loss in binary classification case,
|
||||
but is kept for its use in multilabel case.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y_true : array-like or label indicator matrix
|
||||
Ground truth (correct) labels.
|
||||
|
||||
y_prob : array-like of float, shape = (n_samples, 1)
|
||||
Predicted probabilities, as returned by a classifier's
|
||||
predict_proba method.
|
||||
|
||||
Returns
|
||||
-------
|
||||
loss : float
|
||||
The degree to which the samples are correctly predicted.
|
||||
"""
|
||||
eps = np.finfo(y_prob.dtype).eps
|
||||
y_prob = np.clip(y_prob, eps, 1 - eps)
|
||||
return -(xlogy(y_true, y_prob) +
|
||||
xlogy(1 - y_true, 1 - y_prob)).sum() / y_prob.shape[0]
|
||||
|
||||
|
||||
LOSS_FUNCTIONS = {'squared_loss': squared_loss, 'log_loss': log_loss,
|
||||
'binary_log_loss': binary_log_loss}
|
File diff suppressed because it is too large
Load diff
383
venv/Lib/site-packages/sklearn/neural_network/_rbm.py
Normal file
383
venv/Lib/site-packages/sklearn/neural_network/_rbm.py
Normal file
|
@ -0,0 +1,383 @@
|
|||
"""Restricted Boltzmann Machine
|
||||
"""
|
||||
|
||||
# Authors: Yann N. Dauphin <dauphiya@iro.umontreal.ca>
|
||||
# Vlad Niculae
|
||||
# Gabriel Synnaeve
|
||||
# Lars Buitinck
|
||||
# License: BSD 3 clause
|
||||
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
from scipy.special import expit # logistic function
|
||||
|
||||
from ..base import BaseEstimator
|
||||
from ..base import TransformerMixin
|
||||
from ..utils import check_array
|
||||
from ..utils import check_random_state
|
||||
from ..utils import gen_even_slices
|
||||
from ..utils.extmath import safe_sparse_dot
|
||||
from ..utils.extmath import log_logistic
|
||||
from ..utils.validation import check_is_fitted, _deprecate_positional_args
|
||||
|
||||
|
||||
class BernoulliRBM(TransformerMixin, BaseEstimator):
|
||||
"""Bernoulli Restricted Boltzmann Machine (RBM).
|
||||
|
||||
A Restricted Boltzmann Machine with binary visible units and
|
||||
binary hidden units. Parameters are estimated using Stochastic Maximum
|
||||
Likelihood (SML), also known as Persistent Contrastive Divergence (PCD)
|
||||
[2].
|
||||
|
||||
The time complexity of this implementation is ``O(d ** 2)`` assuming
|
||||
d ~ n_features ~ n_components.
|
||||
|
||||
Read more in the :ref:`User Guide <rbm>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int, default=256
|
||||
Number of binary hidden units.
|
||||
|
||||
learning_rate : float, default=0.1
|
||||
The learning rate for weight updates. It is *highly* recommended
|
||||
to tune this hyper-parameter. Reasonable values are in the
|
||||
10**[0., -3.] range.
|
||||
|
||||
batch_size : int, default=10
|
||||
Number of examples per minibatch.
|
||||
|
||||
n_iter : int, default=10
|
||||
Number of iterations/sweeps over the training dataset to perform
|
||||
during training.
|
||||
|
||||
verbose : int, default=0
|
||||
The verbosity level. The default, zero, means silent mode.
|
||||
|
||||
random_state : integer or RandomState, default=None
|
||||
Determines random number generation for:
|
||||
|
||||
- Gibbs sampling from visible and hidden layers.
|
||||
|
||||
- Initializing components, sampling from layers during fit.
|
||||
|
||||
- Corrupting the data when scoring samples.
|
||||
|
||||
Pass an int for reproducible results across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
intercept_hidden_ : array-like, shape (n_components,)
|
||||
Biases of the hidden units.
|
||||
|
||||
intercept_visible_ : array-like, shape (n_features,)
|
||||
Biases of the visible units.
|
||||
|
||||
components_ : array-like, shape (n_components, n_features)
|
||||
Weight matrix, where n_features in the number of
|
||||
visible units and n_components is the number of hidden units.
|
||||
|
||||
h_samples_ : array-like, shape (batch_size, n_components)
|
||||
Hidden Activation sampled from the model distribution,
|
||||
where batch_size in the number of examples per minibatch and
|
||||
n_components is the number of hidden units.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> import numpy as np
|
||||
>>> from sklearn.neural_network import BernoulliRBM
|
||||
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
|
||||
>>> model = BernoulliRBM(n_components=2)
|
||||
>>> model.fit(X)
|
||||
BernoulliRBM(n_components=2)
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
[1] Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for
|
||||
deep belief nets. Neural Computation 18, pp 1527-1554.
|
||||
https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
|
||||
|
||||
[2] Tieleman, T. Training Restricted Boltzmann Machines using
|
||||
Approximations to the Likelihood Gradient. International Conference
|
||||
on Machine Learning (ICML) 2008
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=256, *, learning_rate=0.1, batch_size=10,
|
||||
n_iter=10, verbose=0, random_state=None):
|
||||
self.n_components = n_components
|
||||
self.learning_rate = learning_rate
|
||||
self.batch_size = batch_size
|
||||
self.n_iter = n_iter
|
||||
self.verbose = verbose
|
||||
self.random_state = random_state
|
||||
|
||||
def transform(self, X):
|
||||
"""Compute the hidden layer activation probabilities, P(h=1|v=X).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
The data to be transformed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
h : ndarray of shape (n_samples, n_components)
|
||||
Latent representations of the data.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = check_array(X, accept_sparse='csr', dtype=np.float64)
|
||||
return self._mean_hiddens(X)
|
||||
|
||||
def _mean_hiddens(self, v):
|
||||
"""Computes the probabilities P(h=1|v).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
v : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer.
|
||||
|
||||
Returns
|
||||
-------
|
||||
h : ndarray of shape (n_samples, n_components)
|
||||
Corresponding mean field values for the hidden layer.
|
||||
"""
|
||||
p = safe_sparse_dot(v, self.components_.T)
|
||||
p += self.intercept_hidden_
|
||||
return expit(p, out=p)
|
||||
|
||||
def _sample_hiddens(self, v, rng):
|
||||
"""Sample from the distribution P(h|v).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
v : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer to sample from.
|
||||
|
||||
rng : RandomState
|
||||
Random number generator to use.
|
||||
|
||||
Returns
|
||||
-------
|
||||
h : ndarray of shape (n_samples, n_components)
|
||||
Values of the hidden layer.
|
||||
"""
|
||||
p = self._mean_hiddens(v)
|
||||
return (rng.random_sample(size=p.shape) < p)
|
||||
|
||||
def _sample_visibles(self, h, rng):
|
||||
"""Sample from the distribution P(v|h).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
h : ndarray of shape (n_samples, n_components)
|
||||
Values of the hidden layer to sample from.
|
||||
|
||||
rng : RandomState
|
||||
Random number generator to use.
|
||||
|
||||
Returns
|
||||
-------
|
||||
v : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer.
|
||||
"""
|
||||
p = np.dot(h, self.components_)
|
||||
p += self.intercept_visible_
|
||||
expit(p, out=p)
|
||||
return (rng.random_sample(size=p.shape) < p)
|
||||
|
||||
def _free_energy(self, v):
|
||||
"""Computes the free energy F(v) = - log sum_h exp(-E(v,h)).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
v : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer.
|
||||
|
||||
Returns
|
||||
-------
|
||||
free_energy : ndarray of shape (n_samples,)
|
||||
The value of the free energy.
|
||||
"""
|
||||
return (- safe_sparse_dot(v, self.intercept_visible_)
|
||||
- np.logaddexp(0, safe_sparse_dot(v, self.components_.T)
|
||||
+ self.intercept_hidden_).sum(axis=1))
|
||||
|
||||
def gibbs(self, v):
|
||||
"""Perform one Gibbs sampling step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
v : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer to start from.
|
||||
|
||||
Returns
|
||||
-------
|
||||
v_new : ndarray of shape (n_samples, n_features)
|
||||
Values of the visible layer after one Gibbs step.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
if not hasattr(self, "random_state_"):
|
||||
self.random_state_ = check_random_state(self.random_state)
|
||||
h_ = self._sample_hiddens(v, self.random_state_)
|
||||
v_ = self._sample_visibles(h_, self.random_state_)
|
||||
|
||||
return v_
|
||||
|
||||
def partial_fit(self, X, y=None):
|
||||
"""Fit the model to the data X which should contain a partial
|
||||
segment of the data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : ndarray of shape (n_samples, n_features)
|
||||
Training data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : BernoulliRBM
|
||||
The fitted model.
|
||||
"""
|
||||
X = check_array(X, accept_sparse='csr', dtype=np.float64)
|
||||
if not hasattr(self, 'random_state_'):
|
||||
self.random_state_ = check_random_state(self.random_state)
|
||||
if not hasattr(self, 'components_'):
|
||||
self.components_ = np.asarray(
|
||||
self.random_state_.normal(
|
||||
0,
|
||||
0.01,
|
||||
(self.n_components, X.shape[1])
|
||||
),
|
||||
order='F')
|
||||
if not hasattr(self, 'intercept_hidden_'):
|
||||
self.intercept_hidden_ = np.zeros(self.n_components, )
|
||||
if not hasattr(self, 'intercept_visible_'):
|
||||
self.intercept_visible_ = np.zeros(X.shape[1], )
|
||||
if not hasattr(self, 'h_samples_'):
|
||||
self.h_samples_ = np.zeros((self.batch_size, self.n_components))
|
||||
|
||||
self._fit(X, self.random_state_)
|
||||
|
||||
def _fit(self, v_pos, rng):
|
||||
"""Inner fit for one mini-batch.
|
||||
|
||||
Adjust the parameters to maximize the likelihood of v using
|
||||
Stochastic Maximum Likelihood (SML).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
v_pos : ndarray of shape (n_samples, n_features)
|
||||
The data to use for training.
|
||||
|
||||
rng : RandomState
|
||||
Random number generator to use for sampling.
|
||||
"""
|
||||
h_pos = self._mean_hiddens(v_pos)
|
||||
v_neg = self._sample_visibles(self.h_samples_, rng)
|
||||
h_neg = self._mean_hiddens(v_neg)
|
||||
|
||||
lr = float(self.learning_rate) / v_pos.shape[0]
|
||||
update = safe_sparse_dot(v_pos.T, h_pos, dense_output=True).T
|
||||
update -= np.dot(h_neg.T, v_neg)
|
||||
self.components_ += lr * update
|
||||
self.intercept_hidden_ += lr * (h_pos.sum(axis=0) - h_neg.sum(axis=0))
|
||||
self.intercept_visible_ += lr * (np.asarray(
|
||||
v_pos.sum(axis=0)).squeeze() -
|
||||
v_neg.sum(axis=0))
|
||||
|
||||
h_neg[rng.uniform(size=h_neg.shape) < h_neg] = 1.0 # sample binomial
|
||||
self.h_samples_ = np.floor(h_neg, h_neg)
|
||||
|
||||
def score_samples(self, X):
|
||||
"""Compute the pseudo-likelihood of X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Values of the visible layer. Must be all-boolean (not checked).
|
||||
|
||||
Returns
|
||||
-------
|
||||
pseudo_likelihood : ndarray of shape (n_samples,)
|
||||
Value of the pseudo-likelihood (proxy for likelihood).
|
||||
|
||||
Notes
|
||||
-----
|
||||
This method is not deterministic: it computes a quantity called the
|
||||
free energy on X, then on a randomly corrupted version of X, and
|
||||
returns the log of the logistic function of the difference.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
v = check_array(X, accept_sparse='csr')
|
||||
rng = check_random_state(self.random_state)
|
||||
|
||||
# Randomly corrupt one feature in each sample in v.
|
||||
ind = (np.arange(v.shape[0]),
|
||||
rng.randint(0, v.shape[1], v.shape[0]))
|
||||
if sp.issparse(v):
|
||||
data = -2 * v[ind] + 1
|
||||
v_ = v + sp.csr_matrix((data.A.ravel(), ind), shape=v.shape)
|
||||
else:
|
||||
v_ = v.copy()
|
||||
v_[ind] = 1 - v_[ind]
|
||||
|
||||
fe = self._free_energy(v)
|
||||
fe_ = self._free_energy(v_)
|
||||
return v.shape[1] * log_logistic(fe_ - fe)
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the model to the data X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Training data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : BernoulliRBM
|
||||
The fitted model.
|
||||
"""
|
||||
X = self._validate_data(X, accept_sparse='csr', dtype=np.float64)
|
||||
n_samples = X.shape[0]
|
||||
rng = check_random_state(self.random_state)
|
||||
|
||||
self.components_ = np.asarray(
|
||||
rng.normal(0, 0.01, (self.n_components, X.shape[1])),
|
||||
order='F')
|
||||
self.intercept_hidden_ = np.zeros(self.n_components, )
|
||||
self.intercept_visible_ = np.zeros(X.shape[1], )
|
||||
self.h_samples_ = np.zeros((self.batch_size, self.n_components))
|
||||
|
||||
n_batches = int(np.ceil(float(n_samples) / self.batch_size))
|
||||
batch_slices = list(gen_even_slices(n_batches * self.batch_size,
|
||||
n_batches, n_samples=n_samples))
|
||||
verbose = self.verbose
|
||||
begin = time.time()
|
||||
for iteration in range(1, self.n_iter + 1):
|
||||
for batch_slice in batch_slices:
|
||||
self._fit(X[batch_slice], rng)
|
||||
|
||||
if verbose:
|
||||
end = time.time()
|
||||
print("[%s] Iteration %d, pseudo-likelihood = %.2f,"
|
||||
" time = %.2fs"
|
||||
% (type(self).__name__, iteration,
|
||||
self.score_samples(X).mean(), end - begin))
|
||||
begin = end
|
||||
|
||||
return self
|
||||
|
||||
def _more_tags(self):
|
||||
return {
|
||||
'_xfail_checks': {
|
||||
'check_methods_subset_invariance':
|
||||
'fails for the decision_function method'
|
||||
}
|
||||
}
|
|
@ -0,0 +1,270 @@
|
|||
"""Stochastic optimization methods for MLP
|
||||
"""
|
||||
|
||||
# Authors: Jiyuan Qian <jq401@nyu.edu>
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class BaseOptimizer:
|
||||
"""Base (Stochastic) gradient descent optimizer
|
||||
|
||||
Parameters
|
||||
----------
|
||||
params : list, length = len(coefs_) + len(intercepts_)
|
||||
The concatenated list containing coefs_ and intercepts_ in MLP model.
|
||||
Used for initializing velocities and updating params
|
||||
|
||||
learning_rate_init : float, default=0.1
|
||||
The initial learning rate used. It controls the step-size in updating
|
||||
the weights
|
||||
|
||||
Attributes
|
||||
----------
|
||||
learning_rate : float
|
||||
the current learning rate
|
||||
"""
|
||||
|
||||
def __init__(self, params, learning_rate_init=0.1):
|
||||
self.params = [param for param in params]
|
||||
self.learning_rate_init = learning_rate_init
|
||||
self.learning_rate = float(learning_rate_init)
|
||||
|
||||
def update_params(self, grads):
|
||||
"""Update parameters with given gradients
|
||||
|
||||
Parameters
|
||||
----------
|
||||
grads : list, length = len(params)
|
||||
Containing gradients with respect to coefs_ and intercepts_ in MLP
|
||||
model. So length should be aligned with params
|
||||
"""
|
||||
updates = self._get_updates(grads)
|
||||
for param, update in zip(self.params, updates):
|
||||
param += update
|
||||
|
||||
def iteration_ends(self, time_step):
|
||||
"""Perform update to learning rate and potentially other states at the
|
||||
end of an iteration
|
||||
"""
|
||||
pass
|
||||
|
||||
def trigger_stopping(self, msg, verbose):
|
||||
"""Decides whether it is time to stop training
|
||||
|
||||
Parameters
|
||||
----------
|
||||
msg : str
|
||||
Message passed in for verbose output
|
||||
|
||||
verbose : bool
|
||||
Print message to stdin if True
|
||||
|
||||
Returns
|
||||
-------
|
||||
is_stopping : bool
|
||||
True if training needs to stop
|
||||
"""
|
||||
if verbose:
|
||||
print(msg + " Stopping.")
|
||||
return True
|
||||
|
||||
|
||||
class SGDOptimizer(BaseOptimizer):
|
||||
"""Stochastic gradient descent optimizer with momentum
|
||||
|
||||
Parameters
|
||||
----------
|
||||
params : list, length = len(coefs_) + len(intercepts_)
|
||||
The concatenated list containing coefs_ and intercepts_ in MLP model.
|
||||
Used for initializing velocities and updating params
|
||||
|
||||
learning_rate_init : float, default=0.1
|
||||
The initial learning rate used. It controls the step-size in updating
|
||||
the weights
|
||||
|
||||
lr_schedule : {'constant', 'adaptive', 'invscaling'}, default='constant'
|
||||
Learning rate schedule for weight updates.
|
||||
|
||||
-'constant', is a constant learning rate given by
|
||||
'learning_rate_init'.
|
||||
|
||||
-'invscaling' gradually decreases the learning rate 'learning_rate_' at
|
||||
each time step 't' using an inverse scaling exponent of 'power_t'.
|
||||
learning_rate_ = learning_rate_init / pow(t, power_t)
|
||||
|
||||
-'adaptive', keeps the learning rate constant to
|
||||
'learning_rate_init' as long as the training keeps decreasing.
|
||||
Each time 2 consecutive epochs fail to decrease the training loss by
|
||||
tol, or fail to increase validation score by tol if 'early_stopping'
|
||||
is on, the current learning rate is divided by 5.
|
||||
|
||||
momentum : float, default=0.9
|
||||
Value of momentum used, must be larger than or equal to 0
|
||||
|
||||
nesterov : bool, default=True
|
||||
Whether to use nesterov's momentum or not. Use nesterov's if True
|
||||
|
||||
power_t : float, default=0.5
|
||||
Power of time step 't' in inverse scaling. See `lr_schedule` for
|
||||
more details.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
learning_rate : float
|
||||
the current learning rate
|
||||
|
||||
velocities : list, length = len(params)
|
||||
velocities that are used to update params
|
||||
"""
|
||||
|
||||
def __init__(self, params, learning_rate_init=0.1, lr_schedule='constant',
|
||||
momentum=0.9, nesterov=True, power_t=0.5):
|
||||
super().__init__(params, learning_rate_init)
|
||||
|
||||
self.lr_schedule = lr_schedule
|
||||
self.momentum = momentum
|
||||
self.nesterov = nesterov
|
||||
self.power_t = power_t
|
||||
self.velocities = [np.zeros_like(param) for param in params]
|
||||
|
||||
def iteration_ends(self, time_step):
|
||||
"""Perform updates to learning rate and potential other states at the
|
||||
end of an iteration
|
||||
|
||||
Parameters
|
||||
----------
|
||||
time_step : int
|
||||
number of training samples trained on so far, used to update
|
||||
learning rate for 'invscaling'
|
||||
"""
|
||||
if self.lr_schedule == 'invscaling':
|
||||
self.learning_rate = (float(self.learning_rate_init) /
|
||||
(time_step + 1) ** self.power_t)
|
||||
|
||||
def trigger_stopping(self, msg, verbose):
|
||||
if self.lr_schedule != 'adaptive':
|
||||
if verbose:
|
||||
print(msg + " Stopping.")
|
||||
return True
|
||||
|
||||
if self.learning_rate <= 1e-6:
|
||||
if verbose:
|
||||
print(msg + " Learning rate too small. Stopping.")
|
||||
return True
|
||||
|
||||
self.learning_rate /= 5.
|
||||
if verbose:
|
||||
print(msg + " Setting learning rate to %f" %
|
||||
self.learning_rate)
|
||||
return False
|
||||
|
||||
def _get_updates(self, grads):
|
||||
"""Get the values used to update params with given gradients
|
||||
|
||||
Parameters
|
||||
----------
|
||||
grads : list, length = len(coefs_) + len(intercepts_)
|
||||
Containing gradients with respect to coefs_ and intercepts_ in MLP
|
||||
model. So length should be aligned with params
|
||||
|
||||
Returns
|
||||
-------
|
||||
updates : list, length = len(grads)
|
||||
The values to add to params
|
||||
"""
|
||||
updates = [self.momentum * velocity - self.learning_rate * grad
|
||||
for velocity, grad in zip(self.velocities, grads)]
|
||||
self.velocities = updates
|
||||
|
||||
if self.nesterov:
|
||||
updates = [self.momentum * velocity - self.learning_rate * grad
|
||||
for velocity, grad in zip(self.velocities, grads)]
|
||||
|
||||
return updates
|
||||
|
||||
|
||||
class AdamOptimizer(BaseOptimizer):
|
||||
"""Stochastic gradient descent optimizer with Adam
|
||||
|
||||
Note: All default values are from the original Adam paper
|
||||
|
||||
Parameters
|
||||
----------
|
||||
params : list, length = len(coefs_) + len(intercepts_)
|
||||
The concatenated list containing coefs_ and intercepts_ in MLP model.
|
||||
Used for initializing velocities and updating params
|
||||
|
||||
learning_rate_init : float, default=0.001
|
||||
The initial learning rate used. It controls the step-size in updating
|
||||
the weights
|
||||
|
||||
beta_1 : float, default=0.9
|
||||
Exponential decay rate for estimates of first moment vector, should be
|
||||
in [0, 1)
|
||||
|
||||
beta_2 : float, default=0.999
|
||||
Exponential decay rate for estimates of second moment vector, should be
|
||||
in [0, 1)
|
||||
|
||||
epsilon : float, default=1e-8
|
||||
Value for numerical stability
|
||||
|
||||
Attributes
|
||||
----------
|
||||
learning_rate : float
|
||||
The current learning rate
|
||||
|
||||
t : int
|
||||
Timestep
|
||||
|
||||
ms : list, length = len(params)
|
||||
First moment vectors
|
||||
|
||||
vs : list, length = len(params)
|
||||
Second moment vectors
|
||||
|
||||
References
|
||||
----------
|
||||
Kingma, Diederik, and Jimmy Ba.
|
||||
"Adam: A method for stochastic optimization."
|
||||
arXiv preprint arXiv:1412.6980 (2014).
|
||||
"""
|
||||
|
||||
def __init__(self, params, learning_rate_init=0.001, beta_1=0.9,
|
||||
beta_2=0.999, epsilon=1e-8):
|
||||
super().__init__(params, learning_rate_init)
|
||||
|
||||
self.beta_1 = beta_1
|
||||
self.beta_2 = beta_2
|
||||
self.epsilon = epsilon
|
||||
self.t = 0
|
||||
self.ms = [np.zeros_like(param) for param in params]
|
||||
self.vs = [np.zeros_like(param) for param in params]
|
||||
|
||||
def _get_updates(self, grads):
|
||||
"""Get the values used to update params with given gradients
|
||||
|
||||
Parameters
|
||||
----------
|
||||
grads : list, length = len(coefs_) + len(intercepts_)
|
||||
Containing gradients with respect to coefs_ and intercepts_ in MLP
|
||||
model. So length should be aligned with params
|
||||
|
||||
Returns
|
||||
-------
|
||||
updates : list, length = len(grads)
|
||||
The values to add to params
|
||||
"""
|
||||
self.t += 1
|
||||
self.ms = [self.beta_1 * m + (1 - self.beta_1) * grad
|
||||
for m, grad in zip(self.ms, grads)]
|
||||
self.vs = [self.beta_2 * v + (1 - self.beta_2) * (grad ** 2)
|
||||
for v, grad in zip(self.vs, grads)]
|
||||
self.learning_rate = (self.learning_rate_init *
|
||||
np.sqrt(1 - self.beta_2 ** self.t) /
|
||||
(1 - self.beta_1 ** self.t))
|
||||
updates = [-self.learning_rate * m / (np.sqrt(v) + self.epsilon)
|
||||
for m, v in zip(self.ms, self.vs)]
|
||||
return updates
|
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _multilayer_perceptron # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.neural_network.multilayer_perceptron'
|
||||
correct_import_path = 'sklearn.neural_network'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_multilayer_perceptron, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/neural_network/rbm.py
Normal file
18
venv/Lib/site-packages/sklearn/neural_network/rbm.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _rbm # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.neural_network.rbm'
|
||||
correct_import_path = 'sklearn.neural_network'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_rbm, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,26 @@
|
|||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from sklearn.neural_network._base import binary_log_loss
|
||||
from sklearn.neural_network._base import log_loss
|
||||
|
||||
|
||||
def test_binary_log_loss_1_prob_finite():
|
||||
# y_proba is equal to one should result in a finite logloss
|
||||
y_true = np.array([[0, 0, 1]]).T
|
||||
y_prob = np.array([[0.9, 1.0, 1.0]]).T
|
||||
|
||||
loss = binary_log_loss(y_true, y_prob)
|
||||
assert np.isfinite(loss)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("y_true, y_prob", [
|
||||
(np.array([[1, 0, 0], [0, 1, 0]]),
|
||||
np.array([[0., 1., 0.], [0.9, 0.05, 0.05]])),
|
||||
(np.array([[0, 0, 1]]).T,
|
||||
np.array([[0.9, 1.0, 1.0]]).T),
|
||||
])
|
||||
def test_log_loss_1_prob_finite(y_true, y_prob):
|
||||
# y_proba is equal to 1 should result in a finite logloss
|
||||
loss = log_loss(y_true, y_prob)
|
||||
assert np.isfinite(loss)
|
718
venv/Lib/site-packages/sklearn/neural_network/tests/test_mlp.py
Normal file
718
venv/Lib/site-packages/sklearn/neural_network/tests/test_mlp.py
Normal file
|
@ -0,0 +1,718 @@
|
|||
"""
|
||||
Testing for Multi-layer Perceptron module (sklearn.neural_network)
|
||||
"""
|
||||
|
||||
# Author: Issam H. Laradji
|
||||
# License: BSD 3 clause
|
||||
|
||||
import pytest
|
||||
import sys
|
||||
import warnings
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
|
||||
from numpy.testing import assert_almost_equal, assert_array_equal
|
||||
|
||||
from sklearn.datasets import load_digits, load_boston, load_iris
|
||||
from sklearn.datasets import make_regression, make_multilabel_classification
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
from io import StringIO
|
||||
from sklearn.metrics import roc_auc_score
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.neural_network import MLPRegressor
|
||||
from sklearn.preprocessing import LabelBinarizer
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
||||
from scipy.sparse import csr_matrix
|
||||
from sklearn.utils._testing import ignore_warnings
|
||||
|
||||
|
||||
ACTIVATION_TYPES = ["identity", "logistic", "tanh", "relu"]
|
||||
|
||||
X_digits, y_digits = load_digits(n_class=3, return_X_y=True)
|
||||
|
||||
X_digits_multi = MinMaxScaler().fit_transform(X_digits[:200])
|
||||
y_digits_multi = y_digits[:200]
|
||||
|
||||
X_digits, y_digits = load_digits(n_class=2, return_X_y=True)
|
||||
|
||||
X_digits_binary = MinMaxScaler().fit_transform(X_digits[:200])
|
||||
y_digits_binary = y_digits[:200]
|
||||
|
||||
classification_datasets = [(X_digits_multi, y_digits_multi),
|
||||
(X_digits_binary, y_digits_binary)]
|
||||
|
||||
boston = load_boston()
|
||||
|
||||
Xboston = StandardScaler().fit_transform(boston.data)[: 200]
|
||||
yboston = boston.target[:200]
|
||||
|
||||
regression_datasets = [(Xboston, yboston)]
|
||||
|
||||
iris = load_iris()
|
||||
|
||||
X_iris = iris.data
|
||||
y_iris = iris.target
|
||||
|
||||
|
||||
def test_alpha():
|
||||
# Test that larger alpha yields weights closer to zero
|
||||
X = X_digits_binary[:100]
|
||||
y = y_digits_binary[:100]
|
||||
|
||||
alpha_vectors = []
|
||||
alpha_values = np.arange(2)
|
||||
absolute_sum = lambda x: np.sum(np.abs(x))
|
||||
|
||||
for alpha in alpha_values:
|
||||
mlp = MLPClassifier(hidden_layer_sizes=10, alpha=alpha, random_state=1)
|
||||
with ignore_warnings(category=ConvergenceWarning):
|
||||
mlp.fit(X, y)
|
||||
alpha_vectors.append(np.array([absolute_sum(mlp.coefs_[0]),
|
||||
absolute_sum(mlp.coefs_[1])]))
|
||||
|
||||
for i in range(len(alpha_values) - 1):
|
||||
assert (alpha_vectors[i] > alpha_vectors[i + 1]).all()
|
||||
|
||||
|
||||
def test_fit():
|
||||
# Test that the algorithm solution is equal to a worked out example.
|
||||
X = np.array([[0.6, 0.8, 0.7]])
|
||||
y = np.array([0])
|
||||
mlp = MLPClassifier(solver='sgd', learning_rate_init=0.1, alpha=0.1,
|
||||
activation='logistic', random_state=1, max_iter=1,
|
||||
hidden_layer_sizes=2, momentum=0)
|
||||
# set weights
|
||||
mlp.coefs_ = [0] * 2
|
||||
mlp.intercepts_ = [0] * 2
|
||||
mlp.n_outputs_ = 1
|
||||
mlp.coefs_[0] = np.array([[0.1, 0.2], [0.3, 0.1], [0.5, 0]])
|
||||
mlp.coefs_[1] = np.array([[0.1], [0.2]])
|
||||
mlp.intercepts_[0] = np.array([0.1, 0.1])
|
||||
mlp.intercepts_[1] = np.array([1.0])
|
||||
mlp._coef_grads = [] * 2
|
||||
mlp._intercept_grads = [] * 2
|
||||
|
||||
# Initialize parameters
|
||||
mlp.n_iter_ = 0
|
||||
mlp.learning_rate_ = 0.1
|
||||
|
||||
# Compute the number of layers
|
||||
mlp.n_layers_ = 3
|
||||
|
||||
# Pre-allocate gradient matrices
|
||||
mlp._coef_grads = [0] * (mlp.n_layers_ - 1)
|
||||
mlp._intercept_grads = [0] * (mlp.n_layers_ - 1)
|
||||
|
||||
mlp.out_activation_ = 'logistic'
|
||||
mlp.t_ = 0
|
||||
mlp.best_loss_ = np.inf
|
||||
mlp.loss_curve_ = []
|
||||
mlp._no_improvement_count = 0
|
||||
mlp._intercept_velocity = [np.zeros_like(intercepts) for
|
||||
intercepts in
|
||||
mlp.intercepts_]
|
||||
mlp._coef_velocity = [np.zeros_like(coefs) for coefs in
|
||||
mlp.coefs_]
|
||||
|
||||
mlp.partial_fit(X, y, classes=[0, 1])
|
||||
# Manually worked out example
|
||||
# h1 = g(X1 * W_i1 + b11) = g(0.6 * 0.1 + 0.8 * 0.3 + 0.7 * 0.5 + 0.1)
|
||||
# = 0.679178699175393
|
||||
# h2 = g(X2 * W_i2 + b12) = g(0.6 * 0.2 + 0.8 * 0.1 + 0.7 * 0 + 0.1)
|
||||
# = 0.574442516811659
|
||||
# o1 = g(h * W2 + b21) = g(0.679 * 0.1 + 0.574 * 0.2 + 1)
|
||||
# = 0.7654329236196236
|
||||
# d21 = -(0 - 0.765) = 0.765
|
||||
# d11 = (1 - 0.679) * 0.679 * 0.765 * 0.1 = 0.01667
|
||||
# d12 = (1 - 0.574) * 0.574 * 0.765 * 0.2 = 0.0374
|
||||
# W1grad11 = X1 * d11 + alpha * W11 = 0.6 * 0.01667 + 0.1 * 0.1 = 0.0200
|
||||
# W1grad11 = X1 * d12 + alpha * W12 = 0.6 * 0.0374 + 0.1 * 0.2 = 0.04244
|
||||
# W1grad21 = X2 * d11 + alpha * W13 = 0.8 * 0.01667 + 0.1 * 0.3 = 0.043336
|
||||
# W1grad22 = X2 * d12 + alpha * W14 = 0.8 * 0.0374 + 0.1 * 0.1 = 0.03992
|
||||
# W1grad31 = X3 * d11 + alpha * W15 = 0.6 * 0.01667 + 0.1 * 0.5 = 0.060002
|
||||
# W1grad32 = X3 * d12 + alpha * W16 = 0.6 * 0.0374 + 0.1 * 0 = 0.02244
|
||||
# W2grad1 = h1 * d21 + alpha * W21 = 0.679 * 0.765 + 0.1 * 0.1 = 0.5294
|
||||
# W2grad2 = h2 * d21 + alpha * W22 = 0.574 * 0.765 + 0.1 * 0.2 = 0.45911
|
||||
# b1grad1 = d11 = 0.01667
|
||||
# b1grad2 = d12 = 0.0374
|
||||
# b2grad = d21 = 0.765
|
||||
# W1 = W1 - eta * [W1grad11, .., W1grad32] = [[0.1, 0.2], [0.3, 0.1],
|
||||
# [0.5, 0]] - 0.1 * [[0.0200, 0.04244], [0.043336, 0.03992],
|
||||
# [0.060002, 0.02244]] = [[0.098, 0.195756], [0.2956664,
|
||||
# 0.096008], [0.4939998, -0.002244]]
|
||||
# W2 = W2 - eta * [W2grad1, W2grad2] = [[0.1], [0.2]] - 0.1 *
|
||||
# [[0.5294], [0.45911]] = [[0.04706], [0.154089]]
|
||||
# b1 = b1 - eta * [b1grad1, b1grad2] = 0.1 - 0.1 * [0.01667, 0.0374]
|
||||
# = [0.098333, 0.09626]
|
||||
# b2 = b2 - eta * b2grad = 1.0 - 0.1 * 0.765 = 0.9235
|
||||
assert_almost_equal(mlp.coefs_[0], np.array([[0.098, 0.195756],
|
||||
[0.2956664, 0.096008],
|
||||
[0.4939998, -0.002244]]),
|
||||
decimal=3)
|
||||
assert_almost_equal(mlp.coefs_[1], np.array([[0.04706], [0.154089]]),
|
||||
decimal=3)
|
||||
assert_almost_equal(mlp.intercepts_[0],
|
||||
np.array([0.098333, 0.09626]), decimal=3)
|
||||
assert_almost_equal(mlp.intercepts_[1], np.array(0.9235), decimal=3)
|
||||
# Testing output
|
||||
# h1 = g(X1 * W_i1 + b11) = g(0.6 * 0.098 + 0.8 * 0.2956664 +
|
||||
# 0.7 * 0.4939998 + 0.098333) = 0.677
|
||||
# h2 = g(X2 * W_i2 + b12) = g(0.6 * 0.195756 + 0.8 * 0.096008 +
|
||||
# 0.7 * -0.002244 + 0.09626) = 0.572
|
||||
# o1 = h * W2 + b21 = 0.677 * 0.04706 +
|
||||
# 0.572 * 0.154089 + 0.9235 = 1.043
|
||||
# prob = sigmoid(o1) = 0.739
|
||||
assert_almost_equal(mlp.predict_proba(X)[0, 1], 0.739, decimal=3)
|
||||
|
||||
|
||||
def test_gradient():
|
||||
# Test gradient.
|
||||
|
||||
# This makes sure that the activation functions and their derivatives
|
||||
# are correct. The numerical and analytical computation of the gradient
|
||||
# should be close.
|
||||
for n_labels in [2, 3]:
|
||||
n_samples = 5
|
||||
n_features = 10
|
||||
random_state = np.random.RandomState(seed=42)
|
||||
X = random_state.rand(n_samples, n_features)
|
||||
y = 1 + np.mod(np.arange(n_samples) + 1, n_labels)
|
||||
Y = LabelBinarizer().fit_transform(y)
|
||||
|
||||
for activation in ACTIVATION_TYPES:
|
||||
mlp = MLPClassifier(activation=activation, hidden_layer_sizes=10,
|
||||
solver='lbfgs', alpha=1e-5,
|
||||
learning_rate_init=0.2, max_iter=1,
|
||||
random_state=1)
|
||||
mlp.fit(X, y)
|
||||
|
||||
theta = np.hstack([l.ravel() for l in mlp.coefs_ +
|
||||
mlp.intercepts_])
|
||||
|
||||
layer_units = ([X.shape[1]] + [mlp.hidden_layer_sizes] +
|
||||
[mlp.n_outputs_])
|
||||
|
||||
activations = []
|
||||
deltas = []
|
||||
coef_grads = []
|
||||
intercept_grads = []
|
||||
|
||||
activations.append(X)
|
||||
for i in range(mlp.n_layers_ - 1):
|
||||
activations.append(np.empty((X.shape[0],
|
||||
layer_units[i + 1])))
|
||||
deltas.append(np.empty((X.shape[0],
|
||||
layer_units[i + 1])))
|
||||
|
||||
fan_in = layer_units[i]
|
||||
fan_out = layer_units[i + 1]
|
||||
coef_grads.append(np.empty((fan_in, fan_out)))
|
||||
intercept_grads.append(np.empty(fan_out))
|
||||
|
||||
# analytically compute the gradients
|
||||
def loss_grad_fun(t):
|
||||
return mlp._loss_grad_lbfgs(t, X, Y, activations, deltas,
|
||||
coef_grads, intercept_grads)
|
||||
|
||||
[value, grad] = loss_grad_fun(theta)
|
||||
numgrad = np.zeros(np.size(theta))
|
||||
n = np.size(theta, 0)
|
||||
E = np.eye(n)
|
||||
epsilon = 1e-5
|
||||
# numerically compute the gradients
|
||||
for i in range(n):
|
||||
dtheta = E[:, i] * epsilon
|
||||
numgrad[i] = ((loss_grad_fun(theta + dtheta)[0] -
|
||||
loss_grad_fun(theta - dtheta)[0]) /
|
||||
(epsilon * 2.0))
|
||||
assert_almost_equal(numgrad, grad)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('X,y', classification_datasets)
|
||||
def test_lbfgs_classification(X, y):
|
||||
# Test lbfgs on classification.
|
||||
# It should achieve a score higher than 0.95 for the binary and multi-class
|
||||
# versions of the digits dataset.
|
||||
X_train = X[:150]
|
||||
y_train = y[:150]
|
||||
X_test = X[150:]
|
||||
expected_shape_dtype = (X_test.shape[0], y_train.dtype.kind)
|
||||
|
||||
for activation in ACTIVATION_TYPES:
|
||||
mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50,
|
||||
max_iter=150, shuffle=True, random_state=1,
|
||||
activation=activation)
|
||||
mlp.fit(X_train, y_train)
|
||||
y_predict = mlp.predict(X_test)
|
||||
assert mlp.score(X_train, y_train) > 0.95
|
||||
assert ((y_predict.shape[0], y_predict.dtype.kind) ==
|
||||
expected_shape_dtype)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('X,y', regression_datasets)
|
||||
def test_lbfgs_regression(X, y):
|
||||
# Test lbfgs on the boston dataset, a regression problems.
|
||||
for activation in ACTIVATION_TYPES:
|
||||
mlp = MLPRegressor(solver='lbfgs', hidden_layer_sizes=50,
|
||||
max_iter=150, shuffle=True, random_state=1,
|
||||
activation=activation)
|
||||
mlp.fit(X, y)
|
||||
if activation == 'identity':
|
||||
assert mlp.score(X, y) > 0.84
|
||||
else:
|
||||
# Non linear models perform much better than linear bottleneck:
|
||||
assert mlp.score(X, y) > 0.95
|
||||
|
||||
|
||||
@pytest.mark.parametrize('X,y', classification_datasets)
|
||||
def test_lbfgs_classification_maxfun(X, y):
|
||||
# Test lbfgs parameter max_fun.
|
||||
# It should independently limit the number of iterations for lbfgs.
|
||||
max_fun = 10
|
||||
# classification tests
|
||||
for activation in ACTIVATION_TYPES:
|
||||
mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50,
|
||||
max_iter=150, max_fun=max_fun, shuffle=True,
|
||||
random_state=1, activation=activation)
|
||||
with pytest.warns(ConvergenceWarning):
|
||||
mlp.fit(X, y)
|
||||
assert max_fun >= mlp.n_iter_
|
||||
|
||||
|
||||
@pytest.mark.parametrize('X,y', regression_datasets)
|
||||
def test_lbfgs_regression_maxfun(X, y):
|
||||
# Test lbfgs parameter max_fun.
|
||||
# It should independently limit the number of iterations for lbfgs.
|
||||
max_fun = 10
|
||||
# regression tests
|
||||
for activation in ACTIVATION_TYPES:
|
||||
mlp = MLPRegressor(solver='lbfgs', hidden_layer_sizes=50,
|
||||
max_iter=150, max_fun=max_fun, shuffle=True,
|
||||
random_state=1, activation=activation)
|
||||
with pytest.warns(ConvergenceWarning):
|
||||
mlp.fit(X, y)
|
||||
assert max_fun >= mlp.n_iter_
|
||||
|
||||
mlp.max_fun = -1
|
||||
with pytest.raises(ValueError):
|
||||
mlp.fit(X, y)
|
||||
|
||||
|
||||
def test_learning_rate_warmstart():
|
||||
# Tests that warm_start reuse past solutions.
|
||||
X = [[3, 2], [1, 6], [5, 6], [-2, -4]]
|
||||
y = [1, 1, 1, 0]
|
||||
for learning_rate in ["invscaling", "constant"]:
|
||||
mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=4,
|
||||
learning_rate=learning_rate, max_iter=1,
|
||||
power_t=0.25, warm_start=True)
|
||||
with ignore_warnings(category=ConvergenceWarning):
|
||||
mlp.fit(X, y)
|
||||
prev_eta = mlp._optimizer.learning_rate
|
||||
mlp.fit(X, y)
|
||||
post_eta = mlp._optimizer.learning_rate
|
||||
|
||||
if learning_rate == 'constant':
|
||||
assert prev_eta == post_eta
|
||||
elif learning_rate == 'invscaling':
|
||||
assert (mlp.learning_rate_init / pow(8 + 1, mlp.power_t) ==
|
||||
post_eta)
|
||||
|
||||
|
||||
def test_multilabel_classification():
|
||||
# Test that multi-label classification works as expected.
|
||||
# test fit method
|
||||
X, y = make_multilabel_classification(n_samples=50, random_state=0,
|
||||
return_indicator=True)
|
||||
mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50, alpha=1e-5,
|
||||
max_iter=150, random_state=0, activation='logistic',
|
||||
learning_rate_init=0.2)
|
||||
mlp.fit(X, y)
|
||||
assert mlp.score(X, y) > 0.97
|
||||
|
||||
# test partial fit method
|
||||
mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=50, max_iter=150,
|
||||
random_state=0, activation='logistic', alpha=1e-5,
|
||||
learning_rate_init=0.2)
|
||||
for i in range(100):
|
||||
mlp.partial_fit(X, y, classes=[0, 1, 2, 3, 4])
|
||||
assert mlp.score(X, y) > 0.9
|
||||
|
||||
# Make sure early stopping still work now that spliting is stratified by
|
||||
# default (it is disabled for multilabel classification)
|
||||
mlp = MLPClassifier(early_stopping=True)
|
||||
mlp.fit(X, y).predict(X)
|
||||
|
||||
|
||||
def test_multioutput_regression():
|
||||
# Test that multi-output regression works as expected
|
||||
X, y = make_regression(n_samples=200, n_targets=5)
|
||||
mlp = MLPRegressor(solver='lbfgs', hidden_layer_sizes=50, max_iter=200,
|
||||
random_state=1)
|
||||
mlp.fit(X, y)
|
||||
assert mlp.score(X, y) > 0.9
|
||||
|
||||
|
||||
def test_partial_fit_classes_error():
|
||||
# Tests that passing different classes to partial_fit raises an error
|
||||
X = [[3, 2]]
|
||||
y = [0]
|
||||
clf = MLPClassifier(solver='sgd')
|
||||
clf.partial_fit(X, y, classes=[0, 1])
|
||||
with pytest.raises(ValueError):
|
||||
clf.partial_fit(X, y, classes=[1, 2])
|
||||
|
||||
|
||||
def test_partial_fit_classification():
|
||||
# Test partial_fit on classification.
|
||||
# `partial_fit` should yield the same results as 'fit' for binary and
|
||||
# multi-class classification.
|
||||
for X, y in classification_datasets:
|
||||
X = X
|
||||
y = y
|
||||
mlp = MLPClassifier(solver='sgd', max_iter=100, random_state=1,
|
||||
tol=0, alpha=1e-5, learning_rate_init=0.2)
|
||||
|
||||
with ignore_warnings(category=ConvergenceWarning):
|
||||
mlp.fit(X, y)
|
||||
pred1 = mlp.predict(X)
|
||||
mlp = MLPClassifier(solver='sgd', random_state=1, alpha=1e-5,
|
||||
learning_rate_init=0.2)
|
||||
for i in range(100):
|
||||
mlp.partial_fit(X, y, classes=np.unique(y))
|
||||
pred2 = mlp.predict(X)
|
||||
assert_array_equal(pred1, pred2)
|
||||
assert mlp.score(X, y) > 0.95
|
||||
|
||||
|
||||
def test_partial_fit_unseen_classes():
|
||||
# Non regression test for bug 6994
|
||||
# Tests for labeling errors in partial fit
|
||||
|
||||
clf = MLPClassifier(random_state=0)
|
||||
clf.partial_fit([[1], [2], [3]], ["a", "b", "c"],
|
||||
classes=["a", "b", "c", "d"])
|
||||
clf.partial_fit([[4]], ["d"])
|
||||
assert clf.score([[1], [2], [3], [4]], ["a", "b", "c", "d"]) > 0
|
||||
|
||||
|
||||
def test_partial_fit_regression():
|
||||
# Test partial_fit on regression.
|
||||
# `partial_fit` should yield the same results as 'fit' for regression.
|
||||
X = Xboston
|
||||
y = yboston
|
||||
|
||||
for momentum in [0, .9]:
|
||||
mlp = MLPRegressor(solver='sgd', max_iter=100, activation='relu',
|
||||
random_state=1, learning_rate_init=0.01,
|
||||
batch_size=X.shape[0], momentum=momentum)
|
||||
with warnings.catch_warnings(record=True):
|
||||
# catch convergence warning
|
||||
mlp.fit(X, y)
|
||||
pred1 = mlp.predict(X)
|
||||
mlp = MLPRegressor(solver='sgd', activation='relu',
|
||||
learning_rate_init=0.01, random_state=1,
|
||||
batch_size=X.shape[0], momentum=momentum)
|
||||
for i in range(100):
|
||||
mlp.partial_fit(X, y)
|
||||
|
||||
pred2 = mlp.predict(X)
|
||||
assert_almost_equal(pred1, pred2, decimal=2)
|
||||
score = mlp.score(X, y)
|
||||
assert score > 0.75
|
||||
|
||||
|
||||
def test_partial_fit_errors():
|
||||
# Test partial_fit error handling.
|
||||
X = [[3, 2], [1, 6]]
|
||||
y = [1, 0]
|
||||
|
||||
# no classes passed
|
||||
with pytest.raises(ValueError):
|
||||
MLPClassifier(solver='sgd').partial_fit(X, y, classes=[2])
|
||||
|
||||
# lbfgs doesn't support partial_fit
|
||||
assert not hasattr(MLPClassifier(solver='lbfgs'), 'partial_fit')
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"args",
|
||||
[{'hidden_layer_sizes': -1},
|
||||
{'max_iter': -1},
|
||||
{'shuffle': 'true'},
|
||||
{'alpha': -1},
|
||||
{'learning_rate_init': -1},
|
||||
{'momentum': 2},
|
||||
{'momentum': -0.5},
|
||||
{'nesterovs_momentum': 'invalid'},
|
||||
{'early_stopping': 'invalid'},
|
||||
{'validation_fraction': 1},
|
||||
{'validation_fraction': -0.5},
|
||||
{'beta_1': 1},
|
||||
{'beta_1': -0.5},
|
||||
{'beta_2': 1},
|
||||
{'beta_2': -0.5},
|
||||
{'epsilon': -0.5},
|
||||
{'n_iter_no_change': -1},
|
||||
{'solver': 'hadoken'},
|
||||
{'learning_rate': 'converge'},
|
||||
{'activation': 'cloak'}]
|
||||
)
|
||||
def test_params_errors(args):
|
||||
# Test that invalid parameters raise value error
|
||||
X = [[3, 2], [1, 6]]
|
||||
y = [1, 0]
|
||||
clf = MLPClassifier
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
clf(**args).fit(X, y)
|
||||
|
||||
|
||||
def test_predict_proba_binary():
|
||||
# Test that predict_proba works as expected for binary class.
|
||||
X = X_digits_binary[:50]
|
||||
y = y_digits_binary[:50]
|
||||
|
||||
clf = MLPClassifier(hidden_layer_sizes=5, activation='logistic',
|
||||
random_state=1)
|
||||
with ignore_warnings(category=ConvergenceWarning):
|
||||
clf.fit(X, y)
|
||||
y_proba = clf.predict_proba(X)
|
||||
y_log_proba = clf.predict_log_proba(X)
|
||||
|
||||
(n_samples, n_classes) = y.shape[0], 2
|
||||
|
||||
proba_max = y_proba.argmax(axis=1)
|
||||
proba_log_max = y_log_proba.argmax(axis=1)
|
||||
|
||||
assert y_proba.shape == (n_samples, n_classes)
|
||||
assert_array_equal(proba_max, proba_log_max)
|
||||
assert_array_equal(y_log_proba, np.log(y_proba))
|
||||
|
||||
assert roc_auc_score(y, y_proba[:, 1]) == 1.0
|
||||
|
||||
|
||||
def test_predict_proba_multiclass():
|
||||
# Test that predict_proba works as expected for multi class.
|
||||
X = X_digits_multi[:10]
|
||||
y = y_digits_multi[:10]
|
||||
|
||||
clf = MLPClassifier(hidden_layer_sizes=5)
|
||||
with ignore_warnings(category=ConvergenceWarning):
|
||||
clf.fit(X, y)
|
||||
y_proba = clf.predict_proba(X)
|
||||
y_log_proba = clf.predict_log_proba(X)
|
||||
|
||||
(n_samples, n_classes) = y.shape[0], np.unique(y).size
|
||||
|
||||
proba_max = y_proba.argmax(axis=1)
|
||||
proba_log_max = y_log_proba.argmax(axis=1)
|
||||
|
||||
assert y_proba.shape == (n_samples, n_classes)
|
||||
assert_array_equal(proba_max, proba_log_max)
|
||||
assert_array_equal(y_log_proba, np.log(y_proba))
|
||||
|
||||
|
||||
def test_predict_proba_multilabel():
|
||||
# Test that predict_proba works as expected for multilabel.
|
||||
# Multilabel should not use softmax which makes probabilities sum to 1
|
||||
X, Y = make_multilabel_classification(n_samples=50, random_state=0,
|
||||
return_indicator=True)
|
||||
n_samples, n_classes = Y.shape
|
||||
|
||||
clf = MLPClassifier(solver='lbfgs', hidden_layer_sizes=30,
|
||||
random_state=0)
|
||||
clf.fit(X, Y)
|
||||
y_proba = clf.predict_proba(X)
|
||||
|
||||
assert y_proba.shape == (n_samples, n_classes)
|
||||
assert_array_equal(y_proba > 0.5, Y)
|
||||
|
||||
y_log_proba = clf.predict_log_proba(X)
|
||||
proba_max = y_proba.argmax(axis=1)
|
||||
proba_log_max = y_log_proba.argmax(axis=1)
|
||||
|
||||
assert (y_proba.sum(1) - 1).dot(y_proba.sum(1) - 1) > 1e-10
|
||||
assert_array_equal(proba_max, proba_log_max)
|
||||
assert_array_equal(y_log_proba, np.log(y_proba))
|
||||
|
||||
|
||||
def test_shuffle():
|
||||
# Test that the shuffle parameter affects the training process (it should)
|
||||
X, y = make_regression(n_samples=50, n_features=5, n_targets=1,
|
||||
random_state=0)
|
||||
|
||||
# The coefficients will be identical if both do or do not shuffle
|
||||
for shuffle in [True, False]:
|
||||
mlp1 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
|
||||
random_state=0, shuffle=shuffle)
|
||||
mlp2 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
|
||||
random_state=0, shuffle=shuffle)
|
||||
mlp1.fit(X, y)
|
||||
mlp2.fit(X, y)
|
||||
|
||||
assert np.array_equal(mlp1.coefs_[0], mlp2.coefs_[0])
|
||||
|
||||
# The coefficients will be slightly different if shuffle=True
|
||||
mlp1 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
|
||||
random_state=0, shuffle=True)
|
||||
mlp2 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
|
||||
random_state=0, shuffle=False)
|
||||
mlp1.fit(X, y)
|
||||
mlp2.fit(X, y)
|
||||
|
||||
assert not np.array_equal(mlp1.coefs_[0], mlp2.coefs_[0])
|
||||
|
||||
|
||||
def test_sparse_matrices():
|
||||
# Test that sparse and dense input matrices output the same results.
|
||||
X = X_digits_binary[:50]
|
||||
y = y_digits_binary[:50]
|
||||
X_sparse = csr_matrix(X)
|
||||
mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=15,
|
||||
random_state=1)
|
||||
mlp.fit(X, y)
|
||||
pred1 = mlp.predict(X)
|
||||
mlp.fit(X_sparse, y)
|
||||
pred2 = mlp.predict(X_sparse)
|
||||
assert_almost_equal(pred1, pred2)
|
||||
pred1 = mlp.predict(X)
|
||||
pred2 = mlp.predict(X_sparse)
|
||||
assert_array_equal(pred1, pred2)
|
||||
|
||||
|
||||
def test_tolerance():
|
||||
# Test tolerance.
|
||||
# It should force the solver to exit the loop when it converges.
|
||||
X = [[3, 2], [1, 6]]
|
||||
y = [1, 0]
|
||||
clf = MLPClassifier(tol=0.5, max_iter=3000, solver='sgd')
|
||||
clf.fit(X, y)
|
||||
assert clf.max_iter > clf.n_iter_
|
||||
|
||||
|
||||
def test_verbose_sgd():
|
||||
# Test verbose.
|
||||
X = [[3, 2], [1, 6]]
|
||||
y = [1, 0]
|
||||
clf = MLPClassifier(solver='sgd', max_iter=2, verbose=10,
|
||||
hidden_layer_sizes=2)
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = output = StringIO()
|
||||
|
||||
with ignore_warnings(category=ConvergenceWarning):
|
||||
clf.fit(X, y)
|
||||
clf.partial_fit(X, y)
|
||||
|
||||
sys.stdout = old_stdout
|
||||
assert 'Iteration' in output.getvalue()
|
||||
|
||||
|
||||
def test_early_stopping():
|
||||
X = X_digits_binary[:100]
|
||||
y = y_digits_binary[:100]
|
||||
tol = 0.2
|
||||
clf = MLPClassifier(tol=tol, max_iter=3000, solver='sgd',
|
||||
early_stopping=True)
|
||||
clf.fit(X, y)
|
||||
assert clf.max_iter > clf.n_iter_
|
||||
|
||||
valid_scores = clf.validation_scores_
|
||||
best_valid_score = clf.best_validation_score_
|
||||
assert max(valid_scores) == best_valid_score
|
||||
assert best_valid_score + tol > valid_scores[-2]
|
||||
assert best_valid_score + tol > valid_scores[-1]
|
||||
|
||||
|
||||
def test_adaptive_learning_rate():
|
||||
X = [[3, 2], [1, 6]]
|
||||
y = [1, 0]
|
||||
clf = MLPClassifier(tol=0.5, max_iter=3000, solver='sgd',
|
||||
learning_rate='adaptive')
|
||||
clf.fit(X, y)
|
||||
assert clf.max_iter > clf.n_iter_
|
||||
assert 1e-6 > clf._optimizer.learning_rate
|
||||
|
||||
|
||||
@ignore_warnings(category=RuntimeWarning)
|
||||
def test_warm_start():
|
||||
X = X_iris
|
||||
y = y_iris
|
||||
|
||||
y_2classes = np.array([0] * 75 + [1] * 75)
|
||||
y_3classes = np.array([0] * 40 + [1] * 40 + [2] * 70)
|
||||
y_3classes_alt = np.array([0] * 50 + [1] * 50 + [3] * 50)
|
||||
y_4classes = np.array([0] * 37 + [1] * 37 + [2] * 38 + [3] * 38)
|
||||
y_5classes = np.array([0] * 30 + [1] * 30 + [2] * 30 + [3] * 30 + [4] * 30)
|
||||
|
||||
# No error raised
|
||||
clf = MLPClassifier(hidden_layer_sizes=2, solver='lbfgs',
|
||||
warm_start=True).fit(X, y)
|
||||
clf.fit(X, y)
|
||||
clf.fit(X, y_3classes)
|
||||
|
||||
for y_i in (y_2classes, y_3classes_alt, y_4classes, y_5classes):
|
||||
clf = MLPClassifier(hidden_layer_sizes=2, solver='lbfgs',
|
||||
warm_start=True).fit(X, y)
|
||||
message = ('warm_start can only be used where `y` has the same '
|
||||
'classes as in the previous call to fit.'
|
||||
' Previously got [0 1 2], `y` has %s' % np.unique(y_i))
|
||||
with pytest.raises(ValueError, match=re.escape(message)):
|
||||
clf.fit(X, y_i)
|
||||
|
||||
|
||||
def test_n_iter_no_change():
|
||||
# test n_iter_no_change using binary data set
|
||||
# the classifying fitting process is not prone to loss curve fluctuations
|
||||
X = X_digits_binary[:100]
|
||||
y = y_digits_binary[:100]
|
||||
tol = 0.01
|
||||
max_iter = 3000
|
||||
|
||||
# test multiple n_iter_no_change
|
||||
for n_iter_no_change in [2, 5, 10, 50, 100]:
|
||||
clf = MLPClassifier(tol=tol, max_iter=max_iter, solver='sgd',
|
||||
n_iter_no_change=n_iter_no_change)
|
||||
clf.fit(X, y)
|
||||
|
||||
# validate n_iter_no_change
|
||||
assert clf._no_improvement_count == n_iter_no_change + 1
|
||||
assert max_iter > clf.n_iter_
|
||||
|
||||
|
||||
@ignore_warnings(category=ConvergenceWarning)
|
||||
def test_n_iter_no_change_inf():
|
||||
# test n_iter_no_change using binary data set
|
||||
# the fitting process should go to max_iter iterations
|
||||
X = X_digits_binary[:100]
|
||||
y = y_digits_binary[:100]
|
||||
|
||||
# set a ridiculous tolerance
|
||||
# this should always trigger _update_no_improvement_count()
|
||||
tol = 1e9
|
||||
|
||||
# fit
|
||||
n_iter_no_change = np.inf
|
||||
max_iter = 3000
|
||||
clf = MLPClassifier(tol=tol, max_iter=max_iter, solver='sgd',
|
||||
n_iter_no_change=n_iter_no_change)
|
||||
clf.fit(X, y)
|
||||
|
||||
# validate n_iter_no_change doesn't cause early stopping
|
||||
assert clf.n_iter_ == max_iter
|
||||
|
||||
# validate _update_no_improvement_count() was always triggered
|
||||
assert clf._no_improvement_count == clf.n_iter_ - 1
|
||||
|
||||
|
||||
def test_early_stopping_stratified():
|
||||
# Make sure data splitting for early stopping is stratified
|
||||
X = [[1, 2], [2, 3], [3, 4], [4, 5]]
|
||||
y = [0, 0, 0, 1]
|
||||
|
||||
mlp = MLPClassifier(early_stopping=True)
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match='The least populated class in y has only 1 member'):
|
||||
mlp.fit(X, y)
|
191
venv/Lib/site-packages/sklearn/neural_network/tests/test_rbm.py
Normal file
191
venv/Lib/site-packages/sklearn/neural_network/tests/test_rbm.py
Normal file
|
@ -0,0 +1,191 @@
|
|||
import sys
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
from scipy.sparse import csc_matrix, csr_matrix, lil_matrix
|
||||
from sklearn.utils._testing import (assert_almost_equal, assert_array_equal)
|
||||
|
||||
from sklearn.datasets import load_digits
|
||||
from io import StringIO
|
||||
from sklearn.neural_network import BernoulliRBM
|
||||
from sklearn.utils.validation import assert_all_finite
|
||||
|
||||
Xdigits, _ = load_digits(return_X_y=True)
|
||||
Xdigits -= Xdigits.min()
|
||||
Xdigits /= Xdigits.max()
|
||||
|
||||
|
||||
def test_fit():
|
||||
X = Xdigits.copy()
|
||||
|
||||
rbm = BernoulliRBM(n_components=64, learning_rate=0.1,
|
||||
batch_size=10, n_iter=7, random_state=9)
|
||||
rbm.fit(X)
|
||||
|
||||
assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0)
|
||||
|
||||
# in-place tricks shouldn't have modified X
|
||||
assert_array_equal(X, Xdigits)
|
||||
|
||||
|
||||
def test_partial_fit():
|
||||
X = Xdigits.copy()
|
||||
rbm = BernoulliRBM(n_components=64, learning_rate=0.1,
|
||||
batch_size=20, random_state=9)
|
||||
n_samples = X.shape[0]
|
||||
n_batches = int(np.ceil(float(n_samples) / rbm.batch_size))
|
||||
batch_slices = np.array_split(X, n_batches)
|
||||
|
||||
for i in range(7):
|
||||
for batch in batch_slices:
|
||||
rbm.partial_fit(batch)
|
||||
|
||||
assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0)
|
||||
assert_array_equal(X, Xdigits)
|
||||
|
||||
|
||||
def test_transform():
|
||||
X = Xdigits[:100]
|
||||
rbm1 = BernoulliRBM(n_components=16, batch_size=5,
|
||||
n_iter=5, random_state=42)
|
||||
rbm1.fit(X)
|
||||
|
||||
Xt1 = rbm1.transform(X)
|
||||
Xt2 = rbm1._mean_hiddens(X)
|
||||
|
||||
assert_array_equal(Xt1, Xt2)
|
||||
|
||||
|
||||
def test_small_sparse():
|
||||
# BernoulliRBM should work on small sparse matrices.
|
||||
X = csr_matrix(Xdigits[:4])
|
||||
BernoulliRBM().fit(X) # no exception
|
||||
|
||||
|
||||
def test_small_sparse_partial_fit():
|
||||
for sparse in [csc_matrix, csr_matrix]:
|
||||
X_sparse = sparse(Xdigits[:100])
|
||||
X = Xdigits[:100].copy()
|
||||
|
||||
rbm1 = BernoulliRBM(n_components=64, learning_rate=0.1,
|
||||
batch_size=10, random_state=9)
|
||||
rbm2 = BernoulliRBM(n_components=64, learning_rate=0.1,
|
||||
batch_size=10, random_state=9)
|
||||
|
||||
rbm1.partial_fit(X_sparse)
|
||||
rbm2.partial_fit(X)
|
||||
|
||||
assert_almost_equal(rbm1.score_samples(X).mean(),
|
||||
rbm2.score_samples(X).mean(),
|
||||
decimal=0)
|
||||
|
||||
|
||||
def test_sample_hiddens():
|
||||
rng = np.random.RandomState(0)
|
||||
X = Xdigits[:100]
|
||||
rbm1 = BernoulliRBM(n_components=2, batch_size=5,
|
||||
n_iter=5, random_state=42)
|
||||
rbm1.fit(X)
|
||||
|
||||
h = rbm1._mean_hiddens(X[0])
|
||||
hs = np.mean([rbm1._sample_hiddens(X[0], rng) for i in range(100)], 0)
|
||||
|
||||
assert_almost_equal(h, hs, decimal=1)
|
||||
|
||||
|
||||
def test_fit_gibbs():
|
||||
# Gibbs on the RBM hidden layer should be able to recreate [[0], [1]]
|
||||
# from the same input
|
||||
rng = np.random.RandomState(42)
|
||||
X = np.array([[0.], [1.]])
|
||||
rbm1 = BernoulliRBM(n_components=2, batch_size=2,
|
||||
n_iter=42, random_state=rng)
|
||||
# you need that much iters
|
||||
rbm1.fit(X)
|
||||
assert_almost_equal(rbm1.components_,
|
||||
np.array([[0.02649814], [0.02009084]]), decimal=4)
|
||||
assert_almost_equal(rbm1.gibbs(X), X)
|
||||
return rbm1
|
||||
|
||||
|
||||
def test_fit_gibbs_sparse():
|
||||
# Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] from
|
||||
# the same input even when the input is sparse, and test against non-sparse
|
||||
rbm1 = test_fit_gibbs()
|
||||
rng = np.random.RandomState(42)
|
||||
from scipy.sparse import csc_matrix
|
||||
X = csc_matrix([[0.], [1.]])
|
||||
rbm2 = BernoulliRBM(n_components=2, batch_size=2,
|
||||
n_iter=42, random_state=rng)
|
||||
rbm2.fit(X)
|
||||
assert_almost_equal(rbm2.components_,
|
||||
np.array([[0.02649814], [0.02009084]]), decimal=4)
|
||||
assert_almost_equal(rbm2.gibbs(X), X.toarray())
|
||||
assert_almost_equal(rbm1.components_, rbm2.components_)
|
||||
|
||||
|
||||
def test_gibbs_smoke():
|
||||
# Check if we don't get NaNs sampling the full digits dataset.
|
||||
# Also check that sampling again will yield different results.
|
||||
X = Xdigits
|
||||
rbm1 = BernoulliRBM(n_components=42, batch_size=40,
|
||||
n_iter=20, random_state=42)
|
||||
rbm1.fit(X)
|
||||
X_sampled = rbm1.gibbs(X)
|
||||
assert_all_finite(X_sampled)
|
||||
X_sampled2 = rbm1.gibbs(X)
|
||||
assert np.all((X_sampled != X_sampled2).max(axis=1))
|
||||
|
||||
|
||||
def test_score_samples():
|
||||
# Test score_samples (pseudo-likelihood) method.
|
||||
# Assert that pseudo-likelihood is computed without clipping.
|
||||
# See Fabian's blog, http://bit.ly/1iYefRk
|
||||
rng = np.random.RandomState(42)
|
||||
X = np.vstack([np.zeros(1000), np.ones(1000)])
|
||||
rbm1 = BernoulliRBM(n_components=10, batch_size=2,
|
||||
n_iter=10, random_state=rng)
|
||||
rbm1.fit(X)
|
||||
assert (rbm1.score_samples(X) < -300).all()
|
||||
|
||||
# Sparse vs. dense should not affect the output. Also test sparse input
|
||||
# validation.
|
||||
rbm1.random_state = 42
|
||||
d_score = rbm1.score_samples(X)
|
||||
rbm1.random_state = 42
|
||||
s_score = rbm1.score_samples(lil_matrix(X))
|
||||
assert_almost_equal(d_score, s_score)
|
||||
|
||||
# Test numerical stability (#2785): would previously generate infinities
|
||||
# and crash with an exception.
|
||||
with np.errstate(under='ignore'):
|
||||
rbm1.score_samples([np.arange(1000) * 100])
|
||||
|
||||
|
||||
def test_rbm_verbose():
|
||||
rbm = BernoulliRBM(n_iter=2, verbose=10)
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = StringIO()
|
||||
try:
|
||||
rbm.fit(Xdigits)
|
||||
finally:
|
||||
sys.stdout = old_stdout
|
||||
|
||||
|
||||
def test_sparse_and_verbose():
|
||||
# Make sure RBM works with sparse input when verbose=True
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = StringIO()
|
||||
from scipy.sparse import csc_matrix
|
||||
X = csc_matrix([[0.], [1.]])
|
||||
rbm = BernoulliRBM(n_components=2, batch_size=2, n_iter=1,
|
||||
random_state=42, verbose=True)
|
||||
try:
|
||||
rbm.fit(X)
|
||||
s = sys.stdout.getvalue()
|
||||
# make sure output is sound
|
||||
assert re.match(r"\[BernoulliRBM\] Iteration 1,"
|
||||
r" pseudo-likelihood = -?(\d)+(\.\d+)?,"
|
||||
r" time = (\d|\.)+s", s)
|
||||
finally:
|
||||
sys.stdout = old_stdout
|
|
@ -0,0 +1,108 @@
|
|||
import numpy as np
|
||||
|
||||
from sklearn.neural_network._stochastic_optimizers import (BaseOptimizer,
|
||||
SGDOptimizer,
|
||||
AdamOptimizer)
|
||||
from sklearn.utils._testing import assert_array_equal
|
||||
|
||||
|
||||
shapes = [(4, 6), (6, 8), (7, 8, 9)]
|
||||
|
||||
|
||||
def test_base_optimizer():
|
||||
params = [np.zeros(shape) for shape in shapes]
|
||||
|
||||
for lr in [10 ** i for i in range(-3, 4)]:
|
||||
optimizer = BaseOptimizer(params, lr)
|
||||
assert optimizer.trigger_stopping('', False)
|
||||
|
||||
|
||||
def test_sgd_optimizer_no_momentum():
|
||||
params = [np.zeros(shape) for shape in shapes]
|
||||
|
||||
for lr in [10 ** i for i in range(-3, 4)]:
|
||||
optimizer = SGDOptimizer(params, lr, momentum=0, nesterov=False)
|
||||
grads = [np.random.random(shape) for shape in shapes]
|
||||
expected = [param - lr * grad for param, grad in zip(params, grads)]
|
||||
optimizer.update_params(grads)
|
||||
|
||||
for exp, param in zip(expected, optimizer.params):
|
||||
assert_array_equal(exp, param)
|
||||
|
||||
|
||||
def test_sgd_optimizer_momentum():
|
||||
params = [np.zeros(shape) for shape in shapes]
|
||||
lr = 0.1
|
||||
|
||||
for momentum in np.arange(0.5, 0.9, 0.1):
|
||||
optimizer = SGDOptimizer(params, lr, momentum=momentum, nesterov=False)
|
||||
velocities = [np.random.random(shape) for shape in shapes]
|
||||
optimizer.velocities = velocities
|
||||
grads = [np.random.random(shape) for shape in shapes]
|
||||
updates = [momentum * velocity - lr * grad
|
||||
for velocity, grad in zip(velocities, grads)]
|
||||
expected = [param + update for param, update in zip(params, updates)]
|
||||
optimizer.update_params(grads)
|
||||
|
||||
for exp, param in zip(expected, optimizer.params):
|
||||
assert_array_equal(exp, param)
|
||||
|
||||
|
||||
def test_sgd_optimizer_trigger_stopping():
|
||||
params = [np.zeros(shape) for shape in shapes]
|
||||
lr = 2e-6
|
||||
optimizer = SGDOptimizer(params, lr, lr_schedule='adaptive')
|
||||
assert not optimizer.trigger_stopping('', False)
|
||||
assert lr / 5 == optimizer.learning_rate
|
||||
assert optimizer.trigger_stopping('', False)
|
||||
|
||||
|
||||
def test_sgd_optimizer_nesterovs_momentum():
|
||||
params = [np.zeros(shape) for shape in shapes]
|
||||
lr = 0.1
|
||||
|
||||
for momentum in np.arange(0.5, 0.9, 0.1):
|
||||
optimizer = SGDOptimizer(params, lr, momentum=momentum, nesterov=True)
|
||||
velocities = [np.random.random(shape) for shape in shapes]
|
||||
optimizer.velocities = velocities
|
||||
grads = [np.random.random(shape) for shape in shapes]
|
||||
updates = [momentum * velocity - lr * grad
|
||||
for velocity, grad in zip(velocities, grads)]
|
||||
updates = [momentum * update - lr * grad
|
||||
for update, grad in zip(updates, grads)]
|
||||
expected = [param + update for param, update in zip(params, updates)]
|
||||
optimizer.update_params(grads)
|
||||
|
||||
for exp, param in zip(expected, optimizer.params):
|
||||
assert_array_equal(exp, param)
|
||||
|
||||
|
||||
def test_adam_optimizer():
|
||||
params = [np.zeros(shape) for shape in shapes]
|
||||
lr = 0.001
|
||||
epsilon = 1e-8
|
||||
|
||||
for beta_1 in np.arange(0.9, 1.0, 0.05):
|
||||
for beta_2 in np.arange(0.995, 1.0, 0.001):
|
||||
optimizer = AdamOptimizer(params, lr, beta_1, beta_2, epsilon)
|
||||
ms = [np.random.random(shape) for shape in shapes]
|
||||
vs = [np.random.random(shape) for shape in shapes]
|
||||
t = 10
|
||||
optimizer.ms = ms
|
||||
optimizer.vs = vs
|
||||
optimizer.t = t - 1
|
||||
grads = [np.random.random(shape) for shape in shapes]
|
||||
|
||||
ms = [beta_1 * m + (1 - beta_1) * grad
|
||||
for m, grad in zip(ms, grads)]
|
||||
vs = [beta_2 * v + (1 - beta_2) * (grad ** 2)
|
||||
for v, grad in zip(vs, grads)]
|
||||
learning_rate = lr * np.sqrt(1 - beta_2 ** t) / (1 - beta_1**t)
|
||||
updates = [-learning_rate * m / (np.sqrt(v) + epsilon)
|
||||
for m, v in zip(ms, vs)]
|
||||
expected = [param + update
|
||||
for param, update in zip(params, updates)]
|
||||
|
||||
optimizer.update_params(grads)
|
||||
for exp, param in zip(expected, optimizer.params):
|
||||
assert_array_equal(exp, param)
|
Loading…
Add table
Add a link
Reference in a new issue