Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
400
venv/Lib/site-packages/sklearn/linear_model/_theil_sen.py
Normal file
400
venv/Lib/site-packages/sklearn/linear_model/_theil_sen.py
Normal file
|
|
@ -0,0 +1,400 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
A Theil-Sen Estimator for Multiple Linear Regression Model
|
||||
"""
|
||||
|
||||
# Author: Florian Wilhelm <florian.wilhelm@gmail.com>
|
||||
#
|
||||
# License: BSD 3 clause
|
||||
|
||||
|
||||
import warnings
|
||||
from itertools import combinations
|
||||
|
||||
import numpy as np
|
||||
from scipy import linalg
|
||||
from scipy.special import binom
|
||||
from scipy.linalg.lapack import get_lapack_funcs
|
||||
from joblib import Parallel, delayed, effective_n_jobs
|
||||
|
||||
from ._base import LinearModel
|
||||
from ..base import RegressorMixin
|
||||
from ..utils import check_random_state
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
from ..exceptions import ConvergenceWarning
|
||||
|
||||
_EPSILON = np.finfo(np.double).eps
|
||||
|
||||
|
||||
def _modified_weiszfeld_step(X, x_old):
|
||||
"""Modified Weiszfeld step.
|
||||
|
||||
This function defines one iteration step in order to approximate the
|
||||
spatial median (L1 median). It is a form of an iteratively re-weighted
|
||||
least squares method.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Training vector, where n_samples is the number of samples and
|
||||
n_features is the number of features.
|
||||
|
||||
x_old : array, shape = [n_features]
|
||||
Current start vector.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x_new : array, shape = [n_features]
|
||||
New iteration step.
|
||||
|
||||
References
|
||||
----------
|
||||
- On Computation of Spatial Median for Robust Data Mining, 2005
|
||||
T. Kärkkäinen and S. Äyrämö
|
||||
http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf
|
||||
"""
|
||||
diff = X - x_old
|
||||
diff_norm = np.sqrt(np.sum(diff ** 2, axis=1))
|
||||
mask = diff_norm >= _EPSILON
|
||||
# x_old equals one of our samples
|
||||
is_x_old_in_X = int(mask.sum() < X.shape[0])
|
||||
|
||||
diff = diff[mask]
|
||||
diff_norm = diff_norm[mask][:, np.newaxis]
|
||||
quotient_norm = linalg.norm(np.sum(diff / diff_norm, axis=0))
|
||||
|
||||
if quotient_norm > _EPSILON: # to avoid division by zero
|
||||
new_direction = (np.sum(X[mask, :] / diff_norm, axis=0)
|
||||
/ np.sum(1 / diff_norm, axis=0))
|
||||
else:
|
||||
new_direction = 1.
|
||||
quotient_norm = 1.
|
||||
|
||||
return (max(0., 1. - is_x_old_in_X / quotient_norm) * new_direction
|
||||
+ min(1., is_x_old_in_X / quotient_norm) * x_old)
|
||||
|
||||
|
||||
def _spatial_median(X, max_iter=300, tol=1.e-3):
|
||||
"""Spatial median (L1 median).
|
||||
|
||||
The spatial median is member of a class of so-called M-estimators which
|
||||
are defined by an optimization problem. Given a number of p points in an
|
||||
n-dimensional space, the point x minimizing the sum of all distances to the
|
||||
p other points is called spatial median.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Training vector, where n_samples is the number of samples and
|
||||
n_features is the number of features.
|
||||
|
||||
max_iter : int, optional
|
||||
Maximum number of iterations. Default is 300.
|
||||
|
||||
tol : float, optional
|
||||
Stop the algorithm if spatial_median has converged. Default is 1.e-3.
|
||||
|
||||
Returns
|
||||
-------
|
||||
spatial_median : array, shape = [n_features]
|
||||
Spatial median.
|
||||
|
||||
n_iter : int
|
||||
Number of iterations needed.
|
||||
|
||||
References
|
||||
----------
|
||||
- On Computation of Spatial Median for Robust Data Mining, 2005
|
||||
T. Kärkkäinen and S. Äyrämö
|
||||
http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf
|
||||
"""
|
||||
if X.shape[1] == 1:
|
||||
return 1, np.median(X.ravel())
|
||||
|
||||
tol **= 2 # We are computing the tol on the squared norm
|
||||
spatial_median_old = np.mean(X, axis=0)
|
||||
|
||||
for n_iter in range(max_iter):
|
||||
spatial_median = _modified_weiszfeld_step(X, spatial_median_old)
|
||||
if np.sum((spatial_median_old - spatial_median) ** 2) < tol:
|
||||
break
|
||||
else:
|
||||
spatial_median_old = spatial_median
|
||||
else:
|
||||
warnings.warn("Maximum number of iterations {max_iter} reached in "
|
||||
"spatial median for TheilSen regressor."
|
||||
"".format(max_iter=max_iter), ConvergenceWarning)
|
||||
|
||||
return n_iter, spatial_median
|
||||
|
||||
|
||||
def _breakdown_point(n_samples, n_subsamples):
|
||||
"""Approximation of the breakdown point.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_samples : int
|
||||
Number of samples.
|
||||
|
||||
n_subsamples : int
|
||||
Number of subsamples to consider.
|
||||
|
||||
Returns
|
||||
-------
|
||||
breakdown_point : float
|
||||
Approximation of breakdown point.
|
||||
"""
|
||||
return 1 - (0.5 ** (1 / n_subsamples) * (n_samples - n_subsamples + 1) +
|
||||
n_subsamples - 1) / n_samples
|
||||
|
||||
|
||||
def _lstsq(X, y, indices, fit_intercept):
|
||||
"""Least Squares Estimator for TheilSenRegressor class.
|
||||
|
||||
This function calculates the least squares method on a subset of rows of X
|
||||
and y defined by the indices array. Optionally, an intercept column is
|
||||
added if intercept is set to true.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Design matrix, where n_samples is the number of samples and
|
||||
n_features is the number of features.
|
||||
|
||||
y : array, shape = [n_samples]
|
||||
Target vector, where n_samples is the number of samples.
|
||||
|
||||
indices : array, shape = [n_subpopulation, n_subsamples]
|
||||
Indices of all subsamples with respect to the chosen subpopulation.
|
||||
|
||||
fit_intercept : bool
|
||||
Fit intercept or not.
|
||||
|
||||
Returns
|
||||
-------
|
||||
weights : array, shape = [n_subpopulation, n_features + intercept]
|
||||
Solution matrix of n_subpopulation solved least square problems.
|
||||
"""
|
||||
fit_intercept = int(fit_intercept)
|
||||
n_features = X.shape[1] + fit_intercept
|
||||
n_subsamples = indices.shape[1]
|
||||
weights = np.empty((indices.shape[0], n_features))
|
||||
X_subpopulation = np.ones((n_subsamples, n_features))
|
||||
# gelss need to pad y_subpopulation to be of the max dim of X_subpopulation
|
||||
y_subpopulation = np.zeros((max(n_subsamples, n_features)))
|
||||
lstsq, = get_lapack_funcs(('gelss',), (X_subpopulation, y_subpopulation))
|
||||
|
||||
for index, subset in enumerate(indices):
|
||||
X_subpopulation[:, fit_intercept:] = X[subset, :]
|
||||
y_subpopulation[:n_subsamples] = y[subset]
|
||||
weights[index] = lstsq(X_subpopulation,
|
||||
y_subpopulation)[1][:n_features]
|
||||
|
||||
return weights
|
||||
|
||||
|
||||
class TheilSenRegressor(RegressorMixin, LinearModel):
|
||||
"""Theil-Sen Estimator: robust multivariate regression model.
|
||||
|
||||
The algorithm calculates least square solutions on subsets with size
|
||||
n_subsamples of the samples in X. Any value of n_subsamples between the
|
||||
number of features and samples leads to an estimator with a compromise
|
||||
between robustness and efficiency. Since the number of least square
|
||||
solutions is "n_samples choose n_subsamples", it can be extremely large
|
||||
and can therefore be limited with max_subpopulation. If this limit is
|
||||
reached, the subsets are chosen randomly. In a final step, the spatial
|
||||
median (or L1 median) is calculated of all least square solutions.
|
||||
|
||||
Read more in the :ref:`User Guide <theil_sen_regression>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fit_intercept : boolean, optional, default True
|
||||
Whether to calculate the intercept for this model. If set
|
||||
to false, no intercept will be used in calculations.
|
||||
|
||||
copy_X : boolean, optional, default True
|
||||
If True, X will be copied; else, it may be overwritten.
|
||||
|
||||
max_subpopulation : int, optional, default 1e4
|
||||
Instead of computing with a set of cardinality 'n choose k', where n is
|
||||
the number of samples and k is the number of subsamples (at least
|
||||
number of features), consider only a stochastic subpopulation of a
|
||||
given maximal size if 'n choose k' is larger than max_subpopulation.
|
||||
For other than small problem sizes this parameter will determine
|
||||
memory usage and runtime if n_subsamples is not changed.
|
||||
|
||||
n_subsamples : int, optional, default None
|
||||
Number of samples to calculate the parameters. This is at least the
|
||||
number of features (plus 1 if fit_intercept=True) and the number of
|
||||
samples as a maximum. A lower number leads to a higher breakdown
|
||||
point and a low efficiency while a high number leads to a low
|
||||
breakdown point and a high efficiency. If None, take the
|
||||
minimum number of subsamples leading to maximal robustness.
|
||||
If n_subsamples is set to n_samples, Theil-Sen is identical to least
|
||||
squares.
|
||||
|
||||
max_iter : int, optional, default 300
|
||||
Maximum number of iterations for the calculation of spatial median.
|
||||
|
||||
tol : float, optional, default 1.e-3
|
||||
Tolerance when calculating spatial median.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
A random number generator instance to define the state of the random
|
||||
permutations generator. Pass an int for reproducible output across
|
||||
multiple function calls.
|
||||
See :term:`Glossary <random_state>`
|
||||
|
||||
n_jobs : int or None, optional (default=None)
|
||||
Number of CPUs to use during the cross validation.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
verbose : boolean, optional, default False
|
||||
Verbose mode when fitting the model.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
coef_ : array, shape = (n_features)
|
||||
Coefficients of the regression model (median of distribution).
|
||||
|
||||
intercept_ : float
|
||||
Estimated intercept of regression model.
|
||||
|
||||
breakdown_ : float
|
||||
Approximated breakdown point.
|
||||
|
||||
n_iter_ : int
|
||||
Number of iterations needed for the spatial median.
|
||||
|
||||
n_subpopulation_ : int
|
||||
Number of combinations taken into account from 'n choose k', where n is
|
||||
the number of samples and k is the number of subsamples.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.linear_model import TheilSenRegressor
|
||||
>>> from sklearn.datasets import make_regression
|
||||
>>> X, y = make_regression(
|
||||
... n_samples=200, n_features=2, noise=4.0, random_state=0)
|
||||
>>> reg = TheilSenRegressor(random_state=0).fit(X, y)
|
||||
>>> reg.score(X, y)
|
||||
0.9884...
|
||||
>>> reg.predict(X[:1,])
|
||||
array([-31.5871...])
|
||||
|
||||
References
|
||||
----------
|
||||
- Theil-Sen Estimators in a Multiple Linear Regression Model, 2009
|
||||
Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang
|
||||
http://home.olemiss.edu/~xdang/papers/MTSE.pdf
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, *, fit_intercept=True, copy_X=True,
|
||||
max_subpopulation=1e4, n_subsamples=None, max_iter=300,
|
||||
tol=1.e-3, random_state=None, n_jobs=None, verbose=False):
|
||||
self.fit_intercept = fit_intercept
|
||||
self.copy_X = copy_X
|
||||
self.max_subpopulation = int(max_subpopulation)
|
||||
self.n_subsamples = n_subsamples
|
||||
self.max_iter = max_iter
|
||||
self.tol = tol
|
||||
self.random_state = random_state
|
||||
self.n_jobs = n_jobs
|
||||
self.verbose = verbose
|
||||
|
||||
def _check_subparams(self, n_samples, n_features):
|
||||
n_subsamples = self.n_subsamples
|
||||
|
||||
if self.fit_intercept:
|
||||
n_dim = n_features + 1
|
||||
else:
|
||||
n_dim = n_features
|
||||
|
||||
if n_subsamples is not None:
|
||||
if n_subsamples > n_samples:
|
||||
raise ValueError("Invalid parameter since n_subsamples > "
|
||||
"n_samples ({0} > {1}).".format(n_subsamples,
|
||||
n_samples))
|
||||
if n_samples >= n_features:
|
||||
if n_dim > n_subsamples:
|
||||
plus_1 = "+1" if self.fit_intercept else ""
|
||||
raise ValueError("Invalid parameter since n_features{0} "
|
||||
"> n_subsamples ({1} > {2})."
|
||||
"".format(plus_1, n_dim, n_samples))
|
||||
else: # if n_samples < n_features
|
||||
if n_subsamples != n_samples:
|
||||
raise ValueError("Invalid parameter since n_subsamples != "
|
||||
"n_samples ({0} != {1}) while n_samples "
|
||||
"< n_features.".format(n_subsamples,
|
||||
n_samples))
|
||||
else:
|
||||
n_subsamples = min(n_dim, n_samples)
|
||||
|
||||
if self.max_subpopulation <= 0:
|
||||
raise ValueError("Subpopulation must be strictly positive "
|
||||
"({0} <= 0).".format(self.max_subpopulation))
|
||||
|
||||
all_combinations = max(1, np.rint(binom(n_samples, n_subsamples)))
|
||||
n_subpopulation = int(min(self.max_subpopulation, all_combinations))
|
||||
|
||||
return n_subsamples, n_subpopulation
|
||||
|
||||
def fit(self, X, y):
|
||||
"""Fit linear model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : numpy array of shape [n_samples, n_features]
|
||||
Training data
|
||||
y : numpy array of shape [n_samples]
|
||||
Target values
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : returns an instance of self.
|
||||
"""
|
||||
random_state = check_random_state(self.random_state)
|
||||
X, y = self._validate_data(X, y, y_numeric=True)
|
||||
n_samples, n_features = X.shape
|
||||
n_subsamples, self.n_subpopulation_ = self._check_subparams(n_samples,
|
||||
n_features)
|
||||
self.breakdown_ = _breakdown_point(n_samples, n_subsamples)
|
||||
|
||||
if self.verbose:
|
||||
print("Breakdown point: {0}".format(self.breakdown_))
|
||||
print("Number of samples: {0}".format(n_samples))
|
||||
tol_outliers = int(self.breakdown_ * n_samples)
|
||||
print("Tolerable outliers: {0}".format(tol_outliers))
|
||||
print("Number of subpopulations: {0}".format(
|
||||
self.n_subpopulation_))
|
||||
|
||||
# Determine indices of subpopulation
|
||||
if np.rint(binom(n_samples, n_subsamples)) <= self.max_subpopulation:
|
||||
indices = list(combinations(range(n_samples), n_subsamples))
|
||||
else:
|
||||
indices = [random_state.choice(n_samples, size=n_subsamples,
|
||||
replace=False)
|
||||
for _ in range(self.n_subpopulation_)]
|
||||
|
||||
n_jobs = effective_n_jobs(self.n_jobs)
|
||||
index_list = np.array_split(indices, n_jobs)
|
||||
weights = Parallel(n_jobs=n_jobs,
|
||||
verbose=self.verbose)(
|
||||
delayed(_lstsq)(X, y, index_list[job], self.fit_intercept)
|
||||
for job in range(n_jobs))
|
||||
weights = np.vstack(weights)
|
||||
self.n_iter_, coefs = _spatial_median(weights,
|
||||
max_iter=self.max_iter,
|
||||
tol=self.tol)
|
||||
|
||||
if self.fit_intercept:
|
||||
self.intercept_ = coefs[0]
|
||||
self.coef_ = coefs[1:]
|
||||
else:
|
||||
self.intercept_ = 0.
|
||||
self.coef_ = coefs
|
||||
|
||||
return self
|
||||
Loading…
Add table
Add a link
Reference in a new issue