Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
19
venv/Lib/site-packages/sklearn/gaussian_process/__init__.py
Normal file
19
venv/Lib/site-packages/sklearn/gaussian_process/__init__.py
Normal file
|
@ -0,0 +1,19 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
||||
# Vincent Dubourg <vincent.dubourg@gmail.com>
|
||||
# (mostly translation, see implementation details)
|
||||
# License: BSD 3 clause
|
||||
|
||||
"""
|
||||
The :mod:`sklearn.gaussian_process` module implements Gaussian Process
|
||||
based regression and classification.
|
||||
"""
|
||||
|
||||
from ._gpr import GaussianProcessRegressor
|
||||
from ._gpc import GaussianProcessClassifier
|
||||
from . import kernels
|
||||
|
||||
|
||||
__all__ = ['GaussianProcessRegressor', 'GaussianProcessClassifier',
|
||||
'kernels']
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
800
venv/Lib/site-packages/sklearn/gaussian_process/_gpc.py
Normal file
800
venv/Lib/site-packages/sklearn/gaussian_process/_gpc.py
Normal file
|
@ -0,0 +1,800 @@
|
|||
"""Gaussian processes classification."""
|
||||
|
||||
# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
||||
#
|
||||
# License: BSD 3 clause
|
||||
|
||||
from operator import itemgetter
|
||||
|
||||
import numpy as np
|
||||
from scipy.linalg import cholesky, cho_solve, solve
|
||||
import scipy.optimize
|
||||
from scipy.special import erf, expit
|
||||
|
||||
from ..base import BaseEstimator, ClassifierMixin, clone
|
||||
from .kernels \
|
||||
import RBF, CompoundKernel, ConstantKernel as C
|
||||
from ..utils.validation import check_is_fitted, check_array
|
||||
from ..utils import check_random_state
|
||||
from ..utils.optimize import _check_optimize_result
|
||||
from ..preprocessing import LabelEncoder
|
||||
from ..multiclass import OneVsRestClassifier, OneVsOneClassifier
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
|
||||
|
||||
# Values required for approximating the logistic sigmoid by
|
||||
# error functions. coefs are obtained via:
|
||||
# x = np.array([0, 0.6, 2, 3.5, 4.5, np.inf])
|
||||
# b = logistic(x)
|
||||
# A = (erf(np.dot(x, self.lambdas)) + 1) / 2
|
||||
# coefs = lstsq(A, b)[0]
|
||||
LAMBDAS = np.array([0.41, 0.4, 0.37, 0.44, 0.39])[:, np.newaxis]
|
||||
COEFS = np.array([-1854.8214151, 3516.89893646, 221.29346712,
|
||||
128.12323805, -2010.49422654])[:, np.newaxis]
|
||||
|
||||
|
||||
class _BinaryGaussianProcessClassifierLaplace(BaseEstimator):
|
||||
"""Binary Gaussian process classification based on Laplace approximation.
|
||||
|
||||
The implementation is based on Algorithm 3.1, 3.2, and 5.1 of
|
||||
``Gaussian Processes for Machine Learning'' (GPML) by Rasmussen and
|
||||
Williams.
|
||||
|
||||
Internally, the Laplace approximation is used for approximating the
|
||||
non-Gaussian posterior by a Gaussian.
|
||||
|
||||
Currently, the implementation is restricted to using the logistic link
|
||||
function.
|
||||
|
||||
.. versionadded:: 0.18
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kernel : kernel instance, default=None
|
||||
The kernel specifying the covariance function of the GP. If None is
|
||||
passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
|
||||
the kernel's hyperparameters are optimized during fitting.
|
||||
|
||||
optimizer : 'fmin_l_bfgs_b' or callable, default='fmin_l_bfgs_b'
|
||||
Can either be one of the internally supported optimizers for optimizing
|
||||
the kernel's parameters, specified by a string, or an externally
|
||||
defined optimizer passed as a callable. If a callable is passed, it
|
||||
must have the signature::
|
||||
|
||||
def optimizer(obj_func, initial_theta, bounds):
|
||||
# * 'obj_func' is the objective function to be maximized, which
|
||||
# takes the hyperparameters theta as parameter and an
|
||||
# optional flag eval_gradient, which determines if the
|
||||
# gradient is returned additionally to the function value
|
||||
# * 'initial_theta': the initial value for theta, which can be
|
||||
# used by local optimizers
|
||||
# * 'bounds': the bounds on the values of theta
|
||||
....
|
||||
# Returned are the best found hyperparameters theta and
|
||||
# the corresponding value of the target function.
|
||||
return theta_opt, func_min
|
||||
|
||||
Per default, the 'L-BFGS-B' algorithm from scipy.optimize.minimize
|
||||
is used. If None is passed, the kernel's parameters are kept fixed.
|
||||
Available internal optimizers are::
|
||||
|
||||
'fmin_l_bfgs_b'
|
||||
|
||||
n_restarts_optimizer : int, default=0
|
||||
The number of restarts of the optimizer for finding the kernel's
|
||||
parameters which maximize the log-marginal likelihood. The first run
|
||||
of the optimizer is performed from the kernel's initial parameters,
|
||||
the remaining ones (if any) from thetas sampled log-uniform randomly
|
||||
from the space of allowed theta-values. If greater than 0, all bounds
|
||||
must be finite. Note that n_restarts_optimizer=0 implies that one
|
||||
run is performed.
|
||||
|
||||
max_iter_predict : int, default=100
|
||||
The maximum number of iterations in Newton's method for approximating
|
||||
the posterior during predict. Smaller values will reduce computation
|
||||
time at the cost of worse results.
|
||||
|
||||
warm_start : bool, default=False
|
||||
If warm-starts are enabled, the solution of the last Newton iteration
|
||||
on the Laplace approximation of the posterior mode is used as
|
||||
initialization for the next call of _posterior_mode(). This can speed
|
||||
up convergence when _posterior_mode is called several times on similar
|
||||
problems as in hyperparameter optimization. See :term:`the Glossary
|
||||
<warm_start>`.
|
||||
|
||||
copy_X_train : bool, default=True
|
||||
If True, a persistent copy of the training data is stored in the
|
||||
object. Otherwise, just a reference to the training data is stored,
|
||||
which might cause predictions to change if the data is modified
|
||||
externally.
|
||||
|
||||
random_state : int or RandomState, default=None
|
||||
Determines random number generation used to initialize the centers.
|
||||
Pass an int for reproducible results across multiple function calls.
|
||||
See :term: `Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
X_train_ : array-like of shape (n_samples, n_features) or list of object
|
||||
Feature vectors or other representations of training data (also
|
||||
required for prediction).
|
||||
|
||||
y_train_ : array-like of shape (n_samples,)
|
||||
Target values in training data (also required for prediction)
|
||||
|
||||
classes_ : array-like of shape (n_classes,)
|
||||
Unique class labels.
|
||||
|
||||
kernel_ : kernl instance
|
||||
The kernel used for prediction. The structure of the kernel is the
|
||||
same as the one passed as parameter but with optimized hyperparameters
|
||||
|
||||
L_ : array-like of shape (n_samples, n_samples)
|
||||
Lower-triangular Cholesky decomposition of the kernel in X_train_
|
||||
|
||||
pi_ : array-like of shape (n_samples,)
|
||||
The probabilities of the positive class for the training points
|
||||
X_train_
|
||||
|
||||
W_sr_ : array-like of shape (n_samples,)
|
||||
Square root of W, the Hessian of log-likelihood of the latent function
|
||||
values for the observed labels. Since W is diagonal, only the diagonal
|
||||
of sqrt(W) is stored.
|
||||
|
||||
log_marginal_likelihood_value_ : float
|
||||
The log-marginal-likelihood of ``self.kernel_.theta``
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, kernel=None, *, optimizer="fmin_l_bfgs_b",
|
||||
n_restarts_optimizer=0, max_iter_predict=100,
|
||||
warm_start=False, copy_X_train=True, random_state=None):
|
||||
self.kernel = kernel
|
||||
self.optimizer = optimizer
|
||||
self.n_restarts_optimizer = n_restarts_optimizer
|
||||
self.max_iter_predict = max_iter_predict
|
||||
self.warm_start = warm_start
|
||||
self.copy_X_train = copy_X_train
|
||||
self.random_state = random_state
|
||||
|
||||
def fit(self, X, y):
|
||||
"""Fit Gaussian process classification model
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or list of object
|
||||
Feature vectors or other representations of training data.
|
||||
|
||||
y : array-like of shape (n_samples,)
|
||||
Target values, must be binary
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : returns an instance of self.
|
||||
"""
|
||||
if self.kernel is None: # Use an RBF kernel as default
|
||||
self.kernel_ = C(1.0, constant_value_bounds="fixed") \
|
||||
* RBF(1.0, length_scale_bounds="fixed")
|
||||
else:
|
||||
self.kernel_ = clone(self.kernel)
|
||||
|
||||
self.rng = check_random_state(self.random_state)
|
||||
|
||||
self.X_train_ = np.copy(X) if self.copy_X_train else X
|
||||
|
||||
# Encode class labels and check that it is a binary classification
|
||||
# problem
|
||||
label_encoder = LabelEncoder()
|
||||
self.y_train_ = label_encoder.fit_transform(y)
|
||||
self.classes_ = label_encoder.classes_
|
||||
if self.classes_.size > 2:
|
||||
raise ValueError("%s supports only binary classification. "
|
||||
"y contains classes %s"
|
||||
% (self.__class__.__name__, self.classes_))
|
||||
elif self.classes_.size == 1:
|
||||
raise ValueError("{0:s} requires 2 classes; got {1:d} class"
|
||||
.format(self.__class__.__name__,
|
||||
self.classes_.size))
|
||||
|
||||
if self.optimizer is not None and self.kernel_.n_dims > 0:
|
||||
# Choose hyperparameters based on maximizing the log-marginal
|
||||
# likelihood (potentially starting from several initial values)
|
||||
def obj_func(theta, eval_gradient=True):
|
||||
if eval_gradient:
|
||||
lml, grad = self.log_marginal_likelihood(
|
||||
theta, eval_gradient=True, clone_kernel=False)
|
||||
return -lml, -grad
|
||||
else:
|
||||
return -self.log_marginal_likelihood(theta,
|
||||
clone_kernel=False)
|
||||
|
||||
# First optimize starting from theta specified in kernel
|
||||
optima = [self._constrained_optimization(obj_func,
|
||||
self.kernel_.theta,
|
||||
self.kernel_.bounds)]
|
||||
|
||||
# Additional runs are performed from log-uniform chosen initial
|
||||
# theta
|
||||
if self.n_restarts_optimizer > 0:
|
||||
if not np.isfinite(self.kernel_.bounds).all():
|
||||
raise ValueError(
|
||||
"Multiple optimizer restarts (n_restarts_optimizer>0) "
|
||||
"requires that all bounds are finite.")
|
||||
bounds = self.kernel_.bounds
|
||||
for iteration in range(self.n_restarts_optimizer):
|
||||
theta_initial = np.exp(self.rng.uniform(bounds[:, 0],
|
||||
bounds[:, 1]))
|
||||
optima.append(
|
||||
self._constrained_optimization(obj_func, theta_initial,
|
||||
bounds))
|
||||
# Select result from run with minimal (negative) log-marginal
|
||||
# likelihood
|
||||
lml_values = list(map(itemgetter(1), optima))
|
||||
self.kernel_.theta = optima[np.argmin(lml_values)][0]
|
||||
self.log_marginal_likelihood_value_ = -np.min(lml_values)
|
||||
else:
|
||||
self.log_marginal_likelihood_value_ = \
|
||||
self.log_marginal_likelihood(self.kernel_.theta)
|
||||
|
||||
# Precompute quantities required for predictions which are independent
|
||||
# of actual query points
|
||||
K = self.kernel_(self.X_train_)
|
||||
|
||||
_, (self.pi_, self.W_sr_, self.L_, _, _) = \
|
||||
self._posterior_mode(K, return_temporaries=True)
|
||||
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
"""Perform classification on an array of test vectors X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or list of object
|
||||
Query points where the GP is evaluated for classification.
|
||||
|
||||
Returns
|
||||
-------
|
||||
C : ndarray of shape (n_samples,)
|
||||
Predicted target values for X, values are from ``classes_``
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
# As discussed on Section 3.4.2 of GPML, for making hard binary
|
||||
# decisions, it is enough to compute the MAP of the posterior and
|
||||
# pass it through the link function
|
||||
K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star)
|
||||
f_star = K_star.T.dot(self.y_train_ - self.pi_) # Algorithm 3.2,Line 4
|
||||
|
||||
return np.where(f_star > 0, self.classes_[1], self.classes_[0])
|
||||
|
||||
def predict_proba(self, X):
|
||||
"""Return probability estimates for the test vector X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or list of object
|
||||
Query points where the GP is evaluated for classification.
|
||||
|
||||
Returns
|
||||
-------
|
||||
C : array-like of shape (n_samples, n_classes)
|
||||
Returns the probability of the samples for each class in
|
||||
the model. The columns correspond to the classes in sorted
|
||||
order, as they appear in the attribute ``classes_``.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
# Based on Algorithm 3.2 of GPML
|
||||
K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star)
|
||||
f_star = K_star.T.dot(self.y_train_ - self.pi_) # Line 4
|
||||
v = solve(self.L_, self.W_sr_[:, np.newaxis] * K_star) # Line 5
|
||||
# Line 6 (compute np.diag(v.T.dot(v)) via einsum)
|
||||
var_f_star = self.kernel_.diag(X) - np.einsum("ij,ij->j", v, v)
|
||||
|
||||
# Line 7:
|
||||
# Approximate \int log(z) * N(z | f_star, var_f_star)
|
||||
# Approximation is due to Williams & Barber, "Bayesian Classification
|
||||
# with Gaussian Processes", Appendix A: Approximate the logistic
|
||||
# sigmoid by a linear combination of 5 error functions.
|
||||
# For information on how this integral can be computed see
|
||||
# blitiri.blogspot.de/2012/11/gaussian-integral-of-error-function.html
|
||||
alpha = 1 / (2 * var_f_star)
|
||||
gamma = LAMBDAS * f_star
|
||||
integrals = np.sqrt(np.pi / alpha) \
|
||||
* erf(gamma * np.sqrt(alpha / (alpha + LAMBDAS**2))) \
|
||||
/ (2 * np.sqrt(var_f_star * 2 * np.pi))
|
||||
pi_star = (COEFS * integrals).sum(axis=0) + .5 * COEFS.sum()
|
||||
|
||||
return np.vstack((1 - pi_star, pi_star)).T
|
||||
|
||||
def log_marginal_likelihood(self, theta=None, eval_gradient=False,
|
||||
clone_kernel=True):
|
||||
"""Returns log-marginal likelihood of theta for training data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
theta : array-like of shape (n_kernel_params,), default=None
|
||||
Kernel hyperparameters for which the log-marginal likelihood is
|
||||
evaluated. If None, the precomputed log_marginal_likelihood
|
||||
of ``self.kernel_.theta`` is returned.
|
||||
|
||||
eval_gradient : bool, default=False
|
||||
If True, the gradient of the log-marginal likelihood with respect
|
||||
to the kernel hyperparameters at position theta is returned
|
||||
additionally. If True, theta must not be None.
|
||||
|
||||
clone_kernel : bool, default=True
|
||||
If True, the kernel attribute is copied. If False, the kernel
|
||||
attribute is modified, but may result in a performance improvement.
|
||||
|
||||
Returns
|
||||
-------
|
||||
log_likelihood : float
|
||||
Log-marginal likelihood of theta for training data.
|
||||
|
||||
log_likelihood_gradient : ndarray of shape (n_kernel_params,), \
|
||||
optional
|
||||
Gradient of the log-marginal likelihood with respect to the kernel
|
||||
hyperparameters at position theta.
|
||||
Only returned when `eval_gradient` is True.
|
||||
"""
|
||||
if theta is None:
|
||||
if eval_gradient:
|
||||
raise ValueError(
|
||||
"Gradient can only be evaluated for theta!=None")
|
||||
return self.log_marginal_likelihood_value_
|
||||
|
||||
if clone_kernel:
|
||||
kernel = self.kernel_.clone_with_theta(theta)
|
||||
else:
|
||||
kernel = self.kernel_
|
||||
kernel.theta = theta
|
||||
|
||||
if eval_gradient:
|
||||
K, K_gradient = kernel(self.X_train_, eval_gradient=True)
|
||||
else:
|
||||
K = kernel(self.X_train_)
|
||||
|
||||
# Compute log-marginal-likelihood Z and also store some temporaries
|
||||
# which can be reused for computing Z's gradient
|
||||
Z, (pi, W_sr, L, b, a) = \
|
||||
self._posterior_mode(K, return_temporaries=True)
|
||||
|
||||
if not eval_gradient:
|
||||
return Z
|
||||
|
||||
# Compute gradient based on Algorithm 5.1 of GPML
|
||||
d_Z = np.empty(theta.shape[0])
|
||||
# XXX: Get rid of the np.diag() in the next line
|
||||
R = W_sr[:, np.newaxis] * cho_solve((L, True), np.diag(W_sr)) # Line 7
|
||||
C = solve(L, W_sr[:, np.newaxis] * K) # Line 8
|
||||
# Line 9: (use einsum to compute np.diag(C.T.dot(C))))
|
||||
s_2 = -0.5 * (np.diag(K) - np.einsum('ij, ij -> j', C, C)) \
|
||||
* (pi * (1 - pi) * (1 - 2 * pi)) # third derivative
|
||||
|
||||
for j in range(d_Z.shape[0]):
|
||||
C = K_gradient[:, :, j] # Line 11
|
||||
# Line 12: (R.T.ravel().dot(C.ravel()) = np.trace(R.dot(C)))
|
||||
s_1 = .5 * a.T.dot(C).dot(a) - .5 * R.T.ravel().dot(C.ravel())
|
||||
|
||||
b = C.dot(self.y_train_ - pi) # Line 13
|
||||
s_3 = b - K.dot(R.dot(b)) # Line 14
|
||||
|
||||
d_Z[j] = s_1 + s_2.T.dot(s_3) # Line 15
|
||||
|
||||
return Z, d_Z
|
||||
|
||||
def _posterior_mode(self, K, return_temporaries=False):
|
||||
"""Mode-finding for binary Laplace GPC and fixed kernel.
|
||||
|
||||
This approximates the posterior of the latent function values for given
|
||||
inputs and target observations with a Gaussian approximation and uses
|
||||
Newton's iteration to find the mode of this approximation.
|
||||
"""
|
||||
# Based on Algorithm 3.1 of GPML
|
||||
|
||||
# If warm_start are enabled, we reuse the last solution for the
|
||||
# posterior mode as initialization; otherwise, we initialize with 0
|
||||
if self.warm_start and hasattr(self, "f_cached") \
|
||||
and self.f_cached.shape == self.y_train_.shape:
|
||||
f = self.f_cached
|
||||
else:
|
||||
f = np.zeros_like(self.y_train_, dtype=np.float64)
|
||||
|
||||
# Use Newton's iteration method to find mode of Laplace approximation
|
||||
log_marginal_likelihood = -np.inf
|
||||
for _ in range(self.max_iter_predict):
|
||||
# Line 4
|
||||
pi = expit(f)
|
||||
W = pi * (1 - pi)
|
||||
# Line 5
|
||||
W_sr = np.sqrt(W)
|
||||
W_sr_K = W_sr[:, np.newaxis] * K
|
||||
B = np.eye(W.shape[0]) + W_sr_K * W_sr
|
||||
L = cholesky(B, lower=True)
|
||||
# Line 6
|
||||
b = W * f + (self.y_train_ - pi)
|
||||
# Line 7
|
||||
a = b - W_sr * cho_solve((L, True), W_sr_K.dot(b))
|
||||
# Line 8
|
||||
f = K.dot(a)
|
||||
|
||||
# Line 10: Compute log marginal likelihood in loop and use as
|
||||
# convergence criterion
|
||||
lml = -0.5 * a.T.dot(f) \
|
||||
- np.log1p(np.exp(-(self.y_train_ * 2 - 1) * f)).sum() \
|
||||
- np.log(np.diag(L)).sum()
|
||||
# Check if we have converged (log marginal likelihood does
|
||||
# not decrease)
|
||||
# XXX: more complex convergence criterion
|
||||
if lml - log_marginal_likelihood < 1e-10:
|
||||
break
|
||||
log_marginal_likelihood = lml
|
||||
|
||||
self.f_cached = f # Remember solution for later warm-starts
|
||||
if return_temporaries:
|
||||
return log_marginal_likelihood, (pi, W_sr, L, b, a)
|
||||
else:
|
||||
return log_marginal_likelihood
|
||||
|
||||
def _constrained_optimization(self, obj_func, initial_theta, bounds):
|
||||
if self.optimizer == "fmin_l_bfgs_b":
|
||||
opt_res = scipy.optimize.minimize(
|
||||
obj_func, initial_theta, method="L-BFGS-B", jac=True,
|
||||
bounds=bounds)
|
||||
_check_optimize_result("lbfgs", opt_res)
|
||||
theta_opt, func_min = opt_res.x, opt_res.fun
|
||||
elif callable(self.optimizer):
|
||||
theta_opt, func_min = \
|
||||
self.optimizer(obj_func, initial_theta, bounds=bounds)
|
||||
else:
|
||||
raise ValueError("Unknown optimizer %s." % self.optimizer)
|
||||
|
||||
return theta_opt, func_min
|
||||
|
||||
|
||||
class GaussianProcessClassifier(ClassifierMixin, BaseEstimator):
|
||||
"""Gaussian process classification (GPC) based on Laplace approximation.
|
||||
|
||||
The implementation is based on Algorithm 3.1, 3.2, and 5.1 of
|
||||
Gaussian Processes for Machine Learning (GPML) by Rasmussen and
|
||||
Williams.
|
||||
|
||||
Internally, the Laplace approximation is used for approximating the
|
||||
non-Gaussian posterior by a Gaussian.
|
||||
|
||||
Currently, the implementation is restricted to using the logistic link
|
||||
function. For multi-class classification, several binary one-versus rest
|
||||
classifiers are fitted. Note that this class thus does not implement
|
||||
a true multi-class Laplace approximation.
|
||||
|
||||
Read more in the :ref:`User Guide <gaussian_process>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kernel : kernel instance, default=None
|
||||
The kernel specifying the covariance function of the GP. If None is
|
||||
passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
|
||||
the kernel's hyperparameters are optimized during fitting.
|
||||
|
||||
optimizer : 'fmin_l_bfgs_b' or callable, default='fmin_l_bfgs_b'
|
||||
Can either be one of the internally supported optimizers for optimizing
|
||||
the kernel's parameters, specified by a string, or an externally
|
||||
defined optimizer passed as a callable. If a callable is passed, it
|
||||
must have the signature::
|
||||
|
||||
def optimizer(obj_func, initial_theta, bounds):
|
||||
# * 'obj_func' is the objective function to be maximized, which
|
||||
# takes the hyperparameters theta as parameter and an
|
||||
# optional flag eval_gradient, which determines if the
|
||||
# gradient is returned additionally to the function value
|
||||
# * 'initial_theta': the initial value for theta, which can be
|
||||
# used by local optimizers
|
||||
# * 'bounds': the bounds on the values of theta
|
||||
....
|
||||
# Returned are the best found hyperparameters theta and
|
||||
# the corresponding value of the target function.
|
||||
return theta_opt, func_min
|
||||
|
||||
Per default, the 'L-BFGS-B' algorithm from scipy.optimize.minimize
|
||||
is used. If None is passed, the kernel's parameters are kept fixed.
|
||||
Available internal optimizers are::
|
||||
|
||||
'fmin_l_bfgs_b'
|
||||
|
||||
n_restarts_optimizer : int, default=0
|
||||
The number of restarts of the optimizer for finding the kernel's
|
||||
parameters which maximize the log-marginal likelihood. The first run
|
||||
of the optimizer is performed from the kernel's initial parameters,
|
||||
the remaining ones (if any) from thetas sampled log-uniform randomly
|
||||
from the space of allowed theta-values. If greater than 0, all bounds
|
||||
must be finite. Note that n_restarts_optimizer=0 implies that one
|
||||
run is performed.
|
||||
|
||||
max_iter_predict : int, default=100
|
||||
The maximum number of iterations in Newton's method for approximating
|
||||
the posterior during predict. Smaller values will reduce computation
|
||||
time at the cost of worse results.
|
||||
|
||||
warm_start : bool, default=False
|
||||
If warm-starts are enabled, the solution of the last Newton iteration
|
||||
on the Laplace approximation of the posterior mode is used as
|
||||
initialization for the next call of _posterior_mode(). This can speed
|
||||
up convergence when _posterior_mode is called several times on similar
|
||||
problems as in hyperparameter optimization. See :term:`the Glossary
|
||||
<warm_start>`.
|
||||
|
||||
copy_X_train : bool, default=True
|
||||
If True, a persistent copy of the training data is stored in the
|
||||
object. Otherwise, just a reference to the training data is stored,
|
||||
which might cause predictions to change if the data is modified
|
||||
externally.
|
||||
|
||||
random_state : int or RandomState, default=None
|
||||
Determines random number generation used to initialize the centers.
|
||||
Pass an int for reproducible results across multiple function calls.
|
||||
See :term: `Glossary <random_state>`.
|
||||
|
||||
multi_class : {'one_vs_rest', 'one_vs_one'}, default='one_vs_rest'
|
||||
Specifies how multi-class classification problems are handled.
|
||||
Supported are 'one_vs_rest' and 'one_vs_one'. In 'one_vs_rest',
|
||||
one binary Gaussian process classifier is fitted for each class, which
|
||||
is trained to separate this class from the rest. In 'one_vs_one', one
|
||||
binary Gaussian process classifier is fitted for each pair of classes,
|
||||
which is trained to separate these two classes. The predictions of
|
||||
these binary predictors are combined into multi-class predictions.
|
||||
Note that 'one_vs_one' does not support predicting probability
|
||||
estimates.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of jobs to use for the computation.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
kernel_ : kernel instance
|
||||
The kernel used for prediction. In case of binary classification,
|
||||
the structure of the kernel is the same as the one passed as parameter
|
||||
but with optimized hyperparameters. In case of multi-class
|
||||
classification, a CompoundKernel is returned which consists of the
|
||||
different kernels used in the one-versus-rest classifiers.
|
||||
|
||||
log_marginal_likelihood_value_ : float
|
||||
The log-marginal-likelihood of ``self.kernel_.theta``
|
||||
|
||||
classes_ : array-like of shape (n_classes,)
|
||||
Unique class labels.
|
||||
|
||||
n_classes_ : int
|
||||
The number of classes in the training data
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.datasets import load_iris
|
||||
>>> from sklearn.gaussian_process import GaussianProcessClassifier
|
||||
>>> from sklearn.gaussian_process.kernels import RBF
|
||||
>>> X, y = load_iris(return_X_y=True)
|
||||
>>> kernel = 1.0 * RBF(1.0)
|
||||
>>> gpc = GaussianProcessClassifier(kernel=kernel,
|
||||
... random_state=0).fit(X, y)
|
||||
>>> gpc.score(X, y)
|
||||
0.9866...
|
||||
>>> gpc.predict_proba(X[:2,:])
|
||||
array([[0.83548752, 0.03228706, 0.13222543],
|
||||
[0.79064206, 0.06525643, 0.14410151]])
|
||||
|
||||
.. versionadded:: 0.18
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, kernel=None, *, optimizer="fmin_l_bfgs_b",
|
||||
n_restarts_optimizer=0, max_iter_predict=100,
|
||||
warm_start=False, copy_X_train=True, random_state=None,
|
||||
multi_class="one_vs_rest", n_jobs=None):
|
||||
self.kernel = kernel
|
||||
self.optimizer = optimizer
|
||||
self.n_restarts_optimizer = n_restarts_optimizer
|
||||
self.max_iter_predict = max_iter_predict
|
||||
self.warm_start = warm_start
|
||||
self.copy_X_train = copy_X_train
|
||||
self.random_state = random_state
|
||||
self.multi_class = multi_class
|
||||
self.n_jobs = n_jobs
|
||||
|
||||
def fit(self, X, y):
|
||||
"""Fit Gaussian process classification model
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or list of object
|
||||
Feature vectors or other representations of training data.
|
||||
|
||||
y : array-like of shape (n_samples,)
|
||||
Target values, must be binary
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : returns an instance of self.
|
||||
"""
|
||||
if self.kernel is None or self.kernel.requires_vector_input:
|
||||
X, y = self._validate_data(X, y, multi_output=False,
|
||||
ensure_2d=True, dtype="numeric")
|
||||
else:
|
||||
X, y = self._validate_data(X, y, multi_output=False,
|
||||
ensure_2d=False, dtype=None)
|
||||
|
||||
self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace(
|
||||
kernel=self.kernel,
|
||||
optimizer=self.optimizer,
|
||||
n_restarts_optimizer=self.n_restarts_optimizer,
|
||||
max_iter_predict=self.max_iter_predict,
|
||||
warm_start=self.warm_start,
|
||||
copy_X_train=self.copy_X_train,
|
||||
random_state=self.random_state)
|
||||
|
||||
self.classes_ = np.unique(y)
|
||||
self.n_classes_ = self.classes_.size
|
||||
if self.n_classes_ == 1:
|
||||
raise ValueError("GaussianProcessClassifier requires 2 or more "
|
||||
"distinct classes; got %d class (only class %s "
|
||||
"is present)"
|
||||
% (self.n_classes_, self.classes_[0]))
|
||||
if self.n_classes_ > 2:
|
||||
if self.multi_class == "one_vs_rest":
|
||||
self.base_estimator_ = \
|
||||
OneVsRestClassifier(self.base_estimator_,
|
||||
n_jobs=self.n_jobs)
|
||||
elif self.multi_class == "one_vs_one":
|
||||
self.base_estimator_ = \
|
||||
OneVsOneClassifier(self.base_estimator_,
|
||||
n_jobs=self.n_jobs)
|
||||
else:
|
||||
raise ValueError("Unknown multi-class mode %s"
|
||||
% self.multi_class)
|
||||
|
||||
self.base_estimator_.fit(X, y)
|
||||
|
||||
if self.n_classes_ > 2:
|
||||
self.log_marginal_likelihood_value_ = np.mean(
|
||||
[estimator.log_marginal_likelihood()
|
||||
for estimator in self.base_estimator_.estimators_])
|
||||
else:
|
||||
self.log_marginal_likelihood_value_ = \
|
||||
self.base_estimator_.log_marginal_likelihood()
|
||||
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
"""Perform classification on an array of test vectors X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or list of object
|
||||
Query points where the GP is evaluated for classification.
|
||||
|
||||
Returns
|
||||
-------
|
||||
C : ndarray of shape (n_samples,)
|
||||
Predicted target values for X, values are from ``classes_``
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
if self.kernel is None or self.kernel.requires_vector_input:
|
||||
X = check_array(X, ensure_2d=True, dtype="numeric")
|
||||
else:
|
||||
X = check_array(X, ensure_2d=False, dtype=None)
|
||||
|
||||
return self.base_estimator_.predict(X)
|
||||
|
||||
def predict_proba(self, X):
|
||||
"""Return probability estimates for the test vector X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or list of object
|
||||
Query points where the GP is evaluated for classification.
|
||||
|
||||
Returns
|
||||
-------
|
||||
C : array-like of shape (n_samples, n_classes)
|
||||
Returns the probability of the samples for each class in
|
||||
the model. The columns correspond to the classes in sorted
|
||||
order, as they appear in the attribute :term:`classes_`.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
if self.n_classes_ > 2 and self.multi_class == "one_vs_one":
|
||||
raise ValueError("one_vs_one multi-class mode does not support "
|
||||
"predicting probability estimates. Use "
|
||||
"one_vs_rest mode instead.")
|
||||
|
||||
if self.kernel is None or self.kernel.requires_vector_input:
|
||||
X = check_array(X, ensure_2d=True, dtype="numeric")
|
||||
else:
|
||||
X = check_array(X, ensure_2d=False, dtype=None)
|
||||
|
||||
return self.base_estimator_.predict_proba(X)
|
||||
|
||||
@property
|
||||
def kernel_(self):
|
||||
if self.n_classes_ == 2:
|
||||
return self.base_estimator_.kernel_
|
||||
else:
|
||||
return CompoundKernel(
|
||||
[estimator.kernel_
|
||||
for estimator in self.base_estimator_.estimators_])
|
||||
|
||||
def log_marginal_likelihood(self, theta=None, eval_gradient=False,
|
||||
clone_kernel=True):
|
||||
"""Returns log-marginal likelihood of theta for training data.
|
||||
|
||||
In the case of multi-class classification, the mean log-marginal
|
||||
likelihood of the one-versus-rest classifiers are returned.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
theta : array-like of shape (n_kernel_params,), default=None
|
||||
Kernel hyperparameters for which the log-marginal likelihood is
|
||||
evaluated. In the case of multi-class classification, theta may
|
||||
be the hyperparameters of the compound kernel or of an individual
|
||||
kernel. In the latter case, all individual kernel get assigned the
|
||||
same theta values. If None, the precomputed log_marginal_likelihood
|
||||
of ``self.kernel_.theta`` is returned.
|
||||
|
||||
eval_gradient : bool, default=False
|
||||
If True, the gradient of the log-marginal likelihood with respect
|
||||
to the kernel hyperparameters at position theta is returned
|
||||
additionally. Note that gradient computation is not supported
|
||||
for non-binary classification. If True, theta must not be None.
|
||||
|
||||
clone_kernel : bool, default=True
|
||||
If True, the kernel attribute is copied. If False, the kernel
|
||||
attribute is modified, but may result in a performance improvement.
|
||||
|
||||
Returns
|
||||
-------
|
||||
log_likelihood : float
|
||||
Log-marginal likelihood of theta for training data.
|
||||
|
||||
log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional
|
||||
Gradient of the log-marginal likelihood with respect to the kernel
|
||||
hyperparameters at position theta.
|
||||
Only returned when `eval_gradient` is True.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
if theta is None:
|
||||
if eval_gradient:
|
||||
raise ValueError(
|
||||
"Gradient can only be evaluated for theta!=None")
|
||||
return self.log_marginal_likelihood_value_
|
||||
|
||||
theta = np.asarray(theta)
|
||||
if self.n_classes_ == 2:
|
||||
return self.base_estimator_.log_marginal_likelihood(
|
||||
theta, eval_gradient, clone_kernel=clone_kernel)
|
||||
else:
|
||||
if eval_gradient:
|
||||
raise NotImplementedError(
|
||||
"Gradient of log-marginal-likelihood not implemented for "
|
||||
"multi-class GPC.")
|
||||
estimators = self.base_estimator_.estimators_
|
||||
n_dims = estimators[0].kernel_.n_dims
|
||||
if theta.shape[0] == n_dims: # use same theta for all sub-kernels
|
||||
return np.mean(
|
||||
[estimator.log_marginal_likelihood(
|
||||
theta, clone_kernel=clone_kernel)
|
||||
for i, estimator in enumerate(estimators)])
|
||||
elif theta.shape[0] == n_dims * self.classes_.shape[0]:
|
||||
# theta for compound kernel
|
||||
return np.mean(
|
||||
[estimator.log_marginal_likelihood(
|
||||
theta[n_dims * i:n_dims * (i + 1)],
|
||||
clone_kernel=clone_kernel)
|
||||
for i, estimator in enumerate(estimators)])
|
||||
else:
|
||||
raise ValueError("Shape of theta must be either %d or %d. "
|
||||
"Obtained theta with shape %d."
|
||||
% (n_dims, n_dims * self.classes_.shape[0],
|
||||
theta.shape[0]))
|
515
venv/Lib/site-packages/sklearn/gaussian_process/_gpr.py
Normal file
515
venv/Lib/site-packages/sklearn/gaussian_process/_gpr.py
Normal file
|
@ -0,0 +1,515 @@
|
|||
"""Gaussian processes regression. """
|
||||
|
||||
# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
||||
# Modified by: Pete Green <p.l.green@liverpool.ac.uk>
|
||||
# License: BSD 3 clause
|
||||
|
||||
import warnings
|
||||
from operator import itemgetter
|
||||
|
||||
import numpy as np
|
||||
from scipy.linalg import cholesky, cho_solve, solve_triangular
|
||||
import scipy.optimize
|
||||
|
||||
from ..base import BaseEstimator, RegressorMixin, clone
|
||||
from ..base import MultiOutputMixin
|
||||
from .kernels import RBF, ConstantKernel as C
|
||||
from ..utils import check_random_state
|
||||
from ..utils.validation import check_array
|
||||
from ..utils.optimize import _check_optimize_result
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
|
||||
|
||||
class GaussianProcessRegressor(MultiOutputMixin,
|
||||
RegressorMixin, BaseEstimator):
|
||||
"""Gaussian process regression (GPR).
|
||||
|
||||
The implementation is based on Algorithm 2.1 of Gaussian Processes
|
||||
for Machine Learning (GPML) by Rasmussen and Williams.
|
||||
|
||||
In addition to standard scikit-learn estimator API,
|
||||
GaussianProcessRegressor:
|
||||
|
||||
* allows prediction without prior fitting (based on the GP prior)
|
||||
* provides an additional method sample_y(X), which evaluates samples
|
||||
drawn from the GPR (prior or posterior) at given inputs
|
||||
* exposes a method log_marginal_likelihood(theta), which can be used
|
||||
externally for other ways of selecting hyperparameters, e.g., via
|
||||
Markov chain Monte Carlo.
|
||||
|
||||
Read more in the :ref:`User Guide <gaussian_process>`.
|
||||
|
||||
.. versionadded:: 0.18
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kernel : kernel instance, default=None
|
||||
The kernel specifying the covariance function of the GP. If None is
|
||||
passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
|
||||
the kernel's hyperparameters are optimized during fitting.
|
||||
|
||||
alpha : float or array-like of shape (n_samples), default=1e-10
|
||||
Value added to the diagonal of the kernel matrix during fitting.
|
||||
Larger values correspond to increased noise level in the observations.
|
||||
This can also prevent a potential numerical issue during fitting, by
|
||||
ensuring that the calculated values form a positive definite matrix.
|
||||
If an array is passed, it must have the same number of entries as the
|
||||
data used for fitting and is used as datapoint-dependent noise level.
|
||||
Note that this is equivalent to adding a WhiteKernel with c=alpha.
|
||||
Allowing to specify the noise level directly as a parameter is mainly
|
||||
for convenience and for consistency with Ridge.
|
||||
|
||||
optimizer : "fmin_l_bfgs_b" or callable, default="fmin_l_bfgs_b"
|
||||
Can either be one of the internally supported optimizers for optimizing
|
||||
the kernel's parameters, specified by a string, or an externally
|
||||
defined optimizer passed as a callable. If a callable is passed, it
|
||||
must have the signature::
|
||||
|
||||
def optimizer(obj_func, initial_theta, bounds):
|
||||
# * 'obj_func' is the objective function to be minimized, which
|
||||
# takes the hyperparameters theta as parameter and an
|
||||
# optional flag eval_gradient, which determines if the
|
||||
# gradient is returned additionally to the function value
|
||||
# * 'initial_theta': the initial value for theta, which can be
|
||||
# used by local optimizers
|
||||
# * 'bounds': the bounds on the values of theta
|
||||
....
|
||||
# Returned are the best found hyperparameters theta and
|
||||
# the corresponding value of the target function.
|
||||
return theta_opt, func_min
|
||||
|
||||
Per default, the 'L-BGFS-B' algorithm from scipy.optimize.minimize
|
||||
is used. If None is passed, the kernel's parameters are kept fixed.
|
||||
Available internal optimizers are::
|
||||
|
||||
'fmin_l_bfgs_b'
|
||||
|
||||
n_restarts_optimizer : int, default=0
|
||||
The number of restarts of the optimizer for finding the kernel's
|
||||
parameters which maximize the log-marginal likelihood. The first run
|
||||
of the optimizer is performed from the kernel's initial parameters,
|
||||
the remaining ones (if any) from thetas sampled log-uniform randomly
|
||||
from the space of allowed theta-values. If greater than 0, all bounds
|
||||
must be finite. Note that n_restarts_optimizer == 0 implies that one
|
||||
run is performed.
|
||||
|
||||
normalize_y : boolean, optional (default: False)
|
||||
Whether the target values y are normalized, the mean and variance of
|
||||
the target values are set equal to 0 and 1 respectively. This is
|
||||
recommended for cases where zero-mean, unit-variance priors are used.
|
||||
Note that, in this implementation, the normalisation is reversed
|
||||
before the GP predictions are reported.
|
||||
|
||||
.. versionchanged:: 0.23
|
||||
|
||||
copy_X_train : bool, default=True
|
||||
If True, a persistent copy of the training data is stored in the
|
||||
object. Otherwise, just a reference to the training data is stored,
|
||||
which might cause predictions to change if the data is modified
|
||||
externally.
|
||||
|
||||
random_state : int or RandomState, default=None
|
||||
Determines random number generation used to initialize the centers.
|
||||
Pass an int for reproducible results across multiple function calls.
|
||||
See :term: `Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
X_train_ : array-like of shape (n_samples, n_features) or list of object
|
||||
Feature vectors or other representations of training data (also
|
||||
required for prediction).
|
||||
|
||||
y_train_ : array-like of shape (n_samples,) or (n_samples, n_targets)
|
||||
Target values in training data (also required for prediction)
|
||||
|
||||
kernel_ : kernel instance
|
||||
The kernel used for prediction. The structure of the kernel is the
|
||||
same as the one passed as parameter but with optimized hyperparameters
|
||||
|
||||
L_ : array-like of shape (n_samples, n_samples)
|
||||
Lower-triangular Cholesky decomposition of the kernel in ``X_train_``
|
||||
|
||||
alpha_ : array-like of shape (n_samples,)
|
||||
Dual coefficients of training data points in kernel space
|
||||
|
||||
log_marginal_likelihood_value_ : float
|
||||
The log-marginal-likelihood of ``self.kernel_.theta``
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.datasets import make_friedman2
|
||||
>>> from sklearn.gaussian_process import GaussianProcessRegressor
|
||||
>>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
|
||||
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
|
||||
>>> kernel = DotProduct() + WhiteKernel()
|
||||
>>> gpr = GaussianProcessRegressor(kernel=kernel,
|
||||
... random_state=0).fit(X, y)
|
||||
>>> gpr.score(X, y)
|
||||
0.3680...
|
||||
>>> gpr.predict(X[:2,:], return_std=True)
|
||||
(array([653.0..., 592.1...]), array([316.6..., 316.6...]))
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, kernel=None, *, alpha=1e-10,
|
||||
optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0,
|
||||
normalize_y=False, copy_X_train=True, random_state=None):
|
||||
self.kernel = kernel
|
||||
self.alpha = alpha
|
||||
self.optimizer = optimizer
|
||||
self.n_restarts_optimizer = n_restarts_optimizer
|
||||
self.normalize_y = normalize_y
|
||||
self.copy_X_train = copy_X_train
|
||||
self.random_state = random_state
|
||||
|
||||
def fit(self, X, y):
|
||||
"""Fit Gaussian process regression model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or list of object
|
||||
Feature vectors or other representations of training data.
|
||||
|
||||
y : array-like of shape (n_samples,) or (n_samples, n_targets)
|
||||
Target values
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : returns an instance of self.
|
||||
"""
|
||||
if self.kernel is None: # Use an RBF kernel as default
|
||||
self.kernel_ = C(1.0, constant_value_bounds="fixed") \
|
||||
* RBF(1.0, length_scale_bounds="fixed")
|
||||
else:
|
||||
self.kernel_ = clone(self.kernel)
|
||||
|
||||
self._rng = check_random_state(self.random_state)
|
||||
|
||||
if self.kernel_.requires_vector_input:
|
||||
X, y = self._validate_data(X, y, multi_output=True, y_numeric=True,
|
||||
ensure_2d=True, dtype="numeric")
|
||||
else:
|
||||
X, y = self._validate_data(X, y, multi_output=True, y_numeric=True,
|
||||
ensure_2d=False, dtype=None)
|
||||
|
||||
# Normalize target value
|
||||
if self.normalize_y:
|
||||
self._y_train_mean = np.mean(y, axis=0)
|
||||
self._y_train_std = np.std(y, axis=0)
|
||||
|
||||
# Remove mean and make unit variance
|
||||
y = (y - self._y_train_mean) / self._y_train_std
|
||||
|
||||
else:
|
||||
self._y_train_mean = np.zeros(1)
|
||||
self._y_train_std = 1
|
||||
|
||||
if np.iterable(self.alpha) \
|
||||
and self.alpha.shape[0] != y.shape[0]:
|
||||
if self.alpha.shape[0] == 1:
|
||||
self.alpha = self.alpha[0]
|
||||
else:
|
||||
raise ValueError("alpha must be a scalar or an array"
|
||||
" with same number of entries as y.(%d != %d)"
|
||||
% (self.alpha.shape[0], y.shape[0]))
|
||||
|
||||
self.X_train_ = np.copy(X) if self.copy_X_train else X
|
||||
self.y_train_ = np.copy(y) if self.copy_X_train else y
|
||||
|
||||
if self.optimizer is not None and self.kernel_.n_dims > 0:
|
||||
# Choose hyperparameters based on maximizing the log-marginal
|
||||
# likelihood (potentially starting from several initial values)
|
||||
def obj_func(theta, eval_gradient=True):
|
||||
if eval_gradient:
|
||||
lml, grad = self.log_marginal_likelihood(
|
||||
theta, eval_gradient=True, clone_kernel=False)
|
||||
return -lml, -grad
|
||||
else:
|
||||
return -self.log_marginal_likelihood(theta,
|
||||
clone_kernel=False)
|
||||
|
||||
# First optimize starting from theta specified in kernel
|
||||
optima = [(self._constrained_optimization(obj_func,
|
||||
self.kernel_.theta,
|
||||
self.kernel_.bounds))]
|
||||
|
||||
# Additional runs are performed from log-uniform chosen initial
|
||||
# theta
|
||||
if self.n_restarts_optimizer > 0:
|
||||
if not np.isfinite(self.kernel_.bounds).all():
|
||||
raise ValueError(
|
||||
"Multiple optimizer restarts (n_restarts_optimizer>0) "
|
||||
"requires that all bounds are finite.")
|
||||
bounds = self.kernel_.bounds
|
||||
for iteration in range(self.n_restarts_optimizer):
|
||||
theta_initial = \
|
||||
self._rng.uniform(bounds[:, 0], bounds[:, 1])
|
||||
optima.append(
|
||||
self._constrained_optimization(obj_func, theta_initial,
|
||||
bounds))
|
||||
# Select result from run with minimal (negative) log-marginal
|
||||
# likelihood
|
||||
lml_values = list(map(itemgetter(1), optima))
|
||||
self.kernel_.theta = optima[np.argmin(lml_values)][0]
|
||||
self.log_marginal_likelihood_value_ = -np.min(lml_values)
|
||||
else:
|
||||
self.log_marginal_likelihood_value_ = \
|
||||
self.log_marginal_likelihood(self.kernel_.theta,
|
||||
clone_kernel=False)
|
||||
|
||||
# Precompute quantities required for predictions which are independent
|
||||
# of actual query points
|
||||
K = self.kernel_(self.X_train_)
|
||||
K[np.diag_indices_from(K)] += self.alpha
|
||||
try:
|
||||
self.L_ = cholesky(K, lower=True) # Line 2
|
||||
# self.L_ changed, self._K_inv needs to be recomputed
|
||||
self._K_inv = None
|
||||
except np.linalg.LinAlgError as exc:
|
||||
exc.args = ("The kernel, %s, is not returning a "
|
||||
"positive definite matrix. Try gradually "
|
||||
"increasing the 'alpha' parameter of your "
|
||||
"GaussianProcessRegressor estimator."
|
||||
% self.kernel_,) + exc.args
|
||||
raise
|
||||
self.alpha_ = cho_solve((self.L_, True), self.y_train_) # Line 3
|
||||
return self
|
||||
|
||||
def predict(self, X, return_std=False, return_cov=False):
|
||||
"""Predict using the Gaussian process regression model
|
||||
|
||||
We can also predict based on an unfitted model by using the GP prior.
|
||||
In addition to the mean of the predictive distribution, also its
|
||||
standard deviation (return_std=True) or covariance (return_cov=True).
|
||||
Note that at most one of the two can be requested.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or list of object
|
||||
Query points where the GP is evaluated.
|
||||
|
||||
return_std : bool, default=False
|
||||
If True, the standard-deviation of the predictive distribution at
|
||||
the query points is returned along with the mean.
|
||||
|
||||
return_cov : bool, default=False
|
||||
If True, the covariance of the joint predictive distribution at
|
||||
the query points is returned along with the mean
|
||||
|
||||
Returns
|
||||
-------
|
||||
y_mean : ndarray of shape (n_samples, [n_output_dims])
|
||||
Mean of predictive distribution a query points
|
||||
|
||||
y_std : ndarray of shape (n_samples,), optional
|
||||
Standard deviation of predictive distribution at query points.
|
||||
Only returned when `return_std` is True.
|
||||
|
||||
y_cov : ndarray of shape (n_samples, n_samples), optional
|
||||
Covariance of joint predictive distribution a query points.
|
||||
Only returned when `return_cov` is True.
|
||||
"""
|
||||
if return_std and return_cov:
|
||||
raise RuntimeError(
|
||||
"Not returning standard deviation of predictions when "
|
||||
"returning full covariance.")
|
||||
|
||||
if self.kernel is None or self.kernel.requires_vector_input:
|
||||
X = check_array(X, ensure_2d=True, dtype="numeric")
|
||||
else:
|
||||
X = check_array(X, ensure_2d=False, dtype=None)
|
||||
|
||||
if not hasattr(self, "X_train_"): # Unfitted;predict based on GP prior
|
||||
if self.kernel is None:
|
||||
kernel = (C(1.0, constant_value_bounds="fixed") *
|
||||
RBF(1.0, length_scale_bounds="fixed"))
|
||||
else:
|
||||
kernel = self.kernel
|
||||
y_mean = np.zeros(X.shape[0])
|
||||
if return_cov:
|
||||
y_cov = kernel(X)
|
||||
return y_mean, y_cov
|
||||
elif return_std:
|
||||
y_var = kernel.diag(X)
|
||||
return y_mean, np.sqrt(y_var)
|
||||
else:
|
||||
return y_mean
|
||||
else: # Predict based on GP posterior
|
||||
K_trans = self.kernel_(X, self.X_train_)
|
||||
y_mean = K_trans.dot(self.alpha_) # Line 4 (y_mean = f_star)
|
||||
|
||||
# undo normalisation
|
||||
y_mean = self._y_train_std * y_mean + self._y_train_mean
|
||||
|
||||
if return_cov:
|
||||
v = cho_solve((self.L_, True), K_trans.T) # Line 5
|
||||
y_cov = self.kernel_(X) - K_trans.dot(v) # Line 6
|
||||
|
||||
# undo normalisation
|
||||
y_cov = y_cov * self._y_train_std**2
|
||||
|
||||
return y_mean, y_cov
|
||||
elif return_std:
|
||||
# cache result of K_inv computation
|
||||
if self._K_inv is None:
|
||||
# compute inverse K_inv of K based on its Cholesky
|
||||
# decomposition L and its inverse L_inv
|
||||
L_inv = solve_triangular(self.L_.T,
|
||||
np.eye(self.L_.shape[0]))
|
||||
self._K_inv = L_inv.dot(L_inv.T)
|
||||
|
||||
# Compute variance of predictive distribution
|
||||
y_var = self.kernel_.diag(X)
|
||||
y_var -= np.einsum("ij,ij->i",
|
||||
np.dot(K_trans, self._K_inv), K_trans)
|
||||
|
||||
# Check if any of the variances is negative because of
|
||||
# numerical issues. If yes: set the variance to 0.
|
||||
y_var_negative = y_var < 0
|
||||
if np.any(y_var_negative):
|
||||
warnings.warn("Predicted variances smaller than 0. "
|
||||
"Setting those variances to 0.")
|
||||
y_var[y_var_negative] = 0.0
|
||||
|
||||
# undo normalisation
|
||||
y_var = y_var * self._y_train_std**2
|
||||
|
||||
return y_mean, np.sqrt(y_var)
|
||||
else:
|
||||
return y_mean
|
||||
|
||||
def sample_y(self, X, n_samples=1, random_state=0):
|
||||
"""Draw samples from Gaussian process and evaluate at X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or list of object
|
||||
Query points where the GP is evaluated.
|
||||
|
||||
n_samples : int, default=1
|
||||
The number of samples drawn from the Gaussian process
|
||||
|
||||
random_state : int, RandomState, default=0
|
||||
Determines random number generation to randomly draw samples.
|
||||
Pass an int for reproducible results across multiple function
|
||||
calls.
|
||||
See :term: `Glossary <random_state>`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y_samples : ndarray of shape (n_samples_X, [n_output_dims], n_samples)
|
||||
Values of n_samples samples drawn from Gaussian process and
|
||||
evaluated at query points.
|
||||
"""
|
||||
rng = check_random_state(random_state)
|
||||
|
||||
y_mean, y_cov = self.predict(X, return_cov=True)
|
||||
if y_mean.ndim == 1:
|
||||
y_samples = rng.multivariate_normal(y_mean, y_cov, n_samples).T
|
||||
else:
|
||||
y_samples = \
|
||||
[rng.multivariate_normal(y_mean[:, i], y_cov,
|
||||
n_samples).T[:, np.newaxis]
|
||||
for i in range(y_mean.shape[1])]
|
||||
y_samples = np.hstack(y_samples)
|
||||
return y_samples
|
||||
|
||||
def log_marginal_likelihood(self, theta=None, eval_gradient=False,
|
||||
clone_kernel=True):
|
||||
"""Returns log-marginal likelihood of theta for training data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
theta : array-like of shape (n_kernel_params,) default=None
|
||||
Kernel hyperparameters for which the log-marginal likelihood is
|
||||
evaluated. If None, the precomputed log_marginal_likelihood
|
||||
of ``self.kernel_.theta`` is returned.
|
||||
|
||||
eval_gradient : bool, default=False
|
||||
If True, the gradient of the log-marginal likelihood with respect
|
||||
to the kernel hyperparameters at position theta is returned
|
||||
additionally. If True, theta must not be None.
|
||||
|
||||
clone_kernel : bool, default=True
|
||||
If True, the kernel attribute is copied. If False, the kernel
|
||||
attribute is modified, but may result in a performance improvement.
|
||||
|
||||
Returns
|
||||
-------
|
||||
log_likelihood : float
|
||||
Log-marginal likelihood of theta for training data.
|
||||
|
||||
log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional
|
||||
Gradient of the log-marginal likelihood with respect to the kernel
|
||||
hyperparameters at position theta.
|
||||
Only returned when eval_gradient is True.
|
||||
"""
|
||||
if theta is None:
|
||||
if eval_gradient:
|
||||
raise ValueError(
|
||||
"Gradient can only be evaluated for theta!=None")
|
||||
return self.log_marginal_likelihood_value_
|
||||
|
||||
if clone_kernel:
|
||||
kernel = self.kernel_.clone_with_theta(theta)
|
||||
else:
|
||||
kernel = self.kernel_
|
||||
kernel.theta = theta
|
||||
|
||||
if eval_gradient:
|
||||
K, K_gradient = kernel(self.X_train_, eval_gradient=True)
|
||||
else:
|
||||
K = kernel(self.X_train_)
|
||||
|
||||
K[np.diag_indices_from(K)] += self.alpha
|
||||
try:
|
||||
L = cholesky(K, lower=True) # Line 2
|
||||
except np.linalg.LinAlgError:
|
||||
return (-np.inf, np.zeros_like(theta)) \
|
||||
if eval_gradient else -np.inf
|
||||
|
||||
# Support multi-dimensional output of self.y_train_
|
||||
y_train = self.y_train_
|
||||
if y_train.ndim == 1:
|
||||
y_train = y_train[:, np.newaxis]
|
||||
|
||||
alpha = cho_solve((L, True), y_train) # Line 3
|
||||
|
||||
# Compute log-likelihood (compare line 7)
|
||||
log_likelihood_dims = -0.5 * np.einsum("ik,ik->k", y_train, alpha)
|
||||
log_likelihood_dims -= np.log(np.diag(L)).sum()
|
||||
log_likelihood_dims -= K.shape[0] / 2 * np.log(2 * np.pi)
|
||||
log_likelihood = log_likelihood_dims.sum(-1) # sum over dimensions
|
||||
|
||||
if eval_gradient: # compare Equation 5.9 from GPML
|
||||
tmp = np.einsum("ik,jk->ijk", alpha, alpha) # k: output-dimension
|
||||
tmp -= cho_solve((L, True), np.eye(K.shape[0]))[:, :, np.newaxis]
|
||||
# Compute "0.5 * trace(tmp.dot(K_gradient))" without
|
||||
# constructing the full matrix tmp.dot(K_gradient) since only
|
||||
# its diagonal is required
|
||||
log_likelihood_gradient_dims = \
|
||||
0.5 * np.einsum("ijl,jik->kl", tmp, K_gradient)
|
||||
log_likelihood_gradient = log_likelihood_gradient_dims.sum(-1)
|
||||
|
||||
if eval_gradient:
|
||||
return log_likelihood, log_likelihood_gradient
|
||||
else:
|
||||
return log_likelihood
|
||||
|
||||
def _constrained_optimization(self, obj_func, initial_theta, bounds):
|
||||
if self.optimizer == "fmin_l_bfgs_b":
|
||||
opt_res = scipy.optimize.minimize(
|
||||
obj_func, initial_theta, method="L-BFGS-B", jac=True,
|
||||
bounds=bounds)
|
||||
_check_optimize_result("lbfgs", opt_res)
|
||||
theta_opt, func_min = opt_res.x, opt_res.fun
|
||||
elif callable(self.optimizer):
|
||||
theta_opt, func_min = \
|
||||
self.optimizer(obj_func, initial_theta, bounds=bounds)
|
||||
else:
|
||||
raise ValueError("Unknown optimizer %s." % self.optimizer)
|
||||
|
||||
return theta_opt, func_min
|
||||
|
||||
def _more_tags(self):
|
||||
return {'requires_fit': False}
|
18
venv/Lib/site-packages/sklearn/gaussian_process/gpc.py
Normal file
18
venv/Lib/site-packages/sklearn/gaussian_process/gpc.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _gpc # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.gaussian_process.gpc'
|
||||
correct_import_path = 'sklearn.gaussian_process'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_gpc, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/gaussian_process/gpr.py
Normal file
18
venv/Lib/site-packages/sklearn/gaussian_process/gpr.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _gpr # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.gaussian_process.gpr'
|
||||
correct_import_path = 'sklearn.gaussian_process'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_gpr, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
2230
venv/Lib/site-packages/sklearn/gaussian_process/kernels.py
Normal file
2230
venv/Lib/site-packages/sklearn/gaussian_process/kernels.py
Normal file
File diff suppressed because it is too large
Load diff
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,51 @@
|
|||
from sklearn.gaussian_process.kernels import Kernel, Hyperparameter
|
||||
from sklearn.gaussian_process.kernels import GenericKernelMixin
|
||||
from sklearn.gaussian_process.kernels import StationaryKernelMixin
|
||||
import numpy as np
|
||||
from sklearn.base import clone
|
||||
|
||||
|
||||
class MiniSeqKernel(GenericKernelMixin,
|
||||
StationaryKernelMixin,
|
||||
Kernel):
|
||||
'''
|
||||
A minimal (but valid) convolutional kernel for sequences of variable
|
||||
length.
|
||||
'''
|
||||
def __init__(self,
|
||||
baseline_similarity=0.5,
|
||||
baseline_similarity_bounds=(1e-5, 1)):
|
||||
self.baseline_similarity = baseline_similarity
|
||||
self.baseline_similarity_bounds = baseline_similarity_bounds
|
||||
|
||||
@property
|
||||
def hyperparameter_baseline_similarity(self):
|
||||
return Hyperparameter("baseline_similarity",
|
||||
"numeric",
|
||||
self.baseline_similarity_bounds)
|
||||
|
||||
def _f(self, s1, s2):
|
||||
return sum([1.0 if c1 == c2 else self.baseline_similarity
|
||||
for c1 in s1
|
||||
for c2 in s2])
|
||||
|
||||
def _g(self, s1, s2):
|
||||
return sum([0.0 if c1 == c2 else 1.0 for c1 in s1 for c2 in s2])
|
||||
|
||||
def __call__(self, X, Y=None, eval_gradient=False):
|
||||
if Y is None:
|
||||
Y = X
|
||||
|
||||
if eval_gradient:
|
||||
return (np.array([[self._f(x, y) for y in Y] for x in X]),
|
||||
np.array([[[self._g(x, y)] for y in Y] for x in X]))
|
||||
else:
|
||||
return np.array([[self._f(x, y) for y in Y] for x in X])
|
||||
|
||||
def diag(self, X):
|
||||
return np.array([self._f(x, x) for x in X])
|
||||
|
||||
def clone_with_theta(self, theta):
|
||||
cloned = clone(self)
|
||||
cloned.theta = theta
|
||||
return cloned
|
|
@ -0,0 +1,182 @@
|
|||
"""Testing for Gaussian process classification """
|
||||
|
||||
# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
|
||||
from scipy.optimize import approx_fprime
|
||||
|
||||
import pytest
|
||||
|
||||
from sklearn.gaussian_process import GaussianProcessClassifier
|
||||
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C
|
||||
from sklearn.gaussian_process.tests._mini_sequence_kernel import MiniSeqKernel
|
||||
|
||||
from sklearn.utils._testing import assert_almost_equal, assert_array_equal
|
||||
|
||||
|
||||
def f(x):
|
||||
return np.sin(x)
|
||||
|
||||
|
||||
X = np.atleast_2d(np.linspace(0, 10, 30)).T
|
||||
X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T
|
||||
y = np.array(f(X).ravel() > 0, dtype=int)
|
||||
fX = f(X).ravel()
|
||||
y_mc = np.empty(y.shape, dtype=int) # multi-class
|
||||
y_mc[fX < -0.35] = 0
|
||||
y_mc[(fX >= -0.35) & (fX < 0.35)] = 1
|
||||
y_mc[fX > 0.35] = 2
|
||||
|
||||
|
||||
fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed")
|
||||
kernels = [RBF(length_scale=0.1), fixed_kernel,
|
||||
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
||||
C(1.0, (1e-2, 1e2)) *
|
||||
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3))]
|
||||
non_fixed_kernels = [kernel for kernel in kernels
|
||||
if kernel != fixed_kernel]
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_predict_consistent(kernel):
|
||||
# Check binary predict decision has also predicted probability above 0.5.
|
||||
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||||
assert_array_equal(gpc.predict(X),
|
||||
gpc.predict_proba(X)[:, 1] >= 0.5)
|
||||
|
||||
|
||||
def test_predict_consistent_structured():
|
||||
# Check binary predict decision has also predicted probability above 0.5.
|
||||
X = ['A', 'AB', 'B']
|
||||
y = np.array([True, False, True])
|
||||
kernel = MiniSeqKernel(baseline_similarity_bounds='fixed')
|
||||
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||||
assert_array_equal(gpc.predict(X),
|
||||
gpc.predict_proba(X)[:, 1] >= 0.5)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||||
def test_lml_improving(kernel):
|
||||
# Test that hyperparameter-tuning improves log-marginal likelihood.
|
||||
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||||
assert (gpc.log_marginal_likelihood(gpc.kernel_.theta) >
|
||||
gpc.log_marginal_likelihood(kernel.theta))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_lml_precomputed(kernel):
|
||||
# Test that lml of optimized kernel is stored correctly.
|
||||
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||||
assert_almost_equal(gpc.log_marginal_likelihood(gpc.kernel_.theta),
|
||||
gpc.log_marginal_likelihood(), 7)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_lml_without_cloning_kernel(kernel):
|
||||
# Test that clone_kernel=False has side-effects of kernel.theta.
|
||||
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||||
input_theta = np.ones(gpc.kernel_.theta.shape, dtype=np.float64)
|
||||
|
||||
gpc.log_marginal_likelihood(input_theta, clone_kernel=False)
|
||||
assert_almost_equal(gpc.kernel_.theta, input_theta, 7)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||||
def test_converged_to_local_maximum(kernel):
|
||||
# Test that we are in local maximum after hyperparameter-optimization.
|
||||
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||||
|
||||
lml, lml_gradient = \
|
||||
gpc.log_marginal_likelihood(gpc.kernel_.theta, True)
|
||||
|
||||
assert np.all((np.abs(lml_gradient) < 1e-4) |
|
||||
(gpc.kernel_.theta == gpc.kernel_.bounds[:, 0]) |
|
||||
(gpc.kernel_.theta == gpc.kernel_.bounds[:, 1]))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_lml_gradient(kernel):
|
||||
# Compare analytic and numeric gradient of log marginal likelihood.
|
||||
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||||
|
||||
lml, lml_gradient = gpc.log_marginal_likelihood(kernel.theta, True)
|
||||
lml_gradient_approx = \
|
||||
approx_fprime(kernel.theta,
|
||||
lambda theta: gpc.log_marginal_likelihood(theta,
|
||||
False),
|
||||
1e-10)
|
||||
|
||||
assert_almost_equal(lml_gradient, lml_gradient_approx, 3)
|
||||
|
||||
|
||||
def test_random_starts():
|
||||
# Test that an increasing number of random-starts of GP fitting only
|
||||
# increases the log marginal likelihood of the chosen theta.
|
||||
n_samples, n_features = 25, 2
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(n_samples, n_features) * 2 - 1
|
||||
y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0
|
||||
|
||||
kernel = C(1.0, (1e-2, 1e2)) \
|
||||
* RBF(length_scale=[1e-3] * n_features,
|
||||
length_scale_bounds=[(1e-4, 1e+2)] * n_features)
|
||||
last_lml = -np.inf
|
||||
for n_restarts_optimizer in range(5):
|
||||
gp = GaussianProcessClassifier(
|
||||
kernel=kernel, n_restarts_optimizer=n_restarts_optimizer,
|
||||
random_state=0).fit(X, y)
|
||||
lml = gp.log_marginal_likelihood(gp.kernel_.theta)
|
||||
assert lml > last_lml - np.finfo(np.float32).eps
|
||||
last_lml = lml
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||||
def test_custom_optimizer(kernel):
|
||||
# Test that GPC can use externally defined optimizers.
|
||||
# Define a dummy optimizer that simply tests 10 random hyperparameters
|
||||
def optimizer(obj_func, initial_theta, bounds):
|
||||
rng = np.random.RandomState(0)
|
||||
theta_opt, func_min = \
|
||||
initial_theta, obj_func(initial_theta, eval_gradient=False)
|
||||
for _ in range(10):
|
||||
theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]),
|
||||
np.minimum(1, bounds[:, 1])))
|
||||
f = obj_func(theta, eval_gradient=False)
|
||||
if f < func_min:
|
||||
theta_opt, func_min = theta, f
|
||||
return theta_opt, func_min
|
||||
|
||||
gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer)
|
||||
gpc.fit(X, y_mc)
|
||||
# Checks that optimizer improved marginal likelihood
|
||||
assert (gpc.log_marginal_likelihood(gpc.kernel_.theta) >
|
||||
gpc.log_marginal_likelihood(kernel.theta))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_multi_class(kernel):
|
||||
# Test GPC for multi-class classification problems.
|
||||
gpc = GaussianProcessClassifier(kernel=kernel)
|
||||
gpc.fit(X, y_mc)
|
||||
|
||||
y_prob = gpc.predict_proba(X2)
|
||||
assert_almost_equal(y_prob.sum(1), 1)
|
||||
|
||||
y_pred = gpc.predict(X2)
|
||||
assert_array_equal(np.argmax(y_prob, 1), y_pred)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_multi_class_n_jobs(kernel):
|
||||
# Test that multi-class GPC produces identical results with n_jobs>1.
|
||||
gpc = GaussianProcessClassifier(kernel=kernel)
|
||||
gpc.fit(X, y_mc)
|
||||
|
||||
gpc_2 = GaussianProcessClassifier(kernel=kernel, n_jobs=2)
|
||||
gpc_2.fit(X, y_mc)
|
||||
|
||||
y_prob = gpc.predict_proba(X2)
|
||||
y_prob_2 = gpc_2.predict_proba(X2)
|
||||
assert_almost_equal(y_prob, y_prob_2)
|
|
@ -0,0 +1,469 @@
|
|||
"""Testing for Gaussian process regression """
|
||||
|
||||
# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
||||
# Modified by: Pete Green <p.l.green@liverpool.ac.uk>
|
||||
# License: BSD 3 clause
|
||||
|
||||
import sys
|
||||
import numpy as np
|
||||
|
||||
from scipy.optimize import approx_fprime
|
||||
|
||||
import pytest
|
||||
|
||||
from sklearn.gaussian_process import GaussianProcessRegressor
|
||||
from sklearn.gaussian_process.kernels \
|
||||
import RBF, ConstantKernel as C, WhiteKernel
|
||||
from sklearn.gaussian_process.kernels import DotProduct
|
||||
from sklearn.gaussian_process.tests._mini_sequence_kernel import MiniSeqKernel
|
||||
|
||||
from sklearn.utils._testing \
|
||||
import (assert_array_less,
|
||||
assert_almost_equal, assert_raise_message,
|
||||
assert_array_almost_equal, assert_array_equal,
|
||||
assert_allclose)
|
||||
|
||||
|
||||
def f(x):
|
||||
return x * np.sin(x)
|
||||
|
||||
|
||||
X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T
|
||||
X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T
|
||||
y = f(X).ravel()
|
||||
|
||||
fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed")
|
||||
kernels = [RBF(length_scale=1.0), fixed_kernel,
|
||||
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
||||
C(1.0, (1e-2, 1e2)) *
|
||||
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
||||
C(1.0, (1e-2, 1e2)) *
|
||||
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) +
|
||||
C(1e-5, (1e-5, 1e2)),
|
||||
C(0.1, (1e-2, 1e2)) *
|
||||
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) +
|
||||
C(1e-5, (1e-5, 1e2))]
|
||||
non_fixed_kernels = [kernel for kernel in kernels
|
||||
if kernel != fixed_kernel]
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_gpr_interpolation(kernel):
|
||||
if sys.maxsize <= 2 ** 32 and sys.version_info[:2] == (3, 6):
|
||||
pytest.xfail("This test may fail on 32bit Py3.6")
|
||||
|
||||
# Test the interpolating property for different kernels.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
y_pred, y_cov = gpr.predict(X, return_cov=True)
|
||||
|
||||
assert_almost_equal(y_pred, y)
|
||||
assert_almost_equal(np.diag(y_cov), 0.)
|
||||
|
||||
|
||||
def test_gpr_interpolation_structured():
|
||||
# Test the interpolating property for different kernels.
|
||||
kernel = MiniSeqKernel(baseline_similarity_bounds='fixed')
|
||||
X = ['A', 'B', 'C']
|
||||
y = np.array([1, 2, 3])
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
y_pred, y_cov = gpr.predict(X, return_cov=True)
|
||||
|
||||
assert_almost_equal(kernel(X, eval_gradient=True)[1].ravel(),
|
||||
(1 - np.eye(len(X))).ravel())
|
||||
assert_almost_equal(y_pred, y)
|
||||
assert_almost_equal(np.diag(y_cov), 0.)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||||
def test_lml_improving(kernel):
|
||||
if sys.maxsize <= 2 ** 32 and sys.version_info[:2] == (3, 6):
|
||||
pytest.xfail("This test may fail on 32bit Py3.6")
|
||||
|
||||
# Test that hyperparameter-tuning improves log-marginal likelihood.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
assert (gpr.log_marginal_likelihood(gpr.kernel_.theta) >
|
||||
gpr.log_marginal_likelihood(kernel.theta))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_lml_precomputed(kernel):
|
||||
# Test that lml of optimized kernel is stored correctly.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
assert (gpr.log_marginal_likelihood(gpr.kernel_.theta) ==
|
||||
gpr.log_marginal_likelihood())
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_lml_without_cloning_kernel(kernel):
|
||||
# Test that lml of optimized kernel is stored correctly.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
input_theta = np.ones(gpr.kernel_.theta.shape, dtype=np.float64)
|
||||
|
||||
gpr.log_marginal_likelihood(input_theta, clone_kernel=False)
|
||||
assert_almost_equal(gpr.kernel_.theta, input_theta, 7)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||||
def test_converged_to_local_maximum(kernel):
|
||||
# Test that we are in local maximum after hyperparameter-optimization.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
|
||||
lml, lml_gradient = \
|
||||
gpr.log_marginal_likelihood(gpr.kernel_.theta, True)
|
||||
|
||||
assert np.all((np.abs(lml_gradient) < 1e-4) |
|
||||
(gpr.kernel_.theta == gpr.kernel_.bounds[:, 0]) |
|
||||
(gpr.kernel_.theta == gpr.kernel_.bounds[:, 1]))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||||
def test_solution_inside_bounds(kernel):
|
||||
# Test that hyperparameter-optimization remains in bounds#
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
|
||||
bounds = gpr.kernel_.bounds
|
||||
max_ = np.finfo(gpr.kernel_.theta.dtype).max
|
||||
tiny = 1e-10
|
||||
bounds[~np.isfinite(bounds[:, 1]), 1] = max_
|
||||
|
||||
assert_array_less(bounds[:, 0], gpr.kernel_.theta + tiny)
|
||||
assert_array_less(gpr.kernel_.theta, bounds[:, 1] + tiny)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_lml_gradient(kernel):
|
||||
# Compare analytic and numeric gradient of log marginal likelihood.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
|
||||
lml, lml_gradient = gpr.log_marginal_likelihood(kernel.theta, True)
|
||||
lml_gradient_approx = \
|
||||
approx_fprime(kernel.theta,
|
||||
lambda theta: gpr.log_marginal_likelihood(theta,
|
||||
False),
|
||||
1e-10)
|
||||
|
||||
assert_almost_equal(lml_gradient, lml_gradient_approx, 3)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_prior(kernel):
|
||||
# Test that GP prior has mean 0 and identical variances.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel)
|
||||
|
||||
y_mean, y_cov = gpr.predict(X, return_cov=True)
|
||||
|
||||
assert_almost_equal(y_mean, 0, 5)
|
||||
if len(gpr.kernel.theta) > 1:
|
||||
# XXX: quite hacky, works only for current kernels
|
||||
assert_almost_equal(np.diag(y_cov), np.exp(kernel.theta[0]), 5)
|
||||
else:
|
||||
assert_almost_equal(np.diag(y_cov), 1, 5)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_sample_statistics(kernel):
|
||||
# Test that statistics of samples drawn from GP are correct.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
|
||||
y_mean, y_cov = gpr.predict(X2, return_cov=True)
|
||||
|
||||
samples = gpr.sample_y(X2, 300000)
|
||||
|
||||
# More digits accuracy would require many more samples
|
||||
assert_almost_equal(y_mean, np.mean(samples, 1), 1)
|
||||
assert_almost_equal(np.diag(y_cov) / np.diag(y_cov).max(),
|
||||
np.var(samples, 1) / np.diag(y_cov).max(), 1)
|
||||
|
||||
|
||||
def test_no_optimizer():
|
||||
# Test that kernel parameters are unmodified when optimizer is None.
|
||||
kernel = RBF(1.0)
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None).fit(X, y)
|
||||
assert np.exp(gpr.kernel_.theta) == 1.0
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_predict_cov_vs_std(kernel):
|
||||
if sys.maxsize <= 2 ** 32 and sys.version_info[:2] == (3, 6):
|
||||
pytest.xfail("This test may fail on 32bit Py3.6")
|
||||
|
||||
# Test that predicted std.-dev. is consistent with cov's diagonal.
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
y_mean, y_cov = gpr.predict(X2, return_cov=True)
|
||||
y_mean, y_std = gpr.predict(X2, return_std=True)
|
||||
assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std)
|
||||
|
||||
|
||||
def test_anisotropic_kernel():
|
||||
# Test that GPR can identify meaningful anisotropic length-scales.
|
||||
# We learn a function which varies in one dimension ten-times slower
|
||||
# than in the other. The corresponding length-scales should differ by at
|
||||
# least a factor 5
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.uniform(-1, 1, (50, 2))
|
||||
y = X[:, 0] + 0.1 * X[:, 1]
|
||||
|
||||
kernel = RBF([1.0, 1.0])
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
assert (np.exp(gpr.kernel_.theta[1]) >
|
||||
np.exp(gpr.kernel_.theta[0]) * 5)
|
||||
|
||||
|
||||
def test_random_starts():
|
||||
# Test that an increasing number of random-starts of GP fitting only
|
||||
# increases the log marginal likelihood of the chosen theta.
|
||||
n_samples, n_features = 25, 2
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(n_samples, n_features) * 2 - 1
|
||||
y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) \
|
||||
+ rng.normal(scale=0.1, size=n_samples)
|
||||
|
||||
kernel = C(1.0, (1e-2, 1e2)) \
|
||||
* RBF(length_scale=[1.0] * n_features,
|
||||
length_scale_bounds=[(1e-4, 1e+2)] * n_features) \
|
||||
+ WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-5, 1e1))
|
||||
last_lml = -np.inf
|
||||
for n_restarts_optimizer in range(5):
|
||||
gp = GaussianProcessRegressor(
|
||||
kernel=kernel, n_restarts_optimizer=n_restarts_optimizer,
|
||||
random_state=0,).fit(X, y)
|
||||
lml = gp.log_marginal_likelihood(gp.kernel_.theta)
|
||||
assert lml > last_lml - np.finfo(np.float32).eps
|
||||
last_lml = lml
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_y_normalization(kernel):
|
||||
"""
|
||||
Test normalization of the target values in GP
|
||||
|
||||
Fitting non-normalizing GP on normalized y and fitting normalizing GP
|
||||
on unnormalized y should yield identical results. Note that, here,
|
||||
'normalized y' refers to y that has been made zero mean and unit
|
||||
variance.
|
||||
|
||||
"""
|
||||
|
||||
y_mean = np.mean(y)
|
||||
y_std = np.std(y)
|
||||
y_norm = (y - y_mean) / y_std
|
||||
|
||||
# Fit non-normalizing GP on normalized y
|
||||
gpr = GaussianProcessRegressor(kernel=kernel)
|
||||
gpr.fit(X, y_norm)
|
||||
|
||||
# Fit normalizing GP on unnormalized y
|
||||
gpr_norm = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||||
gpr_norm.fit(X, y)
|
||||
|
||||
# Compare predicted mean, std-devs and covariances
|
||||
y_pred, y_pred_std = gpr.predict(X2, return_std=True)
|
||||
y_pred = y_pred * y_std + y_mean
|
||||
y_pred_std = y_pred_std * y_std
|
||||
y_pred_norm, y_pred_std_norm = gpr_norm.predict(X2, return_std=True)
|
||||
|
||||
assert_almost_equal(y_pred, y_pred_norm)
|
||||
assert_almost_equal(y_pred_std, y_pred_std_norm)
|
||||
|
||||
_, y_cov = gpr.predict(X2, return_cov=True)
|
||||
y_cov = y_cov * y_std**2
|
||||
_, y_cov_norm = gpr_norm.predict(X2, return_cov=True)
|
||||
|
||||
assert_almost_equal(y_cov, y_cov_norm)
|
||||
|
||||
|
||||
def test_large_variance_y():
|
||||
"""
|
||||
Here we test that, when noramlize_y=True, our GP can produce a
|
||||
sensible fit to training data whose variance is significantly
|
||||
larger than unity. This test was made in response to issue #15612.
|
||||
|
||||
GP predictions are verified against predictions that were made
|
||||
using GPy which, here, is treated as the 'gold standard'. Note that we
|
||||
only investigate the RBF kernel here, as that is what was used in the
|
||||
GPy implementation.
|
||||
|
||||
The following code can be used to recreate the GPy data:
|
||||
|
||||
--------------------------------------------------------------------------
|
||||
import GPy
|
||||
|
||||
kernel_gpy = GPy.kern.RBF(input_dim=1, lengthscale=1.)
|
||||
gpy = GPy.models.GPRegression(X, np.vstack(y_large), kernel_gpy)
|
||||
gpy.optimize()
|
||||
y_pred_gpy, y_var_gpy = gpy.predict(X2)
|
||||
y_pred_std_gpy = np.sqrt(y_var_gpy)
|
||||
--------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
# Here we utilise a larger variance version of the training data
|
||||
y_large = 10 * y
|
||||
|
||||
# Standard GP with normalize_y=True
|
||||
RBF_params = {'length_scale': 1.0}
|
||||
kernel = RBF(**RBF_params)
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||||
gpr.fit(X, y_large)
|
||||
y_pred, y_pred_std = gpr.predict(X2, return_std=True)
|
||||
|
||||
# 'Gold standard' mean predictions from GPy
|
||||
y_pred_gpy = np.array([15.16918303,
|
||||
-27.98707845,
|
||||
-39.31636019,
|
||||
14.52605515,
|
||||
69.18503589])
|
||||
|
||||
# 'Gold standard' std predictions from GPy
|
||||
y_pred_std_gpy = np.array([7.78860962,
|
||||
3.83179178,
|
||||
0.63149951,
|
||||
0.52745188,
|
||||
0.86170042])
|
||||
|
||||
# Based on numerical experiments, it's reasonable to expect our
|
||||
# GP's mean predictions to get within 7% of predictions of those
|
||||
# made by GPy.
|
||||
assert_allclose(y_pred, y_pred_gpy, rtol=0.07, atol=0)
|
||||
|
||||
# Based on numerical experiments, it's reasonable to expect our
|
||||
# GP's std predictions to get within 15% of predictions of those
|
||||
# made by GPy.
|
||||
assert_allclose(y_pred_std, y_pred_std_gpy, rtol=0.15, atol=0)
|
||||
|
||||
|
||||
def test_y_multioutput():
|
||||
# Test that GPR can deal with multi-dimensional target values
|
||||
y_2d = np.vstack((y, y * 2)).T
|
||||
|
||||
# Test for fixed kernel that first dimension of 2d GP equals the output
|
||||
# of 1d GP and that second dimension is twice as large
|
||||
kernel = RBF(length_scale=1.0)
|
||||
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None,
|
||||
normalize_y=False)
|
||||
gpr.fit(X, y)
|
||||
|
||||
gpr_2d = GaussianProcessRegressor(kernel=kernel, optimizer=None,
|
||||
normalize_y=False)
|
||||
gpr_2d.fit(X, y_2d)
|
||||
|
||||
y_pred_1d, y_std_1d = gpr.predict(X2, return_std=True)
|
||||
y_pred_2d, y_std_2d = gpr_2d.predict(X2, return_std=True)
|
||||
_, y_cov_1d = gpr.predict(X2, return_cov=True)
|
||||
_, y_cov_2d = gpr_2d.predict(X2, return_cov=True)
|
||||
|
||||
assert_almost_equal(y_pred_1d, y_pred_2d[:, 0])
|
||||
assert_almost_equal(y_pred_1d, y_pred_2d[:, 1] / 2)
|
||||
|
||||
# Standard deviation and covariance do not depend on output
|
||||
assert_almost_equal(y_std_1d, y_std_2d)
|
||||
assert_almost_equal(y_cov_1d, y_cov_2d)
|
||||
|
||||
y_sample_1d = gpr.sample_y(X2, n_samples=10)
|
||||
y_sample_2d = gpr_2d.sample_y(X2, n_samples=10)
|
||||
assert_almost_equal(y_sample_1d, y_sample_2d[:, 0])
|
||||
|
||||
# Test hyperparameter optimization
|
||||
for kernel in kernels:
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||||
gpr.fit(X, y)
|
||||
|
||||
gpr_2d = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
|
||||
gpr_2d.fit(X, np.vstack((y, y)).T)
|
||||
|
||||
assert_almost_equal(gpr.kernel_.theta, gpr_2d.kernel_.theta, 4)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||||
def test_custom_optimizer(kernel):
|
||||
# Test that GPR can use externally defined optimizers.
|
||||
# Define a dummy optimizer that simply tests 50 random hyperparameters
|
||||
def optimizer(obj_func, initial_theta, bounds):
|
||||
rng = np.random.RandomState(0)
|
||||
theta_opt, func_min = \
|
||||
initial_theta, obj_func(initial_theta, eval_gradient=False)
|
||||
for _ in range(50):
|
||||
theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]),
|
||||
np.minimum(1, bounds[:, 1])))
|
||||
f = obj_func(theta, eval_gradient=False)
|
||||
if f < func_min:
|
||||
theta_opt, func_min = theta, f
|
||||
return theta_opt, func_min
|
||||
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer)
|
||||
gpr.fit(X, y)
|
||||
# Checks that optimizer improved marginal likelihood
|
||||
assert (gpr.log_marginal_likelihood(gpr.kernel_.theta) >
|
||||
gpr.log_marginal_likelihood(gpr.kernel.theta))
|
||||
|
||||
|
||||
def test_gpr_correct_error_message():
|
||||
X = np.arange(12).reshape(6, -1)
|
||||
y = np.ones(6)
|
||||
kernel = DotProduct()
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.0)
|
||||
assert_raise_message(np.linalg.LinAlgError,
|
||||
"The kernel, %s, is not returning a "
|
||||
"positive definite matrix. Try gradually increasing "
|
||||
"the 'alpha' parameter of your "
|
||||
"GaussianProcessRegressor estimator."
|
||||
% kernel, gpr.fit, X, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_duplicate_input(kernel):
|
||||
# Test GPR can handle two different output-values for the same input.
|
||||
gpr_equal_inputs = GaussianProcessRegressor(kernel=kernel, alpha=1e-2)
|
||||
gpr_similar_inputs = GaussianProcessRegressor(kernel=kernel, alpha=1e-2)
|
||||
|
||||
X_ = np.vstack((X, X[0]))
|
||||
y_ = np.hstack((y, y[0] + 1))
|
||||
gpr_equal_inputs.fit(X_, y_)
|
||||
|
||||
X_ = np.vstack((X, X[0] + 1e-15))
|
||||
y_ = np.hstack((y, y[0] + 1))
|
||||
gpr_similar_inputs.fit(X_, y_)
|
||||
|
||||
X_test = np.linspace(0, 10, 100)[:, None]
|
||||
y_pred_equal, y_std_equal = \
|
||||
gpr_equal_inputs.predict(X_test, return_std=True)
|
||||
y_pred_similar, y_std_similar = \
|
||||
gpr_similar_inputs.predict(X_test, return_std=True)
|
||||
|
||||
assert_almost_equal(y_pred_equal, y_pred_similar)
|
||||
assert_almost_equal(y_std_equal, y_std_similar)
|
||||
|
||||
|
||||
def test_no_fit_default_predict():
|
||||
# Test that GPR predictions without fit does not break by default.
|
||||
default_kernel = (C(1.0, constant_value_bounds="fixed") *
|
||||
RBF(1.0, length_scale_bounds="fixed"))
|
||||
gpr1 = GaussianProcessRegressor()
|
||||
_, y_std1 = gpr1.predict(X, return_std=True)
|
||||
_, y_cov1 = gpr1.predict(X, return_cov=True)
|
||||
|
||||
gpr2 = GaussianProcessRegressor(kernel=default_kernel)
|
||||
_, y_std2 = gpr2.predict(X, return_std=True)
|
||||
_, y_cov2 = gpr2.predict(X, return_cov=True)
|
||||
|
||||
assert_array_almost_equal(y_std1, y_std2)
|
||||
assert_array_almost_equal(y_cov1, y_cov2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_K_inv_reset(kernel):
|
||||
y2 = f(X2).ravel()
|
||||
|
||||
# Test that self._K_inv is reset after a new fit
|
||||
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
|
||||
assert hasattr(gpr, '_K_inv')
|
||||
assert gpr._K_inv is None
|
||||
gpr.predict(X, return_std=True)
|
||||
assert gpr._K_inv is not None
|
||||
gpr.fit(X2, y2)
|
||||
assert gpr._K_inv is None
|
||||
gpr.predict(X2, return_std=True)
|
||||
gpr2 = GaussianProcessRegressor(kernel=kernel).fit(X2, y2)
|
||||
gpr2.predict(X2, return_std=True)
|
||||
# the value of K_inv should be independent of the first fit
|
||||
assert_array_equal(gpr._K_inv, gpr2._K_inv)
|
|
@ -0,0 +1,385 @@
|
|||
"""Testing for kernels for Gaussian processes."""
|
||||
|
||||
# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
||||
# License: BSD 3 clause
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
from inspect import signature
|
||||
|
||||
from sklearn.gaussian_process.kernels import _approx_fprime
|
||||
|
||||
from sklearn.metrics.pairwise \
|
||||
import PAIRWISE_KERNEL_FUNCTIONS, euclidean_distances, pairwise_kernels
|
||||
from sklearn.gaussian_process.kernels \
|
||||
import (RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct,
|
||||
ConstantKernel, WhiteKernel, PairwiseKernel, KernelOperator,
|
||||
Exponentiation, Kernel, CompoundKernel)
|
||||
from sklearn.base import clone
|
||||
|
||||
from sklearn.utils._testing import (assert_almost_equal, assert_array_equal,
|
||||
assert_array_almost_equal,
|
||||
assert_allclose,
|
||||
assert_raise_message)
|
||||
|
||||
|
||||
X = np.random.RandomState(0).normal(0, 1, (5, 2))
|
||||
Y = np.random.RandomState(0).normal(0, 1, (6, 2))
|
||||
|
||||
kernel_rbf_plus_white = RBF(length_scale=2.0) + WhiteKernel(noise_level=3.0)
|
||||
kernels = [RBF(length_scale=2.0), RBF(length_scale_bounds=(0.5, 2.0)),
|
||||
ConstantKernel(constant_value=10.0),
|
||||
2.0 * RBF(length_scale=0.33, length_scale_bounds="fixed"),
|
||||
2.0 * RBF(length_scale=0.5), kernel_rbf_plus_white,
|
||||
2.0 * RBF(length_scale=[0.5, 2.0]),
|
||||
2.0 * Matern(length_scale=0.33, length_scale_bounds="fixed"),
|
||||
2.0 * Matern(length_scale=0.5, nu=0.5),
|
||||
2.0 * Matern(length_scale=1.5, nu=1.5),
|
||||
2.0 * Matern(length_scale=2.5, nu=2.5),
|
||||
2.0 * Matern(length_scale=[0.5, 2.0], nu=0.5),
|
||||
3.0 * Matern(length_scale=[2.0, 0.5], nu=1.5),
|
||||
4.0 * Matern(length_scale=[0.5, 0.5], nu=2.5),
|
||||
RationalQuadratic(length_scale=0.5, alpha=1.5),
|
||||
ExpSineSquared(length_scale=0.5, periodicity=1.5),
|
||||
DotProduct(sigma_0=2.0), DotProduct(sigma_0=2.0) ** 2,
|
||||
RBF(length_scale=[2.0]), Matern(length_scale=[2.0])]
|
||||
for metric in PAIRWISE_KERNEL_FUNCTIONS:
|
||||
if metric in ["additive_chi2", "chi2"]:
|
||||
continue
|
||||
kernels.append(PairwiseKernel(gamma=1.0, metric=metric))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_kernel_gradient(kernel):
|
||||
# Compare analytic and numeric gradient of kernels.
|
||||
K, K_gradient = kernel(X, eval_gradient=True)
|
||||
|
||||
assert K_gradient.shape[0] == X.shape[0]
|
||||
assert K_gradient.shape[1] == X.shape[0]
|
||||
assert K_gradient.shape[2] == kernel.theta.shape[0]
|
||||
|
||||
def eval_kernel_for_theta(theta):
|
||||
kernel_clone = kernel.clone_with_theta(theta)
|
||||
K = kernel_clone(X, eval_gradient=False)
|
||||
return K
|
||||
|
||||
K_gradient_approx = \
|
||||
_approx_fprime(kernel.theta, eval_kernel_for_theta, 1e-10)
|
||||
|
||||
assert_almost_equal(K_gradient, K_gradient_approx, 4)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'kernel',
|
||||
[kernel for kernel in kernels
|
||||
# skip non-basic kernels
|
||||
if not (isinstance(kernel, KernelOperator)
|
||||
or isinstance(kernel, Exponentiation))])
|
||||
def test_kernel_theta(kernel):
|
||||
# Check that parameter vector theta of kernel is set correctly.
|
||||
theta = kernel.theta
|
||||
_, K_gradient = kernel(X, eval_gradient=True)
|
||||
|
||||
# Determine kernel parameters that contribute to theta
|
||||
init_sign = signature(kernel.__class__.__init__).parameters.values()
|
||||
args = [p.name for p in init_sign if p.name != 'self']
|
||||
theta_vars = map(lambda s: s[0:-len("_bounds")],
|
||||
filter(lambda s: s.endswith("_bounds"), args))
|
||||
assert (
|
||||
set(hyperparameter.name
|
||||
for hyperparameter in kernel.hyperparameters) ==
|
||||
set(theta_vars))
|
||||
|
||||
# Check that values returned in theta are consistent with
|
||||
# hyperparameter values (being their logarithms)
|
||||
for i, hyperparameter in enumerate(kernel.hyperparameters):
|
||||
assert (theta[i] == np.log(getattr(kernel, hyperparameter.name)))
|
||||
|
||||
# Fixed kernel parameters must be excluded from theta and gradient.
|
||||
for i, hyperparameter in enumerate(kernel.hyperparameters):
|
||||
# create copy with certain hyperparameter fixed
|
||||
params = kernel.get_params()
|
||||
params[hyperparameter.name + "_bounds"] = "fixed"
|
||||
kernel_class = kernel.__class__
|
||||
new_kernel = kernel_class(**params)
|
||||
# Check that theta and K_gradient are identical with the fixed
|
||||
# dimension left out
|
||||
_, K_gradient_new = new_kernel(X, eval_gradient=True)
|
||||
assert theta.shape[0] == new_kernel.theta.shape[0] + 1
|
||||
assert K_gradient.shape[2] == K_gradient_new.shape[2] + 1
|
||||
if i > 0:
|
||||
assert theta[:i] == new_kernel.theta[:i]
|
||||
assert_array_equal(K_gradient[..., :i],
|
||||
K_gradient_new[..., :i])
|
||||
if i + 1 < len(kernel.hyperparameters):
|
||||
assert theta[i + 1:] == new_kernel.theta[i:]
|
||||
assert_array_equal(K_gradient[..., i + 1:],
|
||||
K_gradient_new[..., i:])
|
||||
|
||||
# Check that values of theta are modified correctly
|
||||
for i, hyperparameter in enumerate(kernel.hyperparameters):
|
||||
theta[i] = np.log(42)
|
||||
kernel.theta = theta
|
||||
assert_almost_equal(getattr(kernel, hyperparameter.name), 42)
|
||||
|
||||
setattr(kernel, hyperparameter.name, 43)
|
||||
assert_almost_equal(kernel.theta[i], np.log(43))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel',
|
||||
[kernel for kernel in kernels
|
||||
# Identity is not satisfied on diagonal
|
||||
if kernel != kernel_rbf_plus_white])
|
||||
def test_auto_vs_cross(kernel):
|
||||
# Auto-correlation and cross-correlation should be consistent.
|
||||
K_auto = kernel(X)
|
||||
K_cross = kernel(X, X)
|
||||
assert_almost_equal(K_auto, K_cross, 5)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_kernel_diag(kernel):
|
||||
# Test that diag method of kernel returns consistent results.
|
||||
K_call_diag = np.diag(kernel(X))
|
||||
K_diag = kernel.diag(X)
|
||||
assert_almost_equal(K_call_diag, K_diag, 5)
|
||||
|
||||
|
||||
def test_kernel_operator_commutative():
|
||||
# Adding kernels and multiplying kernels should be commutative.
|
||||
# Check addition
|
||||
assert_almost_equal((RBF(2.0) + 1.0)(X),
|
||||
(1.0 + RBF(2.0))(X))
|
||||
|
||||
# Check multiplication
|
||||
assert_almost_equal((3.0 * RBF(2.0))(X),
|
||||
(RBF(2.0) * 3.0)(X))
|
||||
|
||||
|
||||
def test_kernel_anisotropic():
|
||||
# Anisotropic kernel should be consistent with isotropic kernels.
|
||||
kernel = 3.0 * RBF([0.5, 2.0])
|
||||
|
||||
K = kernel(X)
|
||||
X1 = np.array(X)
|
||||
X1[:, 0] *= 4
|
||||
K1 = 3.0 * RBF(2.0)(X1)
|
||||
assert_almost_equal(K, K1)
|
||||
|
||||
X2 = np.array(X)
|
||||
X2[:, 1] /= 4
|
||||
K2 = 3.0 * RBF(0.5)(X2)
|
||||
assert_almost_equal(K, K2)
|
||||
|
||||
# Check getting and setting via theta
|
||||
kernel.theta = kernel.theta + np.log(2)
|
||||
assert_array_equal(kernel.theta, np.log([6.0, 1.0, 4.0]))
|
||||
assert_array_equal(kernel.k2.length_scale, [1.0, 4.0])
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel',
|
||||
[kernel for kernel in kernels
|
||||
if kernel.is_stationary()])
|
||||
def test_kernel_stationary(kernel):
|
||||
# Test stationarity of kernels.
|
||||
K = kernel(X, X + 1)
|
||||
assert_almost_equal(K[0, 0], np.diag(K))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_kernel_input_type(kernel):
|
||||
# Test whether kernels is for vectors or structured data
|
||||
if isinstance(kernel, Exponentiation):
|
||||
assert(kernel.requires_vector_input ==
|
||||
kernel.kernel.requires_vector_input)
|
||||
if isinstance(kernel, KernelOperator):
|
||||
assert(kernel.requires_vector_input ==
|
||||
(kernel.k1.requires_vector_input or
|
||||
kernel.k2.requires_vector_input))
|
||||
|
||||
|
||||
def test_compound_kernel_input_type():
|
||||
kernel = CompoundKernel([WhiteKernel(noise_level=3.0)])
|
||||
assert not kernel.requires_vector_input
|
||||
|
||||
kernel = CompoundKernel([WhiteKernel(noise_level=3.0),
|
||||
RBF(length_scale=2.0)])
|
||||
assert kernel.requires_vector_input
|
||||
|
||||
|
||||
def check_hyperparameters_equal(kernel1, kernel2):
|
||||
# Check that hyperparameters of two kernels are equal
|
||||
for attr in set(dir(kernel1) + dir(kernel2)):
|
||||
if attr.startswith("hyperparameter_"):
|
||||
attr_value1 = getattr(kernel1, attr)
|
||||
attr_value2 = getattr(kernel2, attr)
|
||||
assert attr_value1 == attr_value2
|
||||
|
||||
|
||||
@pytest.mark.parametrize("kernel", kernels)
|
||||
def test_kernel_clone(kernel):
|
||||
# Test that sklearn's clone works correctly on kernels.
|
||||
kernel_cloned = clone(kernel)
|
||||
|
||||
# XXX: Should this be fixed?
|
||||
# This differs from the sklearn's estimators equality check.
|
||||
assert kernel == kernel_cloned
|
||||
assert id(kernel) != id(kernel_cloned)
|
||||
|
||||
# Check that all constructor parameters are equal.
|
||||
assert kernel.get_params() == kernel_cloned.get_params()
|
||||
|
||||
# Check that all hyperparameters are equal.
|
||||
check_hyperparameters_equal(kernel, kernel_cloned)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kernel', kernels)
|
||||
def test_kernel_clone_after_set_params(kernel):
|
||||
# This test is to verify that using set_params does not
|
||||
# break clone on kernels.
|
||||
# This used to break because in kernels such as the RBF, non-trivial
|
||||
# logic that modified the length scale used to be in the constructor
|
||||
# See https://github.com/scikit-learn/scikit-learn/issues/6961
|
||||
# for more details.
|
||||
bounds = (1e-5, 1e5)
|
||||
kernel_cloned = clone(kernel)
|
||||
params = kernel.get_params()
|
||||
# RationalQuadratic kernel is isotropic.
|
||||
isotropic_kernels = (ExpSineSquared, RationalQuadratic)
|
||||
if 'length_scale' in params and not isinstance(kernel,
|
||||
isotropic_kernels):
|
||||
length_scale = params['length_scale']
|
||||
if np.iterable(length_scale):
|
||||
# XXX unreached code as of v0.22
|
||||
params['length_scale'] = length_scale[0]
|
||||
params['length_scale_bounds'] = bounds
|
||||
else:
|
||||
params['length_scale'] = [length_scale] * 2
|
||||
params['length_scale_bounds'] = bounds * 2
|
||||
kernel_cloned.set_params(**params)
|
||||
kernel_cloned_clone = clone(kernel_cloned)
|
||||
assert (kernel_cloned_clone.get_params() == kernel_cloned.get_params())
|
||||
assert id(kernel_cloned_clone) != id(kernel_cloned)
|
||||
check_hyperparameters_equal(kernel_cloned, kernel_cloned_clone)
|
||||
|
||||
|
||||
def test_matern_kernel():
|
||||
# Test consistency of Matern kernel for special values of nu.
|
||||
K = Matern(nu=1.5, length_scale=1.0)(X)
|
||||
# the diagonal elements of a matern kernel are 1
|
||||
assert_array_almost_equal(np.diag(K), np.ones(X.shape[0]))
|
||||
# matern kernel for coef0==0.5 is equal to absolute exponential kernel
|
||||
K_absexp = np.exp(-euclidean_distances(X, X, squared=False))
|
||||
K = Matern(nu=0.5, length_scale=1.0)(X)
|
||||
assert_array_almost_equal(K, K_absexp)
|
||||
# matern kernel with coef0==inf is equal to RBF kernel
|
||||
K_rbf = RBF(length_scale=1.0)(X)
|
||||
K = Matern(nu=np.inf, length_scale=1.0)(X)
|
||||
assert_array_almost_equal(K, K_rbf)
|
||||
assert_allclose(K, K_rbf)
|
||||
# test that special cases of matern kernel (coef0 in [0.5, 1.5, 2.5])
|
||||
# result in nearly identical results as the general case for coef0 in
|
||||
# [0.5 + tiny, 1.5 + tiny, 2.5 + tiny]
|
||||
tiny = 1e-10
|
||||
for nu in [0.5, 1.5, 2.5]:
|
||||
K1 = Matern(nu=nu, length_scale=1.0)(X)
|
||||
K2 = Matern(nu=nu + tiny, length_scale=1.0)(X)
|
||||
assert_array_almost_equal(K1, K2)
|
||||
# test that coef0==large is close to RBF
|
||||
large = 100
|
||||
K1 = Matern(nu=large, length_scale=1.0)(X)
|
||||
K2 = RBF(length_scale=1.0)(X)
|
||||
assert_array_almost_equal(K1, K2, decimal=2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("kernel", kernels)
|
||||
def test_kernel_versus_pairwise(kernel):
|
||||
# Check that GP kernels can also be used as pairwise kernels.
|
||||
|
||||
# Test auto-kernel
|
||||
if kernel != kernel_rbf_plus_white:
|
||||
# For WhiteKernel: k(X) != k(X,X). This is assumed by
|
||||
# pairwise_kernels
|
||||
K1 = kernel(X)
|
||||
K2 = pairwise_kernels(X, metric=kernel)
|
||||
assert_array_almost_equal(K1, K2)
|
||||
|
||||
# Test cross-kernel
|
||||
K1 = kernel(X, Y)
|
||||
K2 = pairwise_kernels(X, Y, metric=kernel)
|
||||
assert_array_almost_equal(K1, K2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("kernel", kernels)
|
||||
def test_set_get_params(kernel):
|
||||
# Check that set_params()/get_params() is consistent with kernel.theta.
|
||||
|
||||
# Test get_params()
|
||||
index = 0
|
||||
params = kernel.get_params()
|
||||
for hyperparameter in kernel.hyperparameters:
|
||||
if isinstance("string", type(hyperparameter.bounds)):
|
||||
if hyperparameter.bounds == "fixed":
|
||||
continue
|
||||
size = hyperparameter.n_elements
|
||||
if size > 1: # anisotropic kernels
|
||||
assert_almost_equal(np.exp(kernel.theta[index:index + size]),
|
||||
params[hyperparameter.name])
|
||||
index += size
|
||||
else:
|
||||
assert_almost_equal(np.exp(kernel.theta[index]),
|
||||
params[hyperparameter.name])
|
||||
index += 1
|
||||
# Test set_params()
|
||||
index = 0
|
||||
value = 10 # arbitrary value
|
||||
for hyperparameter in kernel.hyperparameters:
|
||||
if isinstance("string", type(hyperparameter.bounds)):
|
||||
if hyperparameter.bounds == "fixed":
|
||||
continue
|
||||
size = hyperparameter.n_elements
|
||||
if size > 1: # anisotropic kernels
|
||||
kernel.set_params(**{hyperparameter.name: [value] * size})
|
||||
assert_almost_equal(np.exp(kernel.theta[index:index + size]),
|
||||
[value] * size)
|
||||
index += size
|
||||
else:
|
||||
kernel.set_params(**{hyperparameter.name: value})
|
||||
assert_almost_equal(np.exp(kernel.theta[index]), value)
|
||||
index += 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize("kernel", kernels)
|
||||
def test_repr_kernels(kernel):
|
||||
# Smoke-test for repr in kernels.
|
||||
|
||||
repr(kernel)
|
||||
|
||||
|
||||
def test_warns_on_get_params_non_attribute():
|
||||
class MyKernel(Kernel):
|
||||
def __init__(self, param=5):
|
||||
pass
|
||||
|
||||
def __call__(self, X, Y=None, eval_gradient=False):
|
||||
return X
|
||||
|
||||
def diag(self, X):
|
||||
return np.ones(X.shape[0])
|
||||
|
||||
def is_stationary(self):
|
||||
return False
|
||||
|
||||
est = MyKernel()
|
||||
with pytest.warns(FutureWarning, match='AttributeError'):
|
||||
params = est.get_params()
|
||||
|
||||
assert params['param'] is None
|
||||
|
||||
|
||||
def test_rational_quadratic_kernel():
|
||||
kernel = RationalQuadratic(length_scale=[1., 1.])
|
||||
assert_raise_message(AttributeError,
|
||||
"RationalQuadratic kernel only supports isotropic "
|
||||
"version, please use a single "
|
||||
"scalar for length_scale", kernel, X)
|
Loading…
Add table
Add a link
Reference in a new issue