Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
86
venv/Lib/site-packages/sklearn/metrics/cluster/_bicluster.py
Normal file
86
venv/Lib/site-packages/sklearn/metrics/cluster/_bicluster.py
Normal file
|
@ -0,0 +1,86 @@
|
|||
import numpy as np
|
||||
from scipy.optimize import linear_sum_assignment
|
||||
|
||||
from ...utils.validation import check_consistent_length, check_array
|
||||
from ...utils.validation import _deprecate_positional_args
|
||||
|
||||
__all__ = ["consensus_score"]
|
||||
|
||||
|
||||
def _check_rows_and_columns(a, b):
|
||||
"""Unpacks the row and column arrays and checks their shape."""
|
||||
check_consistent_length(*a)
|
||||
check_consistent_length(*b)
|
||||
checks = lambda x: check_array(x, ensure_2d=False)
|
||||
a_rows, a_cols = map(checks, a)
|
||||
b_rows, b_cols = map(checks, b)
|
||||
return a_rows, a_cols, b_rows, b_cols
|
||||
|
||||
|
||||
def _jaccard(a_rows, a_cols, b_rows, b_cols):
|
||||
"""Jaccard coefficient on the elements of the two biclusters."""
|
||||
intersection = ((a_rows * b_rows).sum() *
|
||||
(a_cols * b_cols).sum())
|
||||
|
||||
a_size = a_rows.sum() * a_cols.sum()
|
||||
b_size = b_rows.sum() * b_cols.sum()
|
||||
|
||||
return intersection / (a_size + b_size - intersection)
|
||||
|
||||
|
||||
def _pairwise_similarity(a, b, similarity):
|
||||
"""Computes pairwise similarity matrix.
|
||||
|
||||
result[i, j] is the Jaccard coefficient of a's bicluster i and b's
|
||||
bicluster j.
|
||||
|
||||
"""
|
||||
a_rows, a_cols, b_rows, b_cols = _check_rows_and_columns(a, b)
|
||||
n_a = a_rows.shape[0]
|
||||
n_b = b_rows.shape[0]
|
||||
result = np.array(list(list(similarity(a_rows[i], a_cols[i],
|
||||
b_rows[j], b_cols[j])
|
||||
for j in range(n_b))
|
||||
for i in range(n_a)))
|
||||
return result
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def consensus_score(a, b, *, similarity="jaccard"):
|
||||
"""The similarity of two sets of biclusters.
|
||||
|
||||
Similarity between individual biclusters is computed. Then the
|
||||
best matching between sets is found using the Hungarian algorithm.
|
||||
The final score is the sum of similarities divided by the size of
|
||||
the larger set.
|
||||
|
||||
Read more in the :ref:`User Guide <biclustering>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : (rows, columns)
|
||||
Tuple of row and column indicators for a set of biclusters.
|
||||
|
||||
b : (rows, columns)
|
||||
Another set of biclusters like ``a``.
|
||||
|
||||
similarity : string or function, optional, default: "jaccard"
|
||||
May be the string "jaccard" to use the Jaccard coefficient, or
|
||||
any function that takes four arguments, each of which is a 1d
|
||||
indicator vector: (a_rows, a_columns, b_rows, b_columns).
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
* Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis
|
||||
for bicluster acquisition
|
||||
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/>`__.
|
||||
|
||||
"""
|
||||
if similarity == "jaccard":
|
||||
similarity = _jaccard
|
||||
matrix = _pairwise_similarity(a, b, similarity)
|
||||
row_indices, col_indices = linear_sum_assignment(1. - matrix)
|
||||
n_a = len(a[0])
|
||||
n_b = len(b[0])
|
||||
return matrix[row_indices, col_indices].sum() / max(n_a, n_b)
|
Loading…
Add table
Add a link
Reference in a new issue