Uploaded Test files

This commit is contained in:
Batuhan Berk Başoğlu 2020-11-12 11:05:57 -05:00
parent f584ad9d97
commit 2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions

View file

@ -0,0 +1,80 @@
"""
The :mod:`sklearn.linear_model` module implements a variety of linear models.
"""
# See http://scikit-learn.sourceforge.net/modules/sgd.html and
# http://scikit-learn.sourceforge.net/modules/linear_model.html for
# complete documentation.
from ._base import LinearRegression
from ._bayes import BayesianRidge, ARDRegression
from ._least_angle import (Lars, LassoLars, lars_path, lars_path_gram, LarsCV,
LassoLarsCV, LassoLarsIC)
from ._coordinate_descent import (Lasso, ElasticNet, LassoCV, ElasticNetCV,
lasso_path, enet_path, MultiTaskLasso,
MultiTaskElasticNet, MultiTaskElasticNetCV,
MultiTaskLassoCV)
from ._glm import (PoissonRegressor,
GammaRegressor, TweedieRegressor)
from ._huber import HuberRegressor
from ._sgd_fast import Hinge, Log, ModifiedHuber, SquaredLoss, Huber
from ._stochastic_gradient import SGDClassifier, SGDRegressor
from ._ridge import (Ridge, RidgeCV, RidgeClassifier, RidgeClassifierCV,
ridge_regression)
from ._logistic import LogisticRegression, LogisticRegressionCV
from ._omp import (orthogonal_mp, orthogonal_mp_gram,
OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV)
from ._passive_aggressive import PassiveAggressiveClassifier
from ._passive_aggressive import PassiveAggressiveRegressor
from ._perceptron import Perceptron
from ._ransac import RANSACRegressor
from ._theil_sen import TheilSenRegressor
__all__ = ['ARDRegression',
'BayesianRidge',
'ElasticNet',
'ElasticNetCV',
'Hinge',
'Huber',
'HuberRegressor',
'Lars',
'LarsCV',
'Lasso',
'LassoCV',
'LassoLars',
'LassoLarsCV',
'LassoLarsIC',
'LinearRegression',
'Log',
'LogisticRegression',
'LogisticRegressionCV',
'ModifiedHuber',
'MultiTaskElasticNet',
'MultiTaskElasticNetCV',
'MultiTaskLasso',
'MultiTaskLassoCV',
'OrthogonalMatchingPursuit',
'OrthogonalMatchingPursuitCV',
'PassiveAggressiveClassifier',
'PassiveAggressiveRegressor',
'Perceptron',
'Ridge',
'RidgeCV',
'RidgeClassifier',
'RidgeClassifierCV',
'SGDClassifier',
'SGDRegressor',
'SquaredLoss',
'TheilSenRegressor',
'enet_path',
'lars_path',
'lars_path_gram',
'lasso_path',
'orthogonal_mp',
'orthogonal_mp_gram',
'ridge_regression',
'RANSACRegressor',
'PoissonRegressor',
'GammaRegressor',
'TweedieRegressor']

View file

@ -0,0 +1,620 @@
"""
Generalized Linear Models.
"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Olivier Grisel <olivier.grisel@ensta.org>
# Vincent Michel <vincent.michel@inria.fr>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Mathieu Blondel <mathieu@mblondel.org>
# Lars Buitinck
# Maryan Morel <maryan.morel@polytechnique.edu>
# Giorgio Patrini <giorgio.patrini@anu.edu.au>
# License: BSD 3 clause
from abc import ABCMeta, abstractmethod
import numbers
import warnings
import numpy as np
import scipy.sparse as sp
from scipy import linalg
from scipy import sparse
from scipy.special import expit
from joblib import Parallel, delayed
from ..base import (BaseEstimator, ClassifierMixin, RegressorMixin,
MultiOutputMixin)
from ..utils import check_array
from ..utils.validation import FLOAT_DTYPES
from ..utils.validation import _deprecate_positional_args
from ..utils import check_random_state
from ..utils.extmath import safe_sparse_dot
from ..utils.sparsefuncs import mean_variance_axis, inplace_column_scale
from ..utils.fixes import sparse_lsqr
from ..utils._seq_dataset import ArrayDataset32, CSRDataset32
from ..utils._seq_dataset import ArrayDataset64, CSRDataset64
from ..utils.validation import check_is_fitted, _check_sample_weight
from ..preprocessing import normalize as f_normalize
# TODO: bayesian_ridge_regression and bayesian_regression_ard
# should be squashed into its respective objects.
SPARSE_INTERCEPT_DECAY = 0.01
# For sparse data intercept updates are scaled by this decay factor to avoid
# intercept oscillation.
def make_dataset(X, y, sample_weight, random_state=None):
"""Create ``Dataset`` abstraction for sparse and dense inputs.
This also returns the ``intercept_decay`` which is different
for sparse datasets.
Parameters
----------
X : array_like, shape (n_samples, n_features)
Training data
y : array_like, shape (n_samples, )
Target values.
sample_weight : numpy array of shape (n_samples,)
The weight of each sample
random_state : int, RandomState instance or None (default)
Determines random number generation for dataset shuffling and noise.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Returns
-------
dataset
The ``Dataset`` abstraction
intercept_decay
The intercept decay
"""
rng = check_random_state(random_state)
# seed should never be 0 in SequentialDataset64
seed = rng.randint(1, np.iinfo(np.int32).max)
if X.dtype == np.float32:
CSRData = CSRDataset32
ArrayData = ArrayDataset32
else:
CSRData = CSRDataset64
ArrayData = ArrayDataset64
if sp.issparse(X):
dataset = CSRData(X.data, X.indptr, X.indices, y, sample_weight,
seed=seed)
intercept_decay = SPARSE_INTERCEPT_DECAY
else:
X = np.ascontiguousarray(X)
dataset = ArrayData(X, y, sample_weight, seed=seed)
intercept_decay = 1.0
return dataset, intercept_decay
def _preprocess_data(X, y, fit_intercept, normalize=False, copy=True,
sample_weight=None, return_mean=False, check_input=True):
"""Center and scale data.
Centers data to have mean zero along axis 0. If fit_intercept=False or if
the X is a sparse matrix, no centering is done, but normalization can still
be applied. The function returns the statistics necessary to reconstruct
the input data, which are X_offset, y_offset, X_scale, such that the output
X = (X - X_offset) / X_scale
X_scale is the L2 norm of X - X_offset. If sample_weight is not None,
then the weighted mean of X and y is zero, and not the mean itself. If
return_mean=True, the mean, eventually weighted, is returned, independently
of whether X was centered (option used for optimization with sparse data in
coordinate_descend).
This is here because nearly all linear models will want their data to be
centered. This function also systematically makes y consistent with X.dtype
"""
if isinstance(sample_weight, numbers.Number):
sample_weight = None
if sample_weight is not None:
sample_weight = np.asarray(sample_weight)
if check_input:
X = check_array(X, copy=copy, accept_sparse=['csr', 'csc'],
dtype=FLOAT_DTYPES)
elif copy:
if sp.issparse(X):
X = X.copy()
else:
X = X.copy(order='K')
y = np.asarray(y, dtype=X.dtype)
if fit_intercept:
if sp.issparse(X):
X_offset, X_var = mean_variance_axis(X, axis=0)
if not return_mean:
X_offset[:] = X.dtype.type(0)
if normalize:
# TODO: f_normalize could be used here as well but the function
# inplace_csr_row_normalize_l2 must be changed such that it
# can return also the norms computed internally
# transform variance to norm in-place
X_var *= X.shape[0]
X_scale = np.sqrt(X_var, X_var)
del X_var
X_scale[X_scale == 0] = 1
inplace_column_scale(X, 1. / X_scale)
else:
X_scale = np.ones(X.shape[1], dtype=X.dtype)
else:
X_offset = np.average(X, axis=0, weights=sample_weight)
X -= X_offset
if normalize:
X, X_scale = f_normalize(X, axis=0, copy=False,
return_norm=True)
else:
X_scale = np.ones(X.shape[1], dtype=X.dtype)
y_offset = np.average(y, axis=0, weights=sample_weight)
y = y - y_offset
else:
X_offset = np.zeros(X.shape[1], dtype=X.dtype)
X_scale = np.ones(X.shape[1], dtype=X.dtype)
if y.ndim == 1:
y_offset = X.dtype.type(0)
else:
y_offset = np.zeros(y.shape[1], dtype=X.dtype)
return X, y, X_offset, y_offset, X_scale
# TODO: _rescale_data should be factored into _preprocess_data.
# Currently, the fact that sag implements its own way to deal with
# sample_weight makes the refactoring tricky.
def _rescale_data(X, y, sample_weight):
"""Rescale data sample-wise by square root of sample_weight.
For many linear models, this enables easy support for sample_weight.
Returns
-------
X_rescaled : {array-like, sparse matrix}
y_rescaled : {array-like, sparse matrix}
"""
n_samples = X.shape[0]
sample_weight = np.asarray(sample_weight)
if sample_weight.ndim == 0:
sample_weight = np.full(n_samples, sample_weight,
dtype=sample_weight.dtype)
sample_weight = np.sqrt(sample_weight)
sw_matrix = sparse.dia_matrix((sample_weight, 0),
shape=(n_samples, n_samples))
X = safe_sparse_dot(sw_matrix, X)
y = safe_sparse_dot(sw_matrix, y)
return X, y
class LinearModel(BaseEstimator, metaclass=ABCMeta):
"""Base class for Linear Models"""
@abstractmethod
def fit(self, X, y):
"""Fit model."""
def _decision_function(self, X):
check_is_fitted(self)
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
return safe_sparse_dot(X, self.coef_.T,
dense_output=True) + self.intercept_
def predict(self, X):
"""
Predict using the linear model.
Parameters
----------
X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns
-------
C : array, shape (n_samples,)
Returns predicted values.
"""
return self._decision_function(X)
_preprocess_data = staticmethod(_preprocess_data)
def _set_intercept(self, X_offset, y_offset, X_scale):
"""Set the intercept_
"""
if self.fit_intercept:
self.coef_ = self.coef_ / X_scale
self.intercept_ = y_offset - np.dot(X_offset, self.coef_.T)
else:
self.intercept_ = 0.
def _more_tags(self):
return {'requires_y': True}
# XXX Should this derive from LinearModel? It should be a mixin, not an ABC.
# Maybe the n_features checking can be moved to LinearModel.
class LinearClassifierMixin(ClassifierMixin):
"""Mixin for linear classifiers.
Handles prediction for sparse and dense X.
"""
def decision_function(self, X):
"""
Predict confidence scores for samples.
The confidence score for a sample is the signed distance of that
sample to the hyperplane.
Parameters
----------
X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns
-------
array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)
Confidence scores per (sample, class) combination. In the binary
case, confidence score for self.classes_[1] where >0 means this
class would be predicted.
"""
check_is_fitted(self)
X = check_array(X, accept_sparse='csr')
n_features = self.coef_.shape[1]
if X.shape[1] != n_features:
raise ValueError("X has %d features per sample; expecting %d"
% (X.shape[1], n_features))
scores = safe_sparse_dot(X, self.coef_.T,
dense_output=True) + self.intercept_
return scores.ravel() if scores.shape[1] == 1 else scores
def predict(self, X):
"""
Predict class labels for samples in X.
Parameters
----------
X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns
-------
C : array, shape [n_samples]
Predicted class label per sample.
"""
scores = self.decision_function(X)
if len(scores.shape) == 1:
indices = (scores > 0).astype(np.int)
else:
indices = scores.argmax(axis=1)
return self.classes_[indices]
def _predict_proba_lr(self, X):
"""Probability estimation for OvR logistic regression.
Positive class probabilities are computed as
1. / (1. + np.exp(-self.decision_function(X)));
multiclass is handled by normalizing that over all classes.
"""
prob = self.decision_function(X)
expit(prob, out=prob)
if prob.ndim == 1:
return np.vstack([1 - prob, prob]).T
else:
# OvR normalization, like LibLinear's predict_probability
prob /= prob.sum(axis=1).reshape((prob.shape[0], -1))
return prob
class SparseCoefMixin:
"""Mixin for converting coef_ to and from CSR format.
L1-regularizing estimators should inherit this.
"""
def densify(self):
"""
Convert coefficient matrix to dense array format.
Converts the ``coef_`` member (back) to a numpy.ndarray. This is the
default format of ``coef_`` and is required for fitting, so calling
this method is only required on models that have previously been
sparsified; otherwise, it is a no-op.
Returns
-------
self
Fitted estimator.
"""
msg = "Estimator, %(name)s, must be fitted before densifying."
check_is_fitted(self, msg=msg)
if sp.issparse(self.coef_):
self.coef_ = self.coef_.toarray()
return self
def sparsify(self):
"""
Convert coefficient matrix to sparse format.
Converts the ``coef_`` member to a scipy.sparse matrix, which for
L1-regularized models can be much more memory- and storage-efficient
than the usual numpy.ndarray representation.
The ``intercept_`` member is not converted.
Returns
-------
self
Fitted estimator.
Notes
-----
For non-sparse models, i.e. when there are not many zeros in ``coef_``,
this may actually *increase* memory usage, so use this method with
care. A rule of thumb is that the number of zero elements, which can
be computed with ``(coef_ == 0).sum()``, must be more than 50% for this
to provide significant benefits.
After calling this method, further fitting with the partial_fit
method (if any) will not work until you call densify.
"""
msg = "Estimator, %(name)s, must be fitted before sparsifying."
check_is_fitted(self, msg=msg)
self.coef_ = sp.csr_matrix(self.coef_)
return self
class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):
"""
Ordinary least squares Linear Regression.
LinearRegression fits a linear model with coefficients w = (w1, ..., wp)
to minimize the residual sum of squares between the observed targets in
the dataset, and the targets predicted by the linear approximation.
Parameters
----------
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to False, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on
an estimator with ``normalize=False``.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
n_jobs : int, default=None
The number of jobs to use for the computation. This will only provide
speedup for n_targets > 1 and sufficient large problems.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Attributes
----------
coef_ : array of shape (n_features, ) or (n_targets, n_features)
Estimated coefficients for the linear regression problem.
If multiple targets are passed during the fit (y 2D), this
is a 2D array of shape (n_targets, n_features), while if only
one target is passed, this is a 1D array of length n_features.
rank_ : int
Rank of matrix `X`. Only available when `X` is dense.
singular_ : array of shape (min(X, y),)
Singular values of `X`. Only available when `X` is dense.
intercept_ : float or array of shape (n_targets,)
Independent term in the linear model. Set to 0.0 if
`fit_intercept = False`.
See Also
--------
sklearn.linear_model.Ridge : Ridge regression addresses some of the
problems of Ordinary Least Squares by imposing a penalty on the
size of the coefficients with l2 regularization.
sklearn.linear_model.Lasso : The Lasso is a linear model that estimates
sparse coefficients with l1 regularization.
sklearn.linear_model.ElasticNet : Elastic-Net is a linear regression
model trained with both l1 and l2 -norm regularization of the
coefficients.
Notes
-----
From the implementation point of view, this is just plain Ordinary
Least Squares (scipy.linalg.lstsq) wrapped as a predictor object.
Examples
--------
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
>>> # y = 1 * x_0 + 2 * x_1 + 3
>>> y = np.dot(X, np.array([1, 2])) + 3
>>> reg = LinearRegression().fit(X, y)
>>> reg.score(X, y)
1.0
>>> reg.coef_
array([1., 2.])
>>> reg.intercept_
3.0000...
>>> reg.predict(np.array([[3, 5]]))
array([16.])
"""
@_deprecate_positional_args
def __init__(self, *, fit_intercept=True, normalize=False, copy_X=True,
n_jobs=None):
self.fit_intercept = fit_intercept
self.normalize = normalize
self.copy_X = copy_X
self.n_jobs = n_jobs
def fit(self, X, y, sample_weight=None):
"""
Fit linear model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to X's dtype if necessary
sample_weight : array-like of shape (n_samples,), default=None
Individual weights for each sample
.. versionadded:: 0.17
parameter *sample_weight* support to LinearRegression.
Returns
-------
self : returns an instance of self.
"""
n_jobs_ = self.n_jobs
X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc', 'coo'],
y_numeric=True, multi_output=True)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X,
dtype=X.dtype)
X, y, X_offset, y_offset, X_scale = self._preprocess_data(
X, y, fit_intercept=self.fit_intercept, normalize=self.normalize,
copy=self.copy_X, sample_weight=sample_weight,
return_mean=True)
if sample_weight is not None:
# Sample weight can be implemented via a simple rescaling.
X, y = _rescale_data(X, y, sample_weight)
if sp.issparse(X):
X_offset_scale = X_offset / X_scale
def matvec(b):
return X.dot(b) - b.dot(X_offset_scale)
def rmatvec(b):
return X.T.dot(b) - X_offset_scale * np.sum(b)
X_centered = sparse.linalg.LinearOperator(shape=X.shape,
matvec=matvec,
rmatvec=rmatvec)
if y.ndim < 2:
out = sparse_lsqr(X_centered, y)
self.coef_ = out[0]
self._residues = out[3]
else:
# sparse_lstsq cannot handle y with shape (M, K)
outs = Parallel(n_jobs=n_jobs_)(
delayed(sparse_lsqr)(X_centered, y[:, j].ravel())
for j in range(y.shape[1]))
self.coef_ = np.vstack([out[0] for out in outs])
self._residues = np.vstack([out[3] for out in outs])
else:
self.coef_, self._residues, self.rank_, self.singular_ = \
linalg.lstsq(X, y)
self.coef_ = self.coef_.T
if y.ndim == 1:
self.coef_ = np.ravel(self.coef_)
self._set_intercept(X_offset, y_offset, X_scale)
return self
def _pre_fit(X, y, Xy, precompute, normalize, fit_intercept, copy,
check_input=True, sample_weight=None):
"""Aux function used at beginning of fit in linear models
Parameters
----------
order : 'F', 'C' or None, default=None
Whether X and y will be forced to be fortran or c-style. Only relevant
if sample_weight is not None.
"""
n_samples, n_features = X.shape
if sparse.isspmatrix(X):
# copy is not needed here as X is not modified inplace when X is sparse
precompute = False
X, y, X_offset, y_offset, X_scale = _preprocess_data(
X, y, fit_intercept=fit_intercept, normalize=normalize,
copy=False, return_mean=True, check_input=check_input)
else:
# copy was done in fit if necessary
X, y, X_offset, y_offset, X_scale = _preprocess_data(
X, y, fit_intercept=fit_intercept, normalize=normalize, copy=copy,
check_input=check_input, sample_weight=sample_weight)
if sample_weight is not None:
X, y = _rescale_data(X, y, sample_weight=sample_weight)
if hasattr(precompute, '__array__') and (
fit_intercept and not np.allclose(X_offset, np.zeros(n_features)) or
normalize and not np.allclose(X_scale, np.ones(n_features))):
warnings.warn("Gram matrix was provided but X was centered"
" to fit intercept, "
"or X was normalized : recomputing Gram matrix.",
UserWarning)
# recompute Gram
precompute = 'auto'
Xy = None
# precompute if n_samples > n_features
if isinstance(precompute, str) and precompute == 'auto':
precompute = (n_samples > n_features)
if precompute is True:
# make sure that the 'precompute' array is contiguous.
precompute = np.empty(shape=(n_features, n_features), dtype=X.dtype,
order='C')
np.dot(X.T, X, out=precompute)
if not hasattr(precompute, '__array__'):
Xy = None # cannot use Xy if precompute is not Gram
if hasattr(precompute, '__array__') and Xy is None:
common_dtype = np.find_common_type([X.dtype, y.dtype], [])
if y.ndim == 1:
# Xy is 1d, make sure it is contiguous.
Xy = np.empty(shape=n_features, dtype=common_dtype, order='C')
np.dot(X.T, y, out=Xy)
else:
# Make sure that Xy is always F contiguous even if X or y are not
# contiguous: the goal is to make it fast to extract the data for a
# specific target.
n_targets = y.shape[1]
Xy = np.empty(shape=(n_features, n_targets), dtype=common_dtype,
order='F')
np.dot(y.T, X, out=Xy.T)
return X, y, X_offset, y_offset, X_scale, precompute, Xy

View file

@ -0,0 +1,674 @@
"""
Various bayesian regression
"""
# Authors: V. Michel, F. Pedregosa, A. Gramfort
# License: BSD 3 clause
from math import log
import numpy as np
from scipy import linalg
from ._base import LinearModel, _rescale_data
from ..base import RegressorMixin
from ..utils.extmath import fast_logdet
from scipy.linalg import pinvh
from ..utils.validation import _check_sample_weight
from ..utils.validation import _deprecate_positional_args
###############################################################################
# BayesianRidge regression
class BayesianRidge(RegressorMixin, LinearModel):
"""Bayesian ridge regression.
Fit a Bayesian ridge model. See the Notes section for details on this
implementation and the optimization of the regularization parameters
lambda (precision of the weights) and alpha (precision of the noise).
Read more in the :ref:`User Guide <bayesian_regression>`.
Parameters
----------
n_iter : int, default=300
Maximum number of iterations. Should be greater than or equal to 1.
tol : float, default=1e-3
Stop the algorithm if w has converged.
alpha_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the alpha parameter.
alpha_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the alpha parameter.
lambda_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the lambda parameter.
lambda_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the lambda parameter.
alpha_init : float, default=None
Initial value for alpha (precision of the noise).
If not set, alpha_init is 1/Var(y).
.. versionadded:: 0.22
lambda_init : float, default=None
Initial value for lambda (precision of the weights).
If not set, lambda_init is 1.
.. versionadded:: 0.22
compute_score : bool, default=False
If True, compute the log marginal likelihood at each iteration of the
optimization.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model.
The intercept is not treated as a probabilistic parameter
and thus has no associated variance. If set
to False, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
verbose : bool, default=False
Verbose mode when fitting the model.
Attributes
----------
coef_ : array-like of shape (n_features,)
Coefficients of the regression model (mean of distribution)
intercept_ : float
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
alpha_ : float
Estimated precision of the noise.
lambda_ : float
Estimated precision of the weights.
sigma_ : array-like of shape (n_features, n_features)
Estimated variance-covariance matrix of the weights
scores_ : array-like of shape (n_iter_+1,)
If computed_score is True, value of the log marginal likelihood (to be
maximized) at each iteration of the optimization. The array starts
with the value of the log marginal likelihood obtained for the initial
values of alpha and lambda and ends with the value obtained for the
estimated alpha and lambda.
n_iter_ : int
The actual number of iterations to reach the stopping criterion.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.BayesianRidge()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
BayesianRidge()
>>> clf.predict([[1, 1]])
array([1.])
Notes
-----
There exist several strategies to perform Bayesian ridge regression. This
implementation is based on the algorithm described in Appendix A of
(Tipping, 2001) where updates of the regularization parameters are done as
suggested in (MacKay, 1992). Note that according to A New
View of Automatic Relevance Determination (Wipf and Nagarajan, 2008) these
update rules do not guarantee that the marginal likelihood is increasing
between two consecutive iterations of the optimization.
References
----------
D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems,
Vol. 4, No. 3, 1992.
M. E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine,
Journal of Machine Learning Research, Vol. 1, 2001.
"""
@_deprecate_positional_args
def __init__(self, *, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6,
lambda_1=1.e-6, lambda_2=1.e-6, alpha_init=None,
lambda_init=None, compute_score=False, fit_intercept=True,
normalize=False, copy_X=True, verbose=False):
self.n_iter = n_iter
self.tol = tol
self.alpha_1 = alpha_1
self.alpha_2 = alpha_2
self.lambda_1 = lambda_1
self.lambda_2 = lambda_2
self.alpha_init = alpha_init
self.lambda_init = lambda_init
self.compute_score = compute_score
self.fit_intercept = fit_intercept
self.normalize = normalize
self.copy_X = copy_X
self.verbose = verbose
def fit(self, X, y, sample_weight=None):
"""Fit the model
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data
y : ndarray of shape (n_samples,)
Target values. Will be cast to X's dtype if necessary
sample_weight : ndarray of shape (n_samples,), default=None
Individual weights for each sample
.. versionadded:: 0.20
parameter *sample_weight* support to BayesianRidge.
Returns
-------
self : returns an instance of self.
"""
if self.n_iter < 1:
raise ValueError('n_iter should be greater than or equal to 1.'
' Got {!r}.'.format(self.n_iter))
X, y = self._validate_data(X, y, dtype=np.float64, y_numeric=True)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X,
dtype=X.dtype)
X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data(
X, y, self.fit_intercept, self.normalize, self.copy_X,
sample_weight=sample_weight)
if sample_weight is not None:
# Sample weight can be implemented via a simple rescaling.
X, y = _rescale_data(X, y, sample_weight)
self.X_offset_ = X_offset_
self.X_scale_ = X_scale_
n_samples, n_features = X.shape
# Initialization of the values of the parameters
eps = np.finfo(np.float64).eps
# Add `eps` in the denominator to omit division by zero if `np.var(y)`
# is zero
alpha_ = self.alpha_init
lambda_ = self.lambda_init
if alpha_ is None:
alpha_ = 1. / (np.var(y) + eps)
if lambda_ is None:
lambda_ = 1.
verbose = self.verbose
lambda_1 = self.lambda_1
lambda_2 = self.lambda_2
alpha_1 = self.alpha_1
alpha_2 = self.alpha_2
self.scores_ = list()
coef_old_ = None
XT_y = np.dot(X.T, y)
U, S, Vh = linalg.svd(X, full_matrices=False)
eigen_vals_ = S ** 2
# Convergence loop of the bayesian ridge regression
for iter_ in range(self.n_iter):
# update posterior mean coef_ based on alpha_ and lambda_ and
# compute corresponding rmse
coef_, rmse_ = self._update_coef_(X, y, n_samples, n_features,
XT_y, U, Vh, eigen_vals_,
alpha_, lambda_)
if self.compute_score:
# compute the log marginal likelihood
s = self._log_marginal_likelihood(n_samples, n_features,
eigen_vals_,
alpha_, lambda_,
coef_, rmse_)
self.scores_.append(s)
# Update alpha and lambda according to (MacKay, 1992)
gamma_ = np.sum((alpha_ * eigen_vals_) /
(lambda_ + alpha_ * eigen_vals_))
lambda_ = ((gamma_ + 2 * lambda_1) /
(np.sum(coef_ ** 2) + 2 * lambda_2))
alpha_ = ((n_samples - gamma_ + 2 * alpha_1) /
(rmse_ + 2 * alpha_2))
# Check for convergence
if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
if verbose:
print("Convergence after ", str(iter_), " iterations")
break
coef_old_ = np.copy(coef_)
self.n_iter_ = iter_ + 1
# return regularization parameters and corresponding posterior mean,
# log marginal likelihood and posterior covariance
self.alpha_ = alpha_
self.lambda_ = lambda_
self.coef_, rmse_ = self._update_coef_(X, y, n_samples, n_features,
XT_y, U, Vh, eigen_vals_,
alpha_, lambda_)
if self.compute_score:
# compute the log marginal likelihood
s = self._log_marginal_likelihood(n_samples, n_features,
eigen_vals_,
alpha_, lambda_,
coef_, rmse_)
self.scores_.append(s)
self.scores_ = np.array(self.scores_)
# posterior covariance is given by 1/alpha_ * scaled_sigma_
scaled_sigma_ = np.dot(Vh.T,
Vh / (eigen_vals_ +
lambda_ / alpha_)[:, np.newaxis])
self.sigma_ = (1. / alpha_) * scaled_sigma_
self._set_intercept(X_offset_, y_offset_, X_scale_)
return self
def predict(self, X, return_std=False):
"""Predict using the linear model.
In addition to the mean of the predictive distribution, also its
standard deviation can be returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
return_std : bool, default=False
Whether to return the standard deviation of posterior prediction.
Returns
-------
y_mean : array-like of shape (n_samples,)
Mean of predictive distribution of query points.
y_std : array-like of shape (n_samples,)
Standard deviation of predictive distribution of query points.
"""
y_mean = self._decision_function(X)
if return_std is False:
return y_mean
else:
if self.normalize:
X = (X - self.X_offset_) / self.X_scale_
sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)
y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_))
return y_mean, y_std
def _update_coef_(self, X, y, n_samples, n_features, XT_y, U, Vh,
eigen_vals_, alpha_, lambda_):
"""Update posterior mean and compute corresponding rmse.
Posterior mean is given by coef_ = scaled_sigma_ * X.T * y where
scaled_sigma_ = (lambda_/alpha_ * np.eye(n_features)
+ np.dot(X.T, X))^-1
"""
if n_samples > n_features:
coef_ = np.dot(Vh.T,
Vh / (eigen_vals_ +
lambda_ / alpha_)[:, np.newaxis])
coef_ = np.dot(coef_, XT_y)
else:
coef_ = np.dot(X.T, np.dot(
U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T))
coef_ = np.dot(coef_, y)
rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)
return coef_, rmse_
def _log_marginal_likelihood(self, n_samples, n_features, eigen_vals,
alpha_, lambda_, coef, rmse):
"""Log marginal likelihood."""
alpha_1 = self.alpha_1
alpha_2 = self.alpha_2
lambda_1 = self.lambda_1
lambda_2 = self.lambda_2
# compute the log of the determinant of the posterior covariance.
# posterior covariance is given by
# sigma = (lambda_ * np.eye(n_features) + alpha_ * np.dot(X.T, X))^-1
if n_samples > n_features:
logdet_sigma = - np.sum(np.log(lambda_ + alpha_ * eigen_vals))
else:
logdet_sigma = np.full(n_features, lambda_,
dtype=np.array(lambda_).dtype)
logdet_sigma[:n_samples] += alpha_ * eigen_vals
logdet_sigma = - np.sum(np.log(logdet_sigma))
score = lambda_1 * log(lambda_) - lambda_2 * lambda_
score += alpha_1 * log(alpha_) - alpha_2 * alpha_
score += 0.5 * (n_features * log(lambda_) +
n_samples * log(alpha_) -
alpha_ * rmse -
lambda_ * np.sum(coef ** 2) +
logdet_sigma -
n_samples * log(2 * np.pi))
return score
###############################################################################
# ARD (Automatic Relevance Determination) regression
class ARDRegression(RegressorMixin, LinearModel):
"""Bayesian ARD regression.
Fit the weights of a regression model, using an ARD prior. The weights of
the regression model are assumed to be in Gaussian distributions.
Also estimate the parameters lambda (precisions of the distributions of the
weights) and alpha (precision of the distribution of the noise).
The estimation is done by an iterative procedures (Evidence Maximization)
Read more in the :ref:`User Guide <bayesian_regression>`.
Parameters
----------
n_iter : int, default=300
Maximum number of iterations.
tol : float, default=1e-3
Stop the algorithm if w has converged.
alpha_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the alpha parameter.
alpha_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the alpha parameter.
lambda_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the lambda parameter.
lambda_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the lambda parameter.
compute_score : bool, default=False
If True, compute the objective function at each step of the model.
threshold_lambda : float, default=10 000
threshold for removing (pruning) weights with high precision from
the computation.
fit_intercept : bool, default=True
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
verbose : bool, default=False
Verbose mode when fitting the model.
Attributes
----------
coef_ : array-like of shape (n_features,)
Coefficients of the regression model (mean of distribution)
alpha_ : float
estimated precision of the noise.
lambda_ : array-like of shape (n_features,)
estimated precisions of the weights.
sigma_ : array-like of shape (n_features, n_features)
estimated variance-covariance matrix of the weights
scores_ : float
if computed, value of the objective function (to be maximized)
intercept_ : float
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.ARDRegression()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
ARDRegression()
>>> clf.predict([[1, 1]])
array([1.])
Notes
-----
For an example, see :ref:`examples/linear_model/plot_ard.py
<sphx_glr_auto_examples_linear_model_plot_ard.py>`.
References
----------
D. J. C. MacKay, Bayesian nonlinear modeling for the prediction
competition, ASHRAE Transactions, 1994.
R. Salakhutdinov, Lecture notes on Statistical Machine Learning,
http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15
Their beta is our ``self.alpha_``
Their alpha is our ``self.lambda_``
ARD is a little different than the slide: only dimensions/features for
which ``self.lambda_ < self.threshold_lambda`` are kept and the rest are
discarded.
"""
@_deprecate_positional_args
def __init__(self, *, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6,
lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False,
threshold_lambda=1.e+4, fit_intercept=True, normalize=False,
copy_X=True, verbose=False):
self.n_iter = n_iter
self.tol = tol
self.fit_intercept = fit_intercept
self.normalize = normalize
self.alpha_1 = alpha_1
self.alpha_2 = alpha_2
self.lambda_1 = lambda_1
self.lambda_2 = lambda_2
self.compute_score = compute_score
self.threshold_lambda = threshold_lambda
self.copy_X = copy_X
self.verbose = verbose
def fit(self, X, y):
"""Fit the ARDRegression model according to the given training data
and parameters.
Iterative procedure to maximize the evidence
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array-like of shape (n_samples,)
Target values (integers). Will be cast to X's dtype if necessary
Returns
-------
self : returns an instance of self.
"""
X, y = self._validate_data(X, y, dtype=np.float64, y_numeric=True,
ensure_min_samples=2)
n_samples, n_features = X.shape
coef_ = np.zeros(n_features)
X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data(
X, y, self.fit_intercept, self.normalize, self.copy_X)
# Launch the convergence loop
keep_lambda = np.ones(n_features, dtype=bool)
lambda_1 = self.lambda_1
lambda_2 = self.lambda_2
alpha_1 = self.alpha_1
alpha_2 = self.alpha_2
verbose = self.verbose
# Initialization of the values of the parameters
eps = np.finfo(np.float64).eps
# Add `eps` in the denominator to omit division by zero if `np.var(y)`
# is zero
alpha_ = 1. / (np.var(y) + eps)
lambda_ = np.ones(n_features)
self.scores_ = list()
coef_old_ = None
def update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_):
coef_[keep_lambda] = alpha_ * np.dot(
sigma_, np.dot(X[:, keep_lambda].T, y))
return coef_
update_sigma = (self._update_sigma if n_samples >= n_features
else self._update_sigma_woodbury)
# Iterative procedure of ARDRegression
for iter_ in range(self.n_iter):
sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)
coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)
# Update alpha and lambda
rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)
gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_)
lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) /
((coef_[keep_lambda]) ** 2 +
2. * lambda_2))
alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) /
(rmse_ + 2. * alpha_2))
# Prune the weights with a precision over a threshold
keep_lambda = lambda_ < self.threshold_lambda
coef_[~keep_lambda] = 0
# Compute the objective function
if self.compute_score:
s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum()
s += alpha_1 * log(alpha_) - alpha_2 * alpha_
s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) +
np.sum(np.log(lambda_)))
s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum())
self.scores_.append(s)
# Check for convergence
if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
if verbose:
print("Converged after %s iterations" % iter_)
break
coef_old_ = np.copy(coef_)
if not keep_lambda.any():
break
if keep_lambda.any():
# update sigma and mu using updated params from the last iteration
sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)
coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)
else:
sigma_ = np.array([]).reshape(0, 0)
self.coef_ = coef_
self.alpha_ = alpha_
self.sigma_ = sigma_
self.lambda_ = lambda_
self._set_intercept(X_offset_, y_offset_, X_scale_)
return self
def _update_sigma_woodbury(self, X, alpha_, lambda_, keep_lambda):
# See slides as referenced in the docstring note
# this function is used when n_samples < n_features and will invert
# a matrix of shape (n_samples, n_samples) making use of the
# woodbury formula:
# https://en.wikipedia.org/wiki/Woodbury_matrix_identity
n_samples = X.shape[0]
X_keep = X[:, keep_lambda]
inv_lambda = 1 / lambda_[keep_lambda].reshape(1, -1)
sigma_ = pinvh(
np.eye(n_samples) / alpha_ + np.dot(X_keep * inv_lambda, X_keep.T)
)
sigma_ = np.dot(sigma_, X_keep * inv_lambda)
sigma_ = - np.dot(inv_lambda.reshape(-1, 1) * X_keep.T, sigma_)
sigma_[np.diag_indices(sigma_.shape[1])] += 1. / lambda_[keep_lambda]
return sigma_
def _update_sigma(self, X, alpha_, lambda_, keep_lambda):
# See slides as referenced in the docstring note
# this function is used when n_samples >= n_features and will
# invert a matrix of shape (n_features, n_features)
X_keep = X[:, keep_lambda]
gram = np.dot(X_keep.T, X_keep)
eye = np.eye(gram.shape[0])
sigma_inv = lambda_[keep_lambda] * eye + alpha_ * gram
sigma_ = pinvh(sigma_inv)
return sigma_
def predict(self, X, return_std=False):
"""Predict using the linear model.
In addition to the mean of the predictive distribution, also its
standard deviation can be returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
return_std : bool, default=False
Whether to return the standard deviation of posterior prediction.
Returns
-------
y_mean : array-like of shape (n_samples,)
Mean of predictive distribution of query points.
y_std : array-like of shape (n_samples,)
Standard deviation of predictive distribution of query points.
"""
y_mean = self._decision_function(X)
if return_std is False:
return y_mean
else:
if self.normalize:
X = (X - self.X_offset_) / self.X_scale_
X = X[:, self.lambda_ < self.threshold_lambda]
sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)
y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_))
return y_mean, y_std

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,15 @@
# License: BSD 3 clause
from .glm import (
GeneralizedLinearRegressor,
PoissonRegressor,
GammaRegressor,
TweedieRegressor
)
__all__ = [
"GeneralizedLinearRegressor",
"PoissonRegressor",
"GammaRegressor",
"TweedieRegressor"
]

View file

@ -0,0 +1,615 @@
"""
Generalized Linear Models with Exponential Dispersion Family
"""
# Author: Christian Lorentzen <lorentzen.ch@googlemail.com>
# some parts and tricks stolen from other sklearn files.
# License: BSD 3 clause
import numbers
import numpy as np
import scipy.optimize
from ...base import BaseEstimator, RegressorMixin
from ...utils import check_array, check_X_y
from ...utils.optimize import _check_optimize_result
from ...utils.validation import check_is_fitted, _check_sample_weight
from ..._loss.glm_distribution import (
ExponentialDispersionModel,
TweedieDistribution,
EDM_DISTRIBUTIONS
)
from .link import (
BaseLink,
IdentityLink,
LogLink,
)
def _safe_lin_pred(X, coef):
"""Compute the linear predictor taking care if intercept is present."""
if coef.size == X.shape[1] + 1:
return X @ coef[1:] + coef[0]
else:
return X @ coef
def _y_pred_deviance_derivative(coef, X, y, weights, family, link):
"""Compute y_pred and the derivative of the deviance w.r.t coef."""
lin_pred = _safe_lin_pred(X, coef)
y_pred = link.inverse(lin_pred)
d1 = link.inverse_derivative(lin_pred)
temp = d1 * family.deviance_derivative(y, y_pred, weights)
if coef.size == X.shape[1] + 1:
devp = np.concatenate(([temp.sum()], temp @ X))
else:
devp = temp @ X # same as X.T @ temp
return y_pred, devp
class GeneralizedLinearRegressor(BaseEstimator, RegressorMixin):
"""Regression via a penalized Generalized Linear Model (GLM).
GLMs based on a reproductive Exponential Dispersion Model (EDM) aim at
fitting and predicting the mean of the target y as y_pred=h(X*w).
Therefore, the fit minimizes the following objective function with L2
priors as regularizer::
1/(2*sum(s)) * deviance(y, h(X*w); s)
+ 1/2 * alpha * |w|_2
with inverse link function h and s=sample_weight.
The parameter ``alpha`` corresponds to the lambda parameter in glmnet.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
family : {'normal', 'poisson', 'gamma', 'inverse-gaussian'} \
or an ExponentialDispersionModel instance, default='normal'
The distributional assumption of the GLM, i.e. which distribution from
the EDM, specifies the loss function to be minimized.
link : {'auto', 'identity', 'log'} or an instance of class BaseLink, \
default='auto'
The link function of the GLM, i.e. mapping from linear predictor
`X @ coeff + intercept` to prediction `y_pred`. Option 'auto' sets
the link depending on the chosen family as follows:
- 'identity' for Normal distribution
- 'log' for Poisson, Gamma and Inverse Gaussian distributions
solver : 'lbfgs', default='lbfgs'
Algorithm to use in the optimization problem:
'lbfgs'
Calls scipy's L-BFGS-B optimizer.
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_``.
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, alpha=1.0,
fit_intercept=True, family='normal', link='auto',
solver='lbfgs', max_iter=100, tol=1e-4, warm_start=False,
verbose=0):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.family = family
self.link = link
self.solver = solver
self.max_iter = max_iter
self.tol = tol
self.warm_start = warm_start
self.verbose = verbose
def fit(self, X, y, sample_weight=None):
"""Fit a Generalized Linear Model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
self : returns an instance of self.
"""
if isinstance(self.family, ExponentialDispersionModel):
self._family_instance = self.family
elif self.family in EDM_DISTRIBUTIONS:
self._family_instance = EDM_DISTRIBUTIONS[self.family]()
else:
raise ValueError(
"The family must be an instance of class"
" ExponentialDispersionModel or an element of"
" ['normal', 'poisson', 'gamma', 'inverse-gaussian']"
"; got (family={0})".format(self.family))
# Guarantee that self._link_instance is set to an instance of
# class BaseLink
if isinstance(self.link, BaseLink):
self._link_instance = self.link
else:
if self.link == 'auto':
if isinstance(self._family_instance, TweedieDistribution):
if self._family_instance.power <= 0:
self._link_instance = IdentityLink()
if self._family_instance.power >= 1:
self._link_instance = LogLink()
else:
raise ValueError("No default link known for the "
"specified distribution family. Please "
"set link manually, i.e. not to 'auto'; "
"got (link='auto', family={})"
.format(self.family))
elif self.link == 'identity':
self._link_instance = IdentityLink()
elif self.link == 'log':
self._link_instance = LogLink()
else:
raise ValueError(
"The link must be an instance of class Link or "
"an element of ['auto', 'identity', 'log']; "
"got (link={0})".format(self.link))
if not isinstance(self.alpha, numbers.Number) or self.alpha < 0:
raise ValueError("Penalty term must be a non-negative number;"
" got (alpha={0})".format(self.alpha))
if not isinstance(self.fit_intercept, bool):
raise ValueError("The argument fit_intercept must be bool;"
" got {0}".format(self.fit_intercept))
if self.solver not in ['lbfgs']:
raise ValueError("GeneralizedLinearRegressor supports only solvers"
"'lbfgs'; got {0}".format(self.solver))
solver = self.solver
if (not isinstance(self.max_iter, numbers.Integral)
or self.max_iter <= 0):
raise ValueError("Maximum number of iteration must be a positive "
"integer;"
" got (max_iter={0!r})".format(self.max_iter))
if not isinstance(self.tol, numbers.Number) or self.tol <= 0:
raise ValueError("Tolerance for stopping criteria must be "
"positive; got (tol={0!r})".format(self.tol))
if not isinstance(self.warm_start, bool):
raise ValueError("The argument warm_start must be bool;"
" got {0}".format(self.warm_start))
family = self._family_instance
link = self._link_instance
X, y = check_X_y(X, y, accept_sparse=['csc', 'csr'],
dtype=[np.float64, np.float32],
y_numeric=True, multi_output=False)
weights = _check_sample_weight(sample_weight, X)
_, n_features = X.shape
if not np.all(family.in_y_range(y)):
raise ValueError("Some value(s) of y are out of the valid "
"range for family {0}"
.format(family.__class__.__name__))
# TODO: if alpha=0 check that X is not rank deficient
# rescaling of sample_weight
#
# IMPORTANT NOTE: Since we want to minimize
# 1/(2*sum(sample_weight)) * deviance + L2,
# deviance = sum(sample_weight * unit_deviance),
# we rescale weights such that sum(weights) = 1 and this becomes
# 1/2*deviance + L2 with deviance=sum(weights * unit_deviance)
weights = weights / weights.sum()
if self.warm_start and hasattr(self, 'coef_'):
if self.fit_intercept:
coef = np.concatenate((np.array([self.intercept_]),
self.coef_))
else:
coef = self.coef_
else:
if self.fit_intercept:
coef = np.zeros(n_features+1)
coef[0] = link(np.average(y, weights=weights))
else:
coef = np.zeros(n_features)
# algorithms for optimization
if solver == 'lbfgs':
def func(coef, X, y, weights, alpha, family, link):
y_pred, devp = _y_pred_deviance_derivative(
coef, X, y, weights, family, link
)
dev = family.deviance(y, y_pred, weights)
# offset if coef[0] is intercept
offset = 1 if self.fit_intercept else 0
coef_scaled = alpha * coef[offset:]
obj = 0.5 * dev + 0.5 * (coef[offset:] @ coef_scaled)
objp = 0.5 * devp
objp[offset:] += coef_scaled
return obj, objp
args = (X, y, weights, self.alpha, family, link)
opt_res = scipy.optimize.minimize(
func, coef, method="L-BFGS-B", jac=True,
options={
"maxiter": self.max_iter,
"iprint": (self.verbose > 0) - 1,
"gtol": self.tol,
"ftol": 1e3*np.finfo(float).eps,
},
args=args)
self.n_iter_ = _check_optimize_result("lbfgs", opt_res)
coef = opt_res.x
if self.fit_intercept:
self.intercept_ = coef[0]
self.coef_ = coef[1:]
else:
# set intercept to zero as the other linear models do
self.intercept_ = 0.
self.coef_ = coef
return self
def _linear_predictor(self, X):
"""Compute the linear_predictor = `X @ coef_ + intercept_`.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
Returns
-------
y_pred : array of shape (n_samples,)
Returns predicted values of linear predictor.
"""
check_is_fitted(self)
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'],
dtype=[np.float64, np.float32], ensure_2d=True,
allow_nd=False)
return X @ self.coef_ + self.intercept_
def predict(self, X):
"""Predict using GLM with feature matrix X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
Returns
-------
y_pred : array of shape (n_samples,)
Returns predicted values.
"""
# check_array is done in _linear_predictor
eta = self._linear_predictor(X)
y_pred = self._link_instance.inverse(eta)
return y_pred
def score(self, X, y, sample_weight=None):
"""Compute D^2, the percentage of deviance explained.
D^2 is a generalization of the coefficient of determination R^2.
R^2 uses squared error and D^2 deviance. Note that those two are equal
for ``family='normal'``.
D^2 is defined as
:math:`D^2 = 1-\\frac{D(y_{true},y_{pred})}{D_{null}}`,
:math:`D_{null}` is the null deviance, i.e. the deviance of a model
with intercept alone, which corresponds to :math:`y_{pred} = \\bar{y}`.
The mean :math:`\\bar{y}` is averaged by sample_weight.
Best possible score is 1.0 and it can be negative (because the model
can be arbitrarily worse).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples,)
True values of target.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
D^2 of self.predict(X) w.r.t. y.
"""
# Note, default score defined in RegressorMixin is R^2 score.
# TODO: make D^2 a score function in module metrics (and thereby get
# input validation and so on)
weights = _check_sample_weight(sample_weight, X)
y_pred = self.predict(X)
dev = self._family_instance.deviance(y, y_pred, weights=weights)
y_mean = np.average(y, weights=weights)
dev_null = self._family_instance.deviance(y, y_mean, weights=weights)
return 1 - dev / dev_null
def _more_tags(self):
# create the _family_instance if fit wasn't called yet.
if hasattr(self, '_family_instance'):
_family_instance = self._family_instance
elif isinstance(self.family, ExponentialDispersionModel):
_family_instance = self.family
elif self.family in EDM_DISTRIBUTIONS:
_family_instance = EDM_DISTRIBUTIONS[self.family]()
else:
raise ValueError
return {"requires_positive_y": not _family_instance.in_y_range(-1.0)}
class PoissonRegressor(GeneralizedLinearRegressor):
"""Generalized Linear Model with a Poisson distribution.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_`` .
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, alpha=1.0, fit_intercept=True, max_iter=100,
tol=1e-4, warm_start=False, verbose=0):
super().__init__(alpha=alpha, fit_intercept=fit_intercept,
family="poisson", link='log', max_iter=max_iter,
tol=tol, warm_start=warm_start, verbose=verbose)
@property
def family(self):
# Make this attribute read-only to avoid mis-uses e.g. in GridSearch.
return "poisson"
@family.setter
def family(self, value):
if value != "poisson":
raise ValueError("PoissonRegressor.family must be 'poisson'!")
class GammaRegressor(GeneralizedLinearRegressor):
"""Generalized Linear Model with a Gamma distribution.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_`` .
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X * coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, alpha=1.0, fit_intercept=True, max_iter=100,
tol=1e-4, warm_start=False, verbose=0):
super().__init__(alpha=alpha, fit_intercept=fit_intercept,
family="gamma", link='log', max_iter=max_iter,
tol=tol, warm_start=warm_start, verbose=verbose)
@property
def family(self):
# Make this attribute read-only to avoid mis-uses e.g. in GridSearch.
return "gamma"
@family.setter
def family(self, value):
if value != "gamma":
raise ValueError("GammaRegressor.family must be 'gamma'!")
class TweedieRegressor(GeneralizedLinearRegressor):
"""Generalized Linear Model with a Tweedie distribution.
This estimator can be used to model different GLMs depending on the
``power`` parameter, which determines the underlying distribution.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
power : float, default=0
The power determines the underlying target distribution according
to the following table:
+-------+------------------------+
| Power | Distribution |
+=======+========================+
| 0 | Normal |
+-------+------------------------+
| 1 | Poisson |
+-------+------------------------+
| (1,2) | Compound Poisson Gamma |
+-------+------------------------+
| 2 | Gamma |
+-------+------------------------+
| 3 | Inverse Gaussian |
+-------+------------------------+
For ``0 < power < 1``, no distribution exists.
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
link : {'auto', 'identity', 'log'}, default='auto'
The link function of the GLM, i.e. mapping from linear predictor
`X @ coeff + intercept` to prediction `y_pred`. Option 'auto' sets
the link depending on the chosen family as follows:
- 'identity' for Normal distribution
- 'log' for Poisson, Gamma and Inverse Gaussian distributions
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_`` .
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, power=0.0, alpha=1.0, fit_intercept=True,
link='auto', max_iter=100, tol=1e-4,
warm_start=False, verbose=0):
super().__init__(alpha=alpha, fit_intercept=fit_intercept,
family=TweedieDistribution(power=power), link=link,
max_iter=max_iter, tol=tol,
warm_start=warm_start, verbose=verbose)
@property
def family(self):
# We use a property with a setter to make sure that the family is
# always a Tweedie distribution, and that self.power and
# self.family.power are identical by construction.
dist = TweedieDistribution(power=self.power)
# TODO: make the returned object immutable
return dist
@family.setter
def family(self, value):
if isinstance(value, TweedieDistribution):
self.power = value.power
else:
raise TypeError("TweedieRegressor.family must be of type "
"TweedieDistribution!")

View file

@ -0,0 +1,110 @@
"""
Link functions used in GLM
"""
# Author: Christian Lorentzen <lorentzen.ch@googlemail.com>
# License: BSD 3 clause
from abc import ABCMeta, abstractmethod
import numpy as np
from scipy.special import expit, logit
class BaseLink(metaclass=ABCMeta):
"""Abstract base class for Link functions."""
@abstractmethod
def __call__(self, y_pred):
"""Compute the link function g(y_pred).
The link function links the mean y_pred=E[Y] to the so called linear
predictor (X*w), i.e. g(y_pred) = linear predictor.
Parameters
----------
y_pred : array of shape (n_samples,)
Usually the (predicted) mean.
"""
@abstractmethod
def derivative(self, y_pred):
"""Compute the derivative of the link g'(y_pred).
Parameters
----------
y_pred : array of shape (n_samples,)
Usually the (predicted) mean.
"""
@abstractmethod
def inverse(self, lin_pred):
"""Compute the inverse link function h(lin_pred).
Gives the inverse relationship between linear predictor and the mean
y_pred=E[Y], i.e. h(linear predictor) = y_pred.
Parameters
----------
lin_pred : array of shape (n_samples,)
Usually the (fitted) linear predictor.
"""
@abstractmethod
def inverse_derivative(self, lin_pred):
"""Compute the derivative of the inverse link function h'(lin_pred).
Parameters
----------
lin_pred : array of shape (n_samples,)
Usually the (fitted) linear predictor.
"""
class IdentityLink(BaseLink):
"""The identity link function g(x)=x."""
def __call__(self, y_pred):
return y_pred
def derivative(self, y_pred):
return np.ones_like(y_pred)
def inverse(self, lin_pred):
return lin_pred
def inverse_derivative(self, lin_pred):
return np.ones_like(lin_pred)
class LogLink(BaseLink):
"""The log link function g(x)=log(x)."""
def __call__(self, y_pred):
return np.log(y_pred)
def derivative(self, y_pred):
return 1 / y_pred
def inverse(self, lin_pred):
return np.exp(lin_pred)
def inverse_derivative(self, lin_pred):
return np.exp(lin_pred)
class LogitLink(BaseLink):
"""The logit link function g(x)=logit(x)."""
def __call__(self, y_pred):
return logit(y_pred)
def derivative(self, y_pred):
return 1 / (y_pred * (1 - y_pred))
def inverse(self, lin_pred):
return expit(lin_pred)
def inverse_derivative(self, lin_pred):
ep = expit(lin_pred)
return ep * (1 - ep)

View file

@ -0,0 +1 @@
# License: BSD 3 clause

View file

@ -0,0 +1,431 @@
# Authors: Christian Lorentzen <lorentzen.ch@gmail.com>
#
# License: BSD 3 clause
import numpy as np
from numpy.testing import assert_allclose
import pytest
import warnings
from sklearn.datasets import make_regression
from sklearn.linear_model._glm import GeneralizedLinearRegressor
from sklearn.linear_model import (
TweedieRegressor,
PoissonRegressor,
GammaRegressor
)
from sklearn.linear_model._glm.link import (
IdentityLink,
LogLink,
)
from sklearn._loss.glm_distribution import (
TweedieDistribution,
NormalDistribution, PoissonDistribution,
GammaDistribution, InverseGaussianDistribution,
)
from sklearn.linear_model import Ridge
from sklearn.exceptions import ConvergenceWarning
from sklearn.model_selection import train_test_split
@pytest.fixture(scope="module")
def regression_data():
X, y = make_regression(n_samples=107,
n_features=10,
n_informative=80, noise=0.5,
random_state=2)
return X, y
def test_sample_weights_validation():
"""Test the raised errors in the validation of sample_weight."""
# scalar value but not positive
X = [[1]]
y = [1]
weights = 0
glm = GeneralizedLinearRegressor()
# Positive weights are accepted
glm.fit(X, y, sample_weight=1)
# 2d array
weights = [[0]]
with pytest.raises(ValueError, match="must be 1D array or scalar"):
glm.fit(X, y, weights)
# 1d but wrong length
weights = [1, 0]
msg = r"sample_weight.shape == \(2,\), expected \(1,\)!"
with pytest.raises(ValueError, match=msg):
glm.fit(X, y, weights)
@pytest.mark.parametrize('name, instance',
[('normal', NormalDistribution()),
('poisson', PoissonDistribution()),
('gamma', GammaDistribution()),
('inverse-gaussian', InverseGaussianDistribution())])
def test_glm_family_argument(name, instance):
"""Test GLM family argument set as string."""
y = np.array([0.1, 0.5]) # in range of all distributions
X = np.array([[1], [2]])
glm = GeneralizedLinearRegressor(family=name, alpha=0).fit(X, y)
assert isinstance(glm._family_instance, instance.__class__)
glm = GeneralizedLinearRegressor(family='not a family')
with pytest.raises(ValueError, match="family must be"):
glm.fit(X, y)
@pytest.mark.parametrize('name, instance',
[('identity', IdentityLink()),
('log', LogLink())])
def test_glm_link_argument(name, instance):
"""Test GLM link argument set as string."""
y = np.array([0.1, 0.5]) # in range of all distributions
X = np.array([[1], [2]])
glm = GeneralizedLinearRegressor(family='normal', link=name).fit(X, y)
assert isinstance(glm._link_instance, instance.__class__)
glm = GeneralizedLinearRegressor(family='normal', link='not a link')
with pytest.raises(ValueError, match="link must be"):
glm.fit(X, y)
@pytest.mark.parametrize('family, expected_link_class', [
('normal', IdentityLink),
('poisson', LogLink),
('gamma', LogLink),
('inverse-gaussian', LogLink),
])
def test_glm_link_auto(family, expected_link_class):
# Make sure link='auto' delivers the expected link function
y = np.array([0.1, 0.5]) # in range of all distributions
X = np.array([[1], [2]])
glm = GeneralizedLinearRegressor(family=family, link='auto').fit(X, y)
assert isinstance(glm._link_instance, expected_link_class)
@pytest.mark.parametrize('alpha', ['not a number', -4.2])
def test_glm_alpha_argument(alpha):
"""Test GLM for invalid alpha argument."""
y = np.array([1, 2])
X = np.array([[1], [2]])
glm = GeneralizedLinearRegressor(family='normal', alpha=alpha)
with pytest.raises(ValueError,
match="Penalty term must be a non-negative"):
glm.fit(X, y)
@pytest.mark.parametrize('fit_intercept', ['not bool', 1, 0, [True]])
def test_glm_fit_intercept_argument(fit_intercept):
"""Test GLM for invalid fit_intercept argument."""
y = np.array([1, 2])
X = np.array([[1], [1]])
glm = GeneralizedLinearRegressor(fit_intercept=fit_intercept)
with pytest.raises(ValueError, match="fit_intercept must be bool"):
glm.fit(X, y)
@pytest.mark.parametrize('solver',
['not a solver', 1, [1]])
def test_glm_solver_argument(solver):
"""Test GLM for invalid solver argument."""
y = np.array([1, 2])
X = np.array([[1], [2]])
glm = GeneralizedLinearRegressor(solver=solver)
with pytest.raises(ValueError):
glm.fit(X, y)
@pytest.mark.parametrize('max_iter', ['not a number', 0, -1, 5.5, [1]])
def test_glm_max_iter_argument(max_iter):
"""Test GLM for invalid max_iter argument."""
y = np.array([1, 2])
X = np.array([[1], [2]])
glm = GeneralizedLinearRegressor(max_iter=max_iter)
with pytest.raises(ValueError, match="must be a positive integer"):
glm.fit(X, y)
@pytest.mark.parametrize('tol', ['not a number', 0, -1.0, [1e-3]])
def test_glm_tol_argument(tol):
"""Test GLM for invalid tol argument."""
y = np.array([1, 2])
X = np.array([[1], [2]])
glm = GeneralizedLinearRegressor(tol=tol)
with pytest.raises(ValueError, match="stopping criteria must be positive"):
glm.fit(X, y)
@pytest.mark.parametrize('warm_start', ['not bool', 1, 0, [True]])
def test_glm_warm_start_argument(warm_start):
"""Test GLM for invalid warm_start argument."""
y = np.array([1, 2])
X = np.array([[1], [1]])
glm = GeneralizedLinearRegressor(warm_start=warm_start)
with pytest.raises(ValueError, match="warm_start must be bool"):
glm.fit(X, y)
@pytest.mark.parametrize('fit_intercept', [False, True])
def test_glm_identity_regression(fit_intercept):
"""Test GLM regression with identity link on a simple dataset."""
coef = [1., 2.]
X = np.array([[1, 1, 1, 1, 1], [0, 1, 2, 3, 4]]).T
y = np.dot(X, coef)
glm = GeneralizedLinearRegressor(alpha=0, family='normal', link='identity',
fit_intercept=fit_intercept, tol=1e-12)
if fit_intercept:
glm.fit(X[:, 1:], y)
assert_allclose(glm.coef_, coef[1:], rtol=1e-10)
assert_allclose(glm.intercept_, coef[0], rtol=1e-10)
else:
glm.fit(X, y)
assert_allclose(glm.coef_, coef, rtol=1e-12)
@pytest.mark.parametrize('fit_intercept', [False, True])
@pytest.mark.parametrize('alpha', [0.0, 1.0])
@pytest.mark.parametrize('family', ['normal', 'poisson', 'gamma'])
def test_glm_sample_weight_consistentcy(fit_intercept, alpha, family):
"""Test that the impact of sample_weight is consistent"""
rng = np.random.RandomState(0)
n_samples, n_features = 10, 5
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
glm_params = dict(alpha=alpha, family=family, link='auto',
fit_intercept=fit_intercept)
glm = GeneralizedLinearRegressor(**glm_params).fit(X, y)
coef = glm.coef_.copy()
# sample_weight=np.ones(..) should be equivalent to sample_weight=None
sample_weight = np.ones(y.shape)
glm.fit(X, y, sample_weight=sample_weight)
assert_allclose(glm.coef_, coef, rtol=1e-12)
# sample_weight are normalized to 1 so, scaling them has no effect
sample_weight = 2*np.ones(y.shape)
glm.fit(X, y, sample_weight=sample_weight)
assert_allclose(glm.coef_, coef, rtol=1e-12)
# setting one element of sample_weight to 0 is equivalent to removing
# the correspoding sample
sample_weight = np.ones(y.shape)
sample_weight[-1] = 0
glm.fit(X, y, sample_weight=sample_weight)
coef1 = glm.coef_.copy()
glm.fit(X[:-1], y[:-1])
assert_allclose(glm.coef_, coef1, rtol=1e-12)
# check that multiplying sample_weight by 2 is equivalent
# to repeating correspoding samples twice
X2 = np.concatenate([X, X[:n_samples//2]], axis=0)
y2 = np.concatenate([y, y[:n_samples//2]])
sample_weight_1 = np.ones(len(y))
sample_weight_1[:n_samples//2] = 2
glm1 = GeneralizedLinearRegressor(**glm_params).fit(
X, y, sample_weight=sample_weight_1
)
glm2 = GeneralizedLinearRegressor(**glm_params).fit(
X2, y2, sample_weight=None
)
assert_allclose(glm1.coef_, glm2.coef_)
@pytest.mark.parametrize('fit_intercept', [True, False])
@pytest.mark.parametrize(
'family',
[NormalDistribution(), PoissonDistribution(),
GammaDistribution(), InverseGaussianDistribution(),
TweedieDistribution(power=1.5), TweedieDistribution(power=4.5)])
def test_glm_log_regression(fit_intercept, family):
"""Test GLM regression with log link on a simple dataset."""
coef = [0.2, -0.1]
X = np.array([[1, 1, 1, 1, 1], [0, 1, 2, 3, 4]]).T
y = np.exp(np.dot(X, coef))
glm = GeneralizedLinearRegressor(
alpha=0, family=family, link='log',
fit_intercept=fit_intercept, tol=1e-7)
if fit_intercept:
res = glm.fit(X[:, 1:], y)
assert_allclose(res.coef_, coef[1:], rtol=1e-6)
assert_allclose(res.intercept_, coef[0], rtol=1e-6)
else:
res = glm.fit(X, y)
assert_allclose(res.coef_, coef, rtol=2e-6)
@pytest.mark.parametrize('fit_intercept', [True, False])
def test_warm_start(fit_intercept):
n_samples, n_features = 110, 10
X, y = make_regression(n_samples=n_samples, n_features=n_features,
n_informative=n_features-2, noise=0.5,
random_state=42)
glm1 = GeneralizedLinearRegressor(
warm_start=False,
fit_intercept=fit_intercept,
max_iter=1000
)
glm1.fit(X, y)
glm2 = GeneralizedLinearRegressor(
warm_start=True,
fit_intercept=fit_intercept,
max_iter=1
)
# As we intentionally set max_iter=1, L-BFGS-B will issue a
# ConvergenceWarning which we here simply ignore.
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=ConvergenceWarning)
glm2.fit(X, y)
assert glm1.score(X, y) > glm2.score(X, y)
glm2.set_params(max_iter=1000)
glm2.fit(X, y)
# The two model are not exactly identical since the lbfgs solver
# computes the approximate hessian from previous iterations, which
# will not be strictly identical in the case of a warm start.
assert_allclose(glm1.coef_, glm2.coef_, rtol=1e-5)
assert_allclose(glm1.score(X, y), glm2.score(X, y), rtol=1e-4)
@pytest.mark.parametrize('n_samples, n_features', [(100, 10), (10, 100)])
@pytest.mark.parametrize('fit_intercept', [True, False])
@pytest.mark.parametrize('sample_weight', [None, True])
def test_normal_ridge_comparison(n_samples, n_features, fit_intercept,
sample_weight, request):
"""Compare with Ridge regression for Normal distributions."""
test_size = 10
X, y = make_regression(n_samples=n_samples + test_size,
n_features=n_features,
n_informative=n_features-2, noise=0.5,
random_state=42)
if n_samples > n_features:
ridge_params = {"solver": "svd"}
else:
ridge_params = {"solver": "saga", "max_iter": 1000000, "tol": 1e-7}
X_train, X_test, y_train, y_test, = train_test_split(
X, y, test_size=test_size, random_state=0
)
alpha = 1.0
if sample_weight is None:
sw_train = None
alpha_ridge = alpha * n_samples
else:
sw_train = np.random.RandomState(0).rand(len(y_train))
alpha_ridge = alpha * sw_train.sum()
# GLM has 1/(2*n) * Loss + 1/2*L2, Ridge has Loss + L2
ridge = Ridge(alpha=alpha_ridge, normalize=False,
random_state=42, fit_intercept=fit_intercept,
**ridge_params)
ridge.fit(X_train, y_train, sample_weight=sw_train)
glm = GeneralizedLinearRegressor(alpha=alpha, family='normal',
link='identity',
fit_intercept=fit_intercept,
max_iter=300,
tol=1e-5)
glm.fit(X_train, y_train, sample_weight=sw_train)
assert glm.coef_.shape == (X.shape[1], )
assert_allclose(glm.coef_, ridge.coef_, atol=5e-5)
assert_allclose(glm.intercept_, ridge.intercept_, rtol=1e-5)
assert_allclose(glm.predict(X_train), ridge.predict(X_train), rtol=2e-4)
assert_allclose(glm.predict(X_test), ridge.predict(X_test), rtol=2e-4)
def test_poisson_glmnet():
"""Compare Poisson regression with L2 regularization and LogLink to glmnet
"""
# library("glmnet")
# options(digits=10)
# df <- data.frame(a=c(-2,-1,1,2), b=c(0,0,1,1), y=c(0,1,1,2))
# x <- data.matrix(df[,c("a", "b")])
# y <- df$y
# fit <- glmnet(x=x, y=y, alpha=0, intercept=T, family="poisson",
# standardize=F, thresh=1e-10, nlambda=10000)
# coef(fit, s=1)
# (Intercept) -0.12889386979
# a 0.29019207995
# b 0.03741173122
X = np.array([[-2, -1, 1, 2], [0, 0, 1, 1]]).T
y = np.array([0, 1, 1, 2])
glm = GeneralizedLinearRegressor(alpha=1,
fit_intercept=True, family='poisson',
link='log', tol=1e-7,
max_iter=300)
glm.fit(X, y)
assert_allclose(glm.intercept_, -0.12889386979, rtol=1e-5)
assert_allclose(glm.coef_, [0.29019207995, 0.03741173122], rtol=1e-5)
def test_convergence_warning(regression_data):
X, y = regression_data
est = GeneralizedLinearRegressor(max_iter=1, tol=1e-20)
with pytest.warns(ConvergenceWarning):
est.fit(X, y)
def test_poisson_regression_family(regression_data):
# Make sure the family attribute is read-only to prevent searching over it
# e.g. in a grid search
est = PoissonRegressor()
est.family == "poisson"
msg = "PoissonRegressor.family must be 'poisson'!"
with pytest.raises(ValueError, match=msg):
est.family = 0
def test_gamma_regression_family(regression_data):
# Make sure the family attribute is read-only to prevent searching over it
# e.g. in a grid search
est = GammaRegressor()
est.family == "gamma"
msg = "GammaRegressor.family must be 'gamma'!"
with pytest.raises(ValueError, match=msg):
est.family = 0
def test_tweedie_regression_family(regression_data):
# Make sure the family attribute is always a TweedieDistribution and that
# the power attribute is properly updated
power = 2.0
est = TweedieRegressor(power=power)
assert isinstance(est.family, TweedieDistribution)
assert est.family.power == power
assert est.power == power
new_power = 0
new_family = TweedieDistribution(power=new_power)
est.family = new_family
assert isinstance(est.family, TweedieDistribution)
assert est.family.power == new_power
assert est.power == new_power
msg = "TweedieRegressor.family must be of type TweedieDistribution!"
with pytest.raises(TypeError, match=msg):
est.family = None
@pytest.mark.parametrize(
'estimator, value',
[
(PoissonRegressor(), True),
(GammaRegressor(), True),
(TweedieRegressor(power=1.5), True),
(TweedieRegressor(power=0), False)
],
)
def test_tags(estimator, value):
assert estimator._get_tags()['requires_positive_y'] is value

View file

@ -0,0 +1,45 @@
# Authors: Christian Lorentzen <lorentzen.ch@gmail.com>
#
# License: BSD 3 clause
import numpy as np
from numpy.testing import assert_allclose
import pytest
from scipy.optimize import check_grad
from sklearn.linear_model._glm.link import (
IdentityLink,
LogLink,
LogitLink,
)
LINK_FUNCTIONS = [IdentityLink, LogLink, LogitLink]
@pytest.mark.parametrize('Link', LINK_FUNCTIONS)
def test_link_properties(Link):
"""Test link inverse and derivative."""
rng = np.random.RandomState(42)
x = rng.rand(100) * 100
link = Link()
if isinstance(link, LogitLink):
# careful for large x, note expit(36) = 1
# limit max eta to 15
x = x / 100 * 15
assert_allclose(link(link.inverse(x)), x)
# if g(h(x)) = x, then g'(h(x)) = 1/h'(x)
# g = link, h = link.inverse
assert_allclose(link.derivative(link.inverse(x)),
1 / link.inverse_derivative(x))
@pytest.mark.parametrize('Link', LINK_FUNCTIONS)
def test_link_derivative(Link):
link = Link()
x = np.random.RandomState(0).rand(1)
err = check_grad(link, link.derivative, x) / link.derivative(x)
assert abs(err) < 1e-6
err = (check_grad(link.inverse, link.inverse_derivative, x)
/ link.derivative(x))
assert abs(err) < 1e-6

View file

@ -0,0 +1,307 @@
# Authors: Manoj Kumar mks542@nyu.edu
# License: BSD 3 clause
import numpy as np
from scipy import optimize
from ..base import BaseEstimator, RegressorMixin
from ._base import LinearModel
from ..utils import axis0_safe_slice
from ..utils.validation import _check_sample_weight
from ..utils.validation import _deprecate_positional_args
from ..utils.extmath import safe_sparse_dot
from ..utils.optimize import _check_optimize_result
def _huber_loss_and_gradient(w, X, y, epsilon, alpha, sample_weight=None):
"""Returns the Huber loss and the gradient.
Parameters
----------
w : ndarray, shape (n_features + 1,) or (n_features + 2,)
Feature vector.
w[:n_features] gives the coefficients
w[-1] gives the scale factor and if the intercept is fit w[-2]
gives the intercept factor.
X : ndarray, shape (n_samples, n_features)
Input data.
y : ndarray, shape (n_samples,)
Target vector.
epsilon : float
Robustness of the Huber estimator.
alpha : float
Regularization parameter.
sample_weight : ndarray, shape (n_samples,), optional
Weight assigned to each sample.
Returns
-------
loss : float
Huber loss.
gradient : ndarray, shape (len(w))
Returns the derivative of the Huber loss with respect to each
coefficient, intercept and the scale as a vector.
"""
_, n_features = X.shape
fit_intercept = (n_features + 2 == w.shape[0])
if fit_intercept:
intercept = w[-2]
sigma = w[-1]
w = w[:n_features]
n_samples = np.sum(sample_weight)
# Calculate the values where |y - X'w -c / sigma| > epsilon
# The values above this threshold are outliers.
linear_loss = y - safe_sparse_dot(X, w)
if fit_intercept:
linear_loss -= intercept
abs_linear_loss = np.abs(linear_loss)
outliers_mask = abs_linear_loss > epsilon * sigma
# Calculate the linear loss due to the outliers.
# This is equal to (2 * M * |y - X'w -c / sigma| - M**2) * sigma
outliers = abs_linear_loss[outliers_mask]
num_outliers = np.count_nonzero(outliers_mask)
n_non_outliers = X.shape[0] - num_outliers
# n_sq_outliers includes the weight give to the outliers while
# num_outliers is just the number of outliers.
outliers_sw = sample_weight[outliers_mask]
n_sw_outliers = np.sum(outliers_sw)
outlier_loss = (2. * epsilon * np.sum(outliers_sw * outliers) -
sigma * n_sw_outliers * epsilon ** 2)
# Calculate the quadratic loss due to the non-outliers.-
# This is equal to |(y - X'w - c)**2 / sigma**2| * sigma
non_outliers = linear_loss[~outliers_mask]
weighted_non_outliers = sample_weight[~outliers_mask] * non_outliers
weighted_loss = np.dot(weighted_non_outliers.T, non_outliers)
squared_loss = weighted_loss / sigma
if fit_intercept:
grad = np.zeros(n_features + 2)
else:
grad = np.zeros(n_features + 1)
# Gradient due to the squared loss.
X_non_outliers = -axis0_safe_slice(X, ~outliers_mask, n_non_outliers)
grad[:n_features] = (
2. / sigma * safe_sparse_dot(weighted_non_outliers, X_non_outliers))
# Gradient due to the linear loss.
signed_outliers = np.ones_like(outliers)
signed_outliers_mask = linear_loss[outliers_mask] < 0
signed_outliers[signed_outliers_mask] = -1.0
X_outliers = axis0_safe_slice(X, outliers_mask, num_outliers)
sw_outliers = sample_weight[outliers_mask] * signed_outliers
grad[:n_features] -= 2. * epsilon * (
safe_sparse_dot(sw_outliers, X_outliers))
# Gradient due to the penalty.
grad[:n_features] += alpha * 2. * w
# Gradient due to sigma.
grad[-1] = n_samples
grad[-1] -= n_sw_outliers * epsilon ** 2
grad[-1] -= squared_loss / sigma
# Gradient due to the intercept.
if fit_intercept:
grad[-2] = -2. * np.sum(weighted_non_outliers) / sigma
grad[-2] -= 2. * epsilon * np.sum(sw_outliers)
loss = n_samples * sigma + squared_loss + outlier_loss
loss += alpha * np.dot(w, w)
return loss, grad
class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator):
"""Linear regression model that is robust to outliers.
The Huber Regressor optimizes the squared loss for the samples where
``|(y - X'w) / sigma| < epsilon`` and the absolute loss for the samples
where ``|(y - X'w) / sigma| > epsilon``, where w and sigma are parameters
to be optimized. The parameter sigma makes sure that if y is scaled up
or down by a certain factor, one does not need to rescale epsilon to
achieve the same robustness. Note that this does not take into account
the fact that the different features of X may be of different scales.
This makes sure that the loss function is not heavily influenced by the
outliers while not completely ignoring their effect.
Read more in the :ref:`User Guide <huber_regression>`
.. versionadded:: 0.18
Parameters
----------
epsilon : float, greater than 1.0, default 1.35
The parameter epsilon controls the number of samples that should be
classified as outliers. The smaller the epsilon, the more robust it is
to outliers.
max_iter : int, default 100
Maximum number of iterations that
``scipy.optimize.minimize(method="L-BFGS-B")`` should run for.
alpha : float, default 0.0001
Regularization parameter.
warm_start : bool, default False
This is useful if the stored attributes of a previously used model
has to be reused. If set to False, then the coefficients will
be rewritten for every call to fit.
See :term:`the Glossary <warm_start>`.
fit_intercept : bool, default True
Whether or not to fit the intercept. This can be set to False
if the data is already centered around the origin.
tol : float, default 1e-5
The iteration will stop when
``max{|proj g_i | i = 1, ..., n}`` <= ``tol``
where pg_i is the i-th component of the projected gradient.
Attributes
----------
coef_ : array, shape (n_features,)
Features got by optimizing the Huber loss.
intercept_ : float
Bias.
scale_ : float
The value by which ``|y - X'w - c|`` is scaled down.
n_iter_ : int
Number of iterations that
``scipy.optimize.minimize(method="L-BFGS-B")`` has run for.
.. versionchanged:: 0.20
In SciPy <= 1.0.0 the number of lbfgs iterations may exceed
``max_iter``. ``n_iter_`` will now report at most ``max_iter``.
outliers_ : array, shape (n_samples,)
A boolean mask which is set to True where the samples are identified
as outliers.
Examples
--------
>>> import numpy as np
>>> from sklearn.linear_model import HuberRegressor, LinearRegression
>>> from sklearn.datasets import make_regression
>>> rng = np.random.RandomState(0)
>>> X, y, coef = make_regression(
... n_samples=200, n_features=2, noise=4.0, coef=True, random_state=0)
>>> X[:4] = rng.uniform(10, 20, (4, 2))
>>> y[:4] = rng.uniform(10, 20, 4)
>>> huber = HuberRegressor().fit(X, y)
>>> huber.score(X, y)
-7.284...
>>> huber.predict(X[:1,])
array([806.7200...])
>>> linear = LinearRegression().fit(X, y)
>>> print("True coefficients:", coef)
True coefficients: [20.4923... 34.1698...]
>>> print("Huber coefficients:", huber.coef_)
Huber coefficients: [17.7906... 31.0106...]
>>> print("Linear Regression coefficients:", linear.coef_)
Linear Regression coefficients: [-1.9221... 7.0226...]
References
----------
.. [1] Peter J. Huber, Elvezio M. Ronchetti, Robust Statistics
Concomitant scale estimates, pg 172
.. [2] Art B. Owen (2006), A robust hybrid of lasso and ridge regression.
https://statweb.stanford.edu/~owen/reports/hhu.pdf
"""
@_deprecate_positional_args
def __init__(self, *, epsilon=1.35, max_iter=100, alpha=0.0001,
warm_start=False, fit_intercept=True, tol=1e-05):
self.epsilon = epsilon
self.max_iter = max_iter
self.alpha = alpha
self.warm_start = warm_start
self.fit_intercept = fit_intercept
self.tol = tol
def fit(self, X, y, sample_weight=None):
"""Fit the model according to the given training data.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples,)
Target vector relative to X.
sample_weight : array-like, shape (n_samples,)
Weight given to each sample.
Returns
-------
self : object
"""
X, y = self._validate_data(
X, y, copy=False, accept_sparse=['csr'], y_numeric=True,
dtype=[np.float64, np.float32])
sample_weight = _check_sample_weight(sample_weight, X)
if self.epsilon < 1.0:
raise ValueError(
"epsilon should be greater than or equal to 1.0, got %f"
% self.epsilon)
if self.warm_start and hasattr(self, 'coef_'):
parameters = np.concatenate(
(self.coef_, [self.intercept_, self.scale_]))
else:
if self.fit_intercept:
parameters = np.zeros(X.shape[1] + 2)
else:
parameters = np.zeros(X.shape[1] + 1)
# Make sure to initialize the scale parameter to a strictly
# positive value:
parameters[-1] = 1
# Sigma or the scale factor should be non-negative.
# Setting it to be zero might cause undefined bounds hence we set it
# to a value close to zero.
bounds = np.tile([-np.inf, np.inf], (parameters.shape[0], 1))
bounds[-1][0] = np.finfo(np.float64).eps * 10
opt_res = optimize.minimize(
_huber_loss_and_gradient, parameters, method="L-BFGS-B", jac=True,
args=(X, y, self.epsilon, self.alpha, sample_weight),
options={"maxiter": self.max_iter, "gtol": self.tol, "iprint": -1},
bounds=bounds)
parameters = opt_res.x
if opt_res.status == 2:
raise ValueError("HuberRegressor convergence failed:"
" l-BFGS-b solver terminated with %s"
% opt_res.message)
self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)
self.scale_ = parameters[-1]
if self.fit_intercept:
self.intercept_ = parameters[-2]
else:
self.intercept_ = 0.0
self.coef_ = parameters[:X.shape[1]]
residual = np.abs(
y - safe_sparse_dot(X, self.coef_) - self.intercept_)
self.outliers_ = residual > self.scale_ * self.epsilon
return self

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,913 @@
"""Orthogonal matching pursuit algorithms
"""
# Author: Vlad Niculae
#
# License: BSD 3 clause
import warnings
from math import sqrt
import numpy as np
from scipy import linalg
from scipy.linalg.lapack import get_lapack_funcs
from joblib import Parallel, delayed
from ._base import LinearModel, _pre_fit
from ..base import RegressorMixin, MultiOutputMixin
from ..utils import as_float_array, check_array
from ..utils.validation import _deprecate_positional_args
from ..model_selection import check_cv
premature = """ Orthogonal matching pursuit ended prematurely due to linear
dependence in the dictionary. The requested precision might not have been met.
"""
def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True,
return_path=False):
"""Orthogonal Matching Pursuit step using the Cholesky decomposition.
Parameters
----------
X : array, shape (n_samples, n_features)
Input dictionary. Columns are assumed to have unit norm.
y : array, shape (n_samples,)
Input targets
n_nonzero_coefs : int
Targeted number of non-zero elements
tol : float
Targeted squared error, if not None overrides n_nonzero_coefs.
copy_X : bool, optional
Whether the design matrix X must be copied by the algorithm. A false
value is only helpful if X is already Fortran-ordered, otherwise a
copy is made anyway.
return_path : bool, optional. Default: False
Whether to return every value of the nonzero coefficients along the
forward path. Useful for cross-validation.
Returns
-------
gamma : array, shape (n_nonzero_coefs,)
Non-zero elements of the solution
idx : array, shape (n_nonzero_coefs,)
Indices of the positions of the elements in gamma within the solution
vector
coef : array, shape (n_features, n_nonzero_coefs)
The first k values of column k correspond to the coefficient value
for the active features at that step. The lower left triangle contains
garbage. Only returned if ``return_path=True``.
n_active : int
Number of active features at convergence.
"""
if copy_X:
X = X.copy('F')
else: # even if we are allowed to overwrite, still copy it if bad order
X = np.asfortranarray(X)
min_float = np.finfo(X.dtype).eps
nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,))
potrs, = get_lapack_funcs(('potrs',), (X,))
alpha = np.dot(X.T, y)
residual = y
gamma = np.empty(0)
n_active = 0
indices = np.arange(X.shape[1]) # keeping track of swapping
max_features = X.shape[1] if tol is not None else n_nonzero_coefs
L = np.empty((max_features, max_features), dtype=X.dtype)
if return_path:
coefs = np.empty_like(L)
while True:
lam = np.argmax(np.abs(np.dot(X.T, residual)))
if lam < n_active or alpha[lam] ** 2 < min_float:
# atom already selected or inner product too small
warnings.warn(premature, RuntimeWarning, stacklevel=2)
break
if n_active > 0:
# Updates the Cholesky decomposition of X' X
L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam])
linalg.solve_triangular(L[:n_active, :n_active],
L[n_active, :n_active],
trans=0, lower=1,
overwrite_b=True,
check_finite=False)
v = nrm2(L[n_active, :n_active]) ** 2
Lkk = linalg.norm(X[:, lam]) ** 2 - v
if Lkk <= min_float: # selected atoms are dependent
warnings.warn(premature, RuntimeWarning, stacklevel=2)
break
L[n_active, n_active] = sqrt(Lkk)
else:
L[0, 0] = linalg.norm(X[:, lam])
X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam])
alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active]
indices[n_active], indices[lam] = indices[lam], indices[n_active]
n_active += 1
# solves LL'x = X'y as a composition of two triangular systems
gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True,
overwrite_b=False)
if return_path:
coefs[:n_active, n_active - 1] = gamma
residual = y - np.dot(X[:, :n_active], gamma)
if tol is not None and nrm2(residual) ** 2 <= tol:
break
elif n_active == max_features:
break
if return_path:
return gamma, indices[:n_active], coefs[:, :n_active], n_active
else:
return gamma, indices[:n_active], n_active
def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None,
copy_Gram=True, copy_Xy=True, return_path=False):
"""Orthogonal Matching Pursuit step on a precomputed Gram matrix.
This function uses the Cholesky decomposition method.
Parameters
----------
Gram : array, shape (n_features, n_features)
Gram matrix of the input data matrix
Xy : array, shape (n_features,)
Input targets
n_nonzero_coefs : int
Targeted number of non-zero elements
tol_0 : float
Squared norm of y, required if tol is not None.
tol : float
Targeted squared error, if not None overrides n_nonzero_coefs.
copy_Gram : bool, optional
Whether the gram matrix must be copied by the algorithm. A false
value is only helpful if it is already Fortran-ordered, otherwise a
copy is made anyway.
copy_Xy : bool, optional
Whether the covariance vector Xy must be copied by the algorithm.
If False, it may be overwritten.
return_path : bool, optional. Default: False
Whether to return every value of the nonzero coefficients along the
forward path. Useful for cross-validation.
Returns
-------
gamma : array, shape (n_nonzero_coefs,)
Non-zero elements of the solution
idx : array, shape (n_nonzero_coefs,)
Indices of the positions of the elements in gamma within the solution
vector
coefs : array, shape (n_features, n_nonzero_coefs)
The first k values of column k correspond to the coefficient value
for the active features at that step. The lower left triangle contains
garbage. Only returned if ``return_path=True``.
n_active : int
Number of active features at convergence.
"""
Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram)
if copy_Xy or not Xy.flags.writeable:
Xy = Xy.copy()
min_float = np.finfo(Gram.dtype).eps
nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,))
potrs, = get_lapack_funcs(('potrs',), (Gram,))
indices = np.arange(len(Gram)) # keeping track of swapping
alpha = Xy
tol_curr = tol_0
delta = 0
gamma = np.empty(0)
n_active = 0
max_features = len(Gram) if tol is not None else n_nonzero_coefs
L = np.empty((max_features, max_features), dtype=Gram.dtype)
L[0, 0] = 1.
if return_path:
coefs = np.empty_like(L)
while True:
lam = np.argmax(np.abs(alpha))
if lam < n_active or alpha[lam] ** 2 < min_float:
# selected same atom twice, or inner product too small
warnings.warn(premature, RuntimeWarning, stacklevel=3)
break
if n_active > 0:
L[n_active, :n_active] = Gram[lam, :n_active]
linalg.solve_triangular(L[:n_active, :n_active],
L[n_active, :n_active],
trans=0, lower=1,
overwrite_b=True,
check_finite=False)
v = nrm2(L[n_active, :n_active]) ** 2
Lkk = Gram[lam, lam] - v
if Lkk <= min_float: # selected atoms are dependent
warnings.warn(premature, RuntimeWarning, stacklevel=3)
break
L[n_active, n_active] = sqrt(Lkk)
else:
L[0, 0] = sqrt(Gram[lam, lam])
Gram[n_active], Gram[lam] = swap(Gram[n_active], Gram[lam])
Gram.T[n_active], Gram.T[lam] = swap(Gram.T[n_active], Gram.T[lam])
indices[n_active], indices[lam] = indices[lam], indices[n_active]
Xy[n_active], Xy[lam] = Xy[lam], Xy[n_active]
n_active += 1
# solves LL'x = X'y as a composition of two triangular systems
gamma, _ = potrs(L[:n_active, :n_active], Xy[:n_active], lower=True,
overwrite_b=False)
if return_path:
coefs[:n_active, n_active - 1] = gamma
beta = np.dot(Gram[:, :n_active], gamma)
alpha = Xy - beta
if tol is not None:
tol_curr += delta
delta = np.inner(gamma, beta[:n_active])
tol_curr -= delta
if abs(tol_curr) <= tol:
break
elif n_active == max_features:
break
if return_path:
return gamma, indices[:n_active], coefs[:, :n_active], n_active
else:
return gamma, indices[:n_active], n_active
@_deprecate_positional_args
def orthogonal_mp(X, y, *, n_nonzero_coefs=None, tol=None, precompute=False,
copy_X=True, return_path=False,
return_n_iter=False):
r"""Orthogonal Matching Pursuit (OMP)
Solves n_targets Orthogonal Matching Pursuit problems.
An instance of the problem has the form:
When parametrized by the number of non-zero coefficients using
`n_nonzero_coefs`:
argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs}
When parametrized by error using the parameter `tol`:
argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol
Read more in the :ref:`User Guide <omp>`.
Parameters
----------
X : array, shape (n_samples, n_features)
Input data. Columns are assumed to have unit norm.
y : array, shape (n_samples,) or (n_samples, n_targets)
Input targets
n_nonzero_coefs : int
Desired number of non-zero entries in the solution. If None (by
default) this value is set to 10% of n_features.
tol : float
Maximum norm of the residual. If not None, overrides n_nonzero_coefs.
precompute : {True, False, 'auto'},
Whether to perform precomputations. Improves performance when n_targets
or n_samples is very large.
copy_X : bool, optional
Whether the design matrix X must be copied by the algorithm. A false
value is only helpful if X is already Fortran-ordered, otherwise a
copy is made anyway.
return_path : bool, optional. Default: False
Whether to return every value of the nonzero coefficients along the
forward path. Useful for cross-validation.
return_n_iter : bool, optional default False
Whether or not to return the number of iterations.
Returns
-------
coef : array, shape (n_features,) or (n_features, n_targets)
Coefficients of the OMP solution. If `return_path=True`, this contains
the whole coefficient path. In this case its shape is
(n_features, n_features) or (n_features, n_targets, n_features) and
iterating over the last axis yields coefficients in increasing order
of active features.
n_iters : array-like or int
Number of active features across every target. Returned only if
`return_n_iter` is set to True.
See also
--------
OrthogonalMatchingPursuit
orthogonal_mp_gram
lars_path
decomposition.sparse_encode
Notes
-----
Orthogonal matching pursuit was introduced in S. Mallat, Z. Zhang,
Matching pursuits with time-frequency dictionaries, IEEE Transactions on
Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)
This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
Matching Pursuit Technical Report - CS Technion, April 2008.
https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
"""
X = check_array(X, order='F', copy=copy_X)
copy_X = False
if y.ndim == 1:
y = y.reshape(-1, 1)
y = check_array(y)
if y.shape[1] > 1: # subsequent targets will be affected
copy_X = True
if n_nonzero_coefs is None and tol is None:
# default for n_nonzero_coefs is 0.1 * n_features
# but at least one.
n_nonzero_coefs = max(int(0.1 * X.shape[1]), 1)
if tol is not None and tol < 0:
raise ValueError("Epsilon cannot be negative")
if tol is None and n_nonzero_coefs <= 0:
raise ValueError("The number of atoms must be positive")
if tol is None and n_nonzero_coefs > X.shape[1]:
raise ValueError("The number of atoms cannot be more than the number "
"of features")
if precompute == 'auto':
precompute = X.shape[0] > X.shape[1]
if precompute:
G = np.dot(X.T, X)
G = np.asfortranarray(G)
Xy = np.dot(X.T, y)
if tol is not None:
norms_squared = np.sum((y ** 2), axis=0)
else:
norms_squared = None
return orthogonal_mp_gram(G, Xy, n_nonzero_coefs=n_nonzero_coefs,
tol=tol, norms_squared=norms_squared,
copy_Gram=copy_X, copy_Xy=False,
return_path=return_path)
if return_path:
coef = np.zeros((X.shape[1], y.shape[1], X.shape[1]))
else:
coef = np.zeros((X.shape[1], y.shape[1]))
n_iters = []
for k in range(y.shape[1]):
out = _cholesky_omp(
X, y[:, k], n_nonzero_coefs, tol,
copy_X=copy_X, return_path=return_path)
if return_path:
_, idx, coefs, n_iter = out
coef = coef[:, :, :len(idx)]
for n_active, x in enumerate(coefs.T):
coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1]
else:
x, idx, n_iter = out
coef[idx, k] = x
n_iters.append(n_iter)
if y.shape[1] == 1:
n_iters = n_iters[0]
if return_n_iter:
return np.squeeze(coef), n_iters
else:
return np.squeeze(coef)
@_deprecate_positional_args
def orthogonal_mp_gram(Gram, Xy, *, n_nonzero_coefs=None, tol=None,
norms_squared=None, copy_Gram=True,
copy_Xy=True, return_path=False,
return_n_iter=False):
"""Gram Orthogonal Matching Pursuit (OMP)
Solves n_targets Orthogonal Matching Pursuit problems using only
the Gram matrix X.T * X and the product X.T * y.
Read more in the :ref:`User Guide <omp>`.
Parameters
----------
Gram : array, shape (n_features, n_features)
Gram matrix of the input data: X.T * X
Xy : array, shape (n_features,) or (n_features, n_targets)
Input targets multiplied by X: X.T * y
n_nonzero_coefs : int
Desired number of non-zero entries in the solution. If None (by
default) this value is set to 10% of n_features.
tol : float
Maximum norm of the residual. If not None, overrides n_nonzero_coefs.
norms_squared : array-like, shape (n_targets,)
Squared L2 norms of the lines of y. Required if tol is not None.
copy_Gram : bool, optional
Whether the gram matrix must be copied by the algorithm. A false
value is only helpful if it is already Fortran-ordered, otherwise a
copy is made anyway.
copy_Xy : bool, optional
Whether the covariance vector Xy must be copied by the algorithm.
If False, it may be overwritten.
return_path : bool, optional. Default: False
Whether to return every value of the nonzero coefficients along the
forward path. Useful for cross-validation.
return_n_iter : bool, optional default False
Whether or not to return the number of iterations.
Returns
-------
coef : array, shape (n_features,) or (n_features, n_targets)
Coefficients of the OMP solution. If `return_path=True`, this contains
the whole coefficient path. In this case its shape is
(n_features, n_features) or (n_features, n_targets, n_features) and
iterating over the last axis yields coefficients in increasing order
of active features.
n_iters : array-like or int
Number of active features across every target. Returned only if
`return_n_iter` is set to True.
See also
--------
OrthogonalMatchingPursuit
orthogonal_mp
lars_path
decomposition.sparse_encode
Notes
-----
Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
Matching pursuits with time-frequency dictionaries, IEEE Transactions on
Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)
This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
Matching Pursuit Technical Report - CS Technion, April 2008.
https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
"""
Gram = check_array(Gram, order='F', copy=copy_Gram)
Xy = np.asarray(Xy)
if Xy.ndim > 1 and Xy.shape[1] > 1:
# or subsequent target will be affected
copy_Gram = True
if Xy.ndim == 1:
Xy = Xy[:, np.newaxis]
if tol is not None:
norms_squared = [norms_squared]
if copy_Xy or not Xy.flags.writeable:
# Make the copy once instead of many times in _gram_omp itself.
Xy = Xy.copy()
if n_nonzero_coefs is None and tol is None:
n_nonzero_coefs = int(0.1 * len(Gram))
if tol is not None and norms_squared is None:
raise ValueError('Gram OMP needs the precomputed norms in order '
'to evaluate the error sum of squares.')
if tol is not None and tol < 0:
raise ValueError("Epsilon cannot be negative")
if tol is None and n_nonzero_coefs <= 0:
raise ValueError("The number of atoms must be positive")
if tol is None and n_nonzero_coefs > len(Gram):
raise ValueError("The number of atoms cannot be more than the number "
"of features")
if return_path:
coef = np.zeros((len(Gram), Xy.shape[1], len(Gram)))
else:
coef = np.zeros((len(Gram), Xy.shape[1]))
n_iters = []
for k in range(Xy.shape[1]):
out = _gram_omp(
Gram, Xy[:, k], n_nonzero_coefs,
norms_squared[k] if tol is not None else None, tol,
copy_Gram=copy_Gram, copy_Xy=False,
return_path=return_path)
if return_path:
_, idx, coefs, n_iter = out
coef = coef[:, :, :len(idx)]
for n_active, x in enumerate(coefs.T):
coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1]
else:
x, idx, n_iter = out
coef[idx, k] = x
n_iters.append(n_iter)
if Xy.shape[1] == 1:
n_iters = n_iters[0]
if return_n_iter:
return np.squeeze(coef), n_iters
else:
return np.squeeze(coef)
class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel):
"""Orthogonal Matching Pursuit model (OMP)
Read more in the :ref:`User Guide <omp>`.
Parameters
----------
n_nonzero_coefs : int, optional
Desired number of non-zero entries in the solution. If None (by
default) this value is set to 10% of n_features.
tol : float, optional
Maximum norm of the residual. If not None, overrides n_nonzero_coefs.
fit_intercept : boolean, optional
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : boolean, optional, default True
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
precompute : {True, False, 'auto'}, default 'auto'
Whether to use a precomputed Gram and Xy matrix to speed up
calculations. Improves performance when :term:`n_targets` or
:term:`n_samples` is very large. Note that if you already have such
matrices, you can pass them directly to the fit method.
Attributes
----------
coef_ : array, shape (n_features,) or (n_targets, n_features)
parameter vector (w in the formula)
intercept_ : float or array, shape (n_targets,)
independent term in decision function.
n_iter_ : int or array-like
Number of active features across every target.
Examples
--------
>>> from sklearn.linear_model import OrthogonalMatchingPursuit
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(noise=4, random_state=0)
>>> reg = OrthogonalMatchingPursuit().fit(X, y)
>>> reg.score(X, y)
0.9991...
>>> reg.predict(X[:1,])
array([-78.3854...])
Notes
-----
Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
Matching pursuits with time-frequency dictionaries, IEEE Transactions on
Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)
This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
Matching Pursuit Technical Report - CS Technion, April 2008.
https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
See also
--------
orthogonal_mp
orthogonal_mp_gram
lars_path
Lars
LassoLars
decomposition.sparse_encode
OrthogonalMatchingPursuitCV
"""
@_deprecate_positional_args
def __init__(self, *, n_nonzero_coefs=None, tol=None, fit_intercept=True,
normalize=True, precompute='auto'):
self.n_nonzero_coefs = n_nonzero_coefs
self.tol = tol
self.fit_intercept = fit_intercept
self.normalize = normalize
self.precompute = precompute
def fit(self, X, y):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data.
y : array-like, shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to X's dtype if necessary
Returns
-------
self : object
returns an instance of self.
"""
X, y = self._validate_data(X, y, multi_output=True, y_numeric=True)
n_features = X.shape[1]
X, y, X_offset, y_offset, X_scale, Gram, Xy = \
_pre_fit(X, y, None, self.precompute, self.normalize,
self.fit_intercept, copy=True)
if y.ndim == 1:
y = y[:, np.newaxis]
if self.n_nonzero_coefs is None and self.tol is None:
# default for n_nonzero_coefs is 0.1 * n_features
# but at least one.
self.n_nonzero_coefs_ = max(int(0.1 * n_features), 1)
else:
self.n_nonzero_coefs_ = self.n_nonzero_coefs
if Gram is False:
coef_, self.n_iter_ = orthogonal_mp(
X, y, n_nonzero_coefs=self.n_nonzero_coefs_, tol=self.tol,
precompute=False, copy_X=True,
return_n_iter=True)
else:
norms_sq = np.sum(y ** 2, axis=0) if self.tol is not None else None
coef_, self.n_iter_ = orthogonal_mp_gram(
Gram, Xy=Xy, n_nonzero_coefs=self.n_nonzero_coefs_,
tol=self.tol, norms_squared=norms_sq,
copy_Gram=True, copy_Xy=True,
return_n_iter=True)
self.coef_ = coef_.T
self._set_intercept(X_offset, y_offset, X_scale)
return self
def _omp_path_residues(X_train, y_train, X_test, y_test, copy=True,
fit_intercept=True, normalize=True, max_iter=100):
"""Compute the residues on left-out data for a full LARS path
Parameters
----------
X_train : array, shape (n_samples, n_features)
The data to fit the LARS on
y_train : array, shape (n_samples)
The target variable to fit LARS on
X_test : array, shape (n_samples, n_features)
The data to compute the residues on
y_test : array, shape (n_samples)
The target variable to compute the residues on
copy : boolean, optional
Whether X_train, X_test, y_train and y_test should be copied. If
False, they may be overwritten.
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : boolean, optional, default True
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
max_iter : integer, optional
Maximum numbers of iterations to perform, therefore maximum features
to include. 100 by default.
Returns
-------
residues : array, shape (n_samples, max_features)
Residues of the prediction on the test data
"""
if copy:
X_train = X_train.copy()
y_train = y_train.copy()
X_test = X_test.copy()
y_test = y_test.copy()
if fit_intercept:
X_mean = X_train.mean(axis=0)
X_train -= X_mean
X_test -= X_mean
y_mean = y_train.mean(axis=0)
y_train = as_float_array(y_train, copy=False)
y_train -= y_mean
y_test = as_float_array(y_test, copy=False)
y_test -= y_mean
if normalize:
norms = np.sqrt(np.sum(X_train ** 2, axis=0))
nonzeros = np.flatnonzero(norms)
X_train[:, nonzeros] /= norms[nonzeros]
coefs = orthogonal_mp(X_train, y_train, n_nonzero_coefs=max_iter, tol=None,
precompute=False, copy_X=False,
return_path=True)
if coefs.ndim == 1:
coefs = coefs[:, np.newaxis]
if normalize:
coefs[nonzeros] /= norms[nonzeros][:, np.newaxis]
return np.dot(coefs.T, X_test.T) - y_test
class OrthogonalMatchingPursuitCV(RegressorMixin, LinearModel):
"""Cross-validated Orthogonal Matching Pursuit model (OMP).
See glossary entry for :term:`cross-validation estimator`.
Read more in the :ref:`User Guide <omp>`.
Parameters
----------
copy : bool, optional
Whether the design matrix X must be copied by the algorithm. A false
value is only helpful if X is already Fortran-ordered, otherwise a
copy is made anyway.
fit_intercept : boolean, optional
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : boolean, optional, default True
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
max_iter : integer, optional
Maximum numbers of iterations to perform, therefore maximum features
to include. 10% of ``n_features`` but at least 5 if available.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value if None changed from 3-fold to 5-fold.
n_jobs : int or None, optional (default=None)
Number of CPUs to use during the cross validation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : boolean or integer, optional
Sets the verbosity amount
Attributes
----------
intercept_ : float or array, shape (n_targets,)
Independent term in decision function.
coef_ : array, shape (n_features,) or (n_targets, n_features)
Parameter vector (w in the problem formulation).
n_nonzero_coefs_ : int
Estimated number of non-zero coefficients giving the best mean squared
error over the cross-validation folds.
n_iter_ : int or array-like
Number of active features across every target for the model refit with
the best hyperparameters got by cross-validating across all folds.
Examples
--------
>>> from sklearn.linear_model import OrthogonalMatchingPursuitCV
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=100, n_informative=10,
... noise=4, random_state=0)
>>> reg = OrthogonalMatchingPursuitCV(cv=5).fit(X, y)
>>> reg.score(X, y)
0.9991...
>>> reg.n_nonzero_coefs_
10
>>> reg.predict(X[:1,])
array([-78.3854...])
See also
--------
orthogonal_mp
orthogonal_mp_gram
lars_path
Lars
LassoLars
OrthogonalMatchingPursuit
LarsCV
LassoLarsCV
decomposition.sparse_encode
"""
@_deprecate_positional_args
def __init__(self, *, copy=True, fit_intercept=True, normalize=True,
max_iter=None, cv=None, n_jobs=None, verbose=False):
self.copy = copy
self.fit_intercept = fit_intercept
self.normalize = normalize
self.max_iter = max_iter
self.cv = cv
self.n_jobs = n_jobs
self.verbose = verbose
def fit(self, X, y):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like, shape [n_samples, n_features]
Training data.
y : array-like, shape [n_samples]
Target values. Will be cast to X's dtype if necessary
Returns
-------
self : object
returns an instance of self.
"""
X, y = self._validate_data(X, y, y_numeric=True, ensure_min_features=2,
estimator=self)
X = as_float_array(X, copy=False, force_all_finite=False)
cv = check_cv(self.cv, classifier=False)
max_iter = (min(max(int(0.1 * X.shape[1]), 5), X.shape[1])
if not self.max_iter
else self.max_iter)
cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
delayed(_omp_path_residues)(
X[train], y[train], X[test], y[test], self.copy,
self.fit_intercept, self.normalize, max_iter)
for train, test in cv.split(X))
min_early_stop = min(fold.shape[0] for fold in cv_paths)
mse_folds = np.array([(fold[:min_early_stop] ** 2).mean(axis=1)
for fold in cv_paths])
best_n_nonzero_coefs = np.argmin(mse_folds.mean(axis=0)) + 1
self.n_nonzero_coefs_ = best_n_nonzero_coefs
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=best_n_nonzero_coefs,
fit_intercept=self.fit_intercept,
normalize=self.normalize)
omp.fit(X, y)
self.coef_ = omp.coef_
self.intercept_ = omp.intercept_
self.n_iter_ = omp.n_iter_
return self

View file

@ -0,0 +1,471 @@
# Authors: Rob Zinkov, Mathieu Blondel
# License: BSD 3 clause
from ..utils.validation import _deprecate_positional_args
from ._stochastic_gradient import BaseSGDClassifier
from ._stochastic_gradient import BaseSGDRegressor
from ._stochastic_gradient import DEFAULT_EPSILON
class PassiveAggressiveClassifier(BaseSGDClassifier):
"""Passive Aggressive Classifier
Read more in the :ref:`User Guide <passive_aggressive>`.
Parameters
----------
C : float
Maximum step size (regularization). Defaults to 1.0.
fit_intercept : bool, default=False
Whether the intercept should be estimated or not. If False, the
data is assumed to be already centered.
max_iter : int, optional (default=1000)
The maximum number of passes over the training data (aka epochs).
It only impacts the behavior in the ``fit`` method, and not the
:meth:`partial_fit` method.
.. versionadded:: 0.19
tol : float or None, optional (default=1e-3)
The stopping criterion. If it is not None, the iterations will stop
when (loss > previous_loss - tol).
.. versionadded:: 0.19
early_stopping : bool, default=False
Whether to use early stopping to terminate training when validation.
score is not improving. If set to True, it will automatically set aside
a stratified fraction of training data as validation and terminate
training when validation score is not improving by at least tol for
n_iter_no_change consecutive epochs.
.. versionadded:: 0.20
validation_fraction : float, default=0.1
The proportion of training data to set aside as validation set for
early stopping. Must be between 0 and 1.
Only used if early_stopping is True.
.. versionadded:: 0.20
n_iter_no_change : int, default=5
Number of iterations with no improvement to wait before early stopping.
.. versionadded:: 0.20
shuffle : bool, default=True
Whether or not the training data should be shuffled after each epoch.
verbose : integer, optional
The verbosity level
loss : string, optional
The loss function to be used:
hinge: equivalent to PA-I in the reference paper.
squared_hinge: equivalent to PA-II in the reference paper.
n_jobs : int or None, optional (default=None)
The number of CPUs to use to do the OVA (One Versus All, for
multi-class problems) computation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
random_state : int, RandomState instance, default=None
Used to shuffle the training data, when ``shuffle`` is set to
``True``. Pass an int for reproducible output across multiple
function calls.
See :term:`Glossary <random_state>`.
warm_start : bool, optional
When set to True, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution.
See :term:`the Glossary <warm_start>`.
Repeatedly calling fit or partial_fit when warm_start is True can
result in a different solution than when calling fit a single time
because of the way the data is shuffled.
class_weight : dict, {class_label: weight} or "balanced" or None, optional
Preset for the class_weight fit parameter.
Weights associated with classes. If not given, all classes
are supposed to have weight one.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
.. versionadded:: 0.17
parameter *class_weight* to automatically weight samples.
average : bool or int, optional
When set to True, computes the averaged SGD weights and stores the
result in the ``coef_`` attribute. If set to an int greater than 1,
averaging will begin once the total number of samples seen reaches
average. So average=10 will begin averaging after seeing 10 samples.
.. versionadded:: 0.19
parameter *average* to use weights averaging in SGD
Attributes
----------
coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\
n_features]
Weights assigned to the features.
intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
Constants in decision function.
n_iter_ : int
The actual number of iterations to reach the stopping criterion.
For multiclass fits, it is the maximum over every binary fit.
classes_ : array of shape (n_classes,)
The unique classes labels.
t_ : int
Number of weight updates performed during training.
Same as ``(n_iter_ * n_samples)``.
loss_function_ : callable
Loss function used by the algorithm.
Examples
--------
>>> from sklearn.linear_model import PassiveAggressiveClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_features=4, random_state=0)
>>> clf = PassiveAggressiveClassifier(max_iter=1000, random_state=0,
... tol=1e-3)
>>> clf.fit(X, y)
PassiveAggressiveClassifier(random_state=0)
>>> print(clf.coef_)
[[0.26642044 0.45070924 0.67251877 0.64185414]]
>>> print(clf.intercept_)
[1.84127814]
>>> print(clf.predict([[0, 0, 0, 0]]))
[1]
See also
--------
SGDClassifier
Perceptron
References
----------
Online Passive-Aggressive Algorithms
<http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)
"""
@_deprecate_positional_args
def __init__(self, *, C=1.0, fit_intercept=True, max_iter=1000, tol=1e-3,
early_stopping=False, validation_fraction=0.1,
n_iter_no_change=5, shuffle=True, verbose=0, loss="hinge",
n_jobs=None, random_state=None, warm_start=False,
class_weight=None, average=False):
super().__init__(
penalty=None,
fit_intercept=fit_intercept,
max_iter=max_iter,
tol=tol,
early_stopping=early_stopping,
validation_fraction=validation_fraction,
n_iter_no_change=n_iter_no_change,
shuffle=shuffle,
verbose=verbose,
random_state=random_state,
eta0=1.0,
warm_start=warm_start,
class_weight=class_weight,
average=average,
n_jobs=n_jobs)
self.C = C
self.loss = loss
def partial_fit(self, X, y, classes=None):
"""Fit linear model with Passive Aggressive algorithm.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Subset of the training data
y : numpy array of shape [n_samples]
Subset of the target values
classes : array, shape = [n_classes]
Classes across all calls to partial_fit.
Can be obtained by via `np.unique(y_all)`, where y_all is the
target vector of the entire dataset.
This argument is required for the first call to partial_fit
and can be omitted in the subsequent calls.
Note that y doesn't need to contain all labels in `classes`.
Returns
-------
self : returns an instance of self.
"""
self._validate_params(for_partial_fit=True)
if self.class_weight == 'balanced':
raise ValueError("class_weight 'balanced' is not supported for "
"partial_fit. For 'balanced' weights, use "
"`sklearn.utils.compute_class_weight` with "
"`class_weight='balanced'`. In place of y you "
"can use a large enough subset of the full "
"training set target to properly estimate the "
"class frequency distributions. Pass the "
"resulting weights as the class_weight "
"parameter.")
lr = "pa1" if self.loss == "hinge" else "pa2"
return self._partial_fit(X, y, alpha=1.0, C=self.C,
loss="hinge", learning_rate=lr, max_iter=1,
classes=classes, sample_weight=None,
coef_init=None, intercept_init=None)
def fit(self, X, y, coef_init=None, intercept_init=None):
"""Fit linear model with Passive Aggressive algorithm.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data
y : numpy array of shape [n_samples]
Target values
coef_init : array, shape = [n_classes,n_features]
The initial coefficients to warm-start the optimization.
intercept_init : array, shape = [n_classes]
The initial intercept to warm-start the optimization.
Returns
-------
self : returns an instance of self.
"""
self._validate_params()
lr = "pa1" if self.loss == "hinge" else "pa2"
return self._fit(X, y, alpha=1.0, C=self.C,
loss="hinge", learning_rate=lr,
coef_init=coef_init, intercept_init=intercept_init)
class PassiveAggressiveRegressor(BaseSGDRegressor):
"""Passive Aggressive Regressor
Read more in the :ref:`User Guide <passive_aggressive>`.
Parameters
----------
C : float
Maximum step size (regularization). Defaults to 1.0.
fit_intercept : bool
Whether the intercept should be estimated or not. If False, the
data is assumed to be already centered. Defaults to True.
max_iter : int, optional (default=1000)
The maximum number of passes over the training data (aka epochs).
It only impacts the behavior in the ``fit`` method, and not the
:meth:`partial_fit` method.
.. versionadded:: 0.19
tol : float or None, optional (default=1e-3)
The stopping criterion. If it is not None, the iterations will stop
when (loss > previous_loss - tol).
.. versionadded:: 0.19
early_stopping : bool, default=False
Whether to use early stopping to terminate training when validation.
score is not improving. If set to True, it will automatically set aside
a fraction of training data as validation and terminate
training when validation score is not improving by at least tol for
n_iter_no_change consecutive epochs.
.. versionadded:: 0.20
validation_fraction : float, default=0.1
The proportion of training data to set aside as validation set for
early stopping. Must be between 0 and 1.
Only used if early_stopping is True.
.. versionadded:: 0.20
n_iter_no_change : int, default=5
Number of iterations with no improvement to wait before early stopping.
.. versionadded:: 0.20
shuffle : bool, default=True
Whether or not the training data should be shuffled after each epoch.
verbose : integer, optional
The verbosity level
loss : string, optional
The loss function to be used:
epsilon_insensitive: equivalent to PA-I in the reference paper.
squared_epsilon_insensitive: equivalent to PA-II in the reference
paper.
epsilon : float
If the difference between the current prediction and the correct label
is below this threshold, the model is not updated.
random_state : int, RandomState instance, default=None
Used to shuffle the training data, when ``shuffle`` is set to
``True``. Pass an int for reproducible output across multiple
function calls.
See :term:`Glossary <random_state>`.
warm_start : bool, optional
When set to True, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution.
See :term:`the Glossary <warm_start>`.
Repeatedly calling fit or partial_fit when warm_start is True can
result in a different solution than when calling fit a single time
because of the way the data is shuffled.
average : bool or int, optional
When set to True, computes the averaged SGD weights and stores the
result in the ``coef_`` attribute. If set to an int greater than 1,
averaging will begin once the total number of samples seen reaches
average. So average=10 will begin averaging after seeing 10 samples.
.. versionadded:: 0.19
parameter *average* to use weights averaging in SGD
Attributes
----------
coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\
n_features]
Weights assigned to the features.
intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
Constants in decision function.
n_iter_ : int
The actual number of iterations to reach the stopping criterion.
t_ : int
Number of weight updates performed during training.
Same as ``(n_iter_ * n_samples)``.
Examples
--------
>>> from sklearn.linear_model import PassiveAggressiveRegressor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=4, random_state=0)
>>> regr = PassiveAggressiveRegressor(max_iter=100, random_state=0,
... tol=1e-3)
>>> regr.fit(X, y)
PassiveAggressiveRegressor(max_iter=100, random_state=0)
>>> print(regr.coef_)
[20.48736655 34.18818427 67.59122734 87.94731329]
>>> print(regr.intercept_)
[-0.02306214]
>>> print(regr.predict([[0, 0, 0, 0]]))
[-0.02306214]
See also
--------
SGDRegressor
References
----------
Online Passive-Aggressive Algorithms
<http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)
"""
@_deprecate_positional_args
def __init__(self, *, C=1.0, fit_intercept=True, max_iter=1000, tol=1e-3,
early_stopping=False, validation_fraction=0.1,
n_iter_no_change=5, shuffle=True, verbose=0,
loss="epsilon_insensitive", epsilon=DEFAULT_EPSILON,
random_state=None, warm_start=False,
average=False):
super().__init__(
penalty=None,
l1_ratio=0,
epsilon=epsilon,
eta0=1.0,
fit_intercept=fit_intercept,
max_iter=max_iter,
tol=tol,
early_stopping=early_stopping,
validation_fraction=validation_fraction,
n_iter_no_change=n_iter_no_change,
shuffle=shuffle,
verbose=verbose,
random_state=random_state,
warm_start=warm_start,
average=average)
self.C = C
self.loss = loss
def partial_fit(self, X, y):
"""Fit linear model with Passive Aggressive algorithm.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Subset of training data
y : numpy array of shape [n_samples]
Subset of target values
Returns
-------
self : returns an instance of self.
"""
self._validate_params(for_partial_fit=True)
lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2"
return self._partial_fit(X, y, alpha=1.0, C=self.C,
loss="epsilon_insensitive",
learning_rate=lr, max_iter=1,
sample_weight=None,
coef_init=None, intercept_init=None)
def fit(self, X, y, coef_init=None, intercept_init=None):
"""Fit linear model with Passive Aggressive algorithm.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data
y : numpy array of shape [n_samples]
Target values
coef_init : array, shape = [n_features]
The initial coefficients to warm-start the optimization.
intercept_init : array, shape = [1]
The initial intercept to warm-start the optimization.
Returns
-------
self : returns an instance of self.
"""
self._validate_params()
lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2"
return self._fit(X, y, alpha=1.0, C=self.C,
loss="epsilon_insensitive",
learning_rate=lr,
coef_init=coef_init,
intercept_init=intercept_init)

View file

@ -0,0 +1,160 @@
# Author: Mathieu Blondel
# License: BSD 3 clause
from ..utils.validation import _deprecate_positional_args
from ._stochastic_gradient import BaseSGDClassifier
class Perceptron(BaseSGDClassifier):
"""Perceptron
Read more in the :ref:`User Guide <perceptron>`.
Parameters
----------
penalty : {'l2','l1','elasticnet'}, default=None
The penalty (aka regularization term) to be used.
alpha : float, default=0.0001
Constant that multiplies the regularization term if regularization is
used.
fit_intercept : bool, default=True
Whether the intercept should be estimated or not. If False, the
data is assumed to be already centered.
max_iter : int, default=1000
The maximum number of passes over the training data (aka epochs).
It only impacts the behavior in the ``fit`` method, and not the
:meth:`partial_fit` method.
.. versionadded:: 0.19
tol : float, default=1e-3
The stopping criterion. If it is not None, the iterations will stop
when (loss > previous_loss - tol).
.. versionadded:: 0.19
shuffle : bool, default=True
Whether or not the training data should be shuffled after each epoch.
verbose : int, default=0
The verbosity level
eta0 : double, default=1
Constant by which the updates are multiplied.
n_jobs : int, default=None
The number of CPUs to use to do the OVA (One Versus All, for
multi-class problems) computation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
random_state : int, RandomState instance, default=None
Used to shuffle the training data, when ``shuffle`` is set to
``True``. Pass an int for reproducible output across multiple
function calls.
See :term:`Glossary <random_state>`.
early_stopping : bool, default=False
Whether to use early stopping to terminate training when validation.
score is not improving. If set to True, it will automatically set aside
a stratified fraction of training data as validation and terminate
training when validation score is not improving by at least tol for
n_iter_no_change consecutive epochs.
.. versionadded:: 0.20
validation_fraction : float, default=0.1
The proportion of training data to set aside as validation set for
early stopping. Must be between 0 and 1.
Only used if early_stopping is True.
.. versionadded:: 0.20
n_iter_no_change : int, default=5
Number of iterations with no improvement to wait before early stopping.
.. versionadded:: 0.20
class_weight : dict, {class_label: weight} or "balanced", default=None
Preset for the class_weight fit parameter.
Weights associated with classes. If not given, all classes
are supposed to have weight one.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
warm_start : bool, default=False
When set to True, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution. See
:term:`the Glossary <warm_start>`.
Attributes
----------
coef_ : ndarray of shape = [1, n_features] if n_classes == 2 else \
[n_classes, n_features]
Weights assigned to the features.
intercept_ : ndarray of shape = [1] if n_classes == 2 else [n_classes]
Constants in decision function.
n_iter_ : int
The actual number of iterations to reach the stopping criterion.
For multiclass fits, it is the maximum over every binary fit.
classes_ : ndarray of shape (n_classes,)
The unique classes labels.
t_ : int
Number of weight updates performed during training.
Same as ``(n_iter_ * n_samples)``.
Notes
-----
``Perceptron`` is a classification algorithm which shares the same
underlying implementation with ``SGDClassifier``. In fact,
``Perceptron()`` is equivalent to `SGDClassifier(loss="perceptron",
eta0=1, learning_rate="constant", penalty=None)`.
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.linear_model import Perceptron
>>> X, y = load_digits(return_X_y=True)
>>> clf = Perceptron(tol=1e-3, random_state=0)
>>> clf.fit(X, y)
Perceptron()
>>> clf.score(X, y)
0.939...
See also
--------
SGDClassifier
References
----------
https://en.wikipedia.org/wiki/Perceptron and references therein.
"""
@_deprecate_positional_args
def __init__(self, *, penalty=None, alpha=0.0001, fit_intercept=True,
max_iter=1000, tol=1e-3, shuffle=True, verbose=0, eta0=1.0,
n_jobs=None, random_state=0, early_stopping=False,
validation_fraction=0.1, n_iter_no_change=5,
class_weight=None, warm_start=False):
super().__init__(
loss="perceptron", penalty=penalty, alpha=alpha, l1_ratio=0,
fit_intercept=fit_intercept, max_iter=max_iter, tol=tol,
shuffle=shuffle, verbose=verbose, random_state=random_state,
learning_rate="constant", eta0=eta0, early_stopping=early_stopping,
validation_fraction=validation_fraction,
n_iter_no_change=n_iter_no_change, power_t=0.5,
warm_start=warm_start, class_weight=class_weight, n_jobs=n_jobs)

View file

@ -0,0 +1,504 @@
# coding: utf-8
# Author: Johannes Schönberger
#
# License: BSD 3 clause
import numpy as np
import warnings
from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone
from ..base import MultiOutputMixin
from ..utils import check_random_state, check_consistent_length
from ..utils.random import sample_without_replacement
from ..utils.validation import check_is_fitted, _check_sample_weight
from ..utils.validation import _deprecate_positional_args
from ._base import LinearRegression
from ..utils.validation import has_fit_parameter
from ..exceptions import ConvergenceWarning
_EPSILON = np.spacing(1)
def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability):
"""Determine number trials such that at least one outlier-free subset is
sampled for the given inlier/outlier ratio.
Parameters
----------
n_inliers : int
Number of inliers in the data.
n_samples : int
Total number of samples in the data.
min_samples : int
Minimum number of samples chosen randomly from original data.
probability : float
Probability (confidence) that one outlier-free sample is generated.
Returns
-------
trials : int
Number of trials.
"""
inlier_ratio = n_inliers / float(n_samples)
nom = max(_EPSILON, 1 - probability)
denom = max(_EPSILON, 1 - inlier_ratio ** min_samples)
if nom == 1:
return 0
if denom == 1:
return float('inf')
return abs(float(np.ceil(np.log(nom) / np.log(denom))))
class RANSACRegressor(MetaEstimatorMixin, RegressorMixin,
MultiOutputMixin, BaseEstimator):
"""RANSAC (RANdom SAmple Consensus) algorithm.
RANSAC is an iterative algorithm for the robust estimation of parameters
from a subset of inliers from the complete data set.
Read more in the :ref:`User Guide <ransac_regression>`.
Parameters
----------
base_estimator : object, optional
Base estimator object which implements the following methods:
* `fit(X, y)`: Fit model to given training data and target values.
* `score(X, y)`: Returns the mean accuracy on the given test data,
which is used for the stop criterion defined by `stop_score`.
Additionally, the score is used to decide which of two equally
large consensus sets is chosen as the better one.
* `predict(X)`: Returns predicted values using the linear model,
which is used to compute residual error using loss function.
If `base_estimator` is None, then
``base_estimator=sklearn.linear_model.LinearRegression()`` is used for
target values of dtype float.
Note that the current implementation only supports regression
estimators.
min_samples : int (>= 1) or float ([0, 1]), optional
Minimum number of samples chosen randomly from original data. Treated
as an absolute number of samples for `min_samples >= 1`, treated as a
relative number `ceil(min_samples * X.shape[0]`) for
`min_samples < 1`. This is typically chosen as the minimal number of
samples necessary to estimate the given `base_estimator`. By default a
``sklearn.linear_model.LinearRegression()`` estimator is assumed and
`min_samples` is chosen as ``X.shape[1] + 1``.
residual_threshold : float, optional
Maximum residual for a data sample to be classified as an inlier.
By default the threshold is chosen as the MAD (median absolute
deviation) of the target values `y`.
is_data_valid : callable, optional
This function is called with the randomly selected data before the
model is fitted to it: `is_data_valid(X, y)`. If its return value is
False the current randomly chosen sub-sample is skipped.
is_model_valid : callable, optional
This function is called with the estimated model and the randomly
selected data: `is_model_valid(model, X, y)`. If its return value is
False the current randomly chosen sub-sample is skipped.
Rejecting samples with this function is computationally costlier than
with `is_data_valid`. `is_model_valid` should therefore only be used if
the estimated model is needed for making the rejection decision.
max_trials : int, optional
Maximum number of iterations for random sample selection.
max_skips : int, optional
Maximum number of iterations that can be skipped due to finding zero
inliers or invalid data defined by ``is_data_valid`` or invalid models
defined by ``is_model_valid``.
.. versionadded:: 0.19
stop_n_inliers : int, optional
Stop iteration if at least this number of inliers are found.
stop_score : float, optional
Stop iteration if score is greater equal than this threshold.
stop_probability : float in range [0, 1], optional
RANSAC iteration stops if at least one outlier-free set of the training
data is sampled in RANSAC. This requires to generate at least N
samples (iterations)::
N >= log(1 - probability) / log(1 - e**m)
where the probability (confidence) is typically set to high value such
as 0.99 (the default) and e is the current fraction of inliers w.r.t.
the total number of samples.
loss : string, callable, optional, default "absolute_loss"
String inputs, "absolute_loss" and "squared_loss" are supported which
find the absolute loss and squared loss per sample
respectively.
If ``loss`` is a callable, then it should be a function that takes
two arrays as inputs, the true and predicted value and returns a 1-D
array with the i-th value of the array corresponding to the loss
on ``X[i]``.
If the loss on a sample is greater than the ``residual_threshold``,
then this sample is classified as an outlier.
.. versionadded:: 0.18
random_state : int, RandomState instance, default=None
The generator used to initialize the centers.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
estimator_ : object
Best fitted model (copy of the `base_estimator` object).
n_trials_ : int
Number of random selection trials until one of the stop criteria is
met. It is always ``<= max_trials``.
inlier_mask_ : bool array of shape [n_samples]
Boolean mask of inliers classified as ``True``.
n_skips_no_inliers_ : int
Number of iterations skipped due to finding zero inliers.
.. versionadded:: 0.19
n_skips_invalid_data_ : int
Number of iterations skipped due to invalid data defined by
``is_data_valid``.
.. versionadded:: 0.19
n_skips_invalid_model_ : int
Number of iterations skipped due to an invalid model defined by
``is_model_valid``.
.. versionadded:: 0.19
Examples
--------
>>> from sklearn.linear_model import RANSACRegressor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(
... n_samples=200, n_features=2, noise=4.0, random_state=0)
>>> reg = RANSACRegressor(random_state=0).fit(X, y)
>>> reg.score(X, y)
0.9885...
>>> reg.predict(X[:1,])
array([-31.9417...])
References
----------
.. [1] https://en.wikipedia.org/wiki/RANSAC
.. [2] https://www.sri.com/sites/default/files/publications/ransac-publication.pdf
.. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf
"""
@_deprecate_positional_args
def __init__(self, base_estimator=None, *, min_samples=None,
residual_threshold=None, is_data_valid=None,
is_model_valid=None, max_trials=100, max_skips=np.inf,
stop_n_inliers=np.inf, stop_score=np.inf,
stop_probability=0.99, loss='absolute_loss',
random_state=None):
self.base_estimator = base_estimator
self.min_samples = min_samples
self.residual_threshold = residual_threshold
self.is_data_valid = is_data_valid
self.is_model_valid = is_model_valid
self.max_trials = max_trials
self.max_skips = max_skips
self.stop_n_inliers = stop_n_inliers
self.stop_score = stop_score
self.stop_probability = stop_probability
self.random_state = random_state
self.loss = loss
def fit(self, X, y, sample_weight=None):
"""Fit estimator using RANSAC algorithm.
Parameters
----------
X : array-like or sparse matrix, shape [n_samples, n_features]
Training data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Individual weights for each sample
raises error if sample_weight is passed and base_estimator
fit method does not support it.
.. versionadded:: 0.18
Raises
------
ValueError
If no valid consensus set could be found. This occurs if
`is_data_valid` and `is_model_valid` return False for all
`max_trials` randomly chosen sub-samples.
"""
# Need to validate separately here.
# We can't pass multi_ouput=True because that would allow y to be csr.
check_X_params = dict(accept_sparse='csr')
check_y_params = dict(ensure_2d=False)
X, y = self._validate_data(X, y, validate_separately=(check_X_params,
check_y_params))
check_consistent_length(X, y)
if self.base_estimator is not None:
base_estimator = clone(self.base_estimator)
else:
base_estimator = LinearRegression()
if self.min_samples is None:
# assume linear model by default
min_samples = X.shape[1] + 1
elif 0 < self.min_samples < 1:
min_samples = np.ceil(self.min_samples * X.shape[0])
elif self.min_samples >= 1:
if self.min_samples % 1 != 0:
raise ValueError("Absolute number of samples must be an "
"integer value.")
min_samples = self.min_samples
else:
raise ValueError("Value for `min_samples` must be scalar and "
"positive.")
if min_samples > X.shape[0]:
raise ValueError("`min_samples` may not be larger than number "
"of samples: n_samples = %d." % (X.shape[0]))
if self.stop_probability < 0 or self.stop_probability > 1:
raise ValueError("`stop_probability` must be in range [0, 1].")
if self.residual_threshold is None:
# MAD (median absolute deviation)
residual_threshold = np.median(np.abs(y - np.median(y)))
else:
residual_threshold = self.residual_threshold
if self.loss == "absolute_loss":
if y.ndim == 1:
loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred)
else:
loss_function = lambda \
y_true, y_pred: np.sum(np.abs(y_true - y_pred), axis=1)
elif self.loss == "squared_loss":
if y.ndim == 1:
loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2
else:
loss_function = lambda \
y_true, y_pred: np.sum((y_true - y_pred) ** 2, axis=1)
elif callable(self.loss):
loss_function = self.loss
else:
raise ValueError(
"loss should be 'absolute_loss', 'squared_loss' or a callable."
"Got %s. " % self.loss)
random_state = check_random_state(self.random_state)
try: # Not all estimator accept a random_state
base_estimator.set_params(random_state=random_state)
except ValueError:
pass
estimator_fit_has_sample_weight = has_fit_parameter(base_estimator,
"sample_weight")
estimator_name = type(base_estimator).__name__
if (sample_weight is not None and not
estimator_fit_has_sample_weight):
raise ValueError("%s does not support sample_weight. Samples"
" weights are only used for the calibration"
" itself." % estimator_name)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
n_inliers_best = 1
score_best = -np.inf
inlier_mask_best = None
X_inlier_best = None
y_inlier_best = None
inlier_best_idxs_subset = None
self.n_skips_no_inliers_ = 0
self.n_skips_invalid_data_ = 0
self.n_skips_invalid_model_ = 0
# number of data samples
n_samples = X.shape[0]
sample_idxs = np.arange(n_samples)
self.n_trials_ = 0
max_trials = self.max_trials
while self.n_trials_ < max_trials:
self.n_trials_ += 1
if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ +
self.n_skips_invalid_model_) > self.max_skips:
break
# choose random sample set
subset_idxs = sample_without_replacement(n_samples, min_samples,
random_state=random_state)
X_subset = X[subset_idxs]
y_subset = y[subset_idxs]
# check if random sample set is valid
if (self.is_data_valid is not None
and not self.is_data_valid(X_subset, y_subset)):
self.n_skips_invalid_data_ += 1
continue
# fit model for current random sample set
if sample_weight is None:
base_estimator.fit(X_subset, y_subset)
else:
base_estimator.fit(X_subset, y_subset,
sample_weight=sample_weight[subset_idxs])
# check if estimated model is valid
if (self.is_model_valid is not None and not
self.is_model_valid(base_estimator, X_subset, y_subset)):
self.n_skips_invalid_model_ += 1
continue
# residuals of all data for current random sample model
y_pred = base_estimator.predict(X)
residuals_subset = loss_function(y, y_pred)
# classify data into inliers and outliers
inlier_mask_subset = residuals_subset < residual_threshold
n_inliers_subset = np.sum(inlier_mask_subset)
# less inliers -> skip current random sample
if n_inliers_subset < n_inliers_best:
self.n_skips_no_inliers_ += 1
continue
# extract inlier data set
inlier_idxs_subset = sample_idxs[inlier_mask_subset]
X_inlier_subset = X[inlier_idxs_subset]
y_inlier_subset = y[inlier_idxs_subset]
# score of inlier data set
score_subset = base_estimator.score(X_inlier_subset,
y_inlier_subset)
# same number of inliers but worse score -> skip current random
# sample
if (n_inliers_subset == n_inliers_best
and score_subset < score_best):
continue
# save current random sample as best sample
n_inliers_best = n_inliers_subset
score_best = score_subset
inlier_mask_best = inlier_mask_subset
X_inlier_best = X_inlier_subset
y_inlier_best = y_inlier_subset
inlier_best_idxs_subset = inlier_idxs_subset
max_trials = min(
max_trials,
_dynamic_max_trials(n_inliers_best, n_samples,
min_samples, self.stop_probability))
# break if sufficient number of inliers or score is reached
if n_inliers_best >= self.stop_n_inliers or \
score_best >= self.stop_score:
break
# if none of the iterations met the required criteria
if inlier_mask_best is None:
if ((self.n_skips_no_inliers_ + self.n_skips_invalid_data_ +
self.n_skips_invalid_model_) > self.max_skips):
raise ValueError(
"RANSAC skipped more iterations than `max_skips` without"
" finding a valid consensus set. Iterations were skipped"
" because each randomly chosen sub-sample failed the"
" passing criteria. See estimator attributes for"
" diagnostics (n_skips*).")
else:
raise ValueError(
"RANSAC could not find a valid consensus set. All"
" `max_trials` iterations were skipped because each"
" randomly chosen sub-sample failed the passing criteria."
" See estimator attributes for diagnostics (n_skips*).")
else:
if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ +
self.n_skips_invalid_model_) > self.max_skips:
warnings.warn("RANSAC found a valid consensus set but exited"
" early due to skipping more iterations than"
" `max_skips`. See estimator attributes for"
" diagnostics (n_skips*).",
ConvergenceWarning)
# estimate final model using all inliers
if sample_weight is None:
base_estimator.fit(X_inlier_best, y_inlier_best)
else:
base_estimator.fit(
X_inlier_best,
y_inlier_best,
sample_weight=sample_weight[inlier_best_idxs_subset])
self.estimator_ = base_estimator
self.inlier_mask_ = inlier_mask_best
return self
def predict(self, X):
"""Predict using the estimated model.
This is a wrapper for `estimator_.predict(X)`.
Parameters
----------
X : numpy array of shape [n_samples, n_features]
Returns
-------
y : array, shape = [n_samples] or [n_samples, n_targets]
Returns predicted values.
"""
check_is_fitted(self)
return self.estimator_.predict(X)
def score(self, X, y):
"""Returns the score of the prediction.
This is a wrapper for `estimator_.score(X, y)`.
Parameters
----------
X : numpy array or sparse matrix of shape [n_samples, n_features]
Training data.
y : array, shape = [n_samples] or [n_samples, n_targets]
Target values.
Returns
-------
z : float
Score of the prediction.
"""
check_is_fitted(self)
return self.estimator_.score(X, y)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,345 @@
"""Solvers for Ridge and LogisticRegression using SAG algorithm"""
# Authors: Tom Dupre la Tour <tom.dupre-la-tour@m4x.org>
#
# License: BSD 3 clause
import warnings
import numpy as np
from ._base import make_dataset
from ._sag_fast import sag32, sag64
from ..exceptions import ConvergenceWarning
from ..utils import check_array
from ..utils.validation import _check_sample_weight
from ..utils.validation import _deprecate_positional_args
from ..utils.extmath import row_norms
def get_auto_step_size(max_squared_sum, alpha_scaled, loss, fit_intercept,
n_samples=None,
is_saga=False):
"""Compute automatic step size for SAG solver
The step size is set to 1 / (alpha_scaled + L + fit_intercept) where L is
the max sum of squares for over all samples.
Parameters
----------
max_squared_sum : float
Maximum squared sum of X over samples.
alpha_scaled : float
Constant that multiplies the regularization term, scaled by
1. / n_samples, the number of samples.
loss : string, in {"log", "squared"}
The loss function used in SAG solver.
fit_intercept : bool
Specifies if a constant (a.k.a. bias or intercept) will be
added to the decision function.
n_samples : int, optional
Number of rows in X. Useful if is_saga=True.
is_saga : boolean, optional
Whether to return step size for the SAGA algorithm or the SAG
algorithm.
Returns
-------
step_size : float
Step size used in SAG solver.
References
----------
Schmidt, M., Roux, N. L., & Bach, F. (2013).
Minimizing finite sums with the stochastic average gradient
https://hal.inria.fr/hal-00860051/document
Defazio, A., Bach F. & Lacoste-Julien S. (2014).
SAGA: A Fast Incremental Gradient Method With Support
for Non-Strongly Convex Composite Objectives
https://arxiv.org/abs/1407.0202
"""
if loss in ('log', 'multinomial'):
L = (0.25 * (max_squared_sum + int(fit_intercept)) + alpha_scaled)
elif loss == 'squared':
# inverse Lipschitz constant for squared loss
L = max_squared_sum + int(fit_intercept) + alpha_scaled
else:
raise ValueError("Unknown loss function for SAG solver, got %s "
"instead of 'log' or 'squared'" % loss)
if is_saga:
# SAGA theoretical step size is 1/3L or 1 / (2 * (L + mu n))
# See Defazio et al. 2014
mun = min(2 * n_samples * alpha_scaled, L)
step = 1. / (2 * L + mun)
else:
# SAG theoretical step size is 1/16L but it is recommended to use 1 / L
# see http://www.birs.ca//workshops//2014/14w5003/files/schmidt.pdf,
# slide 65
step = 1. / L
return step
@_deprecate_positional_args
def sag_solver(X, y, sample_weight=None, loss='log', alpha=1., beta=0.,
max_iter=1000, tol=0.001, verbose=0, random_state=None,
check_input=True, max_squared_sum=None,
warm_start_mem=None,
is_saga=False):
"""SAG solver for Ridge and LogisticRegression
SAG stands for Stochastic Average Gradient: the gradient of the loss is
estimated each sample at a time and the model is updated along the way with
a constant learning rate.
IMPORTANT NOTE: 'sag' solver converges faster on columns that are on the
same scale. You can normalize the data by using
sklearn.preprocessing.StandardScaler on your data before passing it to the
fit method.
This implementation works with data represented as dense numpy arrays or
sparse scipy arrays of floating point values for the features. It will
fit the data according to squared loss or log loss.
The regularizer is a penalty added to the loss function that shrinks model
parameters towards the zero vector using the squared euclidean norm L2.
.. versionadded:: 0.17
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training data
y : numpy array, shape (n_samples,)
Target values. With loss='multinomial', y must be label encoded
(see preprocessing.LabelEncoder).
sample_weight : array-like, shape (n_samples,), optional
Weights applied to individual samples (1. for unweighted).
loss : 'log' | 'squared' | 'multinomial'
Loss function that will be optimized:
-'log' is the binary logistic loss, as used in LogisticRegression.
-'squared' is the squared loss, as used in Ridge.
-'multinomial' is the multinomial logistic loss, as used in
LogisticRegression.
.. versionadded:: 0.18
*loss='multinomial'*
alpha : float, optional
L2 regularization term in the objective function
``(0.5 * alpha * || W ||_F^2)``. Defaults to 1.
beta : float, optional
L1 regularization term in the objective function
``(beta * || W ||_1)``. Only applied if ``is_saga`` is set to True.
Defaults to 0.
max_iter : int, optional
The max number of passes over the training data if the stopping
criteria is not reached. Defaults to 1000.
tol : double, optional
The stopping criteria for the weights. The iterations will stop when
max(change in weights) / max(weights) < tol. Defaults to .001
verbose : integer, optional
The verbosity level.
random_state : int, RandomState instance, default=None
Used when shuffling the data. Pass an int for reproducible output
across multiple function calls.
See :term:`Glossary <random_state>`.
check_input : bool, default True
If False, the input arrays X and y will not be checked.
max_squared_sum : float, default None
Maximum squared sum of X over samples. If None, it will be computed,
going through all the samples. The value should be precomputed
to speed up cross validation.
warm_start_mem : dict, optional
The initialization parameters used for warm starting. Warm starting is
currently used in LogisticRegression but not in Ridge.
It contains:
- 'coef': the weight vector, with the intercept in last line
if the intercept is fitted.
- 'gradient_memory': the scalar gradient for all seen samples.
- 'sum_gradient': the sum of gradient over all seen samples,
for each feature.
- 'intercept_sum_gradient': the sum of gradient over all seen
samples, for the intercept.
- 'seen': array of boolean describing the seen samples.
- 'num_seen': the number of seen samples.
is_saga : boolean, optional
Whether to use the SAGA algorithm or the SAG algorithm. SAGA behaves
better in the first epochs, and allow for l1 regularisation.
Returns
-------
coef_ : array, shape (n_features)
Weight vector.
n_iter_ : int
The number of full pass on all samples.
warm_start_mem : dict
Contains a 'coef' key with the fitted result, and possibly the
fitted intercept at the end of the array. Contains also other keys
used for warm starting.
Examples
--------
>>> import numpy as np
>>> from sklearn import linear_model
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> X = rng.randn(n_samples, n_features)
>>> y = rng.randn(n_samples)
>>> clf = linear_model.Ridge(solver='sag')
>>> clf.fit(X, y)
Ridge(solver='sag')
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> clf = linear_model.LogisticRegression(
... solver='sag', multi_class='multinomial')
>>> clf.fit(X, y)
LogisticRegression(multi_class='multinomial', solver='sag')
References
----------
Schmidt, M., Roux, N. L., & Bach, F. (2013).
Minimizing finite sums with the stochastic average gradient
https://hal.inria.fr/hal-00860051/document
Defazio, A., Bach F. & Lacoste-Julien S. (2014).
SAGA: A Fast Incremental Gradient Method With Support
for Non-Strongly Convex Composite Objectives
https://arxiv.org/abs/1407.0202
See also
--------
Ridge, SGDRegressor, ElasticNet, Lasso, SVR, and
LogisticRegression, SGDClassifier, LinearSVC, Perceptron
"""
if warm_start_mem is None:
warm_start_mem = {}
# Ridge default max_iter is None
if max_iter is None:
max_iter = 1000
if check_input:
_dtype = [np.float64, np.float32]
X = check_array(X, dtype=_dtype, accept_sparse='csr', order='C')
y = check_array(y, dtype=_dtype, ensure_2d=False, order='C')
n_samples, n_features = X.shape[0], X.shape[1]
# As in SGD, the alpha is scaled by n_samples.
alpha_scaled = float(alpha) / n_samples
beta_scaled = float(beta) / n_samples
# if loss == 'multinomial', y should be label encoded.
n_classes = int(y.max()) + 1 if loss == 'multinomial' else 1
# initialization
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
if 'coef' in warm_start_mem.keys():
coef_init = warm_start_mem['coef']
else:
# assume fit_intercept is False
coef_init = np.zeros((n_features, n_classes), dtype=X.dtype,
order='C')
# coef_init contains possibly the intercept_init at the end.
# Note that Ridge centers the data before fitting, so fit_intercept=False.
fit_intercept = coef_init.shape[0] == (n_features + 1)
if fit_intercept:
intercept_init = coef_init[-1, :]
coef_init = coef_init[:-1, :]
else:
intercept_init = np.zeros(n_classes, dtype=X.dtype)
if 'intercept_sum_gradient' in warm_start_mem.keys():
intercept_sum_gradient = warm_start_mem['intercept_sum_gradient']
else:
intercept_sum_gradient = np.zeros(n_classes, dtype=X.dtype)
if 'gradient_memory' in warm_start_mem.keys():
gradient_memory_init = warm_start_mem['gradient_memory']
else:
gradient_memory_init = np.zeros((n_samples, n_classes),
dtype=X.dtype, order='C')
if 'sum_gradient' in warm_start_mem.keys():
sum_gradient_init = warm_start_mem['sum_gradient']
else:
sum_gradient_init = np.zeros((n_features, n_classes),
dtype=X.dtype, order='C')
if 'seen' in warm_start_mem.keys():
seen_init = warm_start_mem['seen']
else:
seen_init = np.zeros(n_samples, dtype=np.int32, order='C')
if 'num_seen' in warm_start_mem.keys():
num_seen_init = warm_start_mem['num_seen']
else:
num_seen_init = 0
dataset, intercept_decay = make_dataset(X, y, sample_weight, random_state)
if max_squared_sum is None:
max_squared_sum = row_norms(X, squared=True).max()
step_size = get_auto_step_size(max_squared_sum, alpha_scaled, loss,
fit_intercept, n_samples=n_samples,
is_saga=is_saga)
if step_size * alpha_scaled == 1:
raise ZeroDivisionError("Current sag implementation does not handle "
"the case step_size * alpha_scaled == 1")
sag = sag64 if X.dtype == np.float64 else sag32
num_seen, n_iter_ = sag(dataset, coef_init,
intercept_init, n_samples,
n_features, n_classes, tol,
max_iter,
loss,
step_size, alpha_scaled,
beta_scaled,
sum_gradient_init,
gradient_memory_init,
seen_init,
num_seen_init,
fit_intercept,
intercept_sum_gradient,
intercept_decay,
is_saga,
verbose)
if n_iter_ == max_iter:
warnings.warn("The max_iter was reached which means "
"the coef_ did not converge", ConvergenceWarning)
if fit_intercept:
coef_init = np.vstack((coef_init, intercept_init))
warm_start_mem = {'coef': coef_init, 'sum_gradient': sum_gradient_init,
'intercept_sum_gradient': intercept_sum_gradient,
'gradient_memory': gradient_memory_init,
'seen': seen_init, 'num_seen': num_seen}
if loss == 'multinomial':
coef_ = coef_init.T
else:
coef_ = coef_init[:, 0]
return coef_, n_iter_, warm_start_mem

View file

@ -0,0 +1,26 @@
# License: BSD 3 clause
"""Helper to load LossFunction from sgd_fast.pyx to sag_fast.pyx"""
cdef class LossFunction:
cdef double loss(self, double p, double y) nogil
cdef double _dloss(self, double p, double y) nogil
cdef class Regression(LossFunction):
cdef double loss(self, double p, double y) nogil
cdef double _dloss(self, double p, double y) nogil
cdef class Classification(LossFunction):
cdef double loss(self, double p, double y) nogil
cdef double _dloss(self, double p, double y) nogil
cdef class Log(Classification):
cdef double loss(self, double p, double y) nogil
cdef double _dloss(self, double p, double y) nogil
cdef class SquaredLoss(Regression):
cdef double loss(self, double p, double y) nogil
cdef double _dloss(self, double p, double y) nogil

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,400 @@
# -*- coding: utf-8 -*-
"""
A Theil-Sen Estimator for Multiple Linear Regression Model
"""
# Author: Florian Wilhelm <florian.wilhelm@gmail.com>
#
# License: BSD 3 clause
import warnings
from itertools import combinations
import numpy as np
from scipy import linalg
from scipy.special import binom
from scipy.linalg.lapack import get_lapack_funcs
from joblib import Parallel, delayed, effective_n_jobs
from ._base import LinearModel
from ..base import RegressorMixin
from ..utils import check_random_state
from ..utils.validation import _deprecate_positional_args
from ..exceptions import ConvergenceWarning
_EPSILON = np.finfo(np.double).eps
def _modified_weiszfeld_step(X, x_old):
"""Modified Weiszfeld step.
This function defines one iteration step in order to approximate the
spatial median (L1 median). It is a form of an iteratively re-weighted
least squares method.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
x_old : array, shape = [n_features]
Current start vector.
Returns
-------
x_new : array, shape = [n_features]
New iteration step.
References
----------
- On Computation of Spatial Median for Robust Data Mining, 2005
T. Kärkkäinen and S. Äyrämö
http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf
"""
diff = X - x_old
diff_norm = np.sqrt(np.sum(diff ** 2, axis=1))
mask = diff_norm >= _EPSILON
# x_old equals one of our samples
is_x_old_in_X = int(mask.sum() < X.shape[0])
diff = diff[mask]
diff_norm = diff_norm[mask][:, np.newaxis]
quotient_norm = linalg.norm(np.sum(diff / diff_norm, axis=0))
if quotient_norm > _EPSILON: # to avoid division by zero
new_direction = (np.sum(X[mask, :] / diff_norm, axis=0)
/ np.sum(1 / diff_norm, axis=0))
else:
new_direction = 1.
quotient_norm = 1.
return (max(0., 1. - is_x_old_in_X / quotient_norm) * new_direction
+ min(1., is_x_old_in_X / quotient_norm) * x_old)
def _spatial_median(X, max_iter=300, tol=1.e-3):
"""Spatial median (L1 median).
The spatial median is member of a class of so-called M-estimators which
are defined by an optimization problem. Given a number of p points in an
n-dimensional space, the point x minimizing the sum of all distances to the
p other points is called spatial median.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
max_iter : int, optional
Maximum number of iterations. Default is 300.
tol : float, optional
Stop the algorithm if spatial_median has converged. Default is 1.e-3.
Returns
-------
spatial_median : array, shape = [n_features]
Spatial median.
n_iter : int
Number of iterations needed.
References
----------
- On Computation of Spatial Median for Robust Data Mining, 2005
T. Kärkkäinen and S. Äyrämö
http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf
"""
if X.shape[1] == 1:
return 1, np.median(X.ravel())
tol **= 2 # We are computing the tol on the squared norm
spatial_median_old = np.mean(X, axis=0)
for n_iter in range(max_iter):
spatial_median = _modified_weiszfeld_step(X, spatial_median_old)
if np.sum((spatial_median_old - spatial_median) ** 2) < tol:
break
else:
spatial_median_old = spatial_median
else:
warnings.warn("Maximum number of iterations {max_iter} reached in "
"spatial median for TheilSen regressor."
"".format(max_iter=max_iter), ConvergenceWarning)
return n_iter, spatial_median
def _breakdown_point(n_samples, n_subsamples):
"""Approximation of the breakdown point.
Parameters
----------
n_samples : int
Number of samples.
n_subsamples : int
Number of subsamples to consider.
Returns
-------
breakdown_point : float
Approximation of breakdown point.
"""
return 1 - (0.5 ** (1 / n_subsamples) * (n_samples - n_subsamples + 1) +
n_subsamples - 1) / n_samples
def _lstsq(X, y, indices, fit_intercept):
"""Least Squares Estimator for TheilSenRegressor class.
This function calculates the least squares method on a subset of rows of X
and y defined by the indices array. Optionally, an intercept column is
added if intercept is set to true.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Design matrix, where n_samples is the number of samples and
n_features is the number of features.
y : array, shape = [n_samples]
Target vector, where n_samples is the number of samples.
indices : array, shape = [n_subpopulation, n_subsamples]
Indices of all subsamples with respect to the chosen subpopulation.
fit_intercept : bool
Fit intercept or not.
Returns
-------
weights : array, shape = [n_subpopulation, n_features + intercept]
Solution matrix of n_subpopulation solved least square problems.
"""
fit_intercept = int(fit_intercept)
n_features = X.shape[1] + fit_intercept
n_subsamples = indices.shape[1]
weights = np.empty((indices.shape[0], n_features))
X_subpopulation = np.ones((n_subsamples, n_features))
# gelss need to pad y_subpopulation to be of the max dim of X_subpopulation
y_subpopulation = np.zeros((max(n_subsamples, n_features)))
lstsq, = get_lapack_funcs(('gelss',), (X_subpopulation, y_subpopulation))
for index, subset in enumerate(indices):
X_subpopulation[:, fit_intercept:] = X[subset, :]
y_subpopulation[:n_subsamples] = y[subset]
weights[index] = lstsq(X_subpopulation,
y_subpopulation)[1][:n_features]
return weights
class TheilSenRegressor(RegressorMixin, LinearModel):
"""Theil-Sen Estimator: robust multivariate regression model.
The algorithm calculates least square solutions on subsets with size
n_subsamples of the samples in X. Any value of n_subsamples between the
number of features and samples leads to an estimator with a compromise
between robustness and efficiency. Since the number of least square
solutions is "n_samples choose n_subsamples", it can be extremely large
and can therefore be limited with max_subpopulation. If this limit is
reached, the subsets are chosen randomly. In a final step, the spatial
median (or L1 median) is calculated of all least square solutions.
Read more in the :ref:`User Guide <theil_sen_regression>`.
Parameters
----------
fit_intercept : boolean, optional, default True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
max_subpopulation : int, optional, default 1e4
Instead of computing with a set of cardinality 'n choose k', where n is
the number of samples and k is the number of subsamples (at least
number of features), consider only a stochastic subpopulation of a
given maximal size if 'n choose k' is larger than max_subpopulation.
For other than small problem sizes this parameter will determine
memory usage and runtime if n_subsamples is not changed.
n_subsamples : int, optional, default None
Number of samples to calculate the parameters. This is at least the
number of features (plus 1 if fit_intercept=True) and the number of
samples as a maximum. A lower number leads to a higher breakdown
point and a low efficiency while a high number leads to a low
breakdown point and a high efficiency. If None, take the
minimum number of subsamples leading to maximal robustness.
If n_subsamples is set to n_samples, Theil-Sen is identical to least
squares.
max_iter : int, optional, default 300
Maximum number of iterations for the calculation of spatial median.
tol : float, optional, default 1.e-3
Tolerance when calculating spatial median.
random_state : int, RandomState instance, default=None
A random number generator instance to define the state of the random
permutations generator. Pass an int for reproducible output across
multiple function calls.
See :term:`Glossary <random_state>`
n_jobs : int or None, optional (default=None)
Number of CPUs to use during the cross validation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : boolean, optional, default False
Verbose mode when fitting the model.
Attributes
----------
coef_ : array, shape = (n_features)
Coefficients of the regression model (median of distribution).
intercept_ : float
Estimated intercept of regression model.
breakdown_ : float
Approximated breakdown point.
n_iter_ : int
Number of iterations needed for the spatial median.
n_subpopulation_ : int
Number of combinations taken into account from 'n choose k', where n is
the number of samples and k is the number of subsamples.
Examples
--------
>>> from sklearn.linear_model import TheilSenRegressor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(
... n_samples=200, n_features=2, noise=4.0, random_state=0)
>>> reg = TheilSenRegressor(random_state=0).fit(X, y)
>>> reg.score(X, y)
0.9884...
>>> reg.predict(X[:1,])
array([-31.5871...])
References
----------
- Theil-Sen Estimators in a Multiple Linear Regression Model, 2009
Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang
http://home.olemiss.edu/~xdang/papers/MTSE.pdf
"""
@_deprecate_positional_args
def __init__(self, *, fit_intercept=True, copy_X=True,
max_subpopulation=1e4, n_subsamples=None, max_iter=300,
tol=1.e-3, random_state=None, n_jobs=None, verbose=False):
self.fit_intercept = fit_intercept
self.copy_X = copy_X
self.max_subpopulation = int(max_subpopulation)
self.n_subsamples = n_subsamples
self.max_iter = max_iter
self.tol = tol
self.random_state = random_state
self.n_jobs = n_jobs
self.verbose = verbose
def _check_subparams(self, n_samples, n_features):
n_subsamples = self.n_subsamples
if self.fit_intercept:
n_dim = n_features + 1
else:
n_dim = n_features
if n_subsamples is not None:
if n_subsamples > n_samples:
raise ValueError("Invalid parameter since n_subsamples > "
"n_samples ({0} > {1}).".format(n_subsamples,
n_samples))
if n_samples >= n_features:
if n_dim > n_subsamples:
plus_1 = "+1" if self.fit_intercept else ""
raise ValueError("Invalid parameter since n_features{0} "
"> n_subsamples ({1} > {2})."
"".format(plus_1, n_dim, n_samples))
else: # if n_samples < n_features
if n_subsamples != n_samples:
raise ValueError("Invalid parameter since n_subsamples != "
"n_samples ({0} != {1}) while n_samples "
"< n_features.".format(n_subsamples,
n_samples))
else:
n_subsamples = min(n_dim, n_samples)
if self.max_subpopulation <= 0:
raise ValueError("Subpopulation must be strictly positive "
"({0} <= 0).".format(self.max_subpopulation))
all_combinations = max(1, np.rint(binom(n_samples, n_subsamples)))
n_subpopulation = int(min(self.max_subpopulation, all_combinations))
return n_subsamples, n_subpopulation
def fit(self, X, y):
"""Fit linear model.
Parameters
----------
X : numpy array of shape [n_samples, n_features]
Training data
y : numpy array of shape [n_samples]
Target values
Returns
-------
self : returns an instance of self.
"""
random_state = check_random_state(self.random_state)
X, y = self._validate_data(X, y, y_numeric=True)
n_samples, n_features = X.shape
n_subsamples, self.n_subpopulation_ = self._check_subparams(n_samples,
n_features)
self.breakdown_ = _breakdown_point(n_samples, n_subsamples)
if self.verbose:
print("Breakdown point: {0}".format(self.breakdown_))
print("Number of samples: {0}".format(n_samples))
tol_outliers = int(self.breakdown_ * n_samples)
print("Tolerable outliers: {0}".format(tol_outliers))
print("Number of subpopulations: {0}".format(
self.n_subpopulation_))
# Determine indices of subpopulation
if np.rint(binom(n_samples, n_subsamples)) <= self.max_subpopulation:
indices = list(combinations(range(n_samples), n_subsamples))
else:
indices = [random_state.choice(n_samples, size=n_subsamples,
replace=False)
for _ in range(self.n_subpopulation_)]
n_jobs = effective_n_jobs(self.n_jobs)
index_list = np.array_split(indices, n_jobs)
weights = Parallel(n_jobs=n_jobs,
verbose=self.verbose)(
delayed(_lstsq)(X, y, index_list[job], self.fit_intercept)
for job in range(n_jobs))
weights = np.vstack(weights)
self.n_iter_, coefs = _spatial_median(weights,
max_iter=self.max_iter,
tol=self.tol)
if self.fit_intercept:
self.intercept_ = coefs[0]
self.coef_ = coefs[1:]
else:
self.intercept_ = 0.
self.coef_ = coefs
return self

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _base # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.base'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_base, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _bayes # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.bayes'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_bayes, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _cd_fast # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.cd_fast'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_cd_fast, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _coordinate_descent # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.coordinate_descent'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_coordinate_descent, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _huber # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.huber'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_huber, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _least_angle # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.least_angle'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_least_angle, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _logistic # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.logistic'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_logistic, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _omp # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.omp'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_omp, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _passive_aggressive # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.passive_aggressive'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_passive_aggressive, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _perceptron # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.perceptron'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_perceptron, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _ransac # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.ransac'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_ransac, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _ridge # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.ridge'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_ridge, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _sag # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.sag'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_sag, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _sag_fast # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.sag_fast'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_sag_fast, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,44 @@
import os
import numpy
from sklearn._build_utils import gen_from_templates
def configuration(parent_package='', top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration('linear_model', parent_package, top_path)
libraries = []
if os.name == 'posix':
libraries.append('m')
config.add_extension('_cd_fast',
sources=['_cd_fast.pyx'],
include_dirs=numpy.get_include(),
libraries=libraries)
config.add_extension('_sgd_fast',
sources=['_sgd_fast.pyx'],
include_dirs=numpy.get_include(),
libraries=libraries)
# generate sag_fast from template
templates = ['sklearn/linear_model/_sag_fast.pyx.tp']
gen_from_templates(templates, top_path)
config.add_extension('_sag_fast',
sources=['_sag_fast.pyx'],
include_dirs=numpy.get_include())
# add other directories
config.add_subpackage('tests')
config.add_subpackage('_glm')
config.add_subpackage('_glm/tests')
return config
if __name__ == '__main__':
from numpy.distutils.core import setup
setup(**configuration(top_path='').todict())

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _sgd_fast # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.sgd_fast'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_sgd_fast, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,18 @@
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
import sys
# mypy error: Module X has no attribute y (typically for C extensions)
from . import _stochastic_gradient # type: ignore
from ..externals._pep562 import Pep562
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
deprecated_path = 'sklearn.linear_model.stochastic_gradient'
correct_import_path = 'sklearn.linear_model'
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
def __getattr__(name):
return getattr(_stochastic_gradient, name)
if not sys.version_info >= (3, 7):
Pep562(__name__)

View file

@ -0,0 +1,530 @@
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
# License: BSD 3 clause
import pytest
import numpy as np
from scipy import sparse
from scipy import linalg
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils.fixes import parse_version
from sklearn.linear_model import LinearRegression
from sklearn.linear_model._base import _preprocess_data
from sklearn.linear_model._base import _rescale_data
from sklearn.linear_model._base import make_dataset
from sklearn.utils import check_random_state
from sklearn.datasets import make_sparse_uncorrelated
from sklearn.datasets import make_regression
from sklearn.datasets import load_iris
rng = np.random.RandomState(0)
rtol = 1e-6
def test_linear_regression():
# Test LinearRegression on a simple dataset.
# a simple dataset
X = [[1], [2]]
Y = [1, 2]
reg = LinearRegression()
reg.fit(X, Y)
assert_array_almost_equal(reg.coef_, [1])
assert_array_almost_equal(reg.intercept_, [0])
assert_array_almost_equal(reg.predict(X), [1, 2])
# test it also for degenerate input
X = [[1]]
Y = [0]
reg = LinearRegression()
reg.fit(X, Y)
assert_array_almost_equal(reg.coef_, [0])
assert_array_almost_equal(reg.intercept_, [0])
assert_array_almost_equal(reg.predict(X), [0])
def test_linear_regression_sample_weights():
# TODO: loop over sparse data as well
rng = np.random.RandomState(0)
# It would not work with under-determined systems
for n_samples, n_features in ((6, 5), ):
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)
sample_weight = 1.0 + rng.rand(n_samples)
for intercept in (True, False):
# LinearRegression with explicit sample_weight
reg = LinearRegression(fit_intercept=intercept)
reg.fit(X, y, sample_weight=sample_weight)
coefs1 = reg.coef_
inter1 = reg.intercept_
assert reg.coef_.shape == (X.shape[1], ) # sanity checks
assert reg.score(X, y) > 0.5
# Closed form of the weighted least square
# theta = (X^T W X)^(-1) * X^T W y
W = np.diag(sample_weight)
if intercept is False:
X_aug = X
else:
dummy_column = np.ones(shape=(n_samples, 1))
X_aug = np.concatenate((dummy_column, X), axis=1)
coefs2 = linalg.solve(X_aug.T.dot(W).dot(X_aug),
X_aug.T.dot(W).dot(y))
if intercept is False:
assert_array_almost_equal(coefs1, coefs2)
else:
assert_array_almost_equal(coefs1, coefs2[1:])
assert_almost_equal(inter1, coefs2[0])
def test_raises_value_error_if_sample_weights_greater_than_1d():
# Sample weights must be either scalar or 1D
n_sampless = [2, 3]
n_featuress = [3, 2]
for n_samples, n_features in zip(n_sampless, n_featuress):
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
sample_weights_OK = rng.randn(n_samples) ** 2 + 1
sample_weights_OK_1 = 1.
sample_weights_OK_2 = 2.
reg = LinearRegression()
# make sure the "OK" sample weights actually work
reg.fit(X, y, sample_weights_OK)
reg.fit(X, y, sample_weights_OK_1)
reg.fit(X, y, sample_weights_OK_2)
def test_fit_intercept():
# Test assertions on betas shape.
X2 = np.array([[0.38349978, 0.61650022],
[0.58853682, 0.41146318]])
X3 = np.array([[0.27677969, 0.70693172, 0.01628859],
[0.08385139, 0.20692515, 0.70922346]])
y = np.array([1, 1])
lr2_without_intercept = LinearRegression(fit_intercept=False).fit(X2, y)
lr2_with_intercept = LinearRegression().fit(X2, y)
lr3_without_intercept = LinearRegression(fit_intercept=False).fit(X3, y)
lr3_with_intercept = LinearRegression().fit(X3, y)
assert (lr2_with_intercept.coef_.shape ==
lr2_without_intercept.coef_.shape)
assert (lr3_with_intercept.coef_.shape ==
lr3_without_intercept.coef_.shape)
assert (lr2_without_intercept.coef_.ndim ==
lr3_without_intercept.coef_.ndim)
def test_linear_regression_sparse(random_state=0):
# Test that linear regression also works with sparse data
random_state = check_random_state(random_state)
for i in range(10):
n = 100
X = sparse.eye(n, n)
beta = random_state.rand(n)
y = X * beta[:, np.newaxis]
ols = LinearRegression()
ols.fit(X, y.ravel())
assert_array_almost_equal(beta, ols.coef_ + ols.intercept_)
assert_array_almost_equal(ols.predict(X) - y.ravel(), 0)
@pytest.mark.parametrize('normalize', [True, False])
@pytest.mark.parametrize('fit_intercept', [True, False])
def test_linear_regression_sparse_equal_dense(normalize, fit_intercept):
# Test that linear regression agrees between sparse and dense
rng = check_random_state(0)
n_samples = 200
n_features = 2
X = rng.randn(n_samples, n_features)
X[X < 0.1] = 0.
Xcsr = sparse.csr_matrix(X)
y = rng.rand(n_samples)
params = dict(normalize=normalize, fit_intercept=fit_intercept)
clf_dense = LinearRegression(**params)
clf_sparse = LinearRegression(**params)
clf_dense.fit(X, y)
clf_sparse.fit(Xcsr, y)
assert clf_dense.intercept_ == pytest.approx(clf_sparse.intercept_)
assert_allclose(clf_dense.coef_, clf_sparse.coef_)
def test_linear_regression_multiple_outcome(random_state=0):
# Test multiple-outcome linear regressions
X, y = make_regression(random_state=random_state)
Y = np.vstack((y, y)).T
n_features = X.shape[1]
reg = LinearRegression()
reg.fit((X), Y)
assert reg.coef_.shape == (2, n_features)
Y_pred = reg.predict(X)
reg.fit(X, y)
y_pred = reg.predict(X)
assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
def test_linear_regression_sparse_multiple_outcome(random_state=0):
# Test multiple-outcome linear regressions with sparse data
random_state = check_random_state(random_state)
X, y = make_sparse_uncorrelated(random_state=random_state)
X = sparse.coo_matrix(X)
Y = np.vstack((y, y)).T
n_features = X.shape[1]
ols = LinearRegression()
ols.fit(X, Y)
assert ols.coef_.shape == (2, n_features)
Y_pred = ols.predict(X)
ols.fit(X, y.ravel())
y_pred = ols.predict(X)
assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
def test_linear_regression_pd_sparse_dataframe_warning():
pd = pytest.importorskip('pandas')
# restrict the pd versions < '0.24.0' as they have a bug in is_sparse func
if parse_version(pd.__version__) < parse_version('0.24.0'):
pytest.skip("pandas 0.24+ required.")
# Warning is raised only when some of the columns is sparse
df = pd.DataFrame({'0': np.random.randn(10)})
for col in range(1, 4):
arr = np.random.randn(10)
arr[:8] = 0
# all columns but the first column is sparse
if col != 0:
arr = pd.arrays.SparseArray(arr, fill_value=0)
df[str(col)] = arr
msg = "pandas.DataFrame with sparse columns found."
with pytest.warns(UserWarning, match=msg):
reg = LinearRegression()
reg.fit(df.iloc[:, 0:2], df.iloc[:, 3])
# does not warn when the whole dataframe is sparse
df['0'] = pd.arrays.SparseArray(df['0'], fill_value=0)
assert hasattr(df, "sparse")
with pytest.warns(None) as record:
reg.fit(df.iloc[:, 0:2], df.iloc[:, 3])
assert not record
def test_preprocess_data():
n_samples = 200
n_features = 2
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
expected_X_mean = np.mean(X, axis=0)
expected_X_norm = np.std(X, axis=0) * np.sqrt(X.shape[0])
expected_y_mean = np.mean(y, axis=0)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=False, normalize=False)
assert_array_almost_equal(X_mean, np.zeros(n_features))
assert_array_almost_equal(y_mean, 0)
assert_array_almost_equal(X_norm, np.ones(n_features))
assert_array_almost_equal(Xt, X)
assert_array_almost_equal(yt, y)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=False)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_norm, np.ones(n_features))
assert_array_almost_equal(Xt, X - expected_X_mean)
assert_array_almost_equal(yt, y - expected_y_mean)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=True)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_norm, expected_X_norm)
assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_norm)
assert_array_almost_equal(yt, y - expected_y_mean)
def test_preprocess_data_multioutput():
n_samples = 200
n_features = 3
n_outputs = 2
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples, n_outputs)
expected_y_mean = np.mean(y, axis=0)
args = [X, sparse.csc_matrix(X)]
for X in args:
_, yt, _, y_mean, _ = _preprocess_data(X, y, fit_intercept=False,
normalize=False)
assert_array_almost_equal(y_mean, np.zeros(n_outputs))
assert_array_almost_equal(yt, y)
_, yt, _, y_mean, _ = _preprocess_data(X, y, fit_intercept=True,
normalize=False)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(yt, y - y_mean)
_, yt, _, y_mean, _ = _preprocess_data(X, y, fit_intercept=True,
normalize=True)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(yt, y - y_mean)
def test_preprocess_data_weighted():
n_samples = 200
n_features = 2
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
sample_weight = rng.rand(n_samples)
expected_X_mean = np.average(X, axis=0, weights=sample_weight)
expected_y_mean = np.average(y, axis=0, weights=sample_weight)
# XXX: if normalize=True, should we expect a weighted standard deviation?
# Currently not weighted, but calculated with respect to weighted mean
expected_X_norm = (np.sqrt(X.shape[0]) *
np.mean((X - expected_X_mean) ** 2, axis=0) ** .5)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=False,
sample_weight=sample_weight)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_norm, np.ones(n_features))
assert_array_almost_equal(Xt, X - expected_X_mean)
assert_array_almost_equal(yt, y - expected_y_mean)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=True,
sample_weight=sample_weight)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
assert_array_almost_equal(X_norm, expected_X_norm)
assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_norm)
assert_array_almost_equal(yt, y - expected_y_mean)
def test_sparse_preprocess_data_with_return_mean():
n_samples = 200
n_features = 2
# random_state not supported yet in sparse.rand
X = sparse.rand(n_samples, n_features, density=.5) # , random_state=rng
X = X.tolil()
y = rng.rand(n_samples)
XA = X.toarray()
expected_X_norm = np.std(XA, axis=0) * np.sqrt(X.shape[0])
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=False, normalize=False,
return_mean=True)
assert_array_almost_equal(X_mean, np.zeros(n_features))
assert_array_almost_equal(y_mean, 0)
assert_array_almost_equal(X_norm, np.ones(n_features))
assert_array_almost_equal(Xt.A, XA)
assert_array_almost_equal(yt, y)
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=False,
return_mean=True)
assert_array_almost_equal(X_mean, np.mean(XA, axis=0))
assert_array_almost_equal(y_mean, np.mean(y, axis=0))
assert_array_almost_equal(X_norm, np.ones(n_features))
assert_array_almost_equal(Xt.A, XA)
assert_array_almost_equal(yt, y - np.mean(y, axis=0))
Xt, yt, X_mean, y_mean, X_norm = \
_preprocess_data(X, y, fit_intercept=True, normalize=True,
return_mean=True)
assert_array_almost_equal(X_mean, np.mean(XA, axis=0))
assert_array_almost_equal(y_mean, np.mean(y, axis=0))
assert_array_almost_equal(X_norm, expected_X_norm)
assert_array_almost_equal(Xt.A, XA / expected_X_norm)
assert_array_almost_equal(yt, y - np.mean(y, axis=0))
def test_csr_preprocess_data():
# Test output format of _preprocess_data, when input is csr
X, y = make_regression()
X[X < 2.5] = 0.0
csr = sparse.csr_matrix(X)
csr_, y, _, _, _ = _preprocess_data(csr, y, True)
assert csr_.getformat() == 'csr'
@pytest.mark.parametrize('is_sparse', (True, False))
@pytest.mark.parametrize('to_copy', (True, False))
def test_preprocess_copy_data_no_checks(is_sparse, to_copy):
X, y = make_regression()
X[X < 2.5] = 0.0
if is_sparse:
X = sparse.csr_matrix(X)
X_, y_, _, _, _ = _preprocess_data(X, y, True,
copy=to_copy, check_input=False)
if to_copy and is_sparse:
assert not np.may_share_memory(X_.data, X.data)
elif to_copy:
assert not np.may_share_memory(X_, X)
elif is_sparse:
assert np.may_share_memory(X_.data, X.data)
else:
assert np.may_share_memory(X_, X)
def test_dtype_preprocess_data():
n_samples = 200
n_features = 2
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
X_32 = np.asarray(X, dtype=np.float32)
y_32 = np.asarray(y, dtype=np.float32)
X_64 = np.asarray(X, dtype=np.float64)
y_64 = np.asarray(y, dtype=np.float64)
for fit_intercept in [True, False]:
for normalize in [True, False]:
Xt_32, yt_32, X_mean_32, y_mean_32, X_norm_32 = _preprocess_data(
X_32, y_32, fit_intercept=fit_intercept, normalize=normalize,
return_mean=True)
Xt_64, yt_64, X_mean_64, y_mean_64, X_norm_64 = _preprocess_data(
X_64, y_64, fit_intercept=fit_intercept, normalize=normalize,
return_mean=True)
Xt_3264, yt_3264, X_mean_3264, y_mean_3264, X_norm_3264 = (
_preprocess_data(X_32, y_64, fit_intercept=fit_intercept,
normalize=normalize, return_mean=True))
Xt_6432, yt_6432, X_mean_6432, y_mean_6432, X_norm_6432 = (
_preprocess_data(X_64, y_32, fit_intercept=fit_intercept,
normalize=normalize, return_mean=True))
assert Xt_32.dtype == np.float32
assert yt_32.dtype == np.float32
assert X_mean_32.dtype == np.float32
assert y_mean_32.dtype == np.float32
assert X_norm_32.dtype == np.float32
assert Xt_64.dtype == np.float64
assert yt_64.dtype == np.float64
assert X_mean_64.dtype == np.float64
assert y_mean_64.dtype == np.float64
assert X_norm_64.dtype == np.float64
assert Xt_3264.dtype == np.float32
assert yt_3264.dtype == np.float32
assert X_mean_3264.dtype == np.float32
assert y_mean_3264.dtype == np.float32
assert X_norm_3264.dtype == np.float32
assert Xt_6432.dtype == np.float64
assert yt_6432.dtype == np.float64
assert X_mean_6432.dtype == np.float64
assert y_mean_6432.dtype == np.float64
assert X_norm_6432.dtype == np.float64
assert X_32.dtype == np.float32
assert y_32.dtype == np.float32
assert X_64.dtype == np.float64
assert y_64.dtype == np.float64
assert_array_almost_equal(Xt_32, Xt_64)
assert_array_almost_equal(yt_32, yt_64)
assert_array_almost_equal(X_mean_32, X_mean_64)
assert_array_almost_equal(y_mean_32, y_mean_64)
assert_array_almost_equal(X_norm_32, X_norm_64)
@pytest.mark.parametrize('n_targets', [None, 2])
def test_rescale_data_dense(n_targets):
n_samples = 200
n_features = 2
sample_weight = 1.0 + rng.rand(n_samples)
X = rng.rand(n_samples, n_features)
if n_targets is None:
y = rng.rand(n_samples)
else:
y = rng.rand(n_samples, n_targets)
rescaled_X, rescaled_y = _rescale_data(X, y, sample_weight)
rescaled_X2 = X * np.sqrt(sample_weight)[:, np.newaxis]
if n_targets is None:
rescaled_y2 = y * np.sqrt(sample_weight)
else:
rescaled_y2 = y * np.sqrt(sample_weight)[:, np.newaxis]
assert_array_almost_equal(rescaled_X, rescaled_X2)
assert_array_almost_equal(rescaled_y, rescaled_y2)
def test_fused_types_make_dataset():
iris = load_iris()
X_32 = iris.data.astype(np.float32)
y_32 = iris.target.astype(np.float32)
X_csr_32 = sparse.csr_matrix(X_32)
sample_weight_32 = np.arange(y_32.size, dtype=np.float32)
X_64 = iris.data.astype(np.float64)
y_64 = iris.target.astype(np.float64)
X_csr_64 = sparse.csr_matrix(X_64)
sample_weight_64 = np.arange(y_64.size, dtype=np.float64)
# array
dataset_32, _ = make_dataset(X_32, y_32, sample_weight_32)
dataset_64, _ = make_dataset(X_64, y_64, sample_weight_64)
xi_32, yi_32, _, _ = dataset_32._next_py()
xi_64, yi_64, _, _ = dataset_64._next_py()
xi_data_32, _, _ = xi_32
xi_data_64, _, _ = xi_64
assert xi_data_32.dtype == np.float32
assert xi_data_64.dtype == np.float64
assert_allclose(yi_64, yi_32, rtol=rtol)
# csr
datasetcsr_32, _ = make_dataset(X_csr_32, y_32, sample_weight_32)
datasetcsr_64, _ = make_dataset(X_csr_64, y_64, sample_weight_64)
xicsr_32, yicsr_32, _, _ = datasetcsr_32._next_py()
xicsr_64, yicsr_64, _, _ = datasetcsr_64._next_py()
xicsr_data_32, _, _ = xicsr_32
xicsr_data_64, _, _ = xicsr_64
assert xicsr_data_32.dtype == np.float32
assert xicsr_data_64.dtype == np.float64
assert_allclose(xicsr_data_64, xicsr_data_32, rtol=rtol)
assert_allclose(yicsr_64, yicsr_32, rtol=rtol)
assert_array_equal(xi_data_32, xicsr_data_32)
assert_array_equal(xi_data_64, xicsr_data_64)
assert_array_equal(yi_32, yicsr_32)
assert_array_equal(yi_64, yicsr_64)

View file

@ -0,0 +1,274 @@
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
# License: BSD 3 clause
from math import log
import numpy as np
from scipy.linalg import pinvh
import pytest
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_less
from sklearn.utils._testing import assert_raise_message
from sklearn.utils import check_random_state
from sklearn.linear_model import BayesianRidge, ARDRegression
from sklearn.linear_model import Ridge
from sklearn import datasets
from sklearn.utils.extmath import fast_logdet
diabetes = datasets.load_diabetes()
def test_n_iter():
"""Check value of n_iter."""
X = np.array([[1], [2], [6], [8], [10]])
y = np.array([1, 2, 6, 8, 10])
clf = BayesianRidge(n_iter=0)
msg = "n_iter should be greater than or equal to 1."
assert_raise_message(ValueError, msg, clf.fit, X, y)
def test_bayesian_ridge_scores():
"""Check scores attribute shape"""
X, y = diabetes.data, diabetes.target
clf = BayesianRidge(compute_score=True)
clf.fit(X, y)
assert clf.scores_.shape == (clf.n_iter_ + 1,)
def test_bayesian_ridge_score_values():
"""Check value of score on toy example.
Compute log marginal likelihood with equation (36) in Sparse Bayesian
Learning and the Relevance Vector Machine (Tipping, 2001):
- 0.5 * (log |Id/alpha + X.X^T/lambda| +
y^T.(Id/alpha + X.X^T/lambda).y + n * log(2 * pi))
+ lambda_1 * log(lambda) - lambda_2 * lambda
+ alpha_1 * log(alpha) - alpha_2 * alpha
and check equality with the score computed during training.
"""
X, y = diabetes.data, diabetes.target
n_samples = X.shape[0]
# check with initial values of alpha and lambda (see code for the values)
eps = np.finfo(np.float64).eps
alpha_ = 1. / (np.var(y) + eps)
lambda_ = 1.
# value of the parameters of the Gamma hyperpriors
alpha_1 = 0.1
alpha_2 = 0.1
lambda_1 = 0.1
lambda_2 = 0.1
# compute score using formula of docstring
score = lambda_1 * log(lambda_) - lambda_2 * lambda_
score += alpha_1 * log(alpha_) - alpha_2 * alpha_
M = 1. / alpha_ * np.eye(n_samples) + 1. / lambda_ * np.dot(X, X.T)
M_inv = pinvh(M)
score += - 0.5 * (fast_logdet(M) + np.dot(y.T, np.dot(M_inv, y)) +
n_samples * log(2 * np.pi))
# compute score with BayesianRidge
clf = BayesianRidge(alpha_1=alpha_1, alpha_2=alpha_2,
lambda_1=lambda_1, lambda_2=lambda_2,
n_iter=1, fit_intercept=False, compute_score=True)
clf.fit(X, y)
assert_almost_equal(clf.scores_[0], score, decimal=9)
def test_bayesian_ridge_parameter():
# Test correctness of lambda_ and alpha_ parameters (GitHub issue #8224)
X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
y = np.array([1, 2, 3, 2, 0, 4, 5]).T
# A Ridge regression model using an alpha value equal to the ratio of
# lambda_ and alpha_ from the Bayesian Ridge model must be identical
br_model = BayesianRidge(compute_score=True).fit(X, y)
rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(X, y)
assert_array_almost_equal(rr_model.coef_, br_model.coef_)
assert_almost_equal(rr_model.intercept_, br_model.intercept_)
def test_bayesian_sample_weights():
# Test correctness of the sample_weights method
X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]])
y = np.array([1, 2, 3, 2, 0, 4, 5]).T
w = np.array([4, 3, 3, 1, 1, 2, 3]).T
# A Ridge regression model using an alpha value equal to the ratio of
# lambda_ and alpha_ from the Bayesian Ridge model must be identical
br_model = BayesianRidge(compute_score=True).fit(X, y, sample_weight=w)
rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(
X, y, sample_weight=w)
assert_array_almost_equal(rr_model.coef_, br_model.coef_)
assert_almost_equal(rr_model.intercept_, br_model.intercept_)
def test_toy_bayesian_ridge_object():
# Test BayesianRidge on toy
X = np.array([[1], [2], [6], [8], [10]])
Y = np.array([1, 2, 6, 8, 10])
clf = BayesianRidge(compute_score=True)
clf.fit(X, Y)
# Check that the model could approximately learn the identity function
test = [[1], [3], [4]]
assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
def test_bayesian_initial_params():
# Test BayesianRidge with initial values (alpha_init, lambda_init)
X = np.vander(np.linspace(0, 4, 5), 4)
y = np.array([0., 1., 0., -1., 0.]) # y = (x^3 - 6x^2 + 8x) / 3
# In this case, starting from the default initial values will increase
# the bias of the fitted curve. So, lambda_init should be small.
reg = BayesianRidge(alpha_init=1., lambda_init=1e-3)
# Check the R2 score nearly equals to one.
r2 = reg.fit(X, y).score(X, y)
assert_almost_equal(r2, 1.)
def test_prediction_bayesian_ridge_ard_with_constant_input():
# Test BayesianRidge and ARDRegression predictions for edge case of
# constant target vectors
n_samples = 4
n_features = 5
random_state = check_random_state(42)
constant_value = random_state.rand()
X = random_state.random_sample((n_samples, n_features))
y = np.full(n_samples, constant_value,
dtype=np.array(constant_value).dtype)
expected = np.full(n_samples, constant_value,
dtype=np.array(constant_value).dtype)
for clf in [BayesianRidge(), ARDRegression()]:
y_pred = clf.fit(X, y).predict(X)
assert_array_almost_equal(y_pred, expected)
def test_std_bayesian_ridge_ard_with_constant_input():
# Test BayesianRidge and ARDRegression standard dev. for edge case of
# constant target vector
# The standard dev. should be relatively small (< 0.01 is tested here)
n_samples = 10
n_features = 5
random_state = check_random_state(42)
constant_value = random_state.rand()
X = random_state.random_sample((n_samples, n_features))
y = np.full(n_samples, constant_value,
dtype=np.array(constant_value).dtype)
expected_upper_boundary = 0.01
for clf in [BayesianRidge(), ARDRegression()]:
_, y_std = clf.fit(X, y).predict(X, return_std=True)
assert_array_less(y_std, expected_upper_boundary)
def test_update_of_sigma_in_ard():
# Checks that `sigma_` is updated correctly after the last iteration
# of the ARDRegression algorithm. See issue #10128.
X = np.array([[1, 0],
[0, 0]])
y = np.array([0, 0])
clf = ARDRegression(n_iter=1)
clf.fit(X, y)
# With the inputs above, ARDRegression prunes both of the two coefficients
# in the first iteration. Hence, the expected shape of `sigma_` is (0, 0).
assert clf.sigma_.shape == (0, 0)
# Ensure that no error is thrown at prediction stage
clf.predict(X, return_std=True)
def test_toy_ard_object():
# Test BayesianRegression ARD classifier
X = np.array([[1], [2], [3]])
Y = np.array([1, 2, 3])
clf = ARDRegression(compute_score=True)
clf.fit(X, Y)
# Check that the model could approximately learn the identity function
test = [[1], [3], [4]]
assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
@pytest.mark.parametrize('seed', range(100))
@pytest.mark.parametrize('n_samples, n_features', ((10, 100), (100, 10)))
def test_ard_accuracy_on_easy_problem(seed, n_samples, n_features):
# Check that ARD converges with reasonable accuracy on an easy problem
# (Github issue #14055)
X = np.random.RandomState(seed=seed).normal(size=(250, 3))
y = X[:, 1]
regressor = ARDRegression()
regressor.fit(X, y)
abs_coef_error = np.abs(1 - regressor.coef_[1])
assert abs_coef_error < 1e-10
def test_return_std():
# Test return_std option for both Bayesian regressors
def f(X):
return np.dot(X, w) + b
def f_noise(X, noise_mult):
return f(X) + np.random.randn(X.shape[0]) * noise_mult
d = 5
n_train = 50
n_test = 10
w = np.array([1.0, 0.0, 1.0, -1.0, 0.0])
b = 1.0
X = np.random.random((n_train, d))
X_test = np.random.random((n_test, d))
for decimal, noise_mult in enumerate([1, 0.1, 0.01]):
y = f_noise(X, noise_mult)
m1 = BayesianRidge()
m1.fit(X, y)
y_mean1, y_std1 = m1.predict(X_test, return_std=True)
assert_array_almost_equal(y_std1, noise_mult, decimal=decimal)
m2 = ARDRegression()
m2.fit(X, y)
y_mean2, y_std2 = m2.predict(X_test, return_std=True)
assert_array_almost_equal(y_std2, noise_mult, decimal=decimal)
@pytest.mark.parametrize('seed', range(10))
def test_update_sigma(seed):
# make sure the two update_sigma() helpers are equivalent. The woodbury
# formula is used when n_samples < n_features, and the other one is used
# otherwise.
rng = np.random.RandomState(seed)
# set n_samples == n_features to avoid instability issues when inverting
# the matrices. Using the woodbury formula would be unstable when
# n_samples > n_features
n_samples = n_features = 10
X = rng.randn(n_samples, n_features)
alpha = 1
lmbda = np.arange(1, n_features + 1)
keep_lambda = np.array([True] * n_features)
reg = ARDRegression()
sigma = reg._update_sigma(X, alpha, lmbda, keep_lambda)
sigma_woodbury = reg._update_sigma_woodbury(X, alpha, lmbda, keep_lambda)
np.testing.assert_allclose(sigma, sigma_woodbury)

Some files were not shown because too many files have changed in this diff Show more