Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
|
@ -0,0 +1,469 @@
|
|||
"""Testing for Gaussian process regression """
|
||||
|
||||
# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
||||
# Modified by: Pete Green <p.l.green@liverpool.ac.uk>
|
||||
# License: BSD 3 clause
|
||||
|
||||
import sys
|
||||
import numpy as np
|
||||
|
||||
from scipy.optimize import approx_fprime
|
||||
|
||||
import pytest
|
||||
|
||||
from sklearn.gaussian_process import GaussianProcessRegressor
|
||||
from sklearn.gaussian_process.kernels \
|
||||
import RBF, ConstantKernel as C, WhiteKernel
|
||||
from sklearn.gaussian_process.kernels import DotProduct
|
||||
from sklearn.gaussian_process.tests._mini_sequence_kernel import MiniSeqKernel
|
||||
|
||||
from sklearn.utils._testing \
|
||||
import (assert_array_less,
|
||||
assert_almost_equal, assert_raise_message,
|
||||
assert_array_almost_equal, assert_array_equal,
|
||||
assert_allclose)
|
||||
|
||||
|
||||
def f(x):
|
||||
return x * np.sin(x)
|
||||
|
||||
|
||||
X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T
|
||||
X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T
|
||||
y = f(X).ravel()
|
||||
|
||||
fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed")
|
||||
kernels = [RBF(length_scale=1.0), fixed_kernel,
|
||||
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
||||
C(1.0, (1e-2, 1e2)) *
|
||||
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
||||
C(1.0, (1e-2, 1e2)) *
|
||||
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) +
|
||||
C(1e-5, (1e-5, 1e2)),
|
||||
C(0.1, (1e-2, 1e2)) *
|
||||
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) +
|
||||
C(1e-5, (1e-5, 1e2))]
|
||||
non_fixed_kernels = [kernel for kernel in kernels
|
||||
if kernel != fixed_kernel]
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_gpr_interpolation(kernel):
|
||||
if sys.maxsize <= 2 ** 32 and sys.version_info[:2] == (3, 6):
|
||||
pytest.xfail("This test may fail on 32bit Py3.6")
|
||||
|
||||
# Test the interpolating property for different kernels.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
y_pred, y_cov = gpr.predict(X, return_cov=True)
|
||||
|
||||
assert_almost_equal(y_pred, y)
|
||||
assert_almost_equal(np.diag(y_cov), 0.)
|
||||
|
||||
|
||||
def test_gpr_interpolation_structured():
|
||||
# Test the interpolating property for different kernels.
|
||||
kernel = MiniSeqKernel(baseline_similarity_bounds='fixed')
|
||||
X = ['A', 'B', 'C']
|
||||
y = np.array([1, 2, 3])
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
y_pred, y_cov = gpr.predict(X, return_cov=True)
|
||||
|
||||
assert_almost_equal(kernel(X, eval_gradient=True)[1].ravel(),
|
||||
(1 - np.eye(len(X))).ravel())
|
||||
assert_almost_equal(y_pred, y)
|
||||
assert_almost_equal(np.diag(y_cov), 0.)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||||
def test_lml_improving(kernel):
|
||||
if sys.maxsize <= 2 ** 32 and sys.version_info[:2] == (3, 6):
|
||||
pytest.xfail("This test may fail on 32bit Py3.6")
|
||||
|
||||
# Test that hyperparameter-tuning improves log-marginal likelihood.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
assert (gpr.log_marginal_likelihood(gpr.kernel_.theta) >
|
||||
gpr.log_marginal_likelihood(kernel.theta))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_lml_precomputed(kernel):
|
||||
# Test that lml of optimized kernel is stored correctly.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
assert (gpr.log_marginal_likelihood(gpr.kernel_.theta) ==
|
||||
gpr.log_marginal_likelihood())
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_lml_without_cloning_kernel(kernel):
|
||||
# Test that lml of optimized kernel is stored correctly.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
input_theta = np.ones(gpr.kernel_.theta.shape, dtype=np.float64)
|
||||
|
||||
gpr.log_marginal_likelihood(input_theta, clone_kernel=False)
|
||||
assert_almost_equal(gpr.kernel_.theta, input_theta, 7)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||||
def test_converged_to_local_maximum(kernel):
|
||||
# Test that we are in local maximum after hyperparameter-optimization.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
|
||||
lml, lml_gradient = \
|
||||
gpr.log_marginal_likelihood(gpr.kernel_.theta, True)
|
||||
|
||||
assert np.all((np.abs(lml_gradient) < 1e-4) |
|
||||
(gpr.kernel_.theta == gpr.kernel_.bounds[:, 0]) |
|
||||
(gpr.kernel_.theta == gpr.kernel_.bounds[:, 1]))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||||
def test_solution_inside_bounds(kernel):
|
||||
# Test that hyperparameter-optimization remains in bounds#
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
|
||||
bounds = gpr.kernel_.bounds
|
||||
max_ = np.finfo(gpr.kernel_.theta.dtype).max
|
||||
tiny = 1e-10
|
||||
bounds[~np.isfinite(bounds[:, 1]), 1] = max_
|
||||
|
||||
assert_array_less(bounds[:, 0], gpr.kernel_.theta + tiny)
|
||||
assert_array_less(gpr.kernel_.theta, bounds[:, 1] + tiny)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_lml_gradient(kernel):
|
||||
# Compare analytic and numeric gradient of log marginal likelihood.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
|
||||
lml, lml_gradient = gpr.log_marginal_likelihood(kernel.theta, True)
|
||||
lml_gradient_approx = \
|
||||
approx_fprime(kernel.theta,
|
||||
lambda theta: gpr.log_marginal_likelihood(theta,
|
||||
False),
|
||||
1e-10)
|
||||
|
||||
assert_almost_equal(lml_gradient, lml_gradient_approx, 3)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_prior(kernel):
|
||||
# Test that GP prior has mean 0 and identical variances.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel)
|
||||
|
||||
y_mean, y_cov = gpr.predict(X, return_cov=True)
|
||||
|
||||
assert_almost_equal(y_mean, 0, 5)
|
||||
if len(gpr.kernel.theta) > 1:
|
||||
# XXX: quite hacky, works only for current kernels
|
||||
assert_almost_equal(np.diag(y_cov), np.exp(kernel.theta[0]), 5)
|
||||
else:
|
||||
assert_almost_equal(np.diag(y_cov), 1, 5)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_sample_statistics(kernel):
|
||||
# Test that statistics of samples drawn from GP are correct.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
|
||||
y_mean, y_cov = gpr.predict(X2, return_cov=True)
|
||||
|
||||
samples = gpr.sample_y(X2, 300000)
|
||||
|
||||
# More digits accuracy would require many more samples
|
||||
assert_almost_equal(y_mean, np.mean(samples, 1), 1)
|
||||
assert_almost_equal(np.diag(y_cov) / np.diag(y_cov).max(),
|
||||
np.var(samples, 1) / np.diag(y_cov).max(), 1)
|
||||
|
||||
|
||||
def test_no_optimizer():
|
||||
# Test that kernel parameters are unmodified when optimizer is None.
|
||||
kernel = RBF(1.0)
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None).fit(X, y)
|
||||
assert np.exp(gpr.kernel_.theta) == 1.0
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_predict_cov_vs_std(kernel):
|
||||
if sys.maxsize <= 2 ** 32 and sys.version_info[:2] == (3, 6):
|
||||
pytest.xfail("This test may fail on 32bit Py3.6")
|
||||
|
||||
# Test that predicted std.-dev. is consistent with cov's diagonal.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
y_mean, y_cov = gpr.predict(X2, return_cov=True)
|
||||
y_mean, y_std = gpr.predict(X2, return_std=True)
|
||||
assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std)
|
||||
|
||||
|
||||
def test_anisotropic_kernel():
|
||||
# Test that GPR can identify meaningful anisotropic length-scales.
|
||||
# We learn a function which varies in one dimension ten-times slower
|
||||
# than in the other. The corresponding length-scales should differ by at
|
||||
# least a factor 5
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.uniform(-1, 1, (50, 2))
|
||||
y = X[:, 0] + 0.1 * X[:, 1]
|
||||
|
||||
kernel = RBF([1.0, 1.0])
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
assert (np.exp(gpr.kernel_.theta[1]) >
|
||||
np.exp(gpr.kernel_.theta[0]) * 5)
|
||||
|
||||
|
||||
def test_random_starts():
|
||||
# Test that an increasing number of random-starts of GP fitting only
|
||||
# increases the log marginal likelihood of the chosen theta.
|
||||
n_samples, n_features = 25, 2
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(n_samples, n_features) * 2 - 1
|
||||
y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) \
|
||||
+ rng.normal(scale=0.1, size=n_samples)
|
||||
|
||||
kernel = C(1.0, (1e-2, 1e2)) \
|
||||
* RBF(length_scale=[1.0] * n_features,
|
||||
length_scale_bounds=[(1e-4, 1e+2)] * n_features) \
|
||||
+ WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-5, 1e1))
|
||||
last_lml = -np.inf
|
||||
for n_restarts_optimizer in range(5):
|
||||
gp = GaussianProcessRegressor(
|
||||
kernel=kernel, n_restarts_optimizer=n_restarts_optimizer,
|
||||
random_state=0,).fit(X, y)
|
||||
lml = gp.log_marginal_likelihood(gp.kernel_.theta)
|
||||
assert lml > last_lml - np.finfo(np.float32).eps
|
||||
last_lml = lml
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_y_normalization(kernel):
|
||||
"""
|
||||
Test normalization of the target values in GP
|
||||
|
||||
Fitting non-normalizing GP on normalized y and fitting normalizing GP
|
||||
on unnormalized y should yield identical results. Note that, here,
|
||||
'normalized y' refers to y that has been made zero mean and unit
|
||||
variance.
|
||||
|
||||
"""
|
||||
|
||||
y_mean = np.mean(y)
|
||||
y_std = np.std(y)
|
||||
y_norm = (y - y_mean) / y_std
|
||||
|
||||
# Fit non-normalizing GP on normalized y
|
||||
gpr = GaussianProcessRegressor(kernel=kernel)
|
||||
gpr.fit(X, y_norm)
|
||||
|
||||
# Fit normalizing GP on unnormalized y
|
||||
gpr_norm = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||||
gpr_norm.fit(X, y)
|
||||
|
||||
# Compare predicted mean, std-devs and covariances
|
||||
y_pred, y_pred_std = gpr.predict(X2, return_std=True)
|
||||
y_pred = y_pred * y_std + y_mean
|
||||
y_pred_std = y_pred_std * y_std
|
||||
y_pred_norm, y_pred_std_norm = gpr_norm.predict(X2, return_std=True)
|
||||
|
||||
assert_almost_equal(y_pred, y_pred_norm)
|
||||
assert_almost_equal(y_pred_std, y_pred_std_norm)
|
||||
|
||||
_, y_cov = gpr.predict(X2, return_cov=True)
|
||||
y_cov = y_cov * y_std**2
|
||||
_, y_cov_norm = gpr_norm.predict(X2, return_cov=True)
|
||||
|
||||
assert_almost_equal(y_cov, y_cov_norm)
|
||||
|
||||
|
||||
def test_large_variance_y():
|
||||
"""
|
||||
Here we test that, when noramlize_y=True, our GP can produce a
|
||||
sensible fit to training data whose variance is significantly
|
||||
larger than unity. This test was made in response to issue #15612.
|
||||
|
||||
GP predictions are verified against predictions that were made
|
||||
using GPy which, here, is treated as the 'gold standard'. Note that we
|
||||
only investigate the RBF kernel here, as that is what was used in the
|
||||
GPy implementation.
|
||||
|
||||
The following code can be used to recreate the GPy data:
|
||||
|
||||
--------------------------------------------------------------------------
|
||||
import GPy
|
||||
|
||||
kernel_gpy = GPy.kern.RBF(input_dim=1, lengthscale=1.)
|
||||
gpy = GPy.models.GPRegression(X, np.vstack(y_large), kernel_gpy)
|
||||
gpy.optimize()
|
||||
y_pred_gpy, y_var_gpy = gpy.predict(X2)
|
||||
y_pred_std_gpy = np.sqrt(y_var_gpy)
|
||||
--------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
# Here we utilise a larger variance version of the training data
|
||||
y_large = 10 * y
|
||||
|
||||
# Standard GP with normalize_y=True
|
||||
RBF_params = {'length_scale': 1.0}
|
||||
kernel = RBF(**RBF_params)
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||||
gpr.fit(X, y_large)
|
||||
y_pred, y_pred_std = gpr.predict(X2, return_std=True)
|
||||
|
||||
# 'Gold standard' mean predictions from GPy
|
||||
y_pred_gpy = np.array([15.16918303,
|
||||
-27.98707845,
|
||||
-39.31636019,
|
||||
14.52605515,
|
||||
69.18503589])
|
||||
|
||||
# 'Gold standard' std predictions from GPy
|
||||
y_pred_std_gpy = np.array([7.78860962,
|
||||
3.83179178,
|
||||
0.63149951,
|
||||
0.52745188,
|
||||
0.86170042])
|
||||
|
||||
# Based on numerical experiments, it's reasonable to expect our
|
||||
# GP's mean predictions to get within 7% of predictions of those
|
||||
# made by GPy.
|
||||
assert_allclose(y_pred, y_pred_gpy, rtol=0.07, atol=0)
|
||||
|
||||
# Based on numerical experiments, it's reasonable to expect our
|
||||
# GP's std predictions to get within 15% of predictions of those
|
||||
# made by GPy.
|
||||
assert_allclose(y_pred_std, y_pred_std_gpy, rtol=0.15, atol=0)
|
||||
|
||||
|
||||
def test_y_multioutput():
|
||||
# Test that GPR can deal with multi-dimensional target values
|
||||
y_2d = np.vstack((y, y * 2)).T
|
||||
|
||||
# Test for fixed kernel that first dimension of 2d GP equals the output
|
||||
# of 1d GP and that second dimension is twice as large
|
||||
kernel = RBF(length_scale=1.0)
|
||||
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None,
|
||||
normalize_y=False)
|
||||
gpr.fit(X, y)
|
||||
|
||||
gpr_2d = GaussianProcessRegressor(kernel=kernel, optimizer=None,
|
||||
normalize_y=False)
|
||||
gpr_2d.fit(X, y_2d)
|
||||
|
||||
y_pred_1d, y_std_1d = gpr.predict(X2, return_std=True)
|
||||
y_pred_2d, y_std_2d = gpr_2d.predict(X2, return_std=True)
|
||||
_, y_cov_1d = gpr.predict(X2, return_cov=True)
|
||||
_, y_cov_2d = gpr_2d.predict(X2, return_cov=True)
|
||||
|
||||
assert_almost_equal(y_pred_1d, y_pred_2d[:, 0])
|
||||
assert_almost_equal(y_pred_1d, y_pred_2d[:, 1] / 2)
|
||||
|
||||
# Standard deviation and covariance do not depend on output
|
||||
assert_almost_equal(y_std_1d, y_std_2d)
|
||||
assert_almost_equal(y_cov_1d, y_cov_2d)
|
||||
|
||||
y_sample_1d = gpr.sample_y(X2, n_samples=10)
|
||||
y_sample_2d = gpr_2d.sample_y(X2, n_samples=10)
|
||||
assert_almost_equal(y_sample_1d, y_sample_2d[:, 0])
|
||||
|
||||
# Test hyperparameter optimization
|
||||
for kernel in kernels:
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||||
gpr.fit(X, y)
|
||||
|
||||
gpr_2d = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||||
gpr_2d.fit(X, np.vstack((y, y)).T)
|
||||
|
||||
assert_almost_equal(gpr.kernel_.theta, gpr_2d.kernel_.theta, 4)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||||
def test_custom_optimizer(kernel):
|
||||
# Test that GPR can use externally defined optimizers.
|
||||
# Define a dummy optimizer that simply tests 50 random hyperparameters
|
||||
def optimizer(obj_func, initial_theta, bounds):
|
||||
rng = np.random.RandomState(0)
|
||||
theta_opt, func_min = \
|
||||
initial_theta, obj_func(initial_theta, eval_gradient=False)
|
||||
for _ in range(50):
|
||||
theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]),
|
||||
np.minimum(1, bounds[:, 1])))
|
||||
f = obj_func(theta, eval_gradient=False)
|
||||
if f < func_min:
|
||||
theta_opt, func_min = theta, f
|
||||
return theta_opt, func_min
|
||||
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer)
|
||||
gpr.fit(X, y)
|
||||
# Checks that optimizer improved marginal likelihood
|
||||
assert (gpr.log_marginal_likelihood(gpr.kernel_.theta) >
|
||||
gpr.log_marginal_likelihood(gpr.kernel.theta))
|
||||
|
||||
|
||||
def test_gpr_correct_error_message():
|
||||
X = np.arange(12).reshape(6, -1)
|
||||
y = np.ones(6)
|
||||
kernel = DotProduct()
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.0)
|
||||
assert_raise_message(np.linalg.LinAlgError,
|
||||
"The kernel, %s, is not returning a "
|
||||
"positive definite matrix. Try gradually increasing "
|
||||
"the 'alpha' parameter of your "
|
||||
"GaussianProcessRegressor estimator."
|
||||
% kernel, gpr.fit, X, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_duplicate_input(kernel):
|
||||
# Test GPR can handle two different output-values for the same input.
|
||||
gpr_equal_inputs = GaussianProcessRegressor(kernel=kernel, alpha=1e-2)
|
||||
gpr_similar_inputs = GaussianProcessRegressor(kernel=kernel, alpha=1e-2)
|
||||
|
||||
X_ = np.vstack((X, X[0]))
|
||||
y_ = np.hstack((y, y[0] + 1))
|
||||
gpr_equal_inputs.fit(X_, y_)
|
||||
|
||||
X_ = np.vstack((X, X[0] + 1e-15))
|
||||
y_ = np.hstack((y, y[0] + 1))
|
||||
gpr_similar_inputs.fit(X_, y_)
|
||||
|
||||
X_test = np.linspace(0, 10, 100)[:, None]
|
||||
y_pred_equal, y_std_equal = \
|
||||
gpr_equal_inputs.predict(X_test, return_std=True)
|
||||
y_pred_similar, y_std_similar = \
|
||||
gpr_similar_inputs.predict(X_test, return_std=True)
|
||||
|
||||
assert_almost_equal(y_pred_equal, y_pred_similar)
|
||||
assert_almost_equal(y_std_equal, y_std_similar)
|
||||
|
||||
|
||||
def test_no_fit_default_predict():
|
||||
# Test that GPR predictions without fit does not break by default.
|
||||
default_kernel = (C(1.0, constant_value_bounds="fixed") *
|
||||
RBF(1.0, length_scale_bounds="fixed"))
|
||||
gpr1 = GaussianProcessRegressor()
|
||||
_, y_std1 = gpr1.predict(X, return_std=True)
|
||||
_, y_cov1 = gpr1.predict(X, return_cov=True)
|
||||
|
||||
gpr2 = GaussianProcessRegressor(kernel=default_kernel)
|
||||
_, y_std2 = gpr2.predict(X, return_std=True)
|
||||
_, y_cov2 = gpr2.predict(X, return_cov=True)
|
||||
|
||||
assert_array_almost_equal(y_std1, y_std2)
|
||||
assert_array_almost_equal(y_cov1, y_cov2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_K_inv_reset(kernel):
|
||||
y2 = f(X2).ravel()
|
||||
|
||||
# Test that self._K_inv is reset after a new fit
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
assert hasattr(gpr, '_K_inv')
|
||||
assert gpr._K_inv is None
|
||||
gpr.predict(X, return_std=True)
|
||||
assert gpr._K_inv is not None
|
||||
gpr.fit(X2, y2)
|
||||
assert gpr._K_inv is None
|
||||
gpr.predict(X2, return_std=True)
|
||||
gpr2 = GaussianProcessRegressor(kernel=kernel).fit(X2, y2)
|
||||
gpr2.predict(X2, return_std=True)
|
||||
# the value of K_inv should be independent of the first fit
|
||||
assert_array_equal(gpr._K_inv, gpr2._K_inv)
|
Loading…
Add table
Add a link
Reference in a new issue