Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
203
venv/Lib/site-packages/sklearn/metrics/_plot/roc_curve.py
Normal file
203
venv/Lib/site-packages/sklearn/metrics/_plot/roc_curve.py
Normal file
|
@ -0,0 +1,203 @@
|
|||
from .. import auc
|
||||
from .. import roc_curve
|
||||
|
||||
from .base import _check_classifer_response_method
|
||||
from ...utils import check_matplotlib_support
|
||||
from ...base import is_classifier
|
||||
from ...utils.validation import _deprecate_positional_args
|
||||
|
||||
|
||||
class RocCurveDisplay:
|
||||
"""ROC Curve visualization.
|
||||
|
||||
It is recommend to use :func:`~sklearn.metrics.plot_roc_curve` to create a
|
||||
visualizer. All parameters are stored as attributes.
|
||||
|
||||
Read more in the :ref:`User Guide <visualizations>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpr : ndarray
|
||||
False positive rate.
|
||||
|
||||
tpr : ndarray
|
||||
True positive rate.
|
||||
|
||||
roc_auc : float, default=None
|
||||
Area under ROC curve. If None, the roc_auc score is not shown.
|
||||
|
||||
estimator_name : str, default=None
|
||||
Name of estimator. If None, the estimator name is not shown.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
line_ : matplotlib Artist
|
||||
ROC Curve.
|
||||
|
||||
ax_ : matplotlib Axes
|
||||
Axes with ROC Curve.
|
||||
|
||||
figure_ : matplotlib Figure
|
||||
Figure containing the curve.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import matplotlib.pyplot as plt # doctest: +SKIP
|
||||
>>> import numpy as np
|
||||
>>> from sklearn import metrics
|
||||
>>> y = np.array([0, 0, 1, 1])
|
||||
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
|
||||
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred)
|
||||
>>> roc_auc = metrics.auc(fpr, tpr)
|
||||
>>> display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc,\
|
||||
estimator_name='example estimator')
|
||||
>>> display.plot() # doctest: +SKIP
|
||||
>>> plt.show() # doctest: +SKIP
|
||||
"""
|
||||
def __init__(self, *, fpr, tpr, roc_auc=None, estimator_name=None):
|
||||
self.fpr = fpr
|
||||
self.tpr = tpr
|
||||
self.roc_auc = roc_auc
|
||||
self.estimator_name = estimator_name
|
||||
|
||||
@_deprecate_positional_args
|
||||
def plot(self, ax=None, *, name=None, **kwargs):
|
||||
"""Plot visualization
|
||||
|
||||
Extra keyword arguments will be passed to matplotlib's ``plot``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ax : matplotlib axes, default=None
|
||||
Axes object to plot on. If `None`, a new figure and axes is
|
||||
created.
|
||||
|
||||
name : str, default=None
|
||||
Name of ROC Curve for labeling. If `None`, use the name of the
|
||||
estimator.
|
||||
|
||||
Returns
|
||||
-------
|
||||
display : :class:`~sklearn.metrics.plot.RocCurveDisplay`
|
||||
Object that stores computed values.
|
||||
"""
|
||||
check_matplotlib_support('RocCurveDisplay.plot')
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
if ax is None:
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
name = self.estimator_name if name is None else name
|
||||
|
||||
line_kwargs = {}
|
||||
if self.roc_auc is not None and name is not None:
|
||||
line_kwargs["label"] = f"{name} (AUC = {self.roc_auc:0.2f})"
|
||||
elif self.roc_auc is not None:
|
||||
line_kwargs["label"] = f"AUC = {self.roc_auc:0.2f}"
|
||||
elif name is not None:
|
||||
line_kwargs["label"] = name
|
||||
|
||||
line_kwargs.update(**kwargs)
|
||||
|
||||
self.line_ = ax.plot(self.fpr, self.tpr, **line_kwargs)[0]
|
||||
ax.set_xlabel("False Positive Rate")
|
||||
ax.set_ylabel("True Positive Rate")
|
||||
|
||||
if "label" in line_kwargs:
|
||||
ax.legend(loc='lower right')
|
||||
|
||||
self.ax_ = ax
|
||||
self.figure_ = ax.figure
|
||||
return self
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def plot_roc_curve(estimator, X, y, *, sample_weight=None,
|
||||
drop_intermediate=True, response_method="auto",
|
||||
name=None, ax=None, **kwargs):
|
||||
"""Plot Receiver operating characteristic (ROC) curve.
|
||||
|
||||
Extra keyword arguments will be passed to matplotlib's `plot`.
|
||||
|
||||
Read more in the :ref:`User Guide <visualizations>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
estimator : estimator instance
|
||||
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
|
||||
in which the last estimator is a classifier.
|
||||
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Input values.
|
||||
|
||||
y : array-like of shape (n_samples,)
|
||||
Target values.
|
||||
|
||||
sample_weight : array-like of shape (n_samples,), default=None
|
||||
Sample weights.
|
||||
|
||||
drop_intermediate : boolean, default=True
|
||||
Whether to drop some suboptimal thresholds which would not appear
|
||||
on a plotted ROC curve. This is useful in order to create lighter
|
||||
ROC curves.
|
||||
|
||||
response_method : {'predict_proba', 'decision_function', 'auto'} \
|
||||
default='auto'
|
||||
Specifies whether to use :term:`predict_proba` or
|
||||
:term:`decision_function` as the target response. If set to 'auto',
|
||||
:term:`predict_proba` is tried first and if it does not exist
|
||||
:term:`decision_function` is tried next.
|
||||
|
||||
name : str, default=None
|
||||
Name of ROC Curve for labeling. If `None`, use the name of the
|
||||
estimator.
|
||||
|
||||
ax : matplotlib axes, default=None
|
||||
Axes object to plot on. If `None`, a new figure and axes is created.
|
||||
|
||||
Returns
|
||||
-------
|
||||
display : :class:`~sklearn.metrics.RocCurveDisplay`
|
||||
Object that stores computed values.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import matplotlib.pyplot as plt # doctest: +SKIP
|
||||
>>> from sklearn import datasets, metrics, model_selection, svm
|
||||
>>> X, y = datasets.make_classification(random_state=0)
|
||||
>>> X_train, X_test, y_train, y_test = model_selection.train_test_split(\
|
||||
X, y, random_state=0)
|
||||
>>> clf = svm.SVC(random_state=0)
|
||||
>>> clf.fit(X_train, y_train)
|
||||
SVC(random_state=0)
|
||||
>>> metrics.plot_roc_curve(clf, X_test, y_test) # doctest: +SKIP
|
||||
>>> plt.show() # doctest: +SKIP
|
||||
"""
|
||||
check_matplotlib_support('plot_roc_curve')
|
||||
|
||||
classification_error = (
|
||||
"{} should be a binary classifier".format(estimator.__class__.__name__)
|
||||
)
|
||||
if not is_classifier(estimator):
|
||||
raise ValueError(classification_error)
|
||||
|
||||
prediction_method = _check_classifer_response_method(estimator,
|
||||
response_method)
|
||||
y_pred = prediction_method(X)
|
||||
|
||||
if y_pred.ndim != 1:
|
||||
if y_pred.shape[1] != 2:
|
||||
raise ValueError(classification_error)
|
||||
else:
|
||||
y_pred = y_pred[:, 1]
|
||||
|
||||
pos_label = estimator.classes_[1]
|
||||
fpr, tpr, _ = roc_curve(y, y_pred, pos_label=pos_label,
|
||||
sample_weight=sample_weight,
|
||||
drop_intermediate=drop_intermediate)
|
||||
roc_auc = auc(fpr, tpr)
|
||||
name = estimator.__class__.__name__ if name is None else name
|
||||
viz = RocCurveDisplay(
|
||||
fpr=fpr, tpr=tpr, roc_auc=roc_auc, estimator_name=name
|
||||
)
|
||||
return viz.plot(ax=ax, name=name, **kwargs)
|
Loading…
Add table
Add a link
Reference in a new issue