Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
|
@ -0,0 +1 @@
|
|||
# License: BSD 3 clause
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,431 @@
|
|||
# Authors: Christian Lorentzen <lorentzen.ch@gmail.com>
|
||||
#
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
import pytest
|
||||
import warnings
|
||||
|
||||
from sklearn.datasets import make_regression
|
||||
from sklearn.linear_model._glm import GeneralizedLinearRegressor
|
||||
from sklearn.linear_model import (
|
||||
TweedieRegressor,
|
||||
PoissonRegressor,
|
||||
GammaRegressor
|
||||
)
|
||||
from sklearn.linear_model._glm.link import (
|
||||
IdentityLink,
|
||||
LogLink,
|
||||
)
|
||||
from sklearn._loss.glm_distribution import (
|
||||
TweedieDistribution,
|
||||
NormalDistribution, PoissonDistribution,
|
||||
GammaDistribution, InverseGaussianDistribution,
|
||||
)
|
||||
from sklearn.linear_model import Ridge
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def regression_data():
|
||||
X, y = make_regression(n_samples=107,
|
||||
n_features=10,
|
||||
n_informative=80, noise=0.5,
|
||||
random_state=2)
|
||||
return X, y
|
||||
|
||||
|
||||
def test_sample_weights_validation():
|
||||
"""Test the raised errors in the validation of sample_weight."""
|
||||
# scalar value but not positive
|
||||
X = [[1]]
|
||||
y = [1]
|
||||
weights = 0
|
||||
glm = GeneralizedLinearRegressor()
|
||||
|
||||
# Positive weights are accepted
|
||||
glm.fit(X, y, sample_weight=1)
|
||||
|
||||
# 2d array
|
||||
weights = [[0]]
|
||||
with pytest.raises(ValueError, match="must be 1D array or scalar"):
|
||||
glm.fit(X, y, weights)
|
||||
|
||||
# 1d but wrong length
|
||||
weights = [1, 0]
|
||||
msg = r"sample_weight.shape == \(2,\), expected \(1,\)!"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
glm.fit(X, y, weights)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('name, instance',
|
||||
[('normal', NormalDistribution()),
|
||||
('poisson', PoissonDistribution()),
|
||||
('gamma', GammaDistribution()),
|
||||
('inverse-gaussian', InverseGaussianDistribution())])
|
||||
def test_glm_family_argument(name, instance):
|
||||
"""Test GLM family argument set as string."""
|
||||
y = np.array([0.1, 0.5]) # in range of all distributions
|
||||
X = np.array([[1], [2]])
|
||||
glm = GeneralizedLinearRegressor(family=name, alpha=0).fit(X, y)
|
||||
assert isinstance(glm._family_instance, instance.__class__)
|
||||
|
||||
glm = GeneralizedLinearRegressor(family='not a family')
|
||||
with pytest.raises(ValueError, match="family must be"):
|
||||
glm.fit(X, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('name, instance',
|
||||
[('identity', IdentityLink()),
|
||||
('log', LogLink())])
|
||||
def test_glm_link_argument(name, instance):
|
||||
"""Test GLM link argument set as string."""
|
||||
y = np.array([0.1, 0.5]) # in range of all distributions
|
||||
X = np.array([[1], [2]])
|
||||
glm = GeneralizedLinearRegressor(family='normal', link=name).fit(X, y)
|
||||
assert isinstance(glm._link_instance, instance.__class__)
|
||||
|
||||
glm = GeneralizedLinearRegressor(family='normal', link='not a link')
|
||||
with pytest.raises(ValueError, match="link must be"):
|
||||
glm.fit(X, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('family, expected_link_class', [
|
||||
('normal', IdentityLink),
|
||||
('poisson', LogLink),
|
||||
('gamma', LogLink),
|
||||
('inverse-gaussian', LogLink),
|
||||
])
|
||||
def test_glm_link_auto(family, expected_link_class):
|
||||
# Make sure link='auto' delivers the expected link function
|
||||
y = np.array([0.1, 0.5]) # in range of all distributions
|
||||
X = np.array([[1], [2]])
|
||||
glm = GeneralizedLinearRegressor(family=family, link='auto').fit(X, y)
|
||||
assert isinstance(glm._link_instance, expected_link_class)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('alpha', ['not a number', -4.2])
|
||||
def test_glm_alpha_argument(alpha):
|
||||
"""Test GLM for invalid alpha argument."""
|
||||
y = np.array([1, 2])
|
||||
X = np.array([[1], [2]])
|
||||
glm = GeneralizedLinearRegressor(family='normal', alpha=alpha)
|
||||
with pytest.raises(ValueError,
|
||||
match="Penalty term must be a non-negative"):
|
||||
glm.fit(X, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('fit_intercept', ['not bool', 1, 0, [True]])
|
||||
def test_glm_fit_intercept_argument(fit_intercept):
|
||||
"""Test GLM for invalid fit_intercept argument."""
|
||||
y = np.array([1, 2])
|
||||
X = np.array([[1], [1]])
|
||||
glm = GeneralizedLinearRegressor(fit_intercept=fit_intercept)
|
||||
with pytest.raises(ValueError, match="fit_intercept must be bool"):
|
||||
glm.fit(X, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('solver',
|
||||
['not a solver', 1, [1]])
|
||||
def test_glm_solver_argument(solver):
|
||||
"""Test GLM for invalid solver argument."""
|
||||
y = np.array([1, 2])
|
||||
X = np.array([[1], [2]])
|
||||
glm = GeneralizedLinearRegressor(solver=solver)
|
||||
with pytest.raises(ValueError):
|
||||
glm.fit(X, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('max_iter', ['not a number', 0, -1, 5.5, [1]])
|
||||
def test_glm_max_iter_argument(max_iter):
|
||||
"""Test GLM for invalid max_iter argument."""
|
||||
y = np.array([1, 2])
|
||||
X = np.array([[1], [2]])
|
||||
glm = GeneralizedLinearRegressor(max_iter=max_iter)
|
||||
with pytest.raises(ValueError, match="must be a positive integer"):
|
||||
glm.fit(X, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('tol', ['not a number', 0, -1.0, [1e-3]])
|
||||
def test_glm_tol_argument(tol):
|
||||
"""Test GLM for invalid tol argument."""
|
||||
y = np.array([1, 2])
|
||||
X = np.array([[1], [2]])
|
||||
glm = GeneralizedLinearRegressor(tol=tol)
|
||||
with pytest.raises(ValueError, match="stopping criteria must be positive"):
|
||||
glm.fit(X, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('warm_start', ['not bool', 1, 0, [True]])
|
||||
def test_glm_warm_start_argument(warm_start):
|
||||
"""Test GLM for invalid warm_start argument."""
|
||||
y = np.array([1, 2])
|
||||
X = np.array([[1], [1]])
|
||||
glm = GeneralizedLinearRegressor(warm_start=warm_start)
|
||||
with pytest.raises(ValueError, match="warm_start must be bool"):
|
||||
glm.fit(X, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('fit_intercept', [False, True])
|
||||
def test_glm_identity_regression(fit_intercept):
|
||||
"""Test GLM regression with identity link on a simple dataset."""
|
||||
coef = [1., 2.]
|
||||
X = np.array([[1, 1, 1, 1, 1], [0, 1, 2, 3, 4]]).T
|
||||
y = np.dot(X, coef)
|
||||
glm = GeneralizedLinearRegressor(alpha=0, family='normal', link='identity',
|
||||
fit_intercept=fit_intercept, tol=1e-12)
|
||||
if fit_intercept:
|
||||
glm.fit(X[:, 1:], y)
|
||||
assert_allclose(glm.coef_, coef[1:], rtol=1e-10)
|
||||
assert_allclose(glm.intercept_, coef[0], rtol=1e-10)
|
||||
else:
|
||||
glm.fit(X, y)
|
||||
assert_allclose(glm.coef_, coef, rtol=1e-12)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('fit_intercept', [False, True])
|
||||
@pytest.mark.parametrize('alpha', [0.0, 1.0])
|
||||
@pytest.mark.parametrize('family', ['normal', 'poisson', 'gamma'])
|
||||
def test_glm_sample_weight_consistentcy(fit_intercept, alpha, family):
|
||||
"""Test that the impact of sample_weight is consistent"""
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples, n_features = 10, 5
|
||||
|
||||
X = rng.rand(n_samples, n_features)
|
||||
y = rng.rand(n_samples)
|
||||
glm_params = dict(alpha=alpha, family=family, link='auto',
|
||||
fit_intercept=fit_intercept)
|
||||
|
||||
glm = GeneralizedLinearRegressor(**glm_params).fit(X, y)
|
||||
coef = glm.coef_.copy()
|
||||
|
||||
# sample_weight=np.ones(..) should be equivalent to sample_weight=None
|
||||
sample_weight = np.ones(y.shape)
|
||||
glm.fit(X, y, sample_weight=sample_weight)
|
||||
assert_allclose(glm.coef_, coef, rtol=1e-12)
|
||||
|
||||
# sample_weight are normalized to 1 so, scaling them has no effect
|
||||
sample_weight = 2*np.ones(y.shape)
|
||||
glm.fit(X, y, sample_weight=sample_weight)
|
||||
assert_allclose(glm.coef_, coef, rtol=1e-12)
|
||||
|
||||
# setting one element of sample_weight to 0 is equivalent to removing
|
||||
# the correspoding sample
|
||||
sample_weight = np.ones(y.shape)
|
||||
sample_weight[-1] = 0
|
||||
glm.fit(X, y, sample_weight=sample_weight)
|
||||
coef1 = glm.coef_.copy()
|
||||
glm.fit(X[:-1], y[:-1])
|
||||
assert_allclose(glm.coef_, coef1, rtol=1e-12)
|
||||
|
||||
# check that multiplying sample_weight by 2 is equivalent
|
||||
# to repeating correspoding samples twice
|
||||
X2 = np.concatenate([X, X[:n_samples//2]], axis=0)
|
||||
y2 = np.concatenate([y, y[:n_samples//2]])
|
||||
sample_weight_1 = np.ones(len(y))
|
||||
sample_weight_1[:n_samples//2] = 2
|
||||
|
||||
glm1 = GeneralizedLinearRegressor(**glm_params).fit(
|
||||
X, y, sample_weight=sample_weight_1
|
||||
)
|
||||
|
||||
glm2 = GeneralizedLinearRegressor(**glm_params).fit(
|
||||
X2, y2, sample_weight=None
|
||||
)
|
||||
assert_allclose(glm1.coef_, glm2.coef_)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('fit_intercept', [True, False])
|
||||
@pytest.mark.parametrize(
|
||||
'family',
|
||||
[NormalDistribution(), PoissonDistribution(),
|
||||
GammaDistribution(), InverseGaussianDistribution(),
|
||||
TweedieDistribution(power=1.5), TweedieDistribution(power=4.5)])
|
||||
def test_glm_log_regression(fit_intercept, family):
|
||||
"""Test GLM regression with log link on a simple dataset."""
|
||||
coef = [0.2, -0.1]
|
||||
X = np.array([[1, 1, 1, 1, 1], [0, 1, 2, 3, 4]]).T
|
||||
y = np.exp(np.dot(X, coef))
|
||||
glm = GeneralizedLinearRegressor(
|
||||
alpha=0, family=family, link='log',
|
||||
fit_intercept=fit_intercept, tol=1e-7)
|
||||
if fit_intercept:
|
||||
res = glm.fit(X[:, 1:], y)
|
||||
assert_allclose(res.coef_, coef[1:], rtol=1e-6)
|
||||
assert_allclose(res.intercept_, coef[0], rtol=1e-6)
|
||||
else:
|
||||
res = glm.fit(X, y)
|
||||
assert_allclose(res.coef_, coef, rtol=2e-6)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('fit_intercept', [True, False])
|
||||
def test_warm_start(fit_intercept):
|
||||
n_samples, n_features = 110, 10
|
||||
X, y = make_regression(n_samples=n_samples, n_features=n_features,
|
||||
n_informative=n_features-2, noise=0.5,
|
||||
random_state=42)
|
||||
|
||||
glm1 = GeneralizedLinearRegressor(
|
||||
warm_start=False,
|
||||
fit_intercept=fit_intercept,
|
||||
max_iter=1000
|
||||
)
|
||||
glm1.fit(X, y)
|
||||
|
||||
glm2 = GeneralizedLinearRegressor(
|
||||
warm_start=True,
|
||||
fit_intercept=fit_intercept,
|
||||
max_iter=1
|
||||
)
|
||||
# As we intentionally set max_iter=1, L-BFGS-B will issue a
|
||||
# ConvergenceWarning which we here simply ignore.
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings('ignore', category=ConvergenceWarning)
|
||||
glm2.fit(X, y)
|
||||
assert glm1.score(X, y) > glm2.score(X, y)
|
||||
glm2.set_params(max_iter=1000)
|
||||
glm2.fit(X, y)
|
||||
# The two model are not exactly identical since the lbfgs solver
|
||||
# computes the approximate hessian from previous iterations, which
|
||||
# will not be strictly identical in the case of a warm start.
|
||||
assert_allclose(glm1.coef_, glm2.coef_, rtol=1e-5)
|
||||
assert_allclose(glm1.score(X, y), glm2.score(X, y), rtol=1e-4)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('n_samples, n_features', [(100, 10), (10, 100)])
|
||||
@pytest.mark.parametrize('fit_intercept', [True, False])
|
||||
@pytest.mark.parametrize('sample_weight', [None, True])
|
||||
def test_normal_ridge_comparison(n_samples, n_features, fit_intercept,
|
||||
sample_weight, request):
|
||||
"""Compare with Ridge regression for Normal distributions."""
|
||||
test_size = 10
|
||||
X, y = make_regression(n_samples=n_samples + test_size,
|
||||
n_features=n_features,
|
||||
n_informative=n_features-2, noise=0.5,
|
||||
random_state=42)
|
||||
|
||||
if n_samples > n_features:
|
||||
ridge_params = {"solver": "svd"}
|
||||
else:
|
||||
ridge_params = {"solver": "saga", "max_iter": 1000000, "tol": 1e-7}
|
||||
|
||||
X_train, X_test, y_train, y_test, = train_test_split(
|
||||
X, y, test_size=test_size, random_state=0
|
||||
)
|
||||
|
||||
alpha = 1.0
|
||||
if sample_weight is None:
|
||||
sw_train = None
|
||||
alpha_ridge = alpha * n_samples
|
||||
else:
|
||||
sw_train = np.random.RandomState(0).rand(len(y_train))
|
||||
alpha_ridge = alpha * sw_train.sum()
|
||||
|
||||
# GLM has 1/(2*n) * Loss + 1/2*L2, Ridge has Loss + L2
|
||||
ridge = Ridge(alpha=alpha_ridge, normalize=False,
|
||||
random_state=42, fit_intercept=fit_intercept,
|
||||
**ridge_params)
|
||||
ridge.fit(X_train, y_train, sample_weight=sw_train)
|
||||
|
||||
glm = GeneralizedLinearRegressor(alpha=alpha, family='normal',
|
||||
link='identity',
|
||||
fit_intercept=fit_intercept,
|
||||
max_iter=300,
|
||||
tol=1e-5)
|
||||
glm.fit(X_train, y_train, sample_weight=sw_train)
|
||||
assert glm.coef_.shape == (X.shape[1], )
|
||||
assert_allclose(glm.coef_, ridge.coef_, atol=5e-5)
|
||||
assert_allclose(glm.intercept_, ridge.intercept_, rtol=1e-5)
|
||||
assert_allclose(glm.predict(X_train), ridge.predict(X_train), rtol=2e-4)
|
||||
assert_allclose(glm.predict(X_test), ridge.predict(X_test), rtol=2e-4)
|
||||
|
||||
|
||||
def test_poisson_glmnet():
|
||||
"""Compare Poisson regression with L2 regularization and LogLink to glmnet
|
||||
"""
|
||||
# library("glmnet")
|
||||
# options(digits=10)
|
||||
# df <- data.frame(a=c(-2,-1,1,2), b=c(0,0,1,1), y=c(0,1,1,2))
|
||||
# x <- data.matrix(df[,c("a", "b")])
|
||||
# y <- df$y
|
||||
# fit <- glmnet(x=x, y=y, alpha=0, intercept=T, family="poisson",
|
||||
# standardize=F, thresh=1e-10, nlambda=10000)
|
||||
# coef(fit, s=1)
|
||||
# (Intercept) -0.12889386979
|
||||
# a 0.29019207995
|
||||
# b 0.03741173122
|
||||
X = np.array([[-2, -1, 1, 2], [0, 0, 1, 1]]).T
|
||||
y = np.array([0, 1, 1, 2])
|
||||
glm = GeneralizedLinearRegressor(alpha=1,
|
||||
fit_intercept=True, family='poisson',
|
||||
link='log', tol=1e-7,
|
||||
max_iter=300)
|
||||
glm.fit(X, y)
|
||||
assert_allclose(glm.intercept_, -0.12889386979, rtol=1e-5)
|
||||
assert_allclose(glm.coef_, [0.29019207995, 0.03741173122], rtol=1e-5)
|
||||
|
||||
|
||||
def test_convergence_warning(regression_data):
|
||||
X, y = regression_data
|
||||
|
||||
est = GeneralizedLinearRegressor(max_iter=1, tol=1e-20)
|
||||
with pytest.warns(ConvergenceWarning):
|
||||
est.fit(X, y)
|
||||
|
||||
|
||||
def test_poisson_regression_family(regression_data):
|
||||
# Make sure the family attribute is read-only to prevent searching over it
|
||||
# e.g. in a grid search
|
||||
est = PoissonRegressor()
|
||||
est.family == "poisson"
|
||||
|
||||
msg = "PoissonRegressor.family must be 'poisson'!"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
est.family = 0
|
||||
|
||||
|
||||
def test_gamma_regression_family(regression_data):
|
||||
# Make sure the family attribute is read-only to prevent searching over it
|
||||
# e.g. in a grid search
|
||||
est = GammaRegressor()
|
||||
est.family == "gamma"
|
||||
|
||||
msg = "GammaRegressor.family must be 'gamma'!"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
est.family = 0
|
||||
|
||||
|
||||
def test_tweedie_regression_family(regression_data):
|
||||
# Make sure the family attribute is always a TweedieDistribution and that
|
||||
# the power attribute is properly updated
|
||||
power = 2.0
|
||||
est = TweedieRegressor(power=power)
|
||||
assert isinstance(est.family, TweedieDistribution)
|
||||
assert est.family.power == power
|
||||
assert est.power == power
|
||||
|
||||
new_power = 0
|
||||
new_family = TweedieDistribution(power=new_power)
|
||||
est.family = new_family
|
||||
assert isinstance(est.family, TweedieDistribution)
|
||||
assert est.family.power == new_power
|
||||
assert est.power == new_power
|
||||
|
||||
msg = "TweedieRegressor.family must be of type TweedieDistribution!"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
est.family = None
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'estimator, value',
|
||||
[
|
||||
(PoissonRegressor(), True),
|
||||
(GammaRegressor(), True),
|
||||
(TweedieRegressor(power=1.5), True),
|
||||
(TweedieRegressor(power=0), False)
|
||||
],
|
||||
)
|
||||
def test_tags(estimator, value):
|
||||
assert estimator._get_tags()['requires_positive_y'] is value
|
|
@ -0,0 +1,45 @@
|
|||
# Authors: Christian Lorentzen <lorentzen.ch@gmail.com>
|
||||
#
|
||||
# License: BSD 3 clause
|
||||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
import pytest
|
||||
from scipy.optimize import check_grad
|
||||
|
||||
from sklearn.linear_model._glm.link import (
|
||||
IdentityLink,
|
||||
LogLink,
|
||||
LogitLink,
|
||||
)
|
||||
|
||||
|
||||
LINK_FUNCTIONS = [IdentityLink, LogLink, LogitLink]
|
||||
|
||||
|
||||
@pytest.mark.parametrize('Link', LINK_FUNCTIONS)
|
||||
def test_link_properties(Link):
|
||||
"""Test link inverse and derivative."""
|
||||
rng = np.random.RandomState(42)
|
||||
x = rng.rand(100) * 100
|
||||
link = Link()
|
||||
if isinstance(link, LogitLink):
|
||||
# careful for large x, note expit(36) = 1
|
||||
# limit max eta to 15
|
||||
x = x / 100 * 15
|
||||
assert_allclose(link(link.inverse(x)), x)
|
||||
# if g(h(x)) = x, then g'(h(x)) = 1/h'(x)
|
||||
# g = link, h = link.inverse
|
||||
assert_allclose(link.derivative(link.inverse(x)),
|
||||
1 / link.inverse_derivative(x))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('Link', LINK_FUNCTIONS)
|
||||
def test_link_derivative(Link):
|
||||
link = Link()
|
||||
x = np.random.RandomState(0).rand(1)
|
||||
err = check_grad(link, link.derivative, x) / link.derivative(x)
|
||||
assert abs(err) < 1e-6
|
||||
|
||||
err = (check_grad(link.inverse, link.inverse_derivative, x)
|
||||
/ link.derivative(x))
|
||||
assert abs(err) < 1e-6
|
Loading…
Add table
Add a link
Reference in a new issue