Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
727
venv/Lib/site-packages/sklearn/externals/_lobpcg.py
vendored
Normal file
727
venv/Lib/site-packages/sklearn/externals/_lobpcg.py
vendored
Normal file
|
@ -0,0 +1,727 @@
|
|||
"""
|
||||
scikit-learn copy of scipy/sparse/linalg/eigen/lobpcg/lobpcg.py v1.3.0
|
||||
to be deleted after scipy 1.3.0 becomes a dependency in scikit-lean
|
||||
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] A. V. Knyazev (2001),
|
||||
Toward the Optimal Preconditioned Eigensolver: Locally Optimal
|
||||
Block Preconditioned Conjugate Gradient Method.
|
||||
SIAM Journal on Scientific Computing 23, no. 2,
|
||||
pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124
|
||||
|
||||
.. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007),
|
||||
Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX)
|
||||
in hypre and PETSc. https://arxiv.org/abs/0705.2626
|
||||
|
||||
.. [3] A. V. Knyazev's C and MATLAB implementations:
|
||||
https://bitbucket.org/joseroman/blopex
|
||||
"""
|
||||
|
||||
from __future__ import division, print_function, absolute_import
|
||||
import numpy as np
|
||||
from scipy.linalg import (inv, eigh, cho_factor, cho_solve, cholesky, orth,
|
||||
LinAlgError)
|
||||
from scipy.sparse.linalg import aslinearoperator
|
||||
|
||||
__all__ = ['lobpcg']
|
||||
|
||||
|
||||
def bmat(*args, **kwargs):
|
||||
import warnings
|
||||
with warnings.catch_warnings(record=True):
|
||||
warnings.filterwarnings(
|
||||
'ignore', '.*the matrix subclass is not the recommended way.*')
|
||||
return np.bmat(*args, **kwargs)
|
||||
|
||||
|
||||
def _save(ar, fileName):
|
||||
# Used only when verbosity level > 10.
|
||||
np.savetxt(fileName, ar)
|
||||
|
||||
|
||||
def _report_nonhermitian(M, name):
|
||||
"""
|
||||
Report if `M` is not a hermitian matrix given its type.
|
||||
"""
|
||||
from scipy.linalg import norm
|
||||
|
||||
md = M - M.T.conj()
|
||||
|
||||
nmd = norm(md, 1)
|
||||
tol = 10 * np.finfo(M.dtype).eps
|
||||
tol = max(tol, tol * norm(M, 1))
|
||||
if nmd > tol:
|
||||
print('matrix %s of the type %s is not sufficiently Hermitian:'
|
||||
% (name, M.dtype))
|
||||
print('condition: %.e < %e' % (nmd, tol))
|
||||
|
||||
|
||||
def _as2d(ar):
|
||||
"""
|
||||
If the input array is 2D return it, if it is 1D, append a dimension,
|
||||
making it a column vector.
|
||||
"""
|
||||
if ar.ndim == 2:
|
||||
return ar
|
||||
else: # Assume 1!
|
||||
aux = np.array(ar, copy=False)
|
||||
aux.shape = (ar.shape[0], 1)
|
||||
return aux
|
||||
|
||||
|
||||
def _makeOperator(operatorInput, expectedShape):
|
||||
"""Takes a dense numpy array or a sparse matrix or
|
||||
a function and makes an operator performing matrix * blockvector
|
||||
products."""
|
||||
if operatorInput is None:
|
||||
return None
|
||||
else:
|
||||
operator = aslinearoperator(operatorInput)
|
||||
|
||||
if operator.shape != expectedShape:
|
||||
raise ValueError('operator has invalid shape')
|
||||
|
||||
return operator
|
||||
|
||||
|
||||
def _applyConstraints(blockVectorV, factYBY, blockVectorBY, blockVectorY):
|
||||
"""Changes blockVectorV in place."""
|
||||
YBV = np.dot(blockVectorBY.T.conj(), blockVectorV)
|
||||
tmp = cho_solve(factYBY, YBV)
|
||||
blockVectorV -= np.dot(blockVectorY, tmp)
|
||||
|
||||
|
||||
def _b_orthonormalize(B, blockVectorV, blockVectorBV=None, retInvR=False):
|
||||
"""B-orthonormalize the given block vector using Cholesky."""
|
||||
normalization = blockVectorV.max(axis=0)+np.finfo(blockVectorV.dtype).eps
|
||||
blockVectorV = blockVectorV / normalization
|
||||
if blockVectorBV is None:
|
||||
if B is not None:
|
||||
blockVectorBV = B(blockVectorV)
|
||||
else:
|
||||
blockVectorBV = blockVectorV # Shared data!!!
|
||||
else:
|
||||
blockVectorBV = blockVectorBV / normalization
|
||||
VBV = np.matmul(blockVectorV.T.conj(), blockVectorBV)
|
||||
try:
|
||||
# VBV is a Cholesky factor from now on...
|
||||
VBV = cholesky(VBV, overwrite_a=True)
|
||||
VBV = inv(VBV, overwrite_a=True)
|
||||
blockVectorV = np.matmul(blockVectorV, VBV)
|
||||
# blockVectorV = (cho_solve((VBV.T, True), blockVectorV.T)).T
|
||||
if B is not None:
|
||||
blockVectorBV = np.matmul(blockVectorBV, VBV)
|
||||
# blockVectorBV = (cho_solve((VBV.T, True), blockVectorBV.T)).T
|
||||
else:
|
||||
blockVectorBV = None
|
||||
except LinAlgError:
|
||||
# raise ValueError('Cholesky has failed')
|
||||
blockVectorV = None
|
||||
blockVectorBV = None
|
||||
VBV = None
|
||||
|
||||
if retInvR:
|
||||
return blockVectorV, blockVectorBV, VBV, normalization
|
||||
else:
|
||||
return blockVectorV, blockVectorBV
|
||||
|
||||
|
||||
def _get_indx(_lambda, num, largest):
|
||||
"""Get `num` indices into `_lambda` depending on `largest` option."""
|
||||
ii = np.argsort(_lambda)
|
||||
if largest:
|
||||
ii = ii[:-num-1:-1]
|
||||
else:
|
||||
ii = ii[:num]
|
||||
|
||||
return ii
|
||||
|
||||
|
||||
def lobpcg(A, X,
|
||||
B=None, M=None, Y=None,
|
||||
tol=None, maxiter=20,
|
||||
largest=True, verbosityLevel=0,
|
||||
retLambdaHistory=False, retResidualNormsHistory=False):
|
||||
"""Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)
|
||||
|
||||
LOBPCG is a preconditioned eigensolver for large symmetric positive
|
||||
definite (SPD) generalized eigenproblems.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : {sparse matrix, dense matrix, LinearOperator}
|
||||
The symmetric linear operator of the problem, usually a
|
||||
sparse matrix. Often called the "stiffness matrix".
|
||||
X : ndarray, float32 or float64
|
||||
Initial approximation to the ``k`` eigenvectors (non-sparse). If `A`
|
||||
has ``shape=(n,n)`` then `X` should have shape ``shape=(n,k)``.
|
||||
B : {dense matrix, sparse matrix, LinearOperator}, optional
|
||||
The right hand side operator in a generalized eigenproblem.
|
||||
By default, ``B = Identity``. Often called the "mass matrix".
|
||||
M : {dense matrix, sparse matrix, LinearOperator}, optional
|
||||
Preconditioner to `A`; by default ``M = Identity``.
|
||||
`M` should approximate the inverse of `A`.
|
||||
Y : ndarray, float32 or float64, optional
|
||||
n-by-sizeY matrix of constraints (non-sparse), sizeY < n
|
||||
The iterations will be performed in the B-orthogonal complement
|
||||
of the column-space of Y. Y must be full rank.
|
||||
tol : scalar, optional
|
||||
Solver tolerance (stopping criterion).
|
||||
The default is ``tol=n*sqrt(eps)``.
|
||||
maxiter : int, optional
|
||||
Maximum number of iterations. The default is ``maxiter=min(n, 20)``.
|
||||
largest : bool, optional
|
||||
When True, solve for the largest eigenvalues, otherwise the smallest.
|
||||
verbosityLevel : int, optional
|
||||
Controls solver output. The default is ``verbosityLevel=0``.
|
||||
retLambdaHistory : bool, optional
|
||||
Whether to return eigenvalue history. Default is False.
|
||||
retResidualNormsHistory : bool, optional
|
||||
Whether to return history of residual norms. Default is False.
|
||||
|
||||
Returns
|
||||
-------
|
||||
w : ndarray
|
||||
Array of ``k`` eigenvalues
|
||||
v : ndarray
|
||||
An array of ``k`` eigenvectors. `v` has the same shape as `X`.
|
||||
lambdas : list of ndarray, optional
|
||||
The eigenvalue history, if `retLambdaHistory` is True.
|
||||
rnorms : list of ndarray, optional
|
||||
The history of residual norms, if `retResidualNormsHistory` is True.
|
||||
|
||||
Notes
|
||||
-----
|
||||
If both ``retLambdaHistory`` and ``retResidualNormsHistory`` are True,
|
||||
the return tuple has the following format
|
||||
``(lambda, V, lambda history, residual norms history)``.
|
||||
|
||||
In the following ``n`` denotes the matrix size and ``m`` the number
|
||||
of required eigenvalues (smallest or largest).
|
||||
|
||||
The LOBPCG code internally solves eigenproblems of the size ``3m`` on every
|
||||
iteration by calling the "standard" dense eigensolver, so if ``m`` is not
|
||||
small enough compared to ``n``, it does not make sense to call the LOBPCG
|
||||
code, but rather one should use the "standard" eigensolver, e.g. numpy or
|
||||
scipy function in this case.
|
||||
If one calls the LOBPCG algorithm for ``5m > n``, it will most likely break
|
||||
internally, so the code tries to call the standard function instead.
|
||||
|
||||
It is not that ``n`` should be large for the LOBPCG to work, but rather the
|
||||
ratio ``n / m`` should be large. It you call LOBPCG with ``m=1``
|
||||
and ``n=10``, it works though ``n`` is small. The method is intended
|
||||
for extremely large ``n / m``, see e.g., reference [28] in
|
||||
https://arxiv.org/abs/0705.2626
|
||||
|
||||
The convergence speed depends basically on two factors:
|
||||
|
||||
1. How well relatively separated the seeking eigenvalues are from the rest
|
||||
of the eigenvalues. One can try to vary ``m`` to make this better.
|
||||
|
||||
2. How well conditioned the problem is. This can be changed by using proper
|
||||
preconditioning. For example, a rod vibration test problem (under tests
|
||||
directory) is ill-conditioned for large ``n``, so convergence will be
|
||||
slow, unless efficient preconditioning is used. For this specific
|
||||
problem, a good simple preconditioner function would be a linear solve
|
||||
for `A`, which is easy to code since A is tridiagonal.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] A. V. Knyazev (2001),
|
||||
Toward the Optimal Preconditioned Eigensolver: Locally Optimal
|
||||
Block Preconditioned Conjugate Gradient Method.
|
||||
SIAM Journal on Scientific Computing 23, no. 2,
|
||||
pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124
|
||||
|
||||
.. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov
|
||||
(2007), Block Locally Optimal Preconditioned Eigenvalue Xolvers
|
||||
(BLOPEX) in hypre and PETSc. https://arxiv.org/abs/0705.2626
|
||||
|
||||
.. [3] A. V. Knyazev's C and MATLAB implementations:
|
||||
https://bitbucket.org/joseroman/blopex
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Solve ``A x = lambda x`` with constraints and preconditioning.
|
||||
|
||||
>>> import numpy as np
|
||||
>>> from scipy.sparse import spdiags, issparse
|
||||
>>> from scipy.sparse.linalg import lobpcg, LinearOperator
|
||||
>>> n = 100
|
||||
>>> vals = np.arange(1, n + 1)
|
||||
>>> A = spdiags(vals, 0, n, n)
|
||||
>>> A.toarray()
|
||||
array([[ 1., 0., 0., ..., 0., 0., 0.],
|
||||
[ 0., 2., 0., ..., 0., 0., 0.],
|
||||
[ 0., 0., 3., ..., 0., 0., 0.],
|
||||
...,
|
||||
[ 0., 0., 0., ..., 98., 0., 0.],
|
||||
[ 0., 0., 0., ..., 0., 99., 0.],
|
||||
[ 0., 0., 0., ..., 0., 0., 100.]])
|
||||
|
||||
Constraints:
|
||||
|
||||
>>> Y = np.eye(n, 3)
|
||||
|
||||
Initial guess for eigenvectors, should have linearly independent
|
||||
columns. Column dimension = number of requested eigenvalues.
|
||||
|
||||
>>> X = np.random.rand(n, 3)
|
||||
|
||||
Preconditioner in the inverse of A in this example:
|
||||
|
||||
>>> invA = spdiags([1./vals], 0, n, n)
|
||||
|
||||
The preconditiner must be defined by a function:
|
||||
|
||||
>>> def precond( x ):
|
||||
... return invA @ x
|
||||
|
||||
The argument x of the preconditioner function is a matrix inside `lobpcg`,
|
||||
thus the use of matrix-matrix product ``@``.
|
||||
|
||||
The preconditioner function is passed to lobpcg as a `LinearOperator`:
|
||||
|
||||
>>> M = LinearOperator(matvec=precond, matmat=precond,
|
||||
... shape=(n, n), dtype=float)
|
||||
|
||||
Let us now solve the eigenvalue problem for the matrix A:
|
||||
|
||||
>>> eigenvalues, _ = lobpcg(A, X, Y=Y, M=M, largest=False)
|
||||
>>> eigenvalues
|
||||
array([4., 5., 6.])
|
||||
|
||||
Note that the vectors passed in Y are the eigenvectors of the 3 smallest
|
||||
eigenvalues. The results returned are orthogonal to those.
|
||||
|
||||
"""
|
||||
blockVectorX = X
|
||||
blockVectorY = Y
|
||||
residualTolerance = tol
|
||||
maxIterations = maxiter
|
||||
|
||||
if blockVectorY is not None:
|
||||
sizeY = blockVectorY.shape[1]
|
||||
else:
|
||||
sizeY = 0
|
||||
|
||||
# Block size.
|
||||
if len(blockVectorX.shape) != 2:
|
||||
raise ValueError('expected rank-2 array for argument X')
|
||||
|
||||
n, sizeX = blockVectorX.shape
|
||||
|
||||
if verbosityLevel:
|
||||
aux = "Solving "
|
||||
if B is None:
|
||||
aux += "standard"
|
||||
else:
|
||||
aux += "generalized"
|
||||
aux += " eigenvalue problem with"
|
||||
if M is None:
|
||||
aux += "out"
|
||||
aux += " preconditioning\n\n"
|
||||
aux += "matrix size %d\n" % n
|
||||
aux += "block size %d\n\n" % sizeX
|
||||
if blockVectorY is None:
|
||||
aux += "No constraints\n\n"
|
||||
else:
|
||||
if sizeY > 1:
|
||||
aux += "%d constraints\n\n" % sizeY
|
||||
else:
|
||||
aux += "%d constraint\n\n" % sizeY
|
||||
print(aux)
|
||||
|
||||
A = _makeOperator(A, (n, n))
|
||||
B = _makeOperator(B, (n, n))
|
||||
M = _makeOperator(M, (n, n))
|
||||
|
||||
if (n - sizeY) < (5 * sizeX):
|
||||
# warn('The problem size is small compared to the block size.' \
|
||||
# ' Using dense eigensolver instead of LOBPCG.')
|
||||
|
||||
sizeX = min(sizeX, n)
|
||||
|
||||
if blockVectorY is not None:
|
||||
raise NotImplementedError('The dense eigensolver '
|
||||
'does not support constraints.')
|
||||
|
||||
# Define the closed range of indices of eigenvalues to return.
|
||||
if largest:
|
||||
eigvals = (n - sizeX, n-1)
|
||||
else:
|
||||
eigvals = (0, sizeX-1)
|
||||
|
||||
A_dense = A(np.eye(n, dtype=A.dtype))
|
||||
B_dense = None if B is None else B(np.eye(n, dtype=B.dtype))
|
||||
|
||||
vals, vecs = eigh(A_dense, B_dense, eigvals=eigvals,
|
||||
check_finite=False)
|
||||
if largest:
|
||||
# Reverse order to be compatible with eigs() in 'LM' mode.
|
||||
vals = vals[::-1]
|
||||
vecs = vecs[:, ::-1]
|
||||
|
||||
return vals, vecs
|
||||
|
||||
if (residualTolerance is None) or (residualTolerance <= 0.0):
|
||||
residualTolerance = np.sqrt(1e-15) * n
|
||||
|
||||
# Apply constraints to X.
|
||||
if blockVectorY is not None:
|
||||
|
||||
if B is not None:
|
||||
blockVectorBY = B(blockVectorY)
|
||||
else:
|
||||
blockVectorBY = blockVectorY
|
||||
|
||||
# gramYBY is a dense array.
|
||||
gramYBY = np.dot(blockVectorY.T.conj(), blockVectorBY)
|
||||
try:
|
||||
# gramYBY is a Cholesky factor from now on...
|
||||
gramYBY = cho_factor(gramYBY)
|
||||
except LinAlgError:
|
||||
raise ValueError('cannot handle linearly dependent constraints')
|
||||
|
||||
_applyConstraints(blockVectorX, gramYBY, blockVectorBY, blockVectorY)
|
||||
|
||||
##
|
||||
# B-orthonormalize X.
|
||||
blockVectorX, blockVectorBX = _b_orthonormalize(B, blockVectorX)
|
||||
|
||||
##
|
||||
# Compute the initial Ritz vectors: solve the eigenproblem.
|
||||
blockVectorAX = A(blockVectorX)
|
||||
gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX)
|
||||
|
||||
_lambda, eigBlockVector = eigh(gramXAX, check_finite=False)
|
||||
ii = _get_indx(_lambda, sizeX, largest)
|
||||
_lambda = _lambda[ii]
|
||||
|
||||
eigBlockVector = np.asarray(eigBlockVector[:, ii])
|
||||
blockVectorX = np.dot(blockVectorX, eigBlockVector)
|
||||
blockVectorAX = np.dot(blockVectorAX, eigBlockVector)
|
||||
if B is not None:
|
||||
blockVectorBX = np.dot(blockVectorBX, eigBlockVector)
|
||||
|
||||
##
|
||||
# Active index set.
|
||||
activeMask = np.ones((sizeX,), dtype=bool)
|
||||
|
||||
lambdaHistory = [_lambda]
|
||||
residualNormsHistory = []
|
||||
|
||||
previousBlockSize = sizeX
|
||||
ident = np.eye(sizeX, dtype=A.dtype)
|
||||
ident0 = np.eye(sizeX, dtype=A.dtype)
|
||||
|
||||
##
|
||||
# Main iteration loop.
|
||||
|
||||
blockVectorP = None # set during iteration
|
||||
blockVectorAP = None
|
||||
blockVectorBP = None
|
||||
|
||||
iterationNumber = -1
|
||||
restart = True
|
||||
explicitGramFlag = False
|
||||
while iterationNumber < maxIterations:
|
||||
iterationNumber += 1
|
||||
if verbosityLevel > 0:
|
||||
print('iteration %d' % iterationNumber)
|
||||
|
||||
if B is not None:
|
||||
aux = blockVectorBX * _lambda[np.newaxis, :]
|
||||
else:
|
||||
aux = blockVectorX * _lambda[np.newaxis, :]
|
||||
|
||||
blockVectorR = blockVectorAX - aux
|
||||
|
||||
aux = np.sum(blockVectorR.conj() * blockVectorR, 0)
|
||||
residualNorms = np.sqrt(aux)
|
||||
|
||||
residualNormsHistory.append(residualNorms)
|
||||
|
||||
ii = np.where(residualNorms > residualTolerance, True, False)
|
||||
activeMask = activeMask & ii
|
||||
if verbosityLevel > 2:
|
||||
print(activeMask)
|
||||
|
||||
currentBlockSize = activeMask.sum()
|
||||
if currentBlockSize != previousBlockSize:
|
||||
previousBlockSize = currentBlockSize
|
||||
ident = np.eye(currentBlockSize, dtype=A.dtype)
|
||||
|
||||
if currentBlockSize == 0:
|
||||
break
|
||||
|
||||
if verbosityLevel > 0:
|
||||
print('current block size:', currentBlockSize)
|
||||
print('eigenvalue:', _lambda)
|
||||
print('residual norms:', residualNorms)
|
||||
if verbosityLevel > 10:
|
||||
print(eigBlockVector)
|
||||
|
||||
activeBlockVectorR = _as2d(blockVectorR[:, activeMask])
|
||||
|
||||
if iterationNumber > 0:
|
||||
activeBlockVectorP = _as2d(blockVectorP[:, activeMask])
|
||||
activeBlockVectorAP = _as2d(blockVectorAP[:, activeMask])
|
||||
if B is not None:
|
||||
activeBlockVectorBP = _as2d(blockVectorBP[:, activeMask])
|
||||
|
||||
if M is not None:
|
||||
# Apply preconditioner T to the active residuals.
|
||||
activeBlockVectorR = M(activeBlockVectorR)
|
||||
|
||||
##
|
||||
# Apply constraints to the preconditioned residuals.
|
||||
if blockVectorY is not None:
|
||||
_applyConstraints(activeBlockVectorR,
|
||||
gramYBY, blockVectorBY, blockVectorY)
|
||||
|
||||
##
|
||||
# B-orthogonalize the preconditioned residuals to X.
|
||||
if B is not None:
|
||||
activeBlockVectorR = activeBlockVectorR - \
|
||||
np.matmul(blockVectorX,
|
||||
np.matmul(blockVectorBX.T.conj(),
|
||||
activeBlockVectorR))
|
||||
else:
|
||||
activeBlockVectorR = activeBlockVectorR - \
|
||||
np.matmul(blockVectorX,
|
||||
np.matmul(blockVectorX.T.conj(),
|
||||
activeBlockVectorR))
|
||||
|
||||
##
|
||||
# B-orthonormalize the preconditioned residuals.
|
||||
aux = _b_orthonormalize(B, activeBlockVectorR)
|
||||
activeBlockVectorR, activeBlockVectorBR = aux
|
||||
|
||||
activeBlockVectorAR = A(activeBlockVectorR)
|
||||
|
||||
if iterationNumber > 0:
|
||||
if B is not None:
|
||||
aux = _b_orthonormalize(B, activeBlockVectorP,
|
||||
activeBlockVectorBP, retInvR=True)
|
||||
activeBlockVectorP, activeBlockVectorBP, invR, normal = aux
|
||||
else:
|
||||
aux = _b_orthonormalize(B, activeBlockVectorP, retInvR=True)
|
||||
activeBlockVectorP, _, invR, normal = aux
|
||||
# Function _b_orthonormalize returns None if Cholesky fails
|
||||
if activeBlockVectorP is not None:
|
||||
activeBlockVectorAP = activeBlockVectorAP / normal
|
||||
activeBlockVectorAP = np.dot(activeBlockVectorAP, invR)
|
||||
restart = False
|
||||
else:
|
||||
restart = True
|
||||
|
||||
##
|
||||
# Perform the Rayleigh Ritz Procedure:
|
||||
# Compute symmetric Gram matrices:
|
||||
|
||||
if activeBlockVectorAR.dtype == 'float32':
|
||||
myeps = 1
|
||||
elif activeBlockVectorR.dtype == 'float32':
|
||||
myeps = 1e-4
|
||||
else:
|
||||
myeps = 1e-8
|
||||
|
||||
if residualNorms.max() > myeps and not explicitGramFlag:
|
||||
explicitGramFlag = False
|
||||
else:
|
||||
# Once explicitGramFlag, forever explicitGramFlag.
|
||||
explicitGramFlag = True
|
||||
|
||||
# Shared memory assingments to simplify the code
|
||||
if B is None:
|
||||
blockVectorBX = blockVectorX
|
||||
activeBlockVectorBR = activeBlockVectorR
|
||||
if not restart:
|
||||
activeBlockVectorBP = activeBlockVectorP
|
||||
|
||||
# Common submatrices:
|
||||
gramXAR = np.dot(blockVectorX.T.conj(), activeBlockVectorAR)
|
||||
gramRAR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAR)
|
||||
|
||||
if explicitGramFlag:
|
||||
gramRAR = (gramRAR + gramRAR.T.conj())/2
|
||||
gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX)
|
||||
gramXAX = (gramXAX + gramXAX.T.conj())/2
|
||||
gramXBX = np.dot(blockVectorX.T.conj(), blockVectorBX)
|
||||
gramRBR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBR)
|
||||
gramXBR = np.dot(blockVectorX.T.conj(), activeBlockVectorBR)
|
||||
else:
|
||||
gramXAX = np.diag(_lambda)
|
||||
gramXBX = ident0
|
||||
gramRBR = ident
|
||||
gramXBR = np.zeros((sizeX, currentBlockSize), dtype=A.dtype)
|
||||
|
||||
def _handle_gramA_gramB_verbosity(gramA, gramB):
|
||||
if verbosityLevel > 0:
|
||||
_report_nonhermitian(gramA, 'gramA')
|
||||
_report_nonhermitian(gramB, 'gramB')
|
||||
if verbosityLevel > 10:
|
||||
# Note: not documented, but leave it in here for now
|
||||
np.savetxt('gramA.txt', gramA)
|
||||
np.savetxt('gramB.txt', gramB)
|
||||
|
||||
if not restart:
|
||||
gramXAP = np.dot(blockVectorX.T.conj(), activeBlockVectorAP)
|
||||
gramRAP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAP)
|
||||
gramPAP = np.dot(activeBlockVectorP.T.conj(), activeBlockVectorAP)
|
||||
gramXBP = np.dot(blockVectorX.T.conj(), activeBlockVectorBP)
|
||||
gramRBP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBP)
|
||||
if explicitGramFlag:
|
||||
gramPAP = (gramPAP + gramPAP.T.conj())/2
|
||||
gramPBP = np.dot(activeBlockVectorP.T.conj(),
|
||||
activeBlockVectorBP)
|
||||
else:
|
||||
gramPBP = ident
|
||||
|
||||
gramA = bmat([[gramXAX, gramXAR, gramXAP],
|
||||
[gramXAR.T.conj(), gramRAR, gramRAP],
|
||||
[gramXAP.T.conj(), gramRAP.T.conj(), gramPAP]])
|
||||
gramB = bmat([[gramXBX, gramXBR, gramXBP],
|
||||
[gramXBR.T.conj(), gramRBR, gramRBP],
|
||||
[gramXBP.T.conj(), gramRBP.T.conj(), gramPBP]])
|
||||
|
||||
_handle_gramA_gramB_verbosity(gramA, gramB)
|
||||
|
||||
try:
|
||||
_lambda, eigBlockVector = eigh(gramA, gramB,
|
||||
check_finite=False)
|
||||
except LinAlgError:
|
||||
# try again after dropping the direction vectors P from RR
|
||||
restart = True
|
||||
|
||||
if restart:
|
||||
gramA = bmat([[gramXAX, gramXAR],
|
||||
[gramXAR.T.conj(), gramRAR]])
|
||||
gramB = bmat([[gramXBX, gramXBR],
|
||||
[gramXBR.T.conj(), gramRBR]])
|
||||
|
||||
_handle_gramA_gramB_verbosity(gramA, gramB)
|
||||
|
||||
try:
|
||||
_lambda, eigBlockVector = eigh(gramA, gramB,
|
||||
check_finite=False)
|
||||
except LinAlgError:
|
||||
raise ValueError('eigh has failed in lobpcg iterations')
|
||||
|
||||
ii = _get_indx(_lambda, sizeX, largest)
|
||||
if verbosityLevel > 10:
|
||||
print(ii)
|
||||
print(_lambda)
|
||||
|
||||
_lambda = _lambda[ii]
|
||||
eigBlockVector = eigBlockVector[:, ii]
|
||||
|
||||
lambdaHistory.append(_lambda)
|
||||
|
||||
if verbosityLevel > 10:
|
||||
print('lambda:', _lambda)
|
||||
# # Normalize eigenvectors!
|
||||
# aux = np.sum( eigBlockVector.conj() * eigBlockVector, 0 )
|
||||
# eigVecNorms = np.sqrt( aux )
|
||||
# eigBlockVector = eigBlockVector / eigVecNorms[np.newaxis, :]
|
||||
# eigBlockVector, aux = _b_orthonormalize( B, eigBlockVector )
|
||||
|
||||
if verbosityLevel > 10:
|
||||
print(eigBlockVector)
|
||||
|
||||
# Compute Ritz vectors.
|
||||
if B is not None:
|
||||
if not restart:
|
||||
eigBlockVectorX = eigBlockVector[:sizeX]
|
||||
eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
|
||||
eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]
|
||||
|
||||
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
|
||||
pp += np.dot(activeBlockVectorP, eigBlockVectorP)
|
||||
|
||||
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
|
||||
app += np.dot(activeBlockVectorAP, eigBlockVectorP)
|
||||
|
||||
bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)
|
||||
bpp += np.dot(activeBlockVectorBP, eigBlockVectorP)
|
||||
else:
|
||||
eigBlockVectorX = eigBlockVector[:sizeX]
|
||||
eigBlockVectorR = eigBlockVector[sizeX:]
|
||||
|
||||
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
|
||||
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
|
||||
bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)
|
||||
|
||||
if verbosityLevel > 10:
|
||||
print(pp)
|
||||
print(app)
|
||||
print(bpp)
|
||||
|
||||
blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp
|
||||
blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app
|
||||
blockVectorBX = np.dot(blockVectorBX, eigBlockVectorX) + bpp
|
||||
|
||||
blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp
|
||||
|
||||
else:
|
||||
if not restart:
|
||||
eigBlockVectorX = eigBlockVector[:sizeX]
|
||||
eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
|
||||
eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]
|
||||
|
||||
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
|
||||
pp += np.dot(activeBlockVectorP, eigBlockVectorP)
|
||||
|
||||
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
|
||||
app += np.dot(activeBlockVectorAP, eigBlockVectorP)
|
||||
else:
|
||||
eigBlockVectorX = eigBlockVector[:sizeX]
|
||||
eigBlockVectorR = eigBlockVector[sizeX:]
|
||||
|
||||
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
|
||||
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
|
||||
|
||||
if verbosityLevel > 10:
|
||||
print(pp)
|
||||
print(app)
|
||||
|
||||
blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp
|
||||
blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app
|
||||
|
||||
blockVectorP, blockVectorAP = pp, app
|
||||
|
||||
if B is not None:
|
||||
aux = blockVectorBX * _lambda[np.newaxis, :]
|
||||
|
||||
else:
|
||||
aux = blockVectorX * _lambda[np.newaxis, :]
|
||||
|
||||
blockVectorR = blockVectorAX - aux
|
||||
|
||||
aux = np.sum(blockVectorR.conj() * blockVectorR, 0)
|
||||
residualNorms = np.sqrt(aux)
|
||||
|
||||
# Future work: Need to add Postprocessing here:
|
||||
# Making sure eigenvectors "exactly" satisfy the blockVectorY constrains?
|
||||
# Making sure eigenvecotrs are "exactly" othonormalized by final "exact" RR
|
||||
# Computing the actual true residuals
|
||||
|
||||
if verbosityLevel > 0:
|
||||
print('final eigenvalue:', _lambda)
|
||||
print('final residual norms:', residualNorms)
|
||||
|
||||
if retLambdaHistory:
|
||||
if retResidualNormsHistory:
|
||||
return _lambda, blockVectorX, lambdaHistory, residualNormsHistory
|
||||
else:
|
||||
return _lambda, blockVectorX, lambdaHistory
|
||||
else:
|
||||
if retResidualNormsHistory:
|
||||
return _lambda, blockVectorX, residualNormsHistory
|
||||
else:
|
||||
return _lambda, blockVectorX
|
Loading…
Add table
Add a link
Reference in a new issue