Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
633
venv/Lib/site-packages/sklearn/kernel_approximation.py
Normal file
633
venv/Lib/site-packages/sklearn/kernel_approximation.py
Normal file
|
@ -0,0 +1,633 @@
|
|||
"""
|
||||
The :mod:`sklearn.kernel_approximation` module implements several
|
||||
approximate kernel feature maps base on Fourier transforms.
|
||||
"""
|
||||
|
||||
# Author: Andreas Mueller <amueller@ais.uni-bonn.de>
|
||||
#
|
||||
# License: BSD 3 clause
|
||||
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
from scipy.linalg import svd
|
||||
|
||||
from .base import BaseEstimator
|
||||
from .base import TransformerMixin
|
||||
from .utils import check_array, check_random_state, as_float_array
|
||||
from .utils.extmath import safe_sparse_dot
|
||||
from .utils.validation import check_is_fitted
|
||||
from .metrics.pairwise import pairwise_kernels, KERNEL_PARAMS
|
||||
from .utils.validation import check_non_negative, _deprecate_positional_args
|
||||
|
||||
|
||||
class RBFSampler(TransformerMixin, BaseEstimator):
|
||||
"""Approximates feature map of an RBF kernel by Monte Carlo approximation
|
||||
of its Fourier transform.
|
||||
|
||||
It implements a variant of Random Kitchen Sinks.[1]
|
||||
|
||||
Read more in the :ref:`User Guide <rbf_kernel_approx>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
gamma : float
|
||||
Parameter of RBF kernel: exp(-gamma * x^2)
|
||||
|
||||
n_components : int
|
||||
Number of Monte Carlo samples per original feature.
|
||||
Equals the dimensionality of the computed feature space.
|
||||
|
||||
random_state : int, RandomState instance or None, optional (default=None)
|
||||
Pseudo-random number generator to control the generation of the random
|
||||
weights and random offset when fitting the training data.
|
||||
Pass an int for reproducible output across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
random_offset_ : ndarray of shape (n_components,), dtype=float64
|
||||
Random offset used to compute the projection in the `n_components`
|
||||
dimensions of the feature space.
|
||||
|
||||
random_weights_ : ndarray of shape (n_features, n_components),\
|
||||
dtype=float64
|
||||
Random projection directions drawn from the Fourier transform
|
||||
of the RBF kernel.
|
||||
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.kernel_approximation import RBFSampler
|
||||
>>> from sklearn.linear_model import SGDClassifier
|
||||
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
|
||||
>>> y = [0, 0, 1, 1]
|
||||
>>> rbf_feature = RBFSampler(gamma=1, random_state=1)
|
||||
>>> X_features = rbf_feature.fit_transform(X)
|
||||
>>> clf = SGDClassifier(max_iter=5, tol=1e-3)
|
||||
>>> clf.fit(X_features, y)
|
||||
SGDClassifier(max_iter=5)
|
||||
>>> clf.score(X_features, y)
|
||||
1.0
|
||||
|
||||
Notes
|
||||
-----
|
||||
See "Random Features for Large-Scale Kernel Machines" by A. Rahimi and
|
||||
Benjamin Recht.
|
||||
|
||||
[1] "Weighted Sums of Random Kitchen Sinks: Replacing
|
||||
minimization with randomization in learning" by A. Rahimi and
|
||||
Benjamin Recht.
|
||||
(https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf)
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, *, gamma=1., n_components=100, random_state=None):
|
||||
self.gamma = gamma
|
||||
self.n_components = n_components
|
||||
self.random_state = random_state
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the model with X.
|
||||
|
||||
Samples random projection according to n_features.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
Training data, where n_samples in the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the transformer.
|
||||
"""
|
||||
|
||||
X = self._validate_data(X, accept_sparse='csr')
|
||||
random_state = check_random_state(self.random_state)
|
||||
n_features = X.shape[1]
|
||||
|
||||
self.random_weights_ = (np.sqrt(2 * self.gamma) * random_state.normal(
|
||||
size=(n_features, self.n_components)))
|
||||
|
||||
self.random_offset_ = random_state.uniform(0, 2 * np.pi,
|
||||
size=self.n_components)
|
||||
return self
|
||||
|
||||
def transform(self, X):
|
||||
"""Apply the approximate feature map to X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
New data, where n_samples in the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_components)
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = check_array(X, accept_sparse='csr')
|
||||
projection = safe_sparse_dot(X, self.random_weights_)
|
||||
projection += self.random_offset_
|
||||
np.cos(projection, projection)
|
||||
projection *= np.sqrt(2.) / np.sqrt(self.n_components)
|
||||
return projection
|
||||
|
||||
|
||||
class SkewedChi2Sampler(TransformerMixin, BaseEstimator):
|
||||
"""Approximates feature map of the "skewed chi-squared" kernel by Monte
|
||||
Carlo approximation of its Fourier transform.
|
||||
|
||||
Read more in the :ref:`User Guide <skewed_chi_kernel_approx>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
skewedness : float
|
||||
"skewedness" parameter of the kernel. Needs to be cross-validated.
|
||||
|
||||
n_components : int
|
||||
number of Monte Carlo samples per original feature.
|
||||
Equals the dimensionality of the computed feature space.
|
||||
|
||||
random_state : int, RandomState instance or None, optional (default=None)
|
||||
Pseudo-random number generator to control the generation of the random
|
||||
weights and random offset when fitting the training data.
|
||||
Pass an int for reproducible output across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.kernel_approximation import SkewedChi2Sampler
|
||||
>>> from sklearn.linear_model import SGDClassifier
|
||||
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
|
||||
>>> y = [0, 0, 1, 1]
|
||||
>>> chi2_feature = SkewedChi2Sampler(skewedness=.01,
|
||||
... n_components=10,
|
||||
... random_state=0)
|
||||
>>> X_features = chi2_feature.fit_transform(X, y)
|
||||
>>> clf = SGDClassifier(max_iter=10, tol=1e-3)
|
||||
>>> clf.fit(X_features, y)
|
||||
SGDClassifier(max_iter=10)
|
||||
>>> clf.score(X_features, y)
|
||||
1.0
|
||||
|
||||
References
|
||||
----------
|
||||
See "Random Fourier Approximations for Skewed Multiplicative Histogram
|
||||
Kernels" by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu.
|
||||
|
||||
See also
|
||||
--------
|
||||
AdditiveChi2Sampler : A different approach for approximating an additive
|
||||
variant of the chi squared kernel.
|
||||
|
||||
sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel.
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, *, skewedness=1., n_components=100, random_state=None):
|
||||
self.skewedness = skewedness
|
||||
self.n_components = n_components
|
||||
self.random_state = random_state
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the model with X.
|
||||
|
||||
Samples random projection according to n_features.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training data, where n_samples in the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the transformer.
|
||||
"""
|
||||
|
||||
X = self._validate_data(X)
|
||||
random_state = check_random_state(self.random_state)
|
||||
n_features = X.shape[1]
|
||||
uniform = random_state.uniform(size=(n_features, self.n_components))
|
||||
# transform by inverse CDF of sech
|
||||
self.random_weights_ = (1. / np.pi
|
||||
* np.log(np.tan(np.pi / 2. * uniform)))
|
||||
self.random_offset_ = random_state.uniform(0, 2 * np.pi,
|
||||
size=self.n_components)
|
||||
return self
|
||||
|
||||
def transform(self, X):
|
||||
"""Apply the approximate feature map to X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
New data, where n_samples in the number of samples
|
||||
and n_features is the number of features. All values of X must be
|
||||
strictly greater than "-skewedness".
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_components)
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = as_float_array(X, copy=True)
|
||||
X = check_array(X, copy=False)
|
||||
if (X <= -self.skewedness).any():
|
||||
raise ValueError("X may not contain entries smaller than"
|
||||
" -skewedness.")
|
||||
|
||||
X += self.skewedness
|
||||
np.log(X, X)
|
||||
projection = safe_sparse_dot(X, self.random_weights_)
|
||||
projection += self.random_offset_
|
||||
np.cos(projection, projection)
|
||||
projection *= np.sqrt(2.) / np.sqrt(self.n_components)
|
||||
return projection
|
||||
|
||||
|
||||
class AdditiveChi2Sampler(TransformerMixin, BaseEstimator):
|
||||
"""Approximate feature map for additive chi2 kernel.
|
||||
|
||||
Uses sampling the fourier transform of the kernel characteristic
|
||||
at regular intervals.
|
||||
|
||||
Since the kernel that is to be approximated is additive, the components of
|
||||
the input vectors can be treated separately. Each entry in the original
|
||||
space is transformed into 2*sample_steps+1 features, where sample_steps is
|
||||
a parameter of the method. Typical values of sample_steps include 1, 2 and
|
||||
3.
|
||||
|
||||
Optimal choices for the sampling interval for certain data ranges can be
|
||||
computed (see the reference). The default values should be reasonable.
|
||||
|
||||
Read more in the :ref:`User Guide <additive_chi_kernel_approx>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sample_steps : int, optional
|
||||
Gives the number of (complex) sampling points.
|
||||
sample_interval : float, optional
|
||||
Sampling interval. Must be specified when sample_steps not in {1,2,3}.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
sample_interval_ : float
|
||||
Stored sampling interval. Specified as a parameter if sample_steps not
|
||||
in {1,2,3}.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.datasets import load_digits
|
||||
>>> from sklearn.linear_model import SGDClassifier
|
||||
>>> from sklearn.kernel_approximation import AdditiveChi2Sampler
|
||||
>>> X, y = load_digits(return_X_y=True)
|
||||
>>> chi2sampler = AdditiveChi2Sampler(sample_steps=2)
|
||||
>>> X_transformed = chi2sampler.fit_transform(X, y)
|
||||
>>> clf = SGDClassifier(max_iter=5, random_state=0, tol=1e-3)
|
||||
>>> clf.fit(X_transformed, y)
|
||||
SGDClassifier(max_iter=5, random_state=0)
|
||||
>>> clf.score(X_transformed, y)
|
||||
0.9499...
|
||||
|
||||
Notes
|
||||
-----
|
||||
This estimator approximates a slightly different version of the additive
|
||||
chi squared kernel then ``metric.additive_chi2`` computes.
|
||||
|
||||
See also
|
||||
--------
|
||||
SkewedChi2Sampler : A Fourier-approximation to a non-additive variant of
|
||||
the chi squared kernel.
|
||||
|
||||
sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel.
|
||||
|
||||
sklearn.metrics.pairwise.additive_chi2_kernel : The exact additive chi
|
||||
squared kernel.
|
||||
|
||||
References
|
||||
----------
|
||||
See `"Efficient additive kernels via explicit feature maps"
|
||||
<http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>`_
|
||||
A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence,
|
||||
2011
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, *, sample_steps=2, sample_interval=None):
|
||||
self.sample_steps = sample_steps
|
||||
self.sample_interval = sample_interval
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Set the parameters
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training data, where n_samples in the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the transformer.
|
||||
"""
|
||||
X = self._validate_data(X, accept_sparse='csr')
|
||||
check_non_negative(X, 'X in AdditiveChi2Sampler.fit')
|
||||
|
||||
if self.sample_interval is None:
|
||||
# See reference, figure 2 c)
|
||||
if self.sample_steps == 1:
|
||||
self.sample_interval_ = 0.8
|
||||
elif self.sample_steps == 2:
|
||||
self.sample_interval_ = 0.5
|
||||
elif self.sample_steps == 3:
|
||||
self.sample_interval_ = 0.4
|
||||
else:
|
||||
raise ValueError("If sample_steps is not in [1, 2, 3],"
|
||||
" you need to provide sample_interval")
|
||||
else:
|
||||
self.sample_interval_ = self.sample_interval
|
||||
return self
|
||||
|
||||
def transform(self, X):
|
||||
"""Apply approximate feature map to X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : {array, sparse matrix}, \
|
||||
shape = (n_samples, n_features * (2*sample_steps + 1))
|
||||
Whether the return value is an array of sparse matrix depends on
|
||||
the type of the input X.
|
||||
"""
|
||||
msg = ("%(name)s is not fitted. Call fit to set the parameters before"
|
||||
" calling transform")
|
||||
check_is_fitted(self, msg=msg)
|
||||
|
||||
X = check_array(X, accept_sparse='csr')
|
||||
check_non_negative(X, 'X in AdditiveChi2Sampler.transform')
|
||||
sparse = sp.issparse(X)
|
||||
|
||||
# zeroth component
|
||||
# 1/cosh = sech
|
||||
# cosh(0) = 1.0
|
||||
|
||||
transf = self._transform_sparse if sparse else self._transform_dense
|
||||
return transf(X)
|
||||
|
||||
def _transform_dense(self, X):
|
||||
non_zero = (X != 0.0)
|
||||
X_nz = X[non_zero]
|
||||
|
||||
X_step = np.zeros_like(X)
|
||||
X_step[non_zero] = np.sqrt(X_nz * self.sample_interval_)
|
||||
|
||||
X_new = [X_step]
|
||||
|
||||
log_step_nz = self.sample_interval_ * np.log(X_nz)
|
||||
step_nz = 2 * X_nz * self.sample_interval_
|
||||
|
||||
for j in range(1, self.sample_steps):
|
||||
factor_nz = np.sqrt(step_nz /
|
||||
np.cosh(np.pi * j * self.sample_interval_))
|
||||
|
||||
X_step = np.zeros_like(X)
|
||||
X_step[non_zero] = factor_nz * np.cos(j * log_step_nz)
|
||||
X_new.append(X_step)
|
||||
|
||||
X_step = np.zeros_like(X)
|
||||
X_step[non_zero] = factor_nz * np.sin(j * log_step_nz)
|
||||
X_new.append(X_step)
|
||||
|
||||
return np.hstack(X_new)
|
||||
|
||||
def _transform_sparse(self, X):
|
||||
indices = X.indices.copy()
|
||||
indptr = X.indptr.copy()
|
||||
|
||||
data_step = np.sqrt(X.data * self.sample_interval_)
|
||||
X_step = sp.csr_matrix((data_step, indices, indptr),
|
||||
shape=X.shape, dtype=X.dtype, copy=False)
|
||||
X_new = [X_step]
|
||||
|
||||
log_step_nz = self.sample_interval_ * np.log(X.data)
|
||||
step_nz = 2 * X.data * self.sample_interval_
|
||||
|
||||
for j in range(1, self.sample_steps):
|
||||
factor_nz = np.sqrt(step_nz /
|
||||
np.cosh(np.pi * j * self.sample_interval_))
|
||||
|
||||
data_step = factor_nz * np.cos(j * log_step_nz)
|
||||
X_step = sp.csr_matrix((data_step, indices, indptr),
|
||||
shape=X.shape, dtype=X.dtype, copy=False)
|
||||
X_new.append(X_step)
|
||||
|
||||
data_step = factor_nz * np.sin(j * log_step_nz)
|
||||
X_step = sp.csr_matrix((data_step, indices, indptr),
|
||||
shape=X.shape, dtype=X.dtype, copy=False)
|
||||
X_new.append(X_step)
|
||||
|
||||
return sp.hstack(X_new)
|
||||
|
||||
def _more_tags(self):
|
||||
return {'stateless': True,
|
||||
'requires_positive_X': True}
|
||||
|
||||
|
||||
class Nystroem(TransformerMixin, BaseEstimator):
|
||||
"""Approximate a kernel map using a subset of the training data.
|
||||
|
||||
Constructs an approximate feature map for an arbitrary kernel
|
||||
using a subset of the data as basis.
|
||||
|
||||
Read more in the :ref:`User Guide <nystroem_kernel_approx>`.
|
||||
|
||||
.. versionadded:: 0.13
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kernel : string or callable, default="rbf"
|
||||
Kernel map to be approximated. A callable should accept two arguments
|
||||
and the keyword arguments passed to this object as kernel_params, and
|
||||
should return a floating point number.
|
||||
|
||||
gamma : float, default=None
|
||||
Gamma parameter for the RBF, laplacian, polynomial, exponential chi2
|
||||
and sigmoid kernels. Interpretation of the default value is left to
|
||||
the kernel; see the documentation for sklearn.metrics.pairwise.
|
||||
Ignored by other kernels.
|
||||
|
||||
coef0 : float, default=None
|
||||
Zero coefficient for polynomial and sigmoid kernels.
|
||||
Ignored by other kernels.
|
||||
|
||||
degree : float, default=None
|
||||
Degree of the polynomial kernel. Ignored by other kernels.
|
||||
|
||||
kernel_params : mapping of string to any, optional
|
||||
Additional parameters (keyword arguments) for kernel function passed
|
||||
as callable object.
|
||||
|
||||
n_components : int
|
||||
Number of features to construct.
|
||||
How many data points will be used to construct the mapping.
|
||||
|
||||
random_state : int, RandomState instance or None, optional (default=None)
|
||||
Pseudo-random number generator to control the uniform sampling without
|
||||
replacement of n_components of the training data to construct the basis
|
||||
kernel.
|
||||
Pass an int for reproducible output across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
components_ : array, shape (n_components, n_features)
|
||||
Subset of training points used to construct the feature map.
|
||||
|
||||
component_indices_ : array, shape (n_components)
|
||||
Indices of ``components_`` in the training set.
|
||||
|
||||
normalization_ : array, shape (n_components, n_components)
|
||||
Normalization matrix needed for embedding.
|
||||
Square root of the kernel matrix on ``components_``.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn import datasets, svm
|
||||
>>> from sklearn.kernel_approximation import Nystroem
|
||||
>>> X, y = datasets.load_digits(n_class=9, return_X_y=True)
|
||||
>>> data = X / 16.
|
||||
>>> clf = svm.LinearSVC()
|
||||
>>> feature_map_nystroem = Nystroem(gamma=.2,
|
||||
... random_state=1,
|
||||
... n_components=300)
|
||||
>>> data_transformed = feature_map_nystroem.fit_transform(data)
|
||||
>>> clf.fit(data_transformed, y)
|
||||
LinearSVC()
|
||||
>>> clf.score(data_transformed, y)
|
||||
0.9987...
|
||||
|
||||
References
|
||||
----------
|
||||
* Williams, C.K.I. and Seeger, M.
|
||||
"Using the Nystroem method to speed up kernel machines",
|
||||
Advances in neural information processing systems 2001
|
||||
|
||||
* T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou
|
||||
"Nystroem Method vs Random Fourier Features: A Theoretical and Empirical
|
||||
Comparison",
|
||||
Advances in Neural Information Processing Systems 2012
|
||||
|
||||
|
||||
See also
|
||||
--------
|
||||
RBFSampler : An approximation to the RBF kernel using random Fourier
|
||||
features.
|
||||
|
||||
sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels.
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, kernel="rbf", *, gamma=None, coef0=None, degree=None,
|
||||
kernel_params=None, n_components=100, random_state=None):
|
||||
self.kernel = kernel
|
||||
self.gamma = gamma
|
||||
self.coef0 = coef0
|
||||
self.degree = degree
|
||||
self.kernel_params = kernel_params
|
||||
self.n_components = n_components
|
||||
self.random_state = random_state
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit estimator to data.
|
||||
|
||||
Samples a subset of training points, computes kernel
|
||||
on these and computes normalization matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Training data.
|
||||
"""
|
||||
X = self._validate_data(X, accept_sparse='csr')
|
||||
rnd = check_random_state(self.random_state)
|
||||
n_samples = X.shape[0]
|
||||
|
||||
# get basis vectors
|
||||
if self.n_components > n_samples:
|
||||
# XXX should we just bail?
|
||||
n_components = n_samples
|
||||
warnings.warn("n_components > n_samples. This is not possible.\n"
|
||||
"n_components was set to n_samples, which results"
|
||||
" in inefficient evaluation of the full kernel.")
|
||||
|
||||
else:
|
||||
n_components = self.n_components
|
||||
n_components = min(n_samples, n_components)
|
||||
inds = rnd.permutation(n_samples)
|
||||
basis_inds = inds[:n_components]
|
||||
basis = X[basis_inds]
|
||||
|
||||
basis_kernel = pairwise_kernels(basis, metric=self.kernel,
|
||||
filter_params=True,
|
||||
**self._get_kernel_params())
|
||||
|
||||
# sqrt of kernel matrix on basis vectors
|
||||
U, S, V = svd(basis_kernel)
|
||||
S = np.maximum(S, 1e-12)
|
||||
self.normalization_ = np.dot(U / np.sqrt(S), V)
|
||||
self.components_ = basis
|
||||
self.component_indices_ = inds
|
||||
return self
|
||||
|
||||
def transform(self, X):
|
||||
"""Apply feature map to X.
|
||||
|
||||
Computes an approximate feature map using the kernel
|
||||
between some training points and X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Data to transform.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_transformed : array, shape=(n_samples, n_components)
|
||||
Transformed data.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
X = check_array(X, accept_sparse='csr')
|
||||
|
||||
kernel_params = self._get_kernel_params()
|
||||
embedded = pairwise_kernels(X, self.components_,
|
||||
metric=self.kernel,
|
||||
filter_params=True,
|
||||
**kernel_params)
|
||||
return np.dot(embedded, self.normalization_.T)
|
||||
|
||||
def _get_kernel_params(self):
|
||||
params = self.kernel_params
|
||||
if params is None:
|
||||
params = {}
|
||||
if not callable(self.kernel) and self.kernel != 'precomputed':
|
||||
for param in (KERNEL_PARAMS[self.kernel]):
|
||||
if getattr(self, param) is not None:
|
||||
params[param] = getattr(self, param)
|
||||
else:
|
||||
if (self.gamma is not None or
|
||||
self.coef0 is not None or
|
||||
self.degree is not None):
|
||||
raise ValueError("Don't pass gamma, coef0 or degree to "
|
||||
"Nystroem if using a callable "
|
||||
"or precomputed kernel")
|
||||
|
||||
return params
|
Loading…
Add table
Add a link
Reference in a new issue